Simple sol-gel combustion synthesis and characterizations studies of spinel Sm-ZnFe$_2$O$_4$ ferrite nano-particles

Govindaswamy Padmapriya a, Pandian Paulraj b

$^a,^b$Department of Chemistry, Faculty of Arts & Science, Bharath University, Selaiyur, Chennai-73, Tamilnadu, India

Abstract

Spinel Sm$_x$Zn$_{1-x}$Fe$_2$O$_4$ ($x = 0.0$ and 0.3) nanoparticles were synthesized by combustion method. The samples were characterized by XRD, HR-SEM and VSM analysis. The powder XRD confirms that all the compositions crystallize with cubic spinel ZnFe$_2$O$_4$ and SmFe$_2$O$_4$. HR-SEM images revealed that the samples are crystalline with particle size distribution in 20-22 nm range. The saturation magnetization (M_s) increased with increase in Sm content.

Keywords: Microwave combustion; Spinel ferrites; Electron microscopy; Magnetic properties.

*: Corresponding author: E-mail: ppstminex@gmail.com (Dr. G. Padmapriya)

1. Introduction

Nanocrystalline spinel ferrites possess unique structural and opto-magnetic properties than that of their same bulk counterparts [1-3]. Spinel ferrites have applications in the area of magnetic resonance imaging and multilayer chip indicator, etc. Spinel ferrites with a general
formula MFe₂O₄ (M= Co²⁺, Sm³⁺, Zn²⁺, etc.) have been investigated for their usual optical and magnetic properties. Zinc ferrite (ZnFe₂O₄) is a normal spinel structure with Zn²⁺ ions located at the tetrahedral sites and Fe³⁺ ions at the octahedral sites [4-6]. ZnFe₂O₄ is a commercially important material and has been widely used in many areas, such as photo-catalysts, gas sensors, catalysts, absorbent materials and information storage [7,8].

Spinel Ni-ZnFe₂O₄ ferrite has attracted a vast of interest, because of its high resistivity, high permeability, and low dielectric loss in high frequency device applications. Many methods have been used to prepare the spinel ferrite nanoparticles, such as solvothermal, co-precipitation, hydrothermal, sol–gel [9-11]. Nevertheless, the above methods have some disadvantages such as, high-energy consuming, requirement of complicated equipment, requirement of a strong base, like NaOH, higher processing temperature and also require rather long reaction time to complete the crystallization of ZnFe₂O₄ [12].

Microwave combustion method has recently gained importance than the above said methods. The microwaves interact with the reactants at the molecular level, which leads to a uniform heating. During the microwave combustion, the microwave energy is transferred and converted into heat, because of the motion of the molecules. This results in the formation of ZnFe₂O₄ nanoparticles within few minutes of time and leads to a higher efficiency [13].

In this present study, we have synthesized SmₓZn₁₋ₓFe₂O₄ (x = 0.0 and 0.5) nanoparticles by microwave combustion method using glycine as the fuel. The structural phase of the prepared samples was characterized by powder X-ray diffraction (XRD) analysis. The particle size and morphologies were determined by high resolution scanning electron microscopy (HR-SEM) and the chemical composition was determined by the energy dispersive X-ray (EDX) analysis. The magnetic behavior of the samples was studied by the vibrating sample magnetometer (VSM).
2. Experimental

2.1. Materials and methods

All the chemicals used in this study were of analytical grade obtained from Merck, India and were used as received without further purification. Zn(NO\(_3\))\(_2\)·6H\(_2\)O, 98%, Fe(NO\(_3\))\(_3\)·9H\(_2\)O, 98% and Sm(NO\(_3\))\(_2\) were used as precursors and C\(_2\)H\(_5\)NO\(_2\) as a fuel for this method.

2.2. Characterization techniques

The structural characterization of spinel Sm\(_x\)Zn\(_{1-x}\)Fe\(_2\)O\(_4\) (\(x = 0.0\) and 0.5) nanoparticles were performed using a Rigaku Ultima X-ray diffractometer equipped with Cu-K\(\alpha\) radiation (\(\lambda = 1.5418\) Å). Morphological studies and energy dispersive X-ray analysis of Sm-doped ZnFe\(_2\)O\(_4\) nanoparticles have been performed with a Jeol JSM6360 high resolution scanning electron microscope (HR-SEM). Magnetic measurements were carried out at room temperature using a PMC MicroMag 3900 model vibrating sample magnetometer (VSM) equipped with 1 T magnet.

3. Results and discussion

3.1. XRD analysis

The structural analysis of Sm\(_x\)Zn\(_{1-x}\)Fe\(_2\)O\(_4\) (\(x = 0.0\) and 0.3) samples was done by powder X-ray diffraction (XRD) technique using Cu K\(\alpha\) radiation. Fig. 1a,b shows the XRD patterns of Sm\(_x\)Zn\(_{1-x}\)Fe\(_2\)O\(_4\) (\(x = 0.0\) and 0.3) samples. There is no additional peak for all compositions, which indicates that all the samples crystallize in single-phase cubic structure with Fd3m space group [14].

In addition, the crystallite size is estimated from the most intense (311) reflection peak using the Debye Scherrer formula,
\[L = \frac{0.89 \lambda}{\beta \cos \theta} \]

where \(L \) is the crystallite size, \(\lambda \), the X-ray wavelength, \(\theta \), the Bragg diffraction angle and \(\beta \), the full width at half maximum (FWHM). The crystallite size of \(\text{ZnFe}_2\text{O}_4 \) and \(\text{Sm}_{0.5}\text{Zn}_{0.5}\text{Fe}_2\text{O}_4 \) samples are 26.21, and 25.13 nm, respectively. It shows clearly that by increasing the amount of \(\text{Sm}^{2+} \) ions, the crystallite size decreased. It is observed that lattice parameter decreased from 8.443 Å to 8.436 Å with increase in nickel concentration, which attributes to the replacement of larger \(\text{Zn}^{2+} \) (0.83 Å) ions by smaller \(\text{Sm}^{2+} \) (0.79 Å) ions [15].

![Figure 1. XRD patterns of (a) \(\text{ZnFe}_2\text{O}_4 \) and (b) \(\text{Sm}_{0.3}\text{Zn}_{0.7}\text{Fe}_2\text{O}_4 \).](image_url)
3.2. Scanning electron microscopy (SEM) studies

High resolution scanning electron microscope (HR-SEM) studies was used to investigate the microstructures with the change in Ni composition in ZnFe$_2$O$_4$ nanoparticles. HR-SEM micrographs of the as-synthesized samples exhibited uniform, almost spherical shaped and loosely agglomerated particles as shown in Fig. 2 a,b. The average particle size of the ferrite nanoparticles prepared via this route is found to be in the range of 20-22 nm. It is observed that the particle size increases as the concentration of Ni ion increases.

Figure 2. HR-SEM images of (a) ZnFe$_2$O$_4$ and (b) Sm$_{0.3}$Zn$_{0.7}$Fe$_2$O$_4$.

3.3. Energy dispersive X-ray analysis (EDX)

Energy dispersive X-ray analysis (EDX) of the respective samples is shown in Fig. 3. The peaks corresponding to the elements Fe, Zn and O were observed in pure ZnFe$_2$O$_4$ (Fig. 3) and the peaks of the elements Fe, Zn, Sm and O were observed in Sm-doped ZnFe$_2$O$_4$ samples (Fig. 3).
Figure 3. EDX spectra of ZnFe$_2$O$_4$

3.4. Magnetic measurements (VSM)

The magnetic property of the as-prepared ZnFe$_2$O$_4$ and Sm$_{0.3}$Zn$_{0.7}$Fe$_2$O$_4$ nanoparticles was investigated with a vibrating sample magnetometer (VSM). Fig. 4 shows the magnetic measurements of ZnFe$_2$O$_4$ and Sm$_{0.3}$Zn$_{0.7}$Fe$_2$O$_4$ samples. From the VSM measurements saturation magnetization (M_s), remanent magnetization (M_r) and coercivity (H_c) values are evaluated. From the results, it is clearly understood that the magnetic properties of the samples are affected by the composition and cation distribution [16]. The magnetization curve demonstrates a typical superparamagnetic behavior of the as-prepared pure ZnFe$_2$O$_4$ nanoparticles with lower remanence and coercivity. This is confirmed by the non saturation
observed in MH loop and the absence of the hysteresis, M_r and H_c. The superparamagnetic nature can be attributed to their fine crystalline size, which makes it easier for them to be thermally activated to overcome the magnetic anisotropy [17]. For $\text{Sm}_{0.3}\text{Zn}_{0.7}\text{Fe}_2\text{O}_4$ sample, a hysteresis was observed, thus indicating the ferromagnetism. This is due to the increase in the magnetic nature of the Sm^{2+} concentration.

![Graph showing magnetic hysteresis loops](image)

Figure 4. Magnetic hysteresis loops of (a) ZnFe$_2$O$_4$ and (b) Sm$_{0.3}$Zn$_{0.7}$Fe$_2$O$_4$

4. Conclusions

Nanocrystalline $\text{Sm}_x\text{Zn}_{1-x}\text{Fe}_2\text{O}_4$ ($x = 0.0$ and 0.3) nanoparticles were successfully prepared by microwave combustion method using glycine as the fuel. Microwave combustion method is suitable for preparing the spinel structure with good crystallinity and reproducibility.
The crystallite size was found to vary within the range of 25.21 to 26.13 nm. The results revealed that the decreases in Zn concentration lead to the decrease in particle size, which ultimately affects the magnetic properties of the sample.

References

7. D. K. Manimegalai, A. Manikandan, S. Moortheswaran, S. Arul Antony, Magneto-Optical and Photocatalytic Properties of Magnetically Recyclable Zn$_{1-x}$Mn$_x$S (x = 0.0, 0.3

