B.Tech Information Technology

(Four Years)
(Choice Based Credit System)

CURRICULUM AND SYLLABUS- 2018

DEPARTMENT OF INFORMATION TECHNOLOGY

SCHOOL OF COMPUTING BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY

CHENNAI-600 073, TAMIL NADU

DEPARTMENT OF INFORMATION TECHNOLOGY

B.Tech – INFORMATION TECHNOLOGY

DEPARTMENT VISION

To produce competent IT professionals who are technically sound and ethically strong for the industries, community and research organizations at the national and global levels through excellence in teaching, research and consultancy

DEPARTMENT MISSION

Information Technology Department shall strive to be excellence

MS1:By developing the students, strong in engineering fundamentals, proficientintechnicalskills,stronginethicalvaluesandknowledgeablein applyingtheskillsforthewelfareofthesocietythroughcompetentfaculty.

MS2:By providing state of the art facilities in which higher studies and research flourish amongst the students.

MS3: By enhancing the collaborative partnership between Industry, R&D organization to promote research among faculty, students and also preparing the student to be an entrepreneur.

MS4:By bringing out the aggregate identity and accentuating moral esteems of students

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve solve hardware / software engineering problems.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in the core areasofInformationTechnologyandrelatedengineeringsoastoanalyze, design, and synthesizedata

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new thrust areas through self- directed professional development and post-graduate training or education.

PEO4: SKILL:

To provide Industry based training for developing professional skills and soft skills such as proficiency in languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

Mapping between PEOs Vs Mission:

PEO	DEP	ARTMENT	MISSION	I
	MS1	MS2	MS3	MS4
PEO1	3	2	2	2
PEO2	3	1	3	3
PEO3	2	3	3	2
PEO4	3	2	3	3
PEO5.	2	3	1	2

(Degree of Mapping High=3, Medium=2, Low=1)

PROGRAMME OUTCOMES (POs)

On completion of B.Tech in Information Technology Programmethe graduate will haveto

- **a) Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and engineering specialization to the solution of complex engineering problems.
- **b) Problem Analysis:**Identify, formulate, review research literature, and analyse complex engineeringproblems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineeringsciences.
- c) Design/Development of Solutions: Design solutions for complex engineering problems and designsystem components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **Conduct Investigations of Complex Problems:** Use research- based knowledge and research methodsincluding design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complexproblems.
- **e) Modern Tool Usage:**Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modelling to complex engineering activities with an understanding of thelimitations.
- **The Engineer and Society:**Apply reasoning informed by the contextual knowledge to assess societal,health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **g) Environment and Sustainability:** Understand the impact of the professional engineering solutions insocietal and environmentalcontexts, anddemonstratetheknowledgeof,andneedforsustainabledevelopment
- **h) Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- i) Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **j)** Communication: Communicate effectively oncomplex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **k) Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: To identify, analyze and develop software systems using appropriate techniques and concepts related to user experience, predictive analysis and health care information systems through Information Technology.

PSO2: To design an algorithm or process within realistic constraints to meet the desired needs through analytical, logical and problem-solving skills.

PSO3:To apply state of the art IT tools and technologies, IT infrastructure management abilities in treading innovative career path as a prospective IT engineer.

MAPPING BETWEEN PROGRAMME EDUCATIONAL OBJECTIVES & PROGRAMME OUTCOMES

PEOs\POs	а	b	С	d	е	f	g	h	i	j	k	I
PEO1	$\sqrt{}$	1	1			-	-	-	-		1	$\sqrt{}$
PEO2	V	-	V	-	1	-	-	1	-	-	1	$\sqrt{}$
PEO3	V	V	-	V	$\sqrt{}$	1	1	V	V	1	1	$\sqrt{}$
PEO4	-	1	-	V	1	1	1	1	V	-	1	1
PEO5	-	-	V	-	-	-	-	$\sqrt{}$	-	-	-	1

MAPPING BETWEEN CORE COURSES &PROGRAMME OUTCOMES (Semester wise)

Sem	Courses\SOs	a	b	c	d	e	f	g	h	i	j	k	l	PSO1	PSO2	PSO3
	THEORY															
	Communicative English	-	-	-	-	-	-	-	1	-	V	1	V	V	V	V
	Engineering Mathematics –I	V	V	-	1	-	-	-	-	-	-	-	-	V	1	1
	Waves and Optics	$\sqrt{}$		-	-	-	-	-	-	-	-	-	-	$\sqrt{}$	V	V
	Engineering Chemistry	1	V	-	-	-	-	-	-	-	-	-	-	V	V	V
I	Basic Electrical & Electronics Engineering	1	1	V	-	-	-	-	-	1	-	-	-	1	V	V
	Biology for Engineers	V	-	1	-	-	1	1	-	1	-	1		1	V	V
	PRACTICAL															
	Wave Optics &	1	V	_	-	-	-	-	-	-	-	-	-	V	√	√
	Semiconductor Physics Lab	,	,											,	,	,
	Chemistry Lab	1	1	-	-	-	-	-	-	-	-	-	-	V	V	V
	Workshop/Manuf acturing Practices Laboratory	1	1	V	-	-	-	-	-	-	-	-	-	V	V	V
	Basic Electrical &Electronics Engineering	1	1	1	-	-	-	-	-	1	-	-	-	√	V	V
	Laboratory															
	THEORY															
	Technical English	-	-	-	-	-	-	-	V	-		1	$\sqrt{}$	1	1	$\sqrt{}$
11	Engineering Mathematics- II	V	V	-	1	-	-	•	-	•	-	•	-	V	V	V
II	Semiconductor Physics	1	V	-	-	-	-	-	-	-	-	-	-	1	$\sqrt{}$	√
	Environmental Sciences	1	V	-	-	-	-	-	-	-	-	-	-	√	$\sqrt{}$	
	Problem Solving and Python Programming	1	1	1	1	-	-	-	-	-	-	-	-	1	1	1
	Engineering Graphics &	V	V	V	1	-	-	-	-	-	-	-	-	V	V	V
	Design PRACTICAL												-	-		
		1	1										-	√	V	V
	Wave Optics & Semiconductor Physics Lab	V	V	-	-	-	-	-	-	-	-	-	-	V	V	V
	Chemistry Lab	V	V	-	-	-	-	-	-	-	-	-	-	V	√	√
	ProblemSolving	V	1	1	V	-	-	-	-	-	-	-	-	V	· √	· √
	and Python Programming															
	Laboratory															
	THEORY	,														
	Probability & Queuing Theory	1	V	-	√	-	-	-	-	-	-	-	-	√ ,	V	√
	Principles of Communication	1	1	1	-	-	-	-	-	-	-	-	-	1	1	1
	systems		<u> </u>										<u> </u>			

III	Database Management Systems	√	1	1	1	-	-	-	-	-	-	-	-	V	V	V
	DataStructures andAlgorithms	V	V	V	-	-	-	-	-	-	-	-	-	1	1	V
	Object Oriented Analysis and Design	1	1	1	1	-	-	-	-	-	-	-	-	V	V	V
	Computer Architecture	1	1	1	-	-	-	-	-	-	-	-	-	V	V	V
	PRACTICAL															
	Database Management Systems Lab	1	1	1	-	-	-	-	-	-	-	-	-	V	V	V
	Object Oriented Programming Lab	1	V	V	-	-	-	-	-	-	-	-	-	V	V	V
	Data Structures lab	1	V	V	V	-	-	-	-	-	-	-	-	V	V	V
	THEORY															
	Discrete Mathematics	V	V	-	V	-	-	-	-	-	-	-	-	V	V	V
	Web Programming	1	V	V	-	V	V	-	-	-	-	-	-	V	V	V
	Operating System	V	1	V	-	-	-	-	-	-	-	-	-	V	V	1
	Software Engineering	1	1	1	V	1	-	-	-	1	-	-	-	V	V	V
IV	Digital System Design	1	V	V	V	V	V	-	-	-	-	-	-	V	V	V
	Data Communication and Computer Networks	1	V	1	-	1	1	-	-	-	-	-	-	V	V	√
	PRACTICAL															
	Networking Lab	$\sqrt{}$	1	V	V	1	V	-	-	-	-	-	-	√	$\sqrt{}$	V
	Web Programming Lab	1	V	V	-	-	-	-	-	-	-	-	-	V	V	V
	Operating System Lab	V	1	1	1	1	-	-	-	1	-	-	-	√	V	V
	THEORY															
	Data Warehousing and Data Mining	$\sqrt{}$	1	1	1	1	1	-	-	1	-	-	V	1	1	1
	Mobile Communication	1	V	1	1	1	1	-	-	-	-	V	V	1	1	V
	Principles of Artificial Intelligence	1	1	1	-	-	-	-	-	-	-	-	-	1	1	1
v	Formal Languages and	1	1	1	-	1	1	-	-	-	-	-	-	1	1	V
	Automata Organizational Behavior	-	-	-	-	-	-	1	1	1	1	1	-	√	√	V
	PRACTICAL	. 1	1	,										.1		
	Data mining Lab	√	V	V	-,	-	-,	-,	-	-	-	-	-	1	1	√
	IT -Workshop Lab	-	-	-	V	-		√	-	-	-	-	$\sqrt{}$	1	√	$\sqrt{}$
	THEORY															

	Grid and Cloud Computing	V	1	1	-	1	1	-	-	-	-	-	-	V	V	√
	Human Computer Interaction	1	1	1	1	1	1	-	-	-	-	V	V	V	V	V
	Data Analytics					V		-	-	$\sqrt{}$	-	-	V	$\sqrt{}$	$\sqrt{}$	
VI	PRACTICAL															
	Data Analytics Lab	1	V	V	-	1	V	-	-	-	-	-	-	V	1	V
	Grid and Cloud Computing Lab	V	1	1	1	1	1	-	-	-	-	1	V	V	1	V
	Project-I	$\sqrt{}$	V	V	V	V	$\sqrt{}$	V	V	V	V	V	V	V	V	V
	Soft Skill	-	-	-	-	-	-		V				-	V	1	$\sqrt{}$
	THEORY															
VII	Wireless Networks	1	V	1	1	1	V	-	-	V	-	-	V	V	1	V
	Project-II	$\sqrt{}$											V	V	V	$\sqrt{}$
VIII	THEORY															
	PRACTICAL															
	Project-III													$\sqrt{}$		$\sqrt{}$

MAPPING BETWEEN PROGRAMME ELECTIVES& PROGRAMME OUTCOMES

Programme	Courses\POs	a	b	c	d	e	f	g	h	i	j	k	l	PSO	PSO2	PSO3
Elective														1		
	THEORY															
	Computer Vision	V	V	V	-	1	V	-	-		-	-	-	V	V	V
Programme	Ad hoc and Sensor Networking	1	1	1	1	1	1	-	-	-	-	-	-	V	1	1
Elective-I	Optimization Techniques	1	V	V	V	1	1	-	-	V	ı	-	1	1	V	1
	Visual Analytics	1	V	V	1	V	V	-	-	V	-	-	V	V	V	V
	Health Informatics	V		$\sqrt{}$	-		-	-	-	1	1	1	-	V	√	V
	Software Testing	-	-	-	-	-	V	$\sqrt{}$	V	ı	ı		-	1	√	√
Programme	High Speed Networks		1	1	-		1	-	-		-	-	-	V	1	1
Elective-II	Natural language Processing	V	1	1	1	1	1	-	-	1	-	-	-	1	√	√
	Social Network Analysis	1	V	V	V	1	V	-	-	1	-	-	1	1	V	V
	Business Analytics	1	V	V	V		1	-	-	1	-	-	1	1	V	V
	Mobile Application Development	1		1	-	1	-	-	-	1	-	-	-	1	√	1
	Wavelet Transformsand itsapplications	-	-	-	-	-	1	1	1	1	-	1	-	1	V	1
	Cyber Forensics	V	1	1	-		1	-	-	-	-	-	-	√	V	V
	Virtual and Augmented Reality	1	V	1	V	1	1	-	-	-	-	-	-	V	V	1

Programme	Applications of	T \	V	V	V	V	V	_	_	V	_	_	V	V	Ι√	V
Elective-	Data Mining	\ \	٧	٧	'	٧	\ \ \	_	_	٧	_	_	٧	'	`	'
IIII	Machine		V	1	1	V	1	-	-		-	-	V	V	1	1
	Learning															
	Techniques															
	Bio-Inspired	V			-		-	-	-	-	-	-	-	V	$\sqrt{}$	V
	Computing															
	Software	-	-	-	-	-				-	-		-	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
	configuration															
	management		,	,		L.,	ļ.,.							,	,	,
	Cloud		1		-			-	-	-	-	-	-	\checkmark	√	$\sqrt{}$
	Computing and Security															
	Multi-agent	1	V	V	V	1	V	_	_	-	_	_	_	V	1	√
Programme	System	V	V	V	V	V	V	-	-	-	-	-	-	V	\	V
Elective-IV	Mining Social	1	V	V	V		1	_	_		_	_	V	V	V	V
	Media	`	,	,	,	,	'			,			,	,	`	,
	Medical Image	√	1	1			$\sqrt{}$	-	-		-	-		√	V	1
	Processing															
	Agile	1		1	-		_	_	_	-	-	-	-		1	V
	Methodology	,		,		,								,	`	,
	Multimedia	-	-	-	-	-				-	-		-	V	V	V
	compression															
	techniques															
	Internet of				-			-	-	-	-	-	-	$\sqrt{}$		$\sqrt{}$
	Things	,	,	,	L.,	,	,									
Programme	Artificial							-	-		-	-		$\sqrt{}$	√	$\sqrt{}$
Elective-V	Intelligent															
	Game	1	1	1	1	1	√			1			1	V	V	V
	Inferential statistics	٧,	V	V	-V	٧.	-V	-	-	Ŋ	-	-	·V	V	V	N .
	Deep Learning	1		1	_	1	_	-	_	-	_	_	_	1	1	√
	Software	-	_	_	-	_	1	1	1	-	-	_ √		1	1	V
	Quality						'	•	'			•		'	'	'
	Software	V	1	1			1	_	_		_	-	1	√	1	1
	Architecture															
Programme	Quantum	√	$\sqrt{}$	$\sqrt{}$	-		$\sqrt{}$	-	-	-	-	-	-	$\sqrt{}$	$\sqrt{}$	1
Elective-VI	Computing															
	Real Time							-	-	1	-	1	-	$\sqrt{}$		$\sqrt{}$
	Systems		,	,	L.,	L,								,	,	,
	Computer		1	1				-	-	\checkmark	-	-		1	1	$\sqrt{}$
	Graphics	,	,	,	,	-	-			,			1	,	,	,
	Business					√		-	-		-	-		√	√	
	Intelligence			٦												
	Information Theory and	√		V	-	√	-	-	-	-	-	-	-	V		V
	Coding															
	Multi agent	1	V	V	-	-	V	V	V	-	-		-	V	1	V
	Intelligent															
	Systems															
	i	1	l	l	<u> </u>	1	l	l		1				<u> </u>	I	I

CURRICULUM AND SYLLABUS – R2018

B–FACT: Bharath -Flexible Accommodative Choice Based Credit System for Technology

(Applicable to the batches admitted from July 2018)

B.Tech – INFORMATION TECHNOLOGY

SEMESTER I – VIII

			SEMESTER I					
Sl. No.	Course Code	Category	Course Title	Contact Period	L	Т	P	C
		l	THEORY					
1	U18HSEN101	HS	Communicative English	4	2	0	2	3
2	U18BSMA101	BS	Engineering Mathematic- I	4	4	0	0	4
3	U18BSPH101	BS	Waves and Optics	3	3	0	0	3
4	U18BSCH101	BS	Engineering Chemistry	3	3	0	0	3
5	U18ESEE101	ES	Basic Electrical and Electronics Engineering	3	0	0	3	3
6	U18BSBT101	BS	Biology for Engineers	2	2	0	0	2
			PRACTICAL					
7	*U18BSPH2L2	BS	Wave Optics and Semi Conductor Physics Lab	3	0	0	3	0
	*U18BSCH2L4	BS	Chemistry Lab	3	0	0	3	0
8	U18ESME1L2	ES	Workshop/Manufacturing Practices Laboratory	5	1	0	4	3
9	U18ESEE1L3	ES	Basic Electrical and Electronics Engineering Practices Laboratory	3	0	0	3	2
	I	I	ACTIVITY BASED COU	JRSES	1	1		
10	U18MCAB203	MC	Yoga	2	0	0	2	0
11	U18MCAB204	MC	Physical health – NCC	2	0	0	2	0
	1		Total	31	14	0	17	23

*Laboratory Classes will be conducted on alternative weeks for Physics and Chemistry. The Lab Practical Examinations will be held only in the second semester (including the first semester experiments).

			SEMESTER II									
Sl. No.	Code No.	Cate gory	Course Title	Contact Periods	L	Т	P	C				
			THEORY									
1	U18HSEN201	HS	Technical English	3	2	1	0	3				
2	U18BSMA201	BS	Engineering Mathematics- II	4	4	0	0	4				
3	U18BSPH202	BS	Semi Conductor Physics	3	3	0	0	3				
4	U18BSCH201	BS	Environmental Sciences	3	3	0	0	3				
5	U18ESCS101	ES	Problem Solving and Python Programming	3	3	0	0	3				
6	U18ESME101	ES	Engineering Graphics & Design	5	1	0	4	3				
	PRACTICAL											
7	*U18BSPH2L2	BS	Wave Optics andSemi Conductor PhysicsLab	3	0	0	3	2				
8	*U18BSCH2L4	BS	Chemistry Lab	3	0	0	3	2				
9	U18ESCS1L1	ES	Problem Solving and Python Programming Lab	3	0	0	3	2				
			ACTIVITY BASED CO	URSES								
10	U18MCAB101	MC	Physical health – Sports & Games	2	0	0	2	0				
11	U18MCAB102	MC	Gardening & Tree Plantation -	2	0	0	2	0				
	·	Total		34	16	1	12	25				

*Laboratory Classes will be conducted on alternative weeks for Physics and Chemistry. The Lab Practical Examinations will be held only in the second semester (including the first semester experiments).

			SEMESTER III											
Sl.N o.	Code No.	Categ ory	Course Title	Contact Periods	L	Т	P	C						
			THEORY											
1	U18BSMA304	BS	Probability & Queuing Theory	4	3	1	0	4						
2	U18ESIT302	ES	Principles of Communication systems	3	3	0	0	3						
3	U18PCIT303	PC	Database Management Systems	3	3	0	0	3						
4	U18PCIT304	PC	Data Structures and Algorithms	3	3	1	0	3						
5	U18PCIT305	PC	Object Oriented Analysis and Design	3	3	0	0	3						
6	U18PCIT306	PC	Computer Architecture	3	3	0	0	3						
			PRACTICAL											
7	U18PCIT3L1	PC	Database Management Systems Lab	3	0	0	3	1						
8	U18PCIT3L2	PC	Object Oriented Programming Lab	3	0	0	3	1						
9	U18PCIT3L3	PC	Data Structures lab	3	0	0	3	1						
			ACTIVITY BASED COURSE	S										
10	U18MCAB305	MC	Culture- Learning an art form	2	0	0	2	0						
11	U18MCAB306	МС	Culture – IntangibleCultural, heritage(festivals, Food ways, Localgames)	2	0	0	2	0						
		Total		32	18 2 13 22									

			SEMESTER IV					
Sl.N o.	Code No.	Cate gory	Course Title	Contact Periods	L	Т	P	С
THE	ORY							
1	U18BSMA401	BS	Discrete Mathematics	4	3	1	0	4
2	U18PCIT401	PC	Web Programming	3	3	0	0	3
3	U18PCIT402	PC	Operating System Principles	3	3	0	0	3
4	U18PCIT403	PC	Software Engineering Methodologies	3	3	0	0	3
5	U18ESIT404	ES	Digital System Design	3	3	0	0	3
6	U18PCIT405	PC	Data Communication and Computer Networks	3	3	0	0	3
7	U18MCTH502	MC	Universal Human Values	2	2	0	0	0
PRA	CTICAL							
7	U18PCIT4L1	PC	Data Communication and Computer Networks Lab	3	0	0	3	1
8	U18PCIT4L2	PC	Web Programming Lab	3	0	0	3	1
9	U18PCIT4L3	PC	Operating System Design Lab	3	0	0	3	1
ACT	IVITY BASED COU	URSES						
10	U18MCAB407	MC	Literature & Media –Literature, Cinema & Media	2	0	0	2	0
11	U18MCAB408	MC	Literature & Media – Group Reading of Classics	2	0	0	2	0
Total			10	32	18	1	13	22

			SEMESTER V					
Sl. No.	Code No.	Categ ory	Course Title	Contac t Periods	L	Т	P	C
THE	EORY			•	•	•	1	
1	U18PCIT501	PC	Data Mining	3	3	0	0	3
2	U18PCIT502	PC	Mobile Communication	3	3	0	0	3
3	U18PCIT503	PC	Principles of Artificial Intelligence	3	3	0	0	3
4	U18PCIT504	PC	Theory of computation	3	3	0	0	3
5	U18HSBA501	HS	Organizational Behavior	3	3	0	0	3
6	U18MCCH501	MC	Constitution of India	2	2	0	0	0
7		PE – 1	Professional Elective - I	3	3	0	0	3
PRA	CTICAL							
8	U18PCIT5L1	PC	Data mining Lab	3	0	0	3	2
9	U18PCIT5L2	PC	IT -Workshop Lab	3	0	0	3	1
ACT	TIVITY BASED	COURS	ES					
11	U18MCAB509	MC	Self Development – Spiritual-Mindfulness & Meditation	2	0	0	2	0
12	U18MCAB510	MC	Self Development - religion and Inter-faith	2	0	0	2	0
Tota	1			30	20	0	10	21

			SEMESTER VI					
Sl.N o.	Code No.	Cate gory	Course Title	Contact Periods	L	Т	P	C
THE	ORY							
1	U18PCIT601	PC	Grid and Cloud Computing	3	3	0	0	3
2	U18PCIT602	PC	Human Computer Interaction	3	3	0	0	3
3	U18PCIT603	PC	Data Analytics	3	3	0	0	3
4		PE	Professional Elective-II	3	3	0	0	3
5		PE	Professional Elective- III	3	3	0	0	3
6		OE	Open Elective-I	3	3	0	0	3
PRA	CTICAL				•			
7	U18PCIT 6L1	PC	Data Analytics Lab	3	0	0	3	2
8	U18PCIT 6L2	PC	Grid and Cloud Computing Lab	3	0	0	3	2
9	U18EEIT6L3	EE	Soft skill	2	0	0	2	1
ACT	IVITY BASED C	OURSI	ES	l	1	1	1	I
10	U18MCAB609	MC	Social Services – Social Awareness	2	0	0	2	0
11	U18MCAB610	MC	Social Services – NSS	2	0	0	2	0
Total				38	20	0	18	22

			SEMESTER VII					
Sl. No.	Code No.	Cate gory	Course Title	Contact Periods	L	T	P	C
THE	CORY			•				
1	U18PCIT701	PC	Wireless Networks	3	3	0	0	3
2		PE	Professional Elective- IV	3	3	0	0	3
3		PE	Professional Elective- V	3	3	0	0	3
4		OE	Open Elective II	3	3	0	0	3
5	U18MCTH703	MC	Essence of Indian Knowledge Tradition	2	2	0	0	0
PRA	CTICAL	•			•	•		•
6	U18PRIT7P1	EE	Project Phase-I	6	0	0	6	3
ACT	CIVITY BASED (COURS	SES					
7	U18MCAB713	MC	Behavioral and interpersonal skills	2	0	0	2	0
8	U18MCAB714	MC	Nature – Nature club	2	0	0	2	0
Total	1			22	12	0	10	15

			SEMESTER VIII					
Sl. No.	Code No.	Cate gory	Course Title	Contact Periods	L	Т	P	С
THE	CORY							
1		PE	3	3	0	0	3	
2		OE	Open Elective – III	3	3	0	0	3
3		OE	Open Elective – IV (MOOC)	2	2	0	0	2
PRA	CTICAL							
4	U18PRIT8P2	EE	Project Phase-I	12	0	0	18	9
ACT	CIVITY BASED (COURS	SES					
5	U18MCAB815	MC	Innovation – Project based – Sc., Tech, Social, Design & Innovation	2	0	0	2	0
Total	1			29	9	0	20	17

Total: 168 Credits

PROFESSIONAL ELECTIVE- I												
SUB.CODE	SPECIALIZATION	SUBJECT NAME	L	T	P	C						
U18PEIT011	Image Processing	Computer Vision	3	0	0	3						
U18PEIT012	Networking	Ad hoc and Sensor Networking	3	0	0	3						
U18PEIT013	Soft Computing	Optimization Techniques	3	0	0	3						
U18PEIT014	Data Science	Visual Analytics	3	0	0	3						
U18PEIT015	Data Science	Health Informatics	3	0	0	3						
U18PEIT016	Software	Software Testing	3	0	0	3						
	PROFESSIONAL EI	LECTIVE- II										
U18PEIT021	Networking	High Speed Networks	3	0	0	3						
U18PEIT022	Soft Computing	Natural Language Processing	3	0	0	3						
U18PEIT023	Soft Computing	Social Network Analysis	3	0	0	3						
U18PEIT024	Data Science	Business Analytics	3	0	0	3						
U18PEIT025	Software	Mobile Application Development	3	0	0	3						
U18PEIT026	Image Processing	Wavelet Transforms and its	3	0	0	3						
		PROFESSIONAL ELECTIVE-										
U18PEIT031	Networking	Cyber Forensics	3	0	0	3						
U18PEIT032	Image Processing	Virtual and Augmented Reality	3	0	0	3						
U18PEIT033	Data Science	Applications of Data Mining	3	0	0	3						
U18PEIT034	Data Science	Machine Learning Techniques	3	0	0	3						
U18PEIT035	Soft Computing	Bio-Inspired Computing	3	0	0	3						
U18PEIT036	Software	Software configuration	3	0	0	3						
		PROFESSIONAL ELECTIVE-										
U18PEIT041	Networking	Cloud Computing and Security	3	0	0	3						
U18PEIT042	Soft Computing	Multi-agent System	3	0	0	3						
U18PEIT043	Data Science	Mining Social Media	3	0	0	3						
U18PEIT044	Image Processing	Medical Image Processing	3	0	0	3						
U18PEIT045	Software	Agile Methodology	3	0	0	3						
U18PEIT046	Image Processing	Multimedia compression	3	0	0	3						
		PROFESSIONAL ELECTIVE	C- V									
U18PEIT051	Networking	Internet of Things	3	0	0	3						
U18PEIT052	Soft Computing	Artificial Intelligent Game	3	0	0	3						
U18PEIT053	Soft Computing	Inferential statistics	3	0	0	3						
U18PEIT054	Image Processing	Deep Learning	3	0	0	3						
U18PEIT055	Software	Software Quality	3	0	0	3						
U18PEIT056	Software	Software Architecture	3	0	0	3						
	PROFESS	SIONAL ELECTIVE- VI										
U18PEIT061	Soft Computing	Quantum Computing	3	0	0	3						
U18PEIT062	Data Science	Real Time Systems	3	0	0	3						
U18PEIT063	Image Processing	Computer Graphics	3	0	0	3						
U18PEIT064	Artificial Intelligence	Business Intelligence	3	0	0	3						
U18PEIT065	Data Science	Information Theory and Coding	3	0	0	3						
U18PEIT066	Artificial Intelligence	Multi agent Intelligent Systems	3	0	0	3						

LIST OF OPEN ELECTIVES COMMON TO ALL B.Tech PROGRAMMES ALL THE COURSES WITH L=3, T=0, P=0 & C=3

- 1. U18OEBA001Sociology
- 2. U18OEBA002-Lean SixSigma
- 3. U18OEBA003-Cyber Law and Ethics
- 4. U18OEBA004-Economic Policies in India
- 5. U18OEBA005-Management InformationSystem
- 6. Total Engineering Quality Management
- 7. U18OEBA007-IndustrialPsychology
- 8. U18OEBA008-Entrepreneurship Development and IPR
- 9. U18OEBA009-Intellectual Property Rights
- 10. U18OEBA010-Engineering Economics and CostAnalysis
- 11. U18OEEN001- Soft Skills and InterpersonalCommunication
- 12. U18OEEN002-Indian Writing in English
- 13. U18OEEN003-Creative Writing
- 14. U18OEEN004- Proficiency in English and AccentTraining
- 15. U18OEMA001-Cryptography
- 16. U18OEMA002-Finite Automata Theory / FormalLanguages
- 17. U18OEMA003-LinearProgramming
- 18. U18OECE001 Metro Systems and Engineering
- 19. U18OECE002-PollutionRegulations
- 20 U18OECE003-RoadSafety
- 21. U180ECE004- Infrastructure Development
- 22. U18OECE005- Project Safety Management
- 23. U18OECE006- Environment, Health and Safety inIndustries

- 24. U18OEME001-Design for Manufacturing and Assembly
- 25. U18OEME002IndustrialSafety
- 26. U18OEME003-Refrigeration and Cryogenics
- 27. U180EME004- Product Design and Development
- 28. U18OEAU001-Electric and Hybrid Vehicles
- 29. U180EAU002-Intelligent TransportationSystem
- 30. U18OEAU003-Vibration and Noise Control
- 31. U18OEAU004-Automotive Sensors and Applications
- 32. U18OEMT001-MEMS and Nano Technology
- 33. U18OEMT002-Non-Destructive Testing
- 34. U18OEMT003-BioMechatronics
- 35. U18OEMT004-Artificial Intelligence forRobotics
- 36. U18OEAE001-Industrial Aerodynamics
- 37. U18OEAE002- Elements of Aeronautics and Astronautics
- 38. U18OEAE003- Unmanned Aerial Vehicle
- 39. U18OEAE004- Introduction to Avionics
- 40. U18OEAE005-RocketPropulsion
- 41. U18OEEE001-GreenTechnologies
- 42. U18OEEE002-Electrical Safety and QualityAssurance
- 43. U18OEEE003-Energy Conservation Techniques
- 44. U18OEEE004-PLC and SCADA forIndustrial

- 45. U18OEEC-001-Communication Systems
 46. U18OEEC-002-VLSIcircuits
 47. U18OEEC-003-Image Processing
- Techniques
 48. U18OEEC-004-Communication
- 49. U18OEEC-005-An Introduction to DSP
- 50. U18OEEC-006-Basics ofIoT

Networks

- 51. U18OEBM001-Medical Radiation SafetyEngineering
- 52. U18OEBM002-Medical Waste Management
- 53. U18OEBM003-Quality Control in Healthcare
- 54. U18OEBM004-Wearable Technology
- 55. U18OEEI001-Analytical Methods andInstrumentation
- 56. U18OEEI002-Introduction to process DataAnalytics
- 57. U18OEEI003-Reliability and Safety in Processindustries
- 58. U18OEEI004-Multi sensor data fusion
- 59. U18OEBT001- Bioprocess Economics & PlantDesign
- 60. U18OEBT002-Brewingtechnology
- 61. U18OEBT003-Biomining

- 62. U18OEBT004-Industrial Safety Engineering
- 63. U180EAC001-Geo- informatics for PrecisionFarming
- 64. U18OEAC002-Livestock and poultrymanagement
- 65. U180EAC003-Extension methodologies and transfer of AgriculturalTechnologies
- 66. U18OEAC004-Soil and Water ConservationEngineering
- 67. U18OEIT001-Block Chain Technology
- 68. U18OEIT002-Semantic Web
- 69. U18OEIT003-Entrepreneurship Development
- 70. U18OEIT004-Ethical Hacking Techniques
- 71. U18OECS004-Mobile Application Development
- 72. U18OECS005-System Modelling andSimulation
- 73. U18OECS006-WebProgramming
- 74. U18OECS007-VirtualReality
- 75. U18OECS008- ECommerce
- 76. U18OEGE001-Metagenomics and Epigenomics
- 77. U18OEGE002-Molecular Genetics andGenomics
- 78. U18OEGE003-Principles of Molecular cellbiology

---XXX----

HUMANITIES AND SOCIAL STUDIES INCLUDING MANAGEMENT COURSES (HS)

Sl.N o.	Code No.	Course Title	Contact Periods	L	Т	P	C				
1	U18HSEN101	Communicative English	4	2	0	2	3				
2	U18HSEN201	Technical English	3	2	1	0	3				
3.	U18HSBA401	Organizational Behavior	3	3	0	0	3				
Total Credits											

LIST OF BASICS SCIENCE COURSES (BS)

Sl. No.	Course Code	Course Title	Contact Period	L	Т	P	C
1	U18BSMA101	Engineering Mathematic- I	4	4	0	0	4
2	U18BSPH101	Waves and Optics	3	3	0	0	3
3	U18BSCH101	Engineering Chemistry	3	3	0	0	3
4	U18BSBT101	Biology for Engineers	2	2	0	0	2
5	U18BSPH2L2	Wave Optics and Semi Conductor Physics Lab	3	0	0	3	0
6	U18BSCH2L4	Chemistry Lab	3	0	0	3	0
7	U18BSMA201	Engineering Mathematics- II	4	4	0	0	4
	U18BSPH202	Semi Conductor Physics	3	3	0	0	3
8	U18BSCH201	Environmental Sciences	3	3	0	0	3
9	U18BSPH2L2	Wave Optics andSemi Conductor PhysicsLab	3	0	0	3	1.5
9	U18BSCH2L4	Chemistry Lab	3	0	0	3	1.5
10	U18BSMA304	Probability & Queuing Theory	4	3	1	0	4
11	11 U18BSMA401 Discrete Mathematics		4	3	1	0	4
		TOTAL CREDITS					33

ENGINEERING SCIENCE COURSES (ES)

Sl. No.	Code No.	Course Title	Contact Periods	L	T	P	С
1	U18ESEE101	Basic Electrical & Electronics Engineering	3	3	0	0	3
2	U18ESME101	Engineering Graphics & Design	5	1	0	4	3
3	U18ESCS101	Problem Solvingand PythonProgramming	3	3	0	0	3
4	U18ESME1L2	Workshop/Manufacturing Practices Laboratory	5	1	0	4	3
5	U18ESEE1L3	Basic Electrical & Electronics Engineering Laboratory	3	0	0	3	1.5
6	U18ESCS1L1	Problem Solving and Python Programming Laboratory	3	0	0	3	1.5

7	U18ESIT302	Principles of Communication systems	3	3	0	0	3			
8	U18ESIT404	Digital System Design	3	3	0	0	3			
	Total credits									

LIST OF PROFESSIONAL CORE COURSES

Sl. No.	Code No.	Course Title	Contact Periods	L	Т	P	C
1	U18PCIT303	Database Management Systems	3	3	0	0	3
2	U18PCIT304	Data Structures and Algorithms	3	3	1	0	3
3	U18PCIT305	Object Oriented Analysis and Design	3	3	0	0	3
4	U18PCIT306	Computer Architecture	3	0	0	3	
5	U18PCIT3L1	Database Management Systems Lab	3	0	0	3	1.5
6	U18PCIT3L2	Object Oriented Programming Lab	3	0	0	3	1.5
7	U18PCIT3L3	Data Structures lab	3	0	0	3	1.5
8	U18PCIT401	Web Programming	3	3	0	0	3
9	U18PCIT402	Operating System Principles	3	3	0	0	3
10	U18PCIT403	Software Engineering Methodologies	3	3	0	0	3
11	U18PCIT405	Data Communication and Computer Networks	3	3	0	0	3
12	U18PCIT4L1	Networking Lab	3	0	0	3	1.5
13	U18PCIT4L2	Web Programming Lab	3	0	0	3	1.5
14	U18PCIT4L3	Operating System Design Lab	3	0	0	3	1.5
15	U18PCIT501	Data Mining	3	3	0	0	3
16	U18PCIT502	Mobile Communication	3	3	0	0	3
17	U18PCIT503	Principles of Artificial Intelligence	3	3	0	0	3
18	U18PCIT504	Theory of Computation	3	3	0	0	3
19	U18PCIT5L1	Data mining Lab	3	0	0	3	1.5
20	U18PCIT5L2	IT -Workshop Lab	3	0	0	3	1.5
21	U18PCIT601	Grid and Cloud Computing	3	3	0	0	3
22	U18PCIT602	Human Computer Interaction	3	3	0	0	3
23	U18PCIT603	Data Analytics	3	3	0	0	3
24	U18PCIT 6L1	Data Analytics Lab	3	0	0	3	1.5
25	U18PCIT 6L2	Grid and Cloud Computing Lab	3	0	0	3	1.5
26	U18PCIT701	Wireless Networks	3	3	0	0	3
		Total Credits					63

SUMMARY OF CURRICULUM STRUCTURE AND CREDIT & CONTACT HOUR DISTRIBUTION

S.N	Sub Area	Cred	it As pe	r Seme	ster					No. of	% of
0		I	II	III	IV	V	VI	VII	VIII	Credit	credit
1	Humanities & Social Sciences (HS)	3	3	-	-	3	-	-	-	9	5.36
2	Basic Sciences (BS)	12	13	4	4					33	19.64
3	Engineering Sciences (ES)	7.5	7.5	3	3					21	12.50
4	Professional Core (PC)	-	-	16.5	16. 5	15	12	3		63	37.50
5	Professional Electives(PE)					3	6	6	3	18	10.71
6	Open Electives (OE)	-	-	-			3	3	5	11	6.55
7	Employability Enhancement Courses (EE)Project Work, Soft Skill etc.	-	-	-			1	3	9	13	7.74
	Total Credit	22.5	23.5	23.5	23. 5	21	22	15	17	168	100%
	Total Contact Hour	31	34	32	32	30	38	22	23	242 Hrs	

	COMMUNICATIVE ENGLISH	L	T	P	C					
U18HSEN101	Total Contact Periods – 60	2	0	2	3					
	erequisite – School English									
	Dept Designed by:Department of English	Dept Designed by:Department of English								
OBJECTIVES	To gain fundamental knowledge of language and the uses in daily life.									

UNITI SPEAKING

6 hours

6 hours

Speaking- Pronunciation, Intonation, Stress and Rhythm -Common Everyday Situations: Conversations and Dialogues -Communication at Workplace -Interviews -Formal Presentations -introducing one self — exchanging personal information- narrating events, -incidents, speaking about one's friend/pet -Wh- Questions- asking and answering-yes or no questions-partsofspeech. Vocabulary development—prefixes-suffixes-articles, prepositions.

UNITH READING

Reading – comprehension (multiple choice questions, short questions) - short narratives and descriptionsfromnewspapersincludingdialoguesandconversationsalsousedasshortreading texts--andlongerpassages-understandingtextstructure-useofreferencewordsanddiscourse markers-coherence-jumbled sentences vocabulary and structures- Vocabulary Building-The concept of Word Formation

UNITIII LISTENING

6 hours

Listening – listening to longer texts and filling in the table- product description- asking about routine actions and expressing opinions. –Listening to telephonic conversations -degrees of comparison- pronouns- direct vs indirect questions- Vocabulary development – single word substitutes-adverbs-IdentifyingCommonErrorsinWriting-Subject-verbagreement-Noun-pronounagreement

UNITIV WRITING

6 hours

Writing-letterwriting, formal and personal letters-after listening to dialogues or conversations and completing exercises based on them. Understanding text structure- use of referencewords and discourse markers-coherence-jumbled sentences -Tenses- simple present-simple past- present continuous and past continuous- Vocabulary development- synonyms-antonyms- phrasal verbs- Articles -Prepositions.

UNITY LANGUAGEDEVELOPMENT

6 hours

Writingshortessays—developinganoutline-identifyingmainandsubordinateideas-dialogue writing- listening to talks, conversations to complete the remaining, participating in conversations- short group conversations-Language development-modal verbs- present/ past perfect tense.— paragraph writing- topic sentence- main ideas short narrative descriptions . Synonyms, antonyms, and standard abbreviations- Basic Writing Skills- Sentence Structures-Use of phrases and clauses in sentences - Importance of proper punctuation - Creating coherence- Organizing principles of paragraphs in documents- Techniques for writing precisely.

SOFTSKILL LABORATORY LIST OF EXPERIMENTS / EXCERCISES

30

- 1. Groupdiscussion
- 2. Making effective presentations
- 3. Watching interviews&conversations
- 4. Reading different genres of texts

- 5. International English Language Testing System(IELTS)
- 6. Test of English as a Foreign Language(TOEFL)
- 7. Mockinterviews
- 8. Time management & stressmanagement
- 9. Role play
- 10. Listening to lectures, discussions from TV/Radio.
- 11. Articulation of sounds-intonation.
- 12. Creative and critical thinking.

TEXT BOOKS:

- 1. English A Course book for Under Graduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad:2015
- 2. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

REFERENCES

- 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge, 2011.
- 2. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint2011
- 3. Dutt P. Kiranmai and RajeevanGeeta. Basic Communication Skills, Foundation Books: 2013
- 4. Means, L. Thomas and Elaine Langlois. English & Communication for Colleges. Cengage Learning, USA: 2007
- 5. Practical English Usage. Michael Swan. OUP.2005.
- 6. Remedial English Grammar. F.T. Wood.Macmillan.2007
- 7. On Writing Well. William Zinsser. Harper Resource Book.2001

COUR	SE (OUT	CON	IES												
CO1											with o	clarity	7			
CO2	The	e cap	acity	to rea	ad an	d lis	ten '	will ir	npro	ve						
CO3	Wr	iting	tech	nical	repor	t wi	ll be	learn	t pro	perly						
CO4	Spe	akin	g ski	lls wi	ll be	acqı	iired	1								
CO5	Overall communication skills will make them employable															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
COs\P	Os	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
1					M			H		M						
2					M			Н		M						
3					M			Н		M						
4					M			H		M						
5					M			H		M						
Catego	gory HS															
Approv	val	J														

	ENGINEERING MATHEMATICS – I	L	T	P	C								
U18BSMA101	Total Contact Periods – 60	3	1	0	4								
	Prerequisite – School Level Mathematics												
	Course Designed by – Department of Mathematics												
OBJECTIVES	The objective of this course is to familiari	ze the	e pro	spec	tive								
	engineers with techniques in calculus, multivariate i	engineers with techniques in calculus, multivariate integration analysis											
	and linearalgebra.												
	It aims to equip the students with standard co	ncept	s and	l too	ls at								
	an intermediate to advanced level that will serve t	hem	well	tow	ards								
	tackling more advanced level of mathematics and appl	licatio	ns th	at th	ey								
	would find useful in their disciplines.												

UNITI THEORY OFEQUATIONS

(9+3)**Hours**

Fundamental theory of algebra – number of roots of polynomial equations – conjugate pairs theorem (without proof) – Descartes rules of signs- symmetric functions of the roots – formation of equations – diminish the roots of an equations- Multiple roots – reciprocal equation.

UNITII DIFFERENTIAL CALCULUS – OneVariable (9+3)Hours

Representation of functions – limit of a function – continuity – Derivatives – Differentiation rule – Maxima and minima of functions of one variable – Rolle's Theorem – Mean Value Theorem – Taylor's and Maclaurin's Theorem with remainders

UNIT III DIFFERENTIAL CALCULUS -Several Variables (9+3) Hours

Partialderivatives—Euler's theorem on Homogeneous functions-directional derivatives—total derivative — Jacobian—Maxima and minima of two variables.

UNIT IV INTEGRAL CALCULUS -OneVariables (9+3) Hours

Definite integrals – Substitution rule – Techniques of integration – Integration by parts – Trigonometric integrals – Trigonometric substitutions – Integrations of rational functions by partial fractions – Integrations of irrational functions-Beta, Gamma functions and their properties.

UNITY MATRICES (9+3)Hours

Characteristic Equations –Eigenvalue and Eigenvectors of the real matrix– Properties—Cayley-Hamilton Theorem – Diagonalization of matrices – Reduction of quadratic form to canonical form by orthogonal transformation – Nature of Quadratic form.

TEXT BOOKS

- 1. Grewal B. S, Higher Engineering Mathematics, Khanna Publisher, Delhi –2014.
- 2. Kreyszig. E, Advanced Engineering Mathematics, 10th edition, John Wiley & Sons, Singapore,2012.

REFERENCE BOOKS

- 1. VeerarajanT, Engineering Mathematics, Iledition, TataMcGrawHillPublishers, 2008.
- 2. Kandasamy P &co., Engineering Mathematics, 9th edition, S. Chand & co Pub.,2010.
- 3. N.P.Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 4. GeorgeB.Thomas,Jr,MauriceD.Weir,JoelHass.,Thomas'Calculus,TwelfthEdition, Addison-Wesley,Pearson.
- 5. NarayananS.,ManickavachagamPillaiT.K.,RamanaiahG.,AdvancedMathematicsfor

Engineering students, Volume I (2nd edition), S.Viswanathan Printers and Publishers, 1992.

COURSE OUTCOMES (COs)	
CO1 To apply both the limit definition and rules of differentiation to differentia	te
functions. Also they will have a basic understanding of Rolle's Theorem that	is
fundamental to application of analysis to Engineering problems.	
CO2 Toapplydefiniteintegralsofalgebraicandtrigonometricfunctionsusingformulas and substitution. Also they will have a basic understanding of Beta and Gam functions.	
CO3 To apply differential and integral calculus to notions of curvature. Also apply differentiation to find maxima and minima of functions.	
CO4 To apply multiple integrals to compute area and volume over curves, surface and domain in two dimensional and three dimensional spaces.	1
CO5 Identify Eigenvalue problems from practical areas using transformations;	
Diagonalising the matrix would render the Eigen values.	
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low	
	S 3
CO1 H L M M	
CO2 H L H	
CO3 M M M M	
CO4 H L L L	
	_
CO5 M L M M	
CO5 M L M M Category Basic Science (BS)	

	WAVES AND OPTICS	L	T	P	C			
U18BSPH101	Total Contact Hours - 45	3	0	0	3			
	Prerequisite – Higher Secondary School Physics							
	Course designed by – Department of Physics							
OBJECTIVES: To develop Physics and Engineering strategies of Waves and Optics and to								

OBJECTIVES: To develop Physics and Engineering strategies of Waves and Optics and to discuss their functionalities in modern optoelectronics.

UNIT1 NON-DISPERSIVE TRANSVERSE AND LONGITUDINAL WAVES IN ONEDIMENSION 9hours

Introduction - Transverse wave on a string, the wave equation on a string, Harmonic waves, reflection and transmission of waves at a boundary, standing waves, longitudinal waves and the wave equation for them, acoustics waves and speed of sound. Waves with dispersion, superposition of waves, wave groups and group velocity.

UNIT2 ULTRASONICWAVES

9 hours

Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -

Detection - Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Industrial and Medical applications – Sonogram.

UNIT3 THE PROPAGATION OF LIGHT AND GEOMETRIC OPTICS 9hours

Fermat'sprincipleofstationarytimeanditsapplicationse.g.inexplainingmirageeffect,laws of reflection and refraction, Light as an electromagnetic wave and Fresnel equations, reflectanceandtransmittance,Brewster'sangle,totalinternalreflection,andevanescentwave.

Mirrors and lenses and optical instruments based onthem

UNIT4 WAVESOPTICS

9 hours

Huygens'principle, superposition of waves and interference of light by wave front splitting and amplitude splitting; Young's double slit experiment, Newton's rings, Michelson interferometer. Fraunhofer diffraction from a single slit and a circular aperture, Diffraction gratings and their resolving power

UNIT5 LASERS 9 hours

Einstein'stheoryofmatterradiationinteractionandAandBcoefficients;amplificationoflight by population inversion, different types of lasers: gas lasers (He-Ne, CO2), solid-state lasers(Neodymium), Properties of laser beams: mono-chromaticity, coherence, directionality and brightness, applications of lasers in science, engineering andmedicine.

TEXT BOOKS

- 1) M.N. Avadhanulu and P.G. Kshirsagar, "A Textbook of Engineering Physics" S.Chand Publishers, 2016 (for UNITs 1,3,4 &5)
- 2) G.Senthil Kumar, "Engineering Physics", VRB publishers, Chennai, 2015 (for UNIT2)

REFERENCE BOOKS

- 1) BrijLal and Subramanian, "Waves and Oscillation", VikasPublishsing House, 2011
- 2) R.Murugesan, "Optics and Spectroscopy", S.Chand Publishers, 2015
- 3) BrijLal and Subramanian, "Optics", S.Chand Publishers 2006
- 4) Ian G. Main, "Vibration and waves in physics", Cambridge University Press, 1978
- 5) H.J. Pain, "The physics of vibrations and waves", 6th edition, Wiley2006
- 6) AjoyGhatak, "Optics", Tata McGraw-Hill publishing company, New Delhi, 2009
- 7) O. Svelto, "Principles of Lasers", Springer, 2010
- 8) Online referenceWikipedia.org

COUR	RSE OUTCOMES (COs)														
CO1	Unde	erstan	d the	basic	conce	pt of v	waves	and l	ights						
CO2	Unde	erstan	d the	impor	tance	of Ul	trason	ic wa	ves an	nd No	n-Des	tructi	veTes	sting	
CO3	Understand the propagation of light and geometrical optics														
CO4	Understand the optical phenomenon like interference, diffraction and superposition ofwaves														
CO5	Unde	erstan	d the	conce	pt of l	aser a	nd its	appli	cation	ıs					
			_						_		come Aediu	•	_		
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н							L	M			M			

CO2	Н							L	M						
CO3	M							Н	M			M			
CO4	Н							L	M						
CO5	Н							L	M			M			
Categ	ory	Basi	c Scie	ences	(BS)										
Appro	oval	47 th	th Meeting of Academic Council												

U18BSCH101	ENGINEERING CHEMISTRY	L	T	P	C				
	Total Contact Periods – 45	3	0	0	3				
	Prerequisite – School Level Chemistry								
	Course Designed by – Department of Chemistry								
OBJECTIVES:	To gain fundamental knowledge of Engineering Chem	nistry a	nd it	S					
applications									

UNITI WATERTECHNOLOGY

9 hours

Introduction - Characteristics: Hardness of Water - Types - Temporary and Permanent Hardness - Estimation by EDTA method. Alkalinity - Types of Alkalinity - Phenolphthalein and Methyl Orange Alkalinity - Determination - Domestic Water Treatment - Disinfection methods (Chlorination, Ozonation, and UV Treatment). Boiler feed water - Requirements - Disadvantagesofusinghardwaterinboilers(Causticembrittlement,Boilercorrosion,Priming and foaming) - Prevention of scale formation - softening of hard water - Internal treatment (Calgontreatmentmethod)-Externaltreatment-Demineralizationprocess-Desalination and Reverseosmosis.

UNITII PHASE RULEAND ALLOYS

9 hours

Introduction: Statement of Phase Rule and Explanation of terms involved – One component system – Water system – Construction of phase diagram by thermal analysis - Condensed phase rule - Two Component System: Simple eutectic systems (lead-silver system) – eutectic temperature – eutectic composition – Pattinson's Process of desilverisation of Lead. Alloys: Importance, ferrous alloys – nichrome and stainless steel – 18/8 stainless steel -heat treatment of steel – annealing –hardening – tempering - normalizing – carburizing - nitriding. Non- ferrous alloys: Brass and Bronze.

UNIT III NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9 hours

Introduction: Nuclear fission and nuclear fusion reactions — nuclear energy critical mass - super critical mass - sub - critical mass Light water nuclear reactor for Power generation — breeder reactor. Solar energy conversion — solar cells — wind energy. Fuel cells — hydrogen — oxygen fuel cell. Batteries: Primary and secondary Batteries — differences between Primary and secondary Batteries Secondary batteries: Lead—acid storage battery —working —uses. Nickel—cadmium battery -working —uses. Solid — state battery: Lithiumbattery.

UNITIV FUELS 9hours

Introduction: Calorific value – types of Calorific value – gross calorific value – net calorific value. Analysis of Coal – Proximate and ultimate analysis – hydrogenation of coal – Metallurgical coke –manufacture by Otto-Hoffmann method. Petroleum processing and fractions– cracking – catalytic cracking – types – fixed bed catalytic cracking method-Octane

number and Cetane number. Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG. Flue gas analysis – importance - Orsat apparatus.

UNITY NANOCHEMISTRY

9 hours

Introduction:Nanochemistry:Definition-Classificationbasedondimensions-Sizedependent properties. Types of nanomaterials: Nanoparticles: Synthesis by Bottom-up and top-down approaches - Nanoporous materials: Synthesis by sol-gel method. Nanowires: Synthesis by VLS mechanism. Carbon Nanotubes (CNTs): Single walled and Multi walled nanotubes - Mechanical and electrical properties of CNTs - Applications of CNTs - Synthesis of CNTs by Electric arc discharge method and Laser ablation method. Nanochemistry in biology and medicines – nanocatalysis.Nano composites – sensors and electronicdevices.

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" DhanpatRai Pub, Co., New Delhi (2002).
- 2. S.S.Dara"AtextbookofEngineeringChemistry"S.Chand&Co.Ltd.,NewDelhi(2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).
- 4. S.Vairam, P.Kalyaniand SubaRamesh, —Engineering Chemistry I, Wiley India PVT, LTD, New Delhi, 2013.
- 5. G. B. Sergeev, Nano chemistry, Elsevier Science, New York, 2006.

REFERENCES BOOKS:

- 1. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut(2001).
- 2. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi(2008).

COUR	SE O	UTC	OME	S (CC	(S										
CO1		-		_	to the r feed				-	-					-
CO2	appli		ns to s	single	erstan and t				_						
CO3					to be rgy so							Conv	entio	nal an	ıd
CO4					to hav facture		-		_			•	f Fue	ls and	1
CO5					tand the							materi	ials:		
			_		rse O ength				_						
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н			M					M						
CO2	Н			L					M						
CO3	Н			L					M						
CO4	Н			L					M						
CO5	Н			L					M						
Categ	ory	Basi	c Scie	ences	(BS)										
Appro	oval	47 th	Meeti	ing of	Acad	emic (Counc	cil		•		•			_

U18ESEE101	BASIC ELECTRICAL & ELECTRONICS ENGINEERING	L	T	P	С						
	Total Contact Periods – 45	0	0	3							
	Prerequisite – School Level Physics										
	Course Designed by – Department of Electrical & Ele Engineering	ectro	nics								
OBJECTIVES		To gain fundamental knowledge of Electrical and Electronics									
	Engineering and its applications										

UNIT1 DCCIRCUITS

12 hours

Electrical circuit elements, voltage and current sources, Fundamentals Relationship of VI for RLC circuit, Ohms Law, Source Transformation ,Kirchoff current and voltage laws, analysis of simple circuits with dc excitation. Basics of Superposition, Thevenin and Norton Theorems,,Maximum Power Transfer Theorem.

UNITII ACCIRCUITS

9 hours

9 hours

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Time-domain analysis of first-order RL and RC circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNITIII ELECTRICAL MACHINES&TRANSFORMERS

Principles of operation and characteristics of; DC machines, Synchronous machines, three phaseandsinglephaseinductionmotors. Transformers (singleandthreephase) regulation and efficiency, all day efficiency and auto-transformer.

UNIT4 SEMICONDUCTOR DEVICESANDAPPLICATIONS 9 hours

Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – Half wave and Full wave Rectifiers – Voltage Regulation. Bipolar Junction Transistor – CB, CE,CCConfigurationsandCharacteristics–ElementaryTreatmentofSmallSignalAmplifier and its applications, Introduction toOP-AMP.

UNIT5 DIGITALELECTRONICS

6hours

BinaryNumberSystem-LogicGates-BooleanAlgebra-HalfandFullAdders-Flip-Flops - Registers and Counters - Fundamentals of A/D and D/A Conversion.

TEXT BOOKS:

- 1. JohnBird, Electrical Circuit Theory & Technology, Taylor & Francis Ltd, 6th, edition. 2017.
- 2. SmarajitGhosh,FundamentalsofElectricalandElectronicsEngineering,SecondEdition, PHI Learning,2007.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 10th Edition, 2011.
- 5. V. D. Toro, "Electrical Engineering Fundamentals", Pearson, 2nd Edition, 2015.
- 6. Millman and Halkias, "Integrated Electronics", McGraw Higher Ed, 2nd Edition, 2011.
- 7. Vincent Del Toro, `Electrical Engineering Fundamental,Prentice Hall, 2nd Edition, 2015.
- 8. K.A.Krishnamurthy and M.R.Raghuveer, `Electrical and Electronics Engineering for Scientists', New Age International Pvt Ltd Publishers, 2011.

REFERENCES:

- 1. D.P.KothariandI.J.Nagrath, "BasicElectricalEngineering", TataMcGrawHill, Third Reprint, 2016.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Higher Ed, 1st Edition, 2011
- 3. Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", McGraw Higher Ed, 4th Edition, 2015.

COUR	SE O	UTC	OME	S (CC	Os)										
CO1	To g Circ		nowle	dge re	gardi	ng the	vario	ous lav	vs and	l princ	ciples	assoc	iated	with	DC
CO2	To g	ain kr	nowle	dge re	gardi	ng fur	ıdame	entals	of AC	circu	its.				
CO3	To g	ain kr	nowle	dge re	gardi	ng ele	ctrica	l mac	hines	and tr	ansfo	rmers.	•		
CO4	_	ain kr al amp		_	gardi	ng var	rious t	ypes	of sem	nicono	luctor	devic	es an	d sma	all
CO5	To g	ain kr	nowle	dge oi	n prin	ciples	of dia	gital e	lectro	nics s	ystem	ıs.			
			_						ograi 3-Higl						
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н		M						M		Н	L			
000	M		Н						M		Н				
CO2	IVI		11						111		11				
CO2	Н		M						L		M				
												L			
CO3	Н		M						L		M	L M			
CO3	H H H	Eng	M M M	ences ((ES)				L H		M H	ļ			

	BIOLOGY FOR ENGINEERS	L	Т	P	C				
	Total Contact Hours - 30	2	0	0	2				
U18BSBT101	Prerequisite – Higher Secondary level biology, basic concepts in cell signaling								
	Course Designed by – Dept of Industrial Biotechnology								
I .	: To provide a basic understanding of the biological syste the industrial sector	ms a	nd it	S					

UNITI INTRODUCTIONTOLIFE

6 hours

Characteristicsoflivingorganisms-Basicclassification-celltheory-structureofprokaryoticand eukaryotic cell- Introduction to biomolecules - general classification and important functions of carbohydrates-lipids-proteins-nucleic acids –vitamins

UNITII BIODIVERSITY

6hours

Plant System: basic concepts plant growth-nutrition-photosynthesis-Animal System: elementary study of digestive-respiratory-circulatory-excretory systems and their functions. Microbial System -types of microbes-economic importance and control of microbes.

UNITIII GENETICS ANDIMMUNESYSTEM

6hours

Evolution: theories of evolution- evidence of laws of inheritance-variation and speciation-nucleic acids as a genetic material-central dogma - immunity-antigens-antibody-immune response.

UNITIV HUMANDISEASES

6hours

Definition- causes, symptoms, diagnosis, treatment and prevention of diabetes, cancer, hypertension, AIDS and Hepatitis

UNITY BIOLOGY AND ITSINDUSTRIALAPPLICATION 6hours

Transgenic plants and animals-stem cell and tissue engineering-bioreactors-biopharming-recombinant vaccines-cloning-bioremediation-biofertilizer-biocontrol-biosensors-biopolymers-bioenergy-biomaterials-biochips

TEXT BOOKS:

- 1. A Text book of Biotechnology, R.C.Dubey, S. Chand Higher Academic Publications, 2013
- 2. Diseases of the Human Body, Carol D. Tamparo and Marcia A. Lewis, F.A. Davis Company,2011.
- 3. Biomedical instrumentation, Technology and applications, R. Khandpur, McGraw Hill Professional, 2004

REFERENCE BOOKS

- 1. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 2. Cell Biology and Genetics (Biology: The UNITy and diversity of life Volume I), Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning, 2008
- 3. Biotechnology Expanding horizon, B.D. Singh, Kalyani Publishers, 2012

COUR	SE O	UTC	OME	S (CC	Os)										
CO1	To u	nders	tand t	he bas	sic cor	ncepts	of th	e cell	and it	s stru	cture				
CO2	To u	nders	tand a	bout l	oiodiv	ersity	and i	ts cor	iserva	tion					
CO3	To k	now t	he fur	ndame	entals	of ger	netics	and t	he im	mune	syster	n			
CO4	Тос	reate	an aw	arene	ss abo	ut hur	nan d	isease	es						
CO5	To g	ive a	basic	know	ledge	of the	appli	catio	ns of t	ransgo	enics				
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н								M						
CO2	Н								M						
CO3	Н								M						
CO4	M								M						
CO5	Н						_		M						
Categ	ory	Basi	c Scie	ences	(BS)										
Appro	oval	47 th	Meeti	ing of	Acad	emic (Coun	cil							

	WAVE OPTICS AND SEMICONDUCTOR PHYSICS LABORATORY	L	T	P	C
U18BSPH2L2	Total Contact Hours - 45	2	0	0	2
	Prerequisite – Higher Secondary School Physics				
	Course Designed by – Department of Physics				
OBJECTIVES	To impart knowledge of practical Physics to the students			•	

Physics Lab experiments for Semester I & II

List of Experiments for Waves and Optics – Common for all branches

- 1) Ultrasonic Interferometer
- 2) Air-wedgeExperiment
- 3) Particle sizedetermination
- 4) Determination of acceptanceangle
- 5) Determination of LaserWavelength
- 6) Spectrometer Determination of wavelength usinggrating

List of Experiments for Semiconductor Physics – Circuit branches

- 1) Determination of Band Gap
- 2) Zener diodecharacteristics
- 3) p-n junction diodeCharacteristics
- 3) TransistorCharacteristics
- 5) V-I characteristics using LDRcircuit
- 6) Carey Foster's Bridge

COUR	SE O	UTC	OME	S (CC) s)										
CO1	To U	Inder	stand	the fu	ndame	ental c	concep	ot of c	ptics						
CO2	To U	Inder	stand	the co	ncept	of pro	oducti	on of	ultras	onic v	vaves				
CO3	To U	Inder	stand	the fu	nction	s of s	emico	nduct	or						
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	1	2	3 4 5 6 7 8 9 10 11 12 PS PS PS 03												
CO1	Н		M						M						
CO2	Н		M						M			Н			
CO3	Н		M						M						
Categ	ory	Basi	ic Scie	ence (BS)										
Appro	oval	val 47 th Meeting of Academic Council													

	CHEMISTRY LABORATORY	L	T	P	C
U18BSCH2L4	Total Contact Hours – 45	0	0	3	1.
	Prerequisite – Engineering Chemistry				
	Course Designed by – Department of Chemistry				
OBJECTIVES: T	o enhance the practical knowledge on Chemistry throu	ıgh V	/olun	netri	2
and circuit experim	nents				

LIST OF EXPERIMENTS

- 1. Determination of Total Hardness, Temporary Hardness and Permanenthardness of Water by EDTA method
- 2. Estimation of Alkalinity -Titrimetry
- 3. Estimation of DissolvedOxygen
- 4. Estimation of Chlorides in Water by Argentometric Method (MOHR'SMethod)
- 5. Estimation of Copper by EDTAmethod
- 6. Estimation of Iron in Water by Spectrophotometry
- 7. Conductometric Titration of Strong Acid with StrongBase
- 8 Determination of Molecular weight of a polymer by Viscosity AverageMethod
- 9. pH measurements for Acid alkaliTitrations
- 10 Determination of rate of corrosion by weight lossmethod.
- 11. Conductometric Precipitationtitration
- 12. Determination of WaterCrystallization

REFERENCES

- 1. R. Jeyalakshmi, "Practical Chemistry", Devi Publications 2014.
- 2. S.S. Dara, A text book on experiments and calculationEngg.

COUR	SE O	UTC	OME	S (CC	Os)										
CO1	inWa	dents will able to analyze - hardness, Alkalinity, Dissolved oxygen, Chlorides VaterbyArgentometricMethod,DeterminationofWaterofCrystallizationand as l as estimation of Copper by EDTA method using volumetricanalysis. dents will understand basic principle of spectrophotometric method													
CO2	Stud	ents v	vill un	dersta	and ba	sic pr	incipl	e of s	pectro	photo	metri	c met	hod		
CO3		Idents will learn Conductometric Titration of Strong Acid with Strong Base and Conductometric Precipitation titration.													
CO4	Student will be able to analyze Determination of Molecular weight of a polymer by Viscosity Average Method														
CO5	Student will understand about pH measurements for Acid - alkali Titrations and rate of corrosion by weight loss method														
			_						rograi 3-Hig			-			
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н		M						M						
CO2	Н		M						M						
CO3	Н		M						M						
CO4	Н		M						M						
CO5	Н		M						M						
Categ	ory	Basi	c Scie	ences	(BS)										
Appro	oval	47 th	Meeti	ng of	Acad	emic (Counc	cil	_	_	_				

U18ESME1L2	WORKSHOP/MANUFACTURING	L	T	P	C
	PRACTICES				
	Total Contact Periods – 75	1	0	4	3
	Prerequisite – NIL				
	Course Designed by – Department of MechanicalEn	ginee	ring		

OBJECTIVES	To educate the students on common manufacturing processes employed
	in Industries.

SYLLABUS

Lectures&videos: 15 hours

Detailed contents

Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods
 CNC machining, Additivemanufacturing
 Fitting operations&powertools
 Carpentry
 Plastic moulding, glasscutting
 Metalcasting
 Welding (arc welding & gaswelding), brazing

WORKSHOP PRACTICE:

1. Machineshop

6 hours

- a) Facing
- b) Turning
- c) DrillingPractice
- **2.** Fittingshop

6 hours

- a) Fitting Exercises–Preparation of squarefitting
- b) Vee–fittingmodels.
- **3.** Carpentry

9hours

- a) Preparation Lapjoints.
 - b) Mortise and Tenonjoints.
 - c) CrossHalf.
 - d) DoveTail.

4. Weldingshop

(Arc welding 6 hrs + gas welding 3 hrs) 9hours

Preparation of butt joints, lap joints and tee joints

5. SheetMetal working

9hours

- a) Forming&Bending:
- b) Model making-Trays, funnels, etc.
- c) Different type of joints
- **6.** Demonstration

6hours

Smithy operations, upsetting, swaging, setting down and bending. Example–Exercise–Production of hexagonal headed bolt.

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

SUGGESTED TEXT/REFERENCE BOOKS:

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers Private Limited, Mumbai.
- 2. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology",4th edition, Pearson Education India Edition,2002.

- 3. Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology I" Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.
- 5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

COUR	SE O	UTC	OME	S (CC	Os)										
CO1	Stud	ents v	vill ga	in kno	owled	ge of	the di	fferen	t man	ufactı	ıring _]	proces	sses.		
CO2	Stud	ents v	vill be	able	to fab	ricate	comp	onent	s with	their	own	hands			
CO3			ents will gain practical knowledge of the dimensional accuracies and nsional tolerances.												
CO4	Students will be able to produce small devices of their interest.														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н		M						M						
CO2	Н		M						M						
CO3	Н		M						M						
CO4	Н		M						M						
Categ	tegory Engg Science (ES)														
Appro	oval	47 th	17 th Meeting of Academic Council												

U18ESEE1L3	BASIC ELECTRICAL AND ELECTRONIC ENGINEERING PRACTICESLABORATORY	L	T	P	С
	Total Contact Hours – 45	0	0	3	1.5
	Prerequisite – School Level Physics & Basic Electric Engineering	al an	d Ele	ctro	nic
	Course Designed by – Department of Electrical & Ele	ectro	nics		
	Engineering				
OBJECTIVES: T	o enhance the practical knowledge on basics of electric	cal ar	ıd ele	ctro	nics
components and ci	rcuits.				

LIST OF EXPERIMENTS FOR BASIC ELECTRICAL ENGINEERING LAB

- 1. Verification of Ohms and Kirchoff's Voltage and CurrentLaws
- 2. Measurement of the steady-state and transient time-response of R-L, R-C, and R-L-C circuits to a step change in voltage (transient may be observed on a storage oscilloscope). Sinusoidal steady state response of R-L, and R-C circuits impedance calculation and verification.
- 3. Fluorescent lampwiring
- 4. Staircasewiring
- 5. Measurement of energy using single phase energymeter
- 6. Observation of the no-load current waveform on an oscilloscope and Measurement of Primary and secondary voltages and currents of aTransformer
- 7. Demonstration of cut-out sections of machines: dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging slip ring arrangement) and single-phase inductionmachine.

8. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d) Components of LT switchgear.

LIST OF EXPERIMENTS FOR BASIC ELECTRONICS ENGINEERING LAB

- 1. Measurement of ac signal parameters using cathode ray oscilloscope and function generator.
- 2. Characteristics Half wave and Full waveRectifiers
- 3. Characteristics Common Base transistorconfiguration
- 4. VerificationoftruthtablesofOR,AND,NOT,NAND,NORgatesandFlip-flops-JKand RS
- 5. Applications of Operational Amplifier

CO	URSE OUT	COM	ES (C	(Os)											
CO	1 To hand	le basio	elect	trical	equip	ment a	and ver	rify cu	rrent a	nd voltag	ge law				
CO	2 To under circuits	rstand	the sto	eady-	state a	nd tra	nsient	time-r	espon	se of R-L	, R-C, a	nd R	-L-C		
CO	3 To under	To understand domestic wiring procedures practically.													
CO	4	To analyze ac signal parameters using cathode ray oscilloscope and function generator													
CO	5 To under	To understand all the fundamental concepts semiconductor Diode and Transistor													
CO	6 To under	To understand all the fundamental concepts of logic Gates and Flip-Flaps													
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs/POs	a	b	c	d	e	f	g	h	i	j	k	1		
2	CO1	Н	Н	M			L			M		Н			
	CO2	Н	Н	M			L			M		Н	L		
	CO3	Н	Н	M			L			M		Н			
	CO4	Н	Н	M			L			M		Н	L		
	CO5	Н	Н	M			L			M		Н	L		
	CO6	Н	Н	M			L			M		Н	L		
3	Category	Engg	Scien	nce (I	ES)	•		•	•		•		•		
4	Approval	47 th I	Meetii	ng of	Acade	emic C	Council	1							

	TECHNICAL ENGLISH	L	T	P	C
U18HSEN201	Total Contact Periods – 45	2	1	0	3
	Prerequisite— I semesterEnglish				
	Course Designed by – Department of English				
OBJECTIVES	To gain fundamental knowledge of English language a day to day life.	nd i	ts usa	ge in	

UNITI LISTENING

9hours

Listening- Listening to talks mostly of a scientific/technical nature and completing information-gapexercises-Speaking-Askingforandgivingdirections-extendeddefinitions—listening todaily issue--Vocabulary Development-technical vocabulary - Language Development—subject verb agreement—compound words.

UNITH READING 9 hours

Reading – reading longer technical texts- identifying the various transitions in a text-interpreting charts, graphs after reading the, practice in speed reading- vocabulary Development-vocabulary used in formal letters/emails and reports -Language Development personal passive voice, numerical adjectives.

UNITIII TECHNICALWRITING

9 hours

Writing after listening to classroom lectures- talk should be on engineering /technology-introduction to technical presentations- longer texts both general and technical, Describing a process, use of sequence words- Vocabulary Development- sequence words- Misspelled words.

UNITIV FORMALWRITING

9 hours

Writing- email etiquette- job application – cover letter –Resume preparation (via email and hard copy)- analytical essays and issue based essays–Vocabulary Development- finding suitable synonyms-paraphrasing-. Language Development- clauses- dependant, independent, if conditionals.

UNITY LANGUAGEDEVELOPMENT

9hours

Speaking –participating in a group discussion – role play, Writing– Writing reports- minutes of a meeting- accident and survey-Vocabulary Development- transitive, intransitive verbs, Language Development- reported speech.

TEXT BOOKS:

- 1. Fluency in English A Course book for Engineering and Technology. Orient Blackswan, Hyderabad:2016
- 2. Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge University Press: New Delhi,2016.

REFERENCES

- 1. Booth-L. Diana, Project Work, Oxford University Press, Oxford:2014.
- 2. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford:2007
- 3. Kumar, Suresh. E. Engineering English. Orient Blackswan:Hyderabad,2015
- 4. Means, L. Thomas and Elaine Langlois, English & Communication For Colleges Cengage Learning, USA:2007

COUR	SE O	UTC	OME	S (CC	Os)										
CO1	The	studei	nt wil	l acqu	ire ba	sic pr	oficie	ncy ir	Engl	ish					
CO2	Read	ling a	nd lis	tening	abilit	y wil	l impr	ove.							
CO3	Comprehension techniques will develop.														
CO4	writing and speaking skills will be acquired														
CO5	Overall communication skills will make them employable.														
	Mapping of Course Outcomes with Program outcomes (POs) (L/M/H indicates strength of correlation) H-High, M-Medium, L- Low														
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1				M			H		M						
CO2		·		M			H		M						
CO3				M			H		M						

CO4			M			H		M			H			
CO5			M			Н		M			H			
Categ	ory	Hum	Iumanities and Social Studies (HS)											
Approval 47 th Meeting of Academic Council														

	ENGINEERING MATHEMATICS – II	L	T	P	C
U18BSMA201	Total Contact Periods – 60	3	1	0	4
	Prerequisite – School Level Mathematics				
	Course Designed by – Department of Mathematics				
OBJECTIVES	The objective of this course is to equip	the	stud	ents	of
	Engineering and Technology with techniques in or	rdina	ry eqi	uatio	ons,
	vector calculus, complex variables.				
	Laplacetransformwithadvancedlevelofmath	emati	csano	1	
	applications that would be essential to formu	late	probl	ems	in
	engineering environment.		•		

UNITI ORDINARY DIFFERENTIALEQUATIONS (9+3)hours

Higher order linear differential equations with constant coefficients – linear differential equations with variable coefficients– Euler's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients- Method of variation of parameters.

UNITII VECTORCALCULUS

(9+3)hours

Scalar and vector point function - Gradient, Divergence and curl - Directional derivatives - Anglebetweentwosurfaces-IrrotationalandSolenoidalvectorfields-LineIntegral-Green's theorem - Gauss divergence theorem and Stokes' theorem - Simple applications involving cubes and rectangularparallelepipeds.

UNITIII ANALYTIC FUNCTIONS

(9+3)hours

Functions of complex variable - Analytic functions - Necessary and sufficient conditions (withoutproof), CauchyRiemannEquationsinCartesianandpolarform—Harmonicfunctions - properties of analytic functions - Construction of analytic functions using Milne Thomson method - Conformal mapping: - = - + -, --, 1/- and Bilinear Transformation.

UNITIV COMPLEXINTEGRATION

(9+3)hours

Cauchy integral theorem – Cauchy's integral formula – problems – Taylor's and Laurent's Series – classification of Singularities – Poles and Residues – method of finding residues - Cauchy's residue theorem and its applications to evaluate real integrals – contourintegration.

UNITY LAPLACETRANSFORMS

(9+3)hours

Transforms of elementary functions – Basic properties – Shifting theorem- Transforms of derivatives and integrals – Initial and final value theorem – Laplace transform of Periodic Functions – Inverse Laplace transform – Convolution theorem – Periodic Functions – Applications of Laplace transform for solving linear ordinary differential equations up to second order with constant coefficient.

TEXT BOOKS

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Willie & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition,2000.

REFERENCE BOOKS

- 1. Venkataraman. M. K, Engineering Mathematics, National Publishing Company, 2000.
- 2. Bali .N.P and Manish Goyal, A Text book of Engineering Mathematics, Eighth Edition, Laxmi Publications Pvt Ltd.,2011.
- 3. Veerarajan T, Engineering Mathematics, II edition, Tata McGraw Hill Publishers, 2008.
- 4. George B. Thomas Jr., Maurice D. Weir, Joel R. Hass., Thomas' Calculus, 12thEdition, Addison-Wesley,Pearson.

	SE O	UTC	OME	S (CC) s)										
CO1	The	mathe	ematic	al too	ls for	soluti	on of	differ	ential	equa	tion th	at mo	del p	hysic	al
	proce	ess.													
CO2	To e	valua	te the	line, s	surface	e and	volun	ne inte	egrals	using	Gree	n's, S	toke':	s and	
	Gaus	s The	eorem	s and	their v	erific	ation								
CO3	To u	nders	tand t	he ana	alytic	functi	ons, c	onfor	mal m	nappir	ng and	comp	olex i	ntegra	ation
				ations											
CO4	To e	valua	te real	and o	comple	ex int	egrals	using	the C	Cauch	v's in	tegral	form	ula ar	nd
	To evaluate real and complex integrals using the Cauchy's integral formula and Residue theorem.														
CO5	To apply the concept of Laplace Transformation in analysis and solve differential														
	equations.														
		Mapr	oing o	f Cou	rse O	utcor	nes w	ith Pı	ograi	m out	come	s (PO	<u>s)</u>		
			_		ength				_				-		
COA	l														
COs\													PS	PS	PS
POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
	1 H	2	3	4	5 M	6	7	8	9 M	10	11	12			
POs		2	3	4		6	7	8		10	11	12			
POs CO1	Н	2	3	4	M	6	7	8	M	10	11	12			
CO1 CO2 CO3 CO4	H H H	2	3	4	M M	6	7	8	M M	10	11	12			
CO1 CO2 CO3 CO4 CO5	H H H H				M M M M	6	7	8	M M M	10	11	12 H			
CO1 CO2 CO3 CO4	H H H H H Gory	Basi	c Scie	ence (i	M M M M				M M M	10	11				

	SEMICONDUCTOR PHYSICS	L	T	P	С				
U18BSPH202	Total Contact Hours - 45	3	0	0	3				
	Prerequisite – Higher Secondary School Physics								
	Course designed by – Department of Physics								
OBJECTIVES: To develop physics and engineering strategies of semiconductor materials									
and to discuss their functionalities in modern electronic and optoelectronic devices									

UNIT 1 INTRODUCTION AND ELECTRONIC STATES OF SEMICONDUCTORS 9 hours

Introduction to solid state materials - crystal structure - Reciprocal lattice - Brillouin zone and rules for band (k - space) representation. Dynamics of electrons in periodic potential:Kronig - penny and nearly free electron models - Real methods for band structure calculations; Band gaps in semiconductors - Holes and effective mass concept - Properties of conduction and valance bands

UNIT 2 CARRIERSANDDOPING

9 hours

Fermi distribution and energy - Density of states - Valance and conduction band density of states - intrinsic carrier concentration – intrinsic Fermi level. Extrinsic semiconductors: n and p type doping - Densities of carriers in extrinsic semiconductors and their temperature dependence - extrinsic semiconductor Fermi energy level - Degenerate and non - degenerate semiconductors - Band gap engineering

UNIT 3ELECTRICAL TRANSSORT

9 hours

Scattering Mechanism: electron - electron and electron - phonon scattering. Macroscopic transport: Carrier transport by Diffusion - Carrier transport by Drift: Low field, High fieldand very highfield.

UNIT 4OPTICALTRANSSORT

9 hours

Electron - hole pair generation and recombination: band to band (direct and indirect band gap transitions) and intra band (impurity related) transitions, free - carrier & phonon transitions. Excitons: Origin, electronic levels and properties. Carrier transport - continuity equations. Optical constants: Kramers - Kronig relations.

UNIT 5 SEMICONDUCTOR AS DEVICES ANDRECENTADVANCES 9 hours

Processing of Semiconductor devices (Brief), p - n Semiconductor as device and Semiconductor junctions - Homo and hetero Junctions. Active and passive optoelectronic devices: performance and response enhancement (photo processes).

TEXT BOOK:

- 1) M.N. Avadhanulu and P.G. Kshirsagar, "A Textbook of Engineering Physics" S.Chand Publishers, 2014(for UNITs 1 and2)
- 2) G.Senthil Kumar, "Engineering Physics", VRB publishers, Chennai, 2015 (for UNIT5)

REFERENCES BOOKS:

- 1) Kevin F Brennan, "The Physics of Semiconductors", Cambridge Univ. Press 1999.
- 2) Peter Y Yu and Manuel Cardona, "Fundamentals of Semiconductors", Springer, 1996.
- 3) Charles Kittel, "Introduction to Solid State Physics", 6th Edition, Willey, 1991.
- 4) D.A. Neamen, "Semiconductor Physics and Devices", 3 rdEd., TataMcGraw-Hill, 2002.
- 5) Jasprit Singh, "Semiconductor Optoelectronics (Physics and Technology)", McGraw-Hill, 1995.
- 6) Online reference: Wikipedia, NPTEL

COURSE OUTCOMES (COs) CO1 Understand the difference between metals, semiconductors and insulators															
CO1	Unde	erstan	d the	differ	ence b	etwee	en me	tals, s	emico	nduct	ors an	d inst	llators	S	
CO2	Unde	erstan	d the	impor	tance	of do	ping t	o char	ge car	rier d	lensity	7			
CO3	Unde	erstan	d the	electr	ical tra	anspo	rt in s	emico	nduct	ors					
CO4	Understand the difference between direct and indirect semiconductors														
CO5	CO5 Understand the concept of semiconductor optoelectronic devices.														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н							L	M						
CO2	CO2 H L M														
CO3	O3 H L M														
CO4															

CO5	Н							L	M		L		
Categ	ory	Basi	c Scie	ence (BS)								
Appro	oval	47 th	Meeti	ng of	Acado	emic (Counc	cil					

	ENVIRONMENTAL SCIENCE	L	T	P	C
	Total Contact Periods – 45	3	0	0	3
U18BSCH201	Prerequisite – NIL				
	Course Designed by – Department of Chemistry				
OBJECTIVES	• To study the interrelationship between	living	orga	nism	and
	environment.	_			
	To study of the nature and concepts ofecosystem	em.			
	To learn about the integrated themes and biod	iversit	y of a	n	
	environment.		•		
	To study of pollution control and wastemanage	ement	- ••		
	To appreciate the importance of environment			its im	pact
	onthehumanworld;envisionthesurroundingenv				•
	functions and its value.				

UNITI NATURAL RESOURCES

9 hours

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people –Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems - Food resources: World food problems, changes caused by agriculture and overgrazing, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification - Equitable use of resources for sustainable lifestyles.

UNITII ECOSYSTEMS

9 hours

Introduction: concepts of an ecosystem. Structure and function of an ecosystem, producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desertecosystem, Aquaticecosystems, (ponds, streams, lakes, rivers, oceans, estuaries) - Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation - Ethics: Issues and Possible Solutions, Climate change, global warming, acid rain, ozonelayer depletion.

UNITHI BIODIVERSITY ANDITS CONSERVATION

9hours

Introduction and Definition - genetic, species and ecosystems diversity, Biogeographically classification of India - Value biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels. India as a mega diversity nation, Hot-spots of biodiversity - Threats to biodiversity, habitat, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation biodiversity - In-situ and Ex-situ conservation of biodiversity.

UNITIV ENVIRONMENTAL SOLLUTION

9hours

Definition, Causes, effects and control measures of Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solidwaste

Management: Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution - pollution case studies - Disaster Management: floods earthquake, cyclone andlandslides.

UNITY SOCIAL ISSUES ANDHUMANSOPULATION 9 hours

Social issues: Environmental Protection Act, Air (Prevention and Control of pollution) Act, Water(PreventionandControlofpollution)Act,WildlifeprotectionAct,ForestConservation Act, Public awareness – Fireworks and its impact on the Environment – Chemicals used in Fireworks – (Fuel –oxidizing Agent – Reducing Agent –Toxic Materials – Fuel –Binder-Regulator)—Harmfulnatureofingredients—chemicaleffectsonhealthduetoinhalingfumes. Human population: population growth, variation among nations, Populationexplosion-Family Welfareprograms,Environmentandhumanhealth,HumanRights,ValueEducation,HIVand AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human health - CaseStudies.

TEXT BOOKS:

- 1. Gilbert M. Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education 2004.
- 2. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.
- 3. R.K. Trivedi, Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, EnviroMedia.
- 4. Rajagopalan, R, Environmental Studies-From Crisis to Cure', Oxford University Press 2005.
- 5. K.V.B. Raju and R.T. Ravichandran, "Basics of CivilEngineering".

REFERENCES:

- 1. Cunningham, W.P. Cooper, T.H. Gorhani, Environmental Encyclopedia, Jaico Publ., House, Mumbai, 2001.
- 2. Dharmendra S. Sengar, Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.

COURSE OUTCOMES (COs) CO1 Master core concepts and methods from ecological and physical sciences and															
CO1				-					logica olving		physic	cal sci	ences	and	
CO2									ogical olving		hysic	al scie	ences	and	
CO3		Appreciate the ethical, cross-cultural, and historical context of environmental issues and the links between human and natural systems Understand the transpational character of environmental problems and ways of													
CO4		Understand the transnational character of environmental problems and ways of addressing them, including interactions across local to global scales													
CO5				_				_	to ana al pro	•		dersta	ınd		
			_						ograr 8-Higl			•	,		
COs\ POs	(1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low 1 2 3 4 5 6 7 8 9 10 11 12 PS PS PS PS PS PS PS PS														
CO1	H M L														
CO2	H														
CO3	Н			Н					L			L			

CO4	Н			M					M			L		
CO5	Н			Н					M			Н		
Categ	ory	Basi	sic Science (BS)											
Appro	oval	47 th	H7 th Meeting of Academic Council											

U18ESCS101	PROBLEM SOLVING AND PYTHON PROGRAMMING	L	T	P	C					
	Total Contact Periods – 45	3	0	0	3					
	Prerequisite – NIL									
	Course Designed by – Department of Computer Science	ce &	Engi	neer	ing					
OBJECTIVES	Γο gain fundamental knowledge of algorithmic problem solving and									
	python programming									

UNITI ALGORITHIMICPROBLEMSOLVING

9 periods

Introduction to components of a computer system - disks, memory, processor, operating system, compilers - Problems, Solutions, Idea of Algorithm -Representation of Algorithm. Building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart ,programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Problem Illustrations

UNITII DATA, EXPRESSIONS, STATEMENTS

9 Periods

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two Points.

UNITIII CONTROLFLOW, FUNCTIONS

9Periods

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrativeprograms:squareroot,gcd,exponentiation,sumanarrayofnumbers,linearsearch, binarysearch.

UNITIV LISTS, TUPLES, DICTIONARIES

9periods

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list, Processing list comprehension; Illustrative programs: selection sort, insertion sort, merge sort, histogram.

UNITY FILES, PACKAGES

9 Periods

Files and exception: text files, reading and writing files, errors and exceptions, handling exceptions, packages: NumPy, SciPy, Matplotlib, Scikit-learn, Scilab Interface.

TEXT BOOKS

1. Allen B. Downey, 'Think Python: How to Think Like a Computer Scientist', 2ndedition, Updated for Python3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think-python/)

2. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python – Revised and update dfor Python 3.2, Network Theory Ltd.,2011.

REFERENCES

- 1. JohnVGuttag,—IntroductiontoComputationandProgrammingUsingPython",Revised and expanded Edition, MIT Press ,2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python:AnInter-disciplinaryApproach,PearsonIndiaEducationServicesPvt.Ltd.,2016.
- 3. Timothy A. Budd, —Exploring Pythonl, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 4. KennethA.Lambert,—FundamentalsofPython:FirstPrograms|,CENGAGELearning, 2012.
- 5. Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction to Computer Science using Python 31, Second edition, Pragmatic Programmers, LLC, 2013

COUR	SE O	UTC	OME	S (CO	os)										
CO1	Deve	elop a	lgorit	hmic s	solutio	ns to	simpl	e com	nputati	ional _l	proble	ems			
CO2	Dem	onstra	ate pro	ogram	s usin	g sim	ple Py	thon	staten	nents a	and ex	press	ions.		
CO3	To g	ain kr	nowle	dge re	gardir	ng con	trol fl	low ai	nd fun	ctions	s assoc	ciated	with	pytho	on
CO4	UseF	ythor	ndatas	tructu	res–li	sts,tup	oles&o	dictio	naries	forrep	resen	tingco	ompou	and da	ata
CO5 To gain knowledge on files, exception, modules and packages in Python for solving problems															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\	1	2	1	4	-		_	0		10	11	10	PS	PS	P
POs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	S
CO1	Н			M		L			M		Н	M			
CO2	Н			M		L			M		Н	M			
CO3	Н			M		L			M		Н	M			
CO4	Н			M		L			M		Н	M			
CO5	CO5 H M L M H M														
Category Basic Science (BS)															
Appro	oval	47 th	Meet	ing of	Acad	emic (Counc	il							

U18ESME101	ENGINEERING GRAPHICS & DESIGN	L	T	P	C
	Total Contact Periods – 75	1	0	4	3
	Prerequisite – +12 Level Maths and Physical Science		l .		
	Course Designed by – Department of MechanicalEng	inee	ring		
OBJECTIVES	To Prepare students to design a system, component, or desired needs, using the techniques, skills, and moder necessary for engineering practice				

UNITI TRADITIONAL ENGINEERING GRAPHICS

Principles of Engineering Graphics; Orthographic Projection; Descriptive Geometry; Drawing Principles; Isometric Projection; Surface Development; Perspective; Reading a Drawing; Sectional Views; Dimensioning & Tolerances; True Length, Angle; intersection, Shortest Distance.

UNITII COMPUTERGRAPHICS

Engineering Graphics Software; -Spatial Transformations; Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Exploded Assembly; Model Viewing; Animation; Spatial Manipulation; Surface Modelling; Solid Modelling; Introduction to Building Information Modelling (BIM)

(Except the basic essential concepts, most of the teaching part can happen concurrently in the laboratory)

UNITIII INTRODUCTION TOENGINEERINGDRAWING (9+2Hrs)

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Scales – Plain, Diagonal and Vernier Scales; Draw simple annotation, dimensioning and scale. Construction of Conic sections; Cycloid, Epicycloid, Hypo cycloid and Involute of circle;

UNITIV ORTHOGRAPHIC PROJECTIONS (10+2 Hrs)

Principles of Orthographic Projections; Conventions; Projections of points and Orthographic projection of lines in first quadrant - Parallel to both the planes – Perpendicular to oneplane – Parallel to one plane and inclined to other plane – Inclined to both the planes; Projections of planes inclined to either HP or VP;

UNITY PROJECTIONS OF REGULAR SOLIDS& ISOMETRIC PROJECTIONS (10+3Hrs)

Projection of solids in first quadrant – Prism, Pyramid, Cone and Cylinder inclined to one plane; Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions - Isometric Views of Simple Solids; Conversion of Isometric Views to Orthographic Viewsand Vice-versa;

UNITVI SECTIONSOF SOLIDS AND DEVELOPMENT OF SURFACE (10+3Hrs)

Sectional view of Prism, Cylinder, Pyramid, Cone (simple position in first quadrant) with cutting planesperpendicular to one plane and parallel or inclined to another plane—True shape ofsections; Developmentoflateral surfaces of Right Regular Solids-Prism, Pyramid, Cylinder and Cone;

UNITVII BUILDINGDRAWING (9+2Hrs)

Introductiontobuildingdrawing; Typesof Projectionadopted in Building Drawing; Scales for various types of Drawings, Symbols, Conventions and Abbreviations. Drawing of residential single and two storied buildings with detail of Line plan, Foundation Plan, Ground floor Plan, First floor plan, Elevation and Sections

UNITVIII OVERVIEW OFCOMPUTERGRAPHICS (12+3Hrs)

IntroductiontoCAD;Basiccommands;Coordinatesystems;Settingupof**UNIT**sanddrawing limits; ISO and ANSI standards for coordinate dimensioning and tolerance; Orthographic constraints, Snap to objects manually and automatically; Setup a drawing with proper scale – Dimensioning commands, Editing Dimensions and Dimension text; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawingcircles;Createbasicdrawingofobjectssuchaspolygonandgeneralmulti-linefigures;

Creating orthographic views of simple solids like prism, pyramid, cylinder, cone. Drawing sectional views of prism, pyramid, cylinder and cone; Preparation of fabrication drawing (Development of surfaces); Drawing front view, top viewand side view of objects from the given pictorial view; Creation of 3-D models of simple objects.

TEXT BOOKS

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar PublishingHouse
- 2. Shah, M.B. &Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMHPublication
- 4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers
- 5. (Corresponding set of) CAD Software Theory and UserManuals

COUR	SE O	UTC	COM	ES (C	Os)										
CO1	Stuc	lents	will g	gain E	xposi	ire to	engii	neerir	ng com	munic	cation				
CO2	Stuc	lents	will l	earn s	tanda	rds o	f engi	neeri	ng gra	phics.					
CO3	Stuc	lents	will g	get Ex	posur	e to l	oasics	of bu	iilding	const	ructio	n			
CO4	Stuc	lents	will g	get Ex	posur	e to	compi	ıter-a	ided g	eomet	ric de	sign			
CO5			_	ain ba Design		owle	edge a	nd Ex	kposur	e to th	e visu	ıal asp	ects o	of	
		_							Progi n) 3-H			,	_	V	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	Н			M					M						
CO2	Н			M					Н						
CO3	Н			L					M						
CO4	Н			M					L						
CO5	Н			M					M						
Categ	ory	Bas	ic Sc	ience	(BS)				•	•					•
Appro	val	47 th	¹ Mee	ting o	f Aca	demi	c Cou	ncil							

U18ESCS1L1	PROBLEM SOLVING AND PYTHON PROGRAMMINGLABORATORY	L	T	P	C
	Total Contact Hours – 45	0	0	3	1.5
	Prerequisite – PROBLEM SOLVING PROGRAMMING	AND	I	PYT	HON
	Course Designed by – Department of Computer Science	e & I	Engii	neeri	ng
OBJECTIVES	: To enhance the practical knowledge on writing program	ms us	ing I	Pytho	on

LIST OF EXPERIMENTS FOR PROBLEM SOLVING AND PYTHON PROGRAMMING LAB

- 1. Compute the GCD of twonumbers.
- 2. Find the square root of a number (Newton'smethod)
- 3. ExSOnentiation (SOwer of anumber)
- 4. Find the maximum of a list of numbers

- 5. Linear search and Binarysearch
- 6. Selection sort, Insertionsort
- 7. Mergesort
- 8. First n primenumbers
- 9. Multiplymatrices
- 10. Find the most frequentwords in a text read from a file
- 11. Simulate elliptical orbits inPygame
- 12. Simulate bouncing ball usingPygame
- 13. Simulate matrix operations with Scilab
- 14. Simulate fitting curve with NumPy and Matplotlib

PLATFORM NEEDED

Python 3 interpreter for Windows/Linux and Scilab

COUR	SE O	UTC	COM	ES (C	Os)										
CO1	Wri	te, te	st, and	d debu	ıg sin	iple l	Pytho	n prog	grams.						
CO2	Imp	leme	nt Py	thon p	rogra	ms w	ith co	onditio	onals a	nd lo	ops				
CO3	Dev	elop	Pytho	n pro	grams	s step	-wise	by d	efining	g func	tions	and ca	lling	them	
CO4	Use	Pyth	on lis	ts, tup	oles, d	lictio	naries	for r	eprese	nting	comp	ound	data		
CO5	Rea	d and	l write	e data	from	to fil	les in	Pytho	n and	to sin	nulate	using	the p	ackage	es
	Scil	ab,N	umPy	and I	Matpl	otlib									
		Map	ping	of Co	urse	Outo	omes	with	Progr	am o	utcon	nes (P	POs)		
	(1/	/2/3 i	ndica	ites st	rengt	h of	corre	lation	1) 3-H i	igh, 2	-Med	ium,	1-Lov	V	
COs\	1		2	4	_		-	0	•	10	11	10	PS	PS	PS
POs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	Н		M						M			M			
CO2	Н		M						M			M			
CO3	Н		M						M			M			
CO4	Н		M						M			M			
CO5	Н		M						M			M			
Categ	ory			ences											
Appro	oval	47 th	¹ Mee	ting o	f Aca	demi	c Cou	ıncil							

	PROBABILITY AND QUEUING THEORY	L	T	P	C
U18BSMA304	Total Contact Periods- 60	3	1	0	4
U10DSNIASU4	Prerequisite – Basic knowledge in probability and	statist	ics		
	Course Designed by : Department of Mathematics				
OBJECTIVE	Todevelopanalyticalcapabilityandtoimpartknov	wledg	einSta	tistica	al
	methodsandQueuingtheoryandtheirapplication	sinEn	gineer	ingan	d
	Technology.				
	To develop the knowledge of Statistical method			applica	ations
	so as to appreciate them for solving real world	proble	ems.		

UNITI RANDOM VARIABLES

(9+3)

Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions.

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables.

UNITIII RANDOMPROCESSES

(9+3)

Classification – Stationary process – Markov process – Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.

UNITIV QUEUINGMODELS

(9+3)

Markovian queues – Birth and Death processes – Single and multiple server queueingmodels – Little's formula – Queues with finite waiting rooms – Queues with impatient customers: Balking and reneging.

UNITY ADVANCED QUEUINGMODELS

(9+3)

Finite source models - M/G/1 queue - PollaczekKhinchin formula - M/D/1 and M/EK/1 as special cases - Series queues - Open Jackson networks.

TEXT BOOKS:

- 1. Ibe. O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier, 1st Indian Reprint, 2007. [Units I toIII]
- 2. Gross.D.andHarris.C.M., "FundamentalsofQueueingTheory", WileyStudentedition, 2004. [UnitsIV&V]

REFERENCES:

- 1. Robertazzi, "Computer Networks and Systems: Queueing Theory and Performance Evaluation", Springer, 3rdEdition, 2006.
- 2. Hamdy A. Taha. "Operations Research", Pearson Education, Asia, 8th Edition, 2007.
- 3. Trivedi.K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", John Wiley and Sons, 2nd Edition, 2002.
- 4. HweiHsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 5. Yates.R.D.andGoodman.D.J., "ProbabilityandStochasticProcesses", WileyIndiaPvt. Ltd., Bangalore, 2nd Edition, 2012.

COUR	,			ES (C											
CO1	Und	ersta	nd the	e nota	tions	vario	us typ	es of	randor	n vari	ables	and p	robabi	lity	
	dist	ributi	ons.												
CO2	App	ly th	e con	cepts o	of two	o dim	ensio	nal ra	ndom v	variab	les.				
CO3	Exp	lain t	the co	ncepts	s of ra	andor	n proc	cesses	•						
CO4	Des	cribe	the b	asic c	oncep	ts of	queui	ngmo	dels						
CO5	Ana	lyze	the ex	tende	d mo	dels i	n adv	anced	queui	ng mo	dels.				
CO6	App	ly pr	obabi	listic	theory	y for	real ti	me pr	oblem	S.					
	(1	_							Progr 1) 3-Hi			,	,	,	
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2							2				3		
CO2		3				1						1	3		
CO3	3				1					2		2	3		
CO4				1					3	2		2	3		
CO5	3	2				1						3	3		
CO6 Categ	3	2		1 iences	1	1			3	2		3	3		

Approval 4	7 th Meeting of Academic Council				
	PRINCIPLES OF COMMUNICATION SYSTEMS	L	T	P	C
U18ESIT302	Total Contact Periods – 45	3	0	0	3
C10E511002	Prerequisite –Wave optics and Basic Electrical and Ele	ectro	nics s	ystem	
	Course Designed by:- Dept of Information Technology	У			

- To Introduce Different Methods Of Analog Communication And Their Significance
- To Introduce Digital Communication Methods For High Bit RateTransmission
- To Introduce The Concepts Of Source And Line Coding Techniques ForEnhancing Rating Of Transmission Of Minimizing The Errors InTransmission.
- To Introduce MAC Used In Communication Systems For Enhancing The Number Of Users.
- To Introduce Various Media For Digital Communication

UNITI ANALOGCOMMUNICATION

9

Signals – Analog and Digital, Modulation Techniques- AM – Frequency Spectrum – Vector Representation – Power Relations – Generation Of AM – DSB, DSB/SC, SSB, VSB AM Transmitter & Receiver; FM And PM Techniques – Frequency Spectrum – Power Relations: Generation Of FM NBFM& WBFM, Amstrong Method & Reactance Modulations.

UNITH DIGITAL COMMUNICATION

9

Concepts Of Sampling And Sampling Theorems, Pulse Modulations:- PAM, PWM, PPM, PTM, Quantization And Coding: DCM, DM, Slope Overload Error. ADM, DPCM, OOK Systems – ASK, FSK, PSK, BSK, QPSK, QAM, MSK, GMSK, Applications Of Data Communication.

UNITIII INFORMATION THEORY

Q

Primary Communication – Entropy, Properties, BEC, Source Coding :Shannon Fano, Huffman Coding : Noiseless Coding Theorem, BW – SNR Trade Off Codes: NRZ, RZ, AMI, HDBP, ABQ, Efficiency Of Transmissions, Error Control Codes And Applications: Convolutions & Block Codes.

UNITIV SPREAD SPECTRUM AND MULTIPLEACCESS METHODS 9
FDMA, TDMA, CDMA, SDMA, Spread Spectrum and Multiple Access Methods for wireless system engineering

UNITY OPTICAL FIBER, SATELLITE, POWERLINE-SCADA

9

Fibers – Types: Sources, Detectors Used, Digital Filters, Optical Link - Orbits Types Of Satellites Frequency Used Link Establishment, MA Techniques Used In Satellite Communication, Earth Station; Aperture Actuators Used In Satellite – Intelsat and Insat, Power Line Carrier Communications-SCADA.

TEXT BOOKS:

- 1. Taub & Schiling "Principles Of Communication Systems" Tata McGraw Hill2007.
- 2. J.Das "Principles of Digital Communication" New Age International, 1986.

REFERENCES:

- 1. Kennedy And Davis "Electronic Communication Systems" Tata McGraw Hill, 4th Edition, 1993.
- $2. \quad Sklar "Digital Communication Fundamentals And Applications" Pears on Education, 2001.$

- 3. Bary Le, Memuschmidt, Digital Communication, Kluwer Publication, 2004.
- 4. B.P.Lathi "Modern Digital And Analog Communication Systems" Oxford University Press,1998.
- 5. Frenzel 4thedn Electronic Communication Systems.

LOUK	SE C	UT(COM	ES (C	(Os)										
CO1	Unc	lersta	nd th	ebasic	work	cing o	of con	nmun	icatior	ı syste	ms				
CO2		•	_	modu iitabil		ı tech	nnique	es and	their	compa	arative	e anal	ysis aı	nd	
CO3			-						dulati hanne	on, ch	aracte	erizati	on and	d	
CO4				nalog Fechn	_	•	conve	rsion a	and Di	igital (data tr	ansmi	ission	,	
CO5	Sum	ımari	ze the	mult	iple a	ccess	techi	niques	used	in sate	ellite o	comm	unicat	ion	
CO6	Out	line t	he fib	re opt	tical s	yster	n used	d in co	ommu	nicatio	on				
	(1.									ram o				v	
COs\ POs	(1,													PS 02	PS 03
POs CO1		/2/3 i 2	ndica	ites st	rengt	ch of 6	corre	elation	1) 3-H	igh, 2	-Med	ium,	1-Lov PS	PS 02 2	
POs CO1 CO2	1 3	/2/3 i	ndica	ites st	rengt 5	h of	corre	elation	1) 3-H 9	10	-Med	12 1	1-Lov PS	PS 02 2 2	
CO1 CO2 CO3	1	/2/3 i 2	ndica	4	rengt	ch of 6	corre	elation	9 2	10 2	-Med	12 1 2	1-Lov PS	PS 02 2 2 2 2	
CO1 CO2 CO3 CO4	3	2 2 3	ndica	4	5	6 1	corre	elation	1) 3-H 9	10	-Med	12 1 2 2 2	1-Lov PS	PS 02 2 2 2 2 2	
CO1 CO2 CO3 CO4 CO5	3 3	2 2 3	ndica	4	5 1 3	6 1 2	corre	elation	9 2	10 2	-Med	12 1 2	1-Lov PS	PS 02 2 2 2 2 2 2	
CO1 CO2 CO3 CO4	3	2 2 3 2 2 2 2	3	1 3 3 3	5 1 3 3 3	6 1 2 2 2	7	elation	9 2	10 2	-Med	12 1 2 2 2	1-Lov PS	PS 02 2 2 2 2 2	
CO1 CO2 CO3 CO4 CO5	1 3 3 3 ory	2 2 3 Eng	3 gineer	1 3 3 ing So	5 1 3 3 cience	6 1 2 2 es (ES	7 S)	elation	9 2 3	10 2	-Med	12 1 2 2 2	1-Lov PS	PS 02 2 2 2 2 2 2	

	DATABASE MANAGEMENT SYSTEMS	L	T	P	C
1110DCITTAGA	Total Contact Periods - 45	3	0	0	3
U18PCIT303	Prerequisite – Computer fundamentals				
	Course Designed by:- Dept of Information Technolog	У			

- To learn the fundamentals of data models and to represent a database system using ER diagrams.
- To study SQL and relational databasedesign.
- To understand the internal storage structures using different file andindexing techniques which will help in physical DBdesign.
- To understand the fundamental concepts of transaction processing- concurrencycontrol techniques and recoveryprocedures.
- To have an introductory knowledge about the Storage and Query processing Techniques

UNITI RELATIONAL DATABASES

10

Purpose of Database System – Views of data – Data Models – Database System Architecture – Introduction to relational databases – Relational Model – Keys – Relational Algebra – SQL fundamentals – Advanced SQL features – Embedded SQL – Dynamic SQL

UNITII DATABASE DESIGN

8

Entity-Relationship model – E-R Diagrams – Enhanced-ER Model – ER-to-Relational Mapping—FunctionalDependencies—Non-lossDecomposition—First,Second,ThirdNormal Forms, Dependency Preservation – Boyce/Codd Normal Form – Multi-valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth NormalForm

UNITIII TRANSACTIONS

9

Transaction Concepts – ACID Properties – Schedules – Serializability – ConcurrencyControl – Need for Concurrency – Locking Protocols – Two Phase Locking – Deadlock – Transaction Recovery – Save Points – Isolation Levels – SQL Facilities for Concurrency and Recovery.

UNITIV IMPLEMENTATION TECHNIQUES

9

RAID–FileOrganization–OrganizationofRecordsinFiles–IndexingandHashing–Ordered Indices–B+treeIndexFiles–BtreeIndexFiles–StaticHashing–DynamicHashing–Query Processing Overview – Algorithms for SELECT and JOIN operations – Query optimization using Heuristics and CostEstimation.

UNITY ADVANCEDTOPICS

9

Distributed Databases: Architecture, Data Storage, Transaction Processing – Object-based Databases: Object Database Concepts, Object-Relational features, ODMG Object Model, ODL, OQL – XML Databases: XML Hierarchical Model, DTD, XML Schema, XQuery – Information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.

TEXT BOOKS:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, —Database System Concepts, Sixth Edition, Tata McGraw Hill, 2011.
- 2 Ramez Elmasri, Shamkant B. Navathe, —Fundamentals of Database Systems, Sixth Edition, Pearson Education, 2011.

REFERENCES:

- 1. C.J.Date, A.Kannan, S.Swamynathan, —An Introduction to Database Systems, Eighth Edition, Pearson Education, 2006.
- 2. RaghuRamakrishnan,—DatabaseManagementSystems||,FourthEdition,McGraw-Hill College Publications,2015.

3. G.K.Gupta,"DatabaseManagementSystems|,TataMcGrawHill,2011. 4.

COUR	RSE OUTCOMES (COs)
CO1	Analyze the modern and futuristic database applications based on size and complexity
CO2	Apply queries using normalization criteria and optimize queries
CO3	Understand the transactions concepts and concurrency
CO4	Explain the indexing strategies in different database systems
CO5	Discuss the key challenges of advanced database systems
CO6	Evaluate how advanced databases differ from traditional databases

	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	POS 1 2 3 4 5 6 7 8 9 10 11 12 01 02 03														
CO1	3	2		3	1	3			3	3	2		3		
CO2	3	1		3	1	3			3	3	2		3		
CO3	2	1		3	1	3			3	3	2		3		
CO4	2	2		3	1	3			3	3	2		3		
CO5	2	2		3	3	3			3	3	2		3		
CO6	2	2		3	3	3			3	3	2		3		
Catego	ory	Pro	fessio	nal C	ore (P	C)		•		•	•	•			
Appro	val	48t	th mee	eting o	of the	Acad	demic	Coun	cil						

	DATA STRUCTURES AND ALGORITHMS	L	T	P	C
IIIODCIT204	Total Contact Periods:45	3	0	0	3
U18PCIT304	Prerequisite – Fundamentals of Programming Langua	ıge			
	Course Designed by:- Dept of Information Technolog	gy			

- To understand the concepts of ADTs
- To learn linear data structures lists, stacks, andqueues
- To understand sorting, searching and hashing algorithms
- To apply Tree and Graphstructures

UNITI LINEAR DATA STRUCTURES-LIST

12

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list implementation —singly linked lists – circularly linked lists – doubly-linked lists – applications of lists –Polynomial Manipulation – All operations (Insertion, Deletion, Merge, Traversal).

UNITII LINEAR DATA STRUCTURES –STACKS, QUEUES

12

Stack ADT – Operations – Applications – Evaluating arithmetic expressions- Conversion of Infix to postfix expression – Queue ADT – Operations – Circular Queue – Priority Queue – deQueue –applications of queues.

UNITIII NON LINEAR DATA STRUCTURES-TREES

12

Tree ADT – tree traversals – Binary Tree ADT – expression trees – applications of trees – binary search tree ADT –Threaded Binary Trees- AVL Trees – B-Tree – B+ Tree – Heap – Applications of heap.

UNITIV NON LINEAR DATA STRUCTURES- GRAPHS

12

Definition – Representation of Graph – Types of graph – Breadth-first traversal – Depth-first traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler circuits – Applications of graphs.

UNITY SEARCHING, SORTING ANDHASHINGTECHNIQUES

12

Searching- Linear Search – Binary Search. Sorting – Bubble sort – Selection sort – Insertion sort–Shellsort–Radixsort.Hashing-HashFunctions–SeparateChaining–OpenAddressing – Rehashing – Extendible Hashing.

TEXT BOOKS:

1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson

- Education, 1997.
- 2. Reema Thareja, "Data Structures Using C", Second Edition , Oxford University Press, 2011

REFERENCES:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", Second Edition, Mcgraw Hill, 2002.
- 2. Aho, Hopcroft and Ullman, "Data Structures and Algorithms", PearsonEducation, 1983.
- 3. Stephen G. Kochan, "Programming in C", 3rd edition, PearsonEducation.
- 4. EllisHorowitz,SartajSahni,SusanAnderson-Freed,"FundamentalsofDataStructuresin C", Second Edition, University Press,2008

COUR	SE O	UTO	COMI	ES (C	Os)										
CO1	Und	ersta	nd lin	ear da	ata str	uctu	res lin	ked li	st and	their	applic	ations	S.		
CO2	Den	onst	rate tl	ne line	ear da	ta stı	uctur	es suc	h as st	acks,	queue	s and	their	applica	ations.
CO3	App	ly th	e non	-linea	r data	struc	ctures	such	as tree	s, gra	phsin	real ti	ime ap	plicati	ons.
CO4	Ana	lyze	the va	arious	searc	hing	techn	iques							
CO5	Eval	luate	the v	arious	sorti	ng al	gorith	ıms ar	nd hash	ningte	chniq	ue			
CO6	Des	cribe	the o	vervie	ew of	hash	ing te	chniq	ues						
	(1			,					n Prog n) 3-H			•	,	W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2		3		2				3				3	
CO2	2	2		3		2				3				3	
CO3	3	2		3		2				3		3		3	
CO4	3	2		3		2				3		3		3	
CO5	2	2		3		2				3		3	_	3	
CO6	2	2		3		2				3		3		3	
Catego	ory	Pro	fessio	nal C	ore (F	PC)			•					•	
Appro	val	481	th me	eting (of the	Aca	demic	Cour	ncil						

	OBJECT ORIENTED ANALYSIS AND DESIGN	L	T	P	C
U18PCIT305	Total Contact Periods:45	3	0	0	3
U18PC113U5	Prerequisite – Computer Fundamentals				
	Course Designed by:- Dept of Information Technology	7			

OBJECTIVES

- To learn the basics of OO analysis and designskills.
- To learn the UML designdiagrams.
- To learn to map design tocode.
- To be exposed to the various testingtechniques.

UNITI UML DIAGRAMS

9

 $\begin{array}{l} \text{Introduction to OOAD-Unified Process-UML diagrams-Use Case-Class Diagrams-Interaction Diagrams-State Diagrams-Activity Diagrams-Package, component and Deployment Diagrams.} \end{array}$

UNITH DESIGNPATTERNS

9

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller – Design Patterns – creational – factory method – structural – Bridge – Adapter – behavioural – Strategy – observer.

UNITIII CASE STUDY

9

Case study – the Next Gen POS system, Inception -Use case Modeling – Relating Use cases – include, extend and generalization – Elaboration – Domain Models – Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies – Aggregation and Composition.

UNITIV APPLYINGDESIGNPATTERNS

9

System sequence diagrams – Relationship between sequence diagrams and use cases Logical architecture and UML package diagram – Logical architecture refinement – UML class diagrams – UML interaction diagrams – Applying GoF design patterns.

UNITY CODINGANDTESTING

9

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration Testing – GUI Testing – OO System Testing.

TEXT BOOK:

1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", Third Edition, Pearson Education, 2005.

REFERENCES:

- 1. SimonBennett,SteveMcRobbandRayFarmer,"ObjectOrientedSystemsAnalysisand Design Using UML", Fourth Edition, Mc-Graw Hill Education, 2010.
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Software", Addison-Wesley,1995.
- 3. Martin Fowler, "UML Distilled: A Brief Guide to the Standard Object Modeling Laovanguage", Third edition, Addison Wesley, 2003.
- 4. Paul C. Jorgensen, "Software Testing:- A Craftsman's Approach", Third Edition, Auerbach Publications, Taylor and Francis Group. 2008

COUR	SE O	UTO	COMI	ES (C	Ŏs)				1 /						
CO1	Expl	ain C	OAD	conce	pts an	d var	ious U	ML di	iagram	S					
CO2	Undo patte		nd the	object	-orien	ted ap	proac	h to aı	nalyze a	and se	lect th	e appr	opriate	e design	l
CO3	Illus	trate	about	domai	n mod	lels ar	nd con	ceptua	al class	es					
CO4	Use patte		ed mo	deling	Lang	uage	notatio	ons to	apply e	effectiv	ve and	effici	ent sys	stem de	sign
CO5	Forr	nulat	e the	probl	em an	d des	signin	g solu	itions	for rea	al time	e proje	ects		
CO6	Con	npare	and o	contra	st the	vario	ous te	sting 1	technic	ques					
	(1			•					n Prog n) 3-H			,		W	
COs\ POs	1 2 3 4 5 6 7 8 9 10 11 12 PS O1 O2 O3 PS O3														
CO1	1 3 3 2 3 3														
CO2	1	3		3	3	2			3					3	

CO3	1	3		3	3	2			3				3	
CO4	1	3		3	3	2			3				3	
CO5	1	3		3	3	2			3	3	3	3	3	
CO6	1	3		3	3	2			3				3	
Catego	ory				ore (F									
App	rl	48th	n mee	eting o	of the	Aca	demic	Cour	ncil					

	COMPUTER ARCHITECTURE	L	T	P	C
1110DCIT204	Total Contact Periods:45	3	0	0	3
U18PCIT306	Prerequisite – Computer Fundamentals				
	Course Designed by:- Dept of Information Technology				

- To learn the basic structure and operations of acomputer.
- To learn the arithmetic and logic unit and implementation of fixed-point and floating point arithmeticunit.
- To learn the basics of pipelinedexecution.
- To understand parallelism and multi-coreprocessors.
- To understand the memory hierarchies, cache memories and virtualmemories.
- To learn the different ways of communication with I/Odevices.

UNITI BASIC STRUCTURE OF ACOMPUTER SYSTEM

9

Functional Units – Basic Operational Concepts – Performance – Instructions: Language of the Computer–Operations, Operands–Instructionrepresentation–Logical operations–decision making – MIPS Addressing.

UNITII ARITHMETIC FOR COMPUTERS

9

Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Operations – Subword Parallelism

UNITIII PROCESSOR AND CONTROL UNIT

9

A Basic MIPS implementation – Building a Data path – Control Implementation Scheme – Pipelining – Pipelined data path and control – Handling Data Hazards & Control Hazards – Exceptions.

UNITIV PARALLELISIM

9

Parallel processing challenges – Flynn's classification – SISD, MIMD, SIMD, SPMD, and Vector Architectures – Hardware multithreading – Multi-core processors and other Shared Memory Multiprocessors – Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers and other Message-Passing Multiprocessors.

UNITY MEMORY &I/O SYSTEMS

9

MemoryHierarchy-memorytechnologies-cachememory-measuringandimprovingcache performance – virtual memory, TLB's – Accessing I/O Devices – Interrupts – Direct Memory Access – Bus structure – Bus operation – Arbitration – Interface circuits –USB.

TEXT BOOKS:

- 1. David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.
- 2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian, Computer Organization and Embedded Systems, Sixth Edition, Tata McGraw Hill,2012.

REFERENCES:

- 1. WilliamStallings,ComputerOrganizationandArchitecture—DesigningforPerformance, Eighth Edition, Pearson Education, 2010.
- 2. John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw Hill, 2012.
- 3. John L. Hennessey and David A. Patterson, Computer Architecture A Quantitative Approach , Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

COUR	SE O			ES (C	Os)										
CO1				e fund	lamen	tal o	rganiz	zation	of cor	nputei	syste	em, op	peratio	ns and]
	inst	ructio	ns.												
CO2	Des	ign a	rithme	etic ar	nd log	gic un	it in c	compu	iter arc	chitect	ure.				
CO3	Exp	lain t	he co	ncept	s of p	ipelir	ned ex	ecutio	on and	desig	n con	trol u	nit.		
CO4	Und	lersta	nd pa	rallel	proce	essing	garch	itectu	res and	d GPU	٦.				
CO5	Des	cribe	the va	rious	memo	ory sy	stem	s and	its hie	rarchi	es.				
CO6	Dem	onstr	ate the	diffe	rent w	ays o	f com	munic	ation w	ith I/C) devic	ces			
	(1								n Prog n) 3-H					w	
Cos\ Pos	(1 1													W PS 02	PS 03
-		1/2/3	indic	ates s	treng	th of	corr	elatio	n) 3-H	ligh, 2	2-Med	dium,	1-Lo	PS	
Pos	1	1/2/3	indic 3	ates s	treng 5	th of	f corr 7	elatio 8	n) 3-H	ligh, 2	2-Med 11	dium, 12	1-Lo PS 01	PS	
Pos CO1	1 3	1/2/3	3 3	4 3	5 2	6 3	7 1	elatio 8	n) 3-H	ligh, 2	2-Med 11	12 1	PS 01 3	PS	
Pos CO1 CO2	1 3 3	1/2/3	3 3 3	4 3 3 3	5 2 2	6 3 3	7 1 1	8 3 3	n) 3-H	ligh, 2	2-Med 11 3 3 3 3	12 1 1	PS 01 3 3	PS	
CO1 CO2 CO3	1 3 3 3	1/2/3	3 3 3 2	3 3 3 3	5 2 2 2	6 3 3 3 3	7 1 1 1 1 1	8 3 3 3	n) 3-H	ligh, 2	2-Med 11 3 3 3	12 1 1 1 1	PS 01 3 3 3 3	PS	
CO1 CO2 CO3 CO4	1 3 3 3 3	1/2/3	3 3 2 3	3 3 3 3	5 2 2 2 2	6 3 3 3 3 3 3	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 3 3 3 3	n) 3-H	ligh, 2	2-Med 11 3 3 3 3	12 1 1 1 1 1	PS 01 3 3 3 3 3	PS	
Pos CO1 CO2 CO3 CO4 CO5	1 3 3 3 3 2 3	2	3 3 2 3 3 3 3	4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 3 3 3 3 3 3 3 3 3	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 3 3 3 3 3	n) 3-H	ligh, 2	11 3 3 3 3 3	12 1 1 1 1 1 3	PS 01 3 3 3 3 3 3 3	PS	

	DATABASE MANAGEMENT SYSTEMS LAB	L	T	P	C
U18PCIT3L1	Total Contact Periods:45	0	0	3	1.5
UISPCIISLI	Prerequisite – Computer fundamentals				
	Course Designed by:- Dept of Information Technology	У			

OBJECTIVES

- To understand data definitions and data manipulation commands
- To learn the use of nested and joinqueries
- To understand functions, procedures and procedural extensions of databases
- To be familiar with the use of a front endtool
- To understand design and implementation of typical databaseapplications

LIST OF EXERCISES:

- 1. Data Definition Commands, Data Manipulation Commands for inserting, deleting, updating and retrieving Tables and Transaction Controlstatements
- 2. Database Querying Simple queries, Nested queries, Sub queries and Joins

- 3. Views, Sequences, Synonyms
- 4. Database Programming: Implicit and Explicit Cursors
- 5. Procedures and Functions
- 6. Triggers
- 7. ExceptionHandling
- 8. Database Design using ER modeling, normalization and Implementation for any application
- 9. Database Connectivity with Front EndTools
- 10. Case Study using real life databaseapplications

COUR	SE O	UTO	COMI	ES (C	(Os)										
CO1	Con	struc	t data	defin	itions	and	mani	pulatio	on con	nman	ds.				
CO2	Des	ign a	pplica	tions	to tes	t Nes	sted a	nd Joi	n Que	ries					
CO3	Imp	leme	nt sim	iple a	pplica	ations	that	use th	e conc	ept of	f Viev	WS			
CO4	Des	ign a	pplica	tions	that r	equir	e a Fı	ront-e	nd Too	ol, ER	R Mod	lelling			
CO5	Ana	lyze	the us	se of T	Γables	s, Cu	rsors,	View	s, Fun	ctions	s, Pro	cedure	s and	Trigge	rs
CO6	Des	ign a	nd im	pleme	ent ty	pical	real ti	ime da	atabase	e appl	licatio	ons			
	(1			•					n Prog n) 3-H			•	,	W	
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	2	3		3		1	1		3	3	3	3		3	
CO2	2	3		3		2	3		3	3	3	3		3	
CO3	2	3		3		3	3		3	3	3	3		3	
CO4	2	3		3		3	3		3	3	3	3		3	
CO5	3	3		3		3	3		3	3	3	3		3	
CO6	3	3		3		3	3		3	3	3	3		3	
		D	C:-	1 (aa (T	201									
Categ	ory		fessio		,			Cour							

	OBJECT ORIENTED PROGRAMMING LAB	L	T	P	C
	Total Contact Periods:45	0	0	3	1.5
U18PCIT3L2	Prerequisite – Computer fundamentals				
	Course Designed by:- Dept of Information Technolog	У			

- To build software development skills using java programming for real-worldapplications.
- To understand and apply the concepts of classes, packages, interfaces, arraylist, exception handling and fileprocessing.
- To develop applications using generic programming and eventhandling.

LIST OF EXPERIMENTS

1. Develop a Java application to generate Electricity bill. Create a class with the following members: Consumer no., consumer name, previous month reading, current month

reading, type of EB connection (i.e domestic or commercial). Compute the bill amount using the followingtariff.

If the type of the EB connection is domestic, calculate the amount to be paid as follows:

- First 100 units Rs. 1 per unit
- 101-200 units Rs. 2.50 perunit
- 201 -500 units Rs. 4 per unit
- 501 units Rs. 6 perunit

If the type of the EB connection is commercial, calculate the amount to be paid as follows:

- First 100 units Rs. 2 per unit
- 101-200 units Rs. 4.50 perunit
- 201 -500 units Rs. 6 per unit
- 501 units Rs. 7 perunit
- 2. Develop a java application to implement currency converter (Dollar to INR, EURO to INR, Yen to INR and vice versa), distance converter (meter to KM, miles to KM and vice versa), time converter (hours to minutes, seconds and vice versa) usingpackages.
- 3. Develop a java application with Employee class with Emp_name, Emp_id, Address, Mail_id, Mobile_no as members. Inherit the classes, Programmer, AssistantProfessor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary.
- 4. Design a Java interface for ADT Stack. Implement this interface using array. Provide necessary exception handling in both theimplementations.
- 5. Write a program to perform string operations using ArrayList. Write functions for the following
 - a. Append add atend
 - b. Insert add at particularindex
 - c. Search
 - d. List all string starts with givenletter
- 6. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.
- 7. Write a Java program to implement user defined exceptionhandling.
- 8. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file inbytes.
- 9. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value iseven, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of thenumber.
- 10. Write a java program to find the maximum value from the given type of elements using a generic function.
- 11. Design a calculator using event-driven programming paradigm of Java with the following options.
 - a) Decimalmanipulations
 - b) Scientificmanipulations
- 12. Develop a mini project for any application using Javaconcepts.

COUR	SE O	UTO	COMI	ES (C	Os)										
CO1	Con	struc	t Java	prog	rams	for si	mple	applio	cations	that 1	make	use of	fclass	es	
CO2	l .		and in and i	-		ava p	orogra	ms fo	r simp	le app	olicati	ons th	at ma	ke use	of
CO3	Imp	leme	nt arr	ay list	using	g Jav	a								
CO4			ava ap ading		tionsu	ısing	genei	ric pro	gramr	ning,	excep	tion h	andlii	ng and	
CO5	Imp	leme	nt the	conc	ept of	file	proces	ssing i	in Java	l					
CO6	Dev	elop	real ti	ime aj	plica	tions	using	g Java	conce	pts					
	(1			•					Prog				-		
1	(-	1/4/3	maic	aics s	ucng	յա օւ	COLL	elatio	n) 3-H	ligh, 2	2-Mee	aium,	1-Lo	\mathbf{W}	
Cos\ Pos	1	2	3	4	5	6	7	8	n) 3-H 9	10 10	2-Mee 11	12	PS 01	PS 02	PS 03
1					5				,				PS	PS	
Pos CO1 CO2	1	2 3 3		4 3 3	5 3 3	6 2 2			9 3 3	10 3 3	11 3 3	12 3 3	PS	PS 02 3	
Pos CO1 CO2 CO3	1	2 3 3 3		4 3 3 3	5 3 3 3	6 2 2 2			9 3 3 3 3	10 3 3 3	3 3 3	3 3 3	PS	PS 02 3 3 3 3	
CO1 CO2 CO3 CO4	1 1 1	2 3 3 3 3		4 3 3 3 3	5 3 3 3	6 2 2 2 2			9 3 3 3 3	10 3 3 3 3	11 3 3 3 3	12 3 3 3 3	PS	PS 02 3 3 3 3 3	
CO1 CO2 CO3 CO4 CO5	1 1 1	2 3 3 3 3 3		4 3 3 3 3 3	5 3 3 3 3	6 2 2 2 2 2 2			9 3 3 3 3 3	10 3 3 3 3 3	11 3 3 3 3 3	3 3 3 3 3	PS	PS 02 3 3 3 3 3 3	
Pos CO1 CO2 CO3 CO4 CO5 CO6	1 1 1 1 1 1	2 3 3 3 3 3 3	3	3 3 3 3 3 3	5 3 3 3 3 3	6 2 2 2 2 2 2 2			9 3 3 3 3	10 3 3 3 3	11 3 3 3 3	12 3 3 3 3	PS	PS 02 3 3 3 3 3	
CO1 CO2 CO3 CO4 CO5	1 1 1 1 1 1 1 1 ory	3 3 3 3 3 Pro	3 fessio	4 3 3 3 3 3 3 3	5 3 3 3 3 3 3 ore (F	6 2 2 2 2 2 2 2 2 2 PC)	7		9 3 3 3 3 3 3	10 3 3 3 3 3	11 3 3 3 3 3	3 3 3 3 3	PS	PS 02 3 3 3 3 3 3	

DATA STRUCTURES LAB	L	T	P	C
Total Contact Periods:45	0	0	3	1.5
Prerequisite – Computer Fundamentals				
Course Designed by:- Dept of Information Technolog	gy			
	Total Contact Periods:45 Prerequisite – Computer Fundamentals	Total Contact Periods:45 0	Total Contact Periods:45 0 0 Prerequisite – Computer Fundamentals	Total Contact Periods:45 0 0 3 Prerequisite – Computer Fundamentals

- To implement linear and non-linear data structures
- To understand the different operations of searchtrees
- To implement graph traversalalgorithms
- To get familiarized to sorting and searchingalgorithm

LIST OF EXPERIMENTS

- 1. Array implementation of Stack and QueueADTs
- 2. Array implementation of ListADT
- 3. Linked list implementation of List, Stack and Queue ADTs
- 4. Applications of List, Stack and QueueADTs
- 5. Implementation of Binary Trees and operations of Binary Trees
- 6. Implementation of Binary SearchTrees
- 7. Implementation of AVLTrees
- 8. Implementation of Heaps using PriorityQueues.
- 9. Graph representation and Traversal algorithms
- 10. Applications of Graphs
- 11. Implementation of searching and sortingalgorithms
- 12. Hashing any two collisiontechniques

COURSE OUTCOMES (Cos)

CO1	App list.	ly th	e con	cepts	of line	ear da	ata str	ructure	es such	as lis	st, sta	cks, q	ueues	and lin	nked
CO2	Imp	leme	nt nor	n-linea	ar data	a stru	icture	opera	tions						
CO3	Con	struc	t func	tions	to im	plem	ent G	raph a	nd Tre	ee Tra	versa	lalgo	rithms	}	
CO4	Des	ign p	rogra	ms ba	sed o	n the	conce	ept of	sorting	g and	searcl	hing t	echnic	ques	
CO5	Des	ign a	nd ap	ply sti	ructur	es w	ith Ha	shing	techni	iques					
CO6	Iden	tify	the ap	propr	iate d	ata st	ructu	re for	any gi	ven p	robler	n			
	(1			,					n Prog n) 3-H			,	,	w	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2		3		2				3				3	
CO2	2	2		3		2				3				3	
CO3	3	2		3		2				3		3		3	
CO4	3	2		3		2				3		3		3	
CO5	2	2		3		2				3		3		3	
CO6	2	3		3		2				3		3		3	
Categ	ory	Pro	fessio	nal C	ore (F	PC)									
Appro	val	481	th mee	eting o	of the	Aca	demic	Cour	ncil		-	-	-		-

	DISCRETE MATHEMATICS	L	T	P	C
U18BSMA403	Total Contact Periods - 60	3	1	0	4
	Prerequisite – School Level Mathematics		-		
	Course Designed by:- Dept ofMathematics				
OBJECTIVES	Throughout the course, students will be expecte				
	understanding of Discrete Mathematics by b	_			
	mathematically correct terminology and notat				
	direct and indirect proofs, apply logical reasonir			ı varie	tyof
	problems and introduce simple concepts in grap	h theo	ory.		

UNITI MATHEMATICALLOGIC

(9+3)

Propositions and logic operators —Truth table — Equivalence — Implications — Tautologies — Laws of logic — Proofs in Propositional calculus — Inference theory — Predicate calculus.

UNITII RELATION AND FUNCTIONS

(9+3)

Different types of relations: Binary Relation – Partial Ordering Relation – Equivalence Relation – Sum and Product of Functions – bijective functions – Inverse and Composite Function

UNITHI RECURRENCERELATIONS

(9+3)

Recurrence relations – solving recurrence relation – Homogeneous and non–homogeneous recurrence relation – Generating Functions – Groups – Properties – cyclic groups and subgroups cosets – Lagrange's theorem.

UNITIV GRAPHTHEORY

IntroductionofGraphs-Graphterminology-RepresentationofGraphs-Connectivity-Euler and Hamilton path – Euler and Hamilton cycles – the Travelling sales man problem – Graph Isomorphism

UNITY BOOLEANALGEBRA

(9+3)

Boolean algebra – Partial order Relations on Boolean algebra – Boolean homomorphism – Disjunctive and conjunctive normal forms – Boolean functions.

TEXT BOOKS

- 1. Tremblay J.P and Manohar. R, "Discrete Mathematical Structures with Application to Computer Science", McGraw Hill Book Company, International Edition, 1987
- 2. Kenneth H. Rosen, "Discrete Mathematics and its Applications", McGraw Hill Book Company1999.

REFERENCE BOOKS

- 1. RalphP.,Grimaldi,"DiscreteandCombinatorialMathematics",PearsonEducation,Fifth Edition, New Delhi.2008
- 2. Venkataraman M.K, Discrete Mathematics", The National Publishing Company2000.
- 3. T. Veerarajan, "Discrete Mathematics", Mc Graw Hill Publications, 2006.

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1		inean functi		yzeth	efund	amer	ntalMa	athem	aticalC	Conce	ptssuc	chasse	etsrela	tions,	
CO2				s in pr	oport	ional	and I	Predic	ate log	gic.					
CO3	_		theco abgrou	-	ofreci	ırren	cerela	itions,	genera	tingf	ınctio	ns,gro	oup,ar	dcycli	С
CO4					_	_			velop the	_	en pr	oblem	ns as g	raph	
CO5	Und	lersta	nd the	e term	inolo	gies (of Bo	olean	algebr	a and	math	ematio	cal inc	luction	,
CO6	Eva alge		Boole	anfun	ctions	sands	simpli	fyexp	ressio	nsusin	gthep	roper	tiesof	Boolea	n
	(1	_							n Prog n) 3-H					w	
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2	3	1		3	1	1	1	3	1		3		
CO2	3	3		2	3	2		3	2		2	1	3		
CO3	3	2	1		2	2		2	2		2	1	3		
CO4	3	2	2		2	1	2		1	2	1		3		
CO5	3	2		2		2	2	1	2	1	2	1	3		
CO6	3	2	2	2	2	2	2	I	2	1	2	I	3		
Categ Appro	•			ence eting of	` /	Aca	demic	Cour	ncil						

WEB PROGRAMMING	L	T	P	С
Total Contact Periods:45	3	0	0	3

U18PCIT401

Prerequisite – Internet Programming

Course Designed by:- Dept of Information Technology

OBJECTIVES

- To understand the concepts and architecture of the World WideWeb.
- To understand and practice mark uplanguages
- To understand and practice embedded dynamic scripting on client side Internet Programming
- To understand and practice web development techniques onclient-side

UNITI SCRIPTING

9

WebpageDesigningusingHTML-Scriptingbasics-Clientsideandserversidescripting.Java Script-Object, names, literals, operators and expressions- statements and features- events - windows - documents - frames - data types - built-in functions- Browser object model - Verifying forms.-HTML5- CSS3- HTML 5 canvas - Web site creation usingtools.

UNITII JAVA 9

Introduction to object oriented programming-Features of Java – Data types, variables and arrays – Operators – Control statements – Classes and Methods – Inheritance. Packages and Interfaces–ExceptionHandling–MultithreadedProgramming–Input/Output–Files–Utility Classes – StringHandling.

UNITIII JDBC 9

JDBCOverview—JDBCimplementation—Connectionclass—Statements-CatchingDatabase Results, handlingdatabase Queries. Networking—InetAddressclass—URLclass-TCPsockets - UDP sockets, Java Beans—RMI.

UNITIV APPLETS

9

Javaapplets-Lifecycleofanapplet-Addingimagestoanapplet-Addingsoundtoanapplet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows GraphicsandText. Using AWT Controls, Layout Managers and Menus. Servlet-lifecycleof a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP.

UNITY XML ANDWEB SERVICES

9

Xml – Introduction-Form Navigation-XML Documents- XSL – XSLT- Web services-UDDI-WSDL-Java web services – Web resources.

TEXT BOOKS:

- 1. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How To Program 5th Edition
- 2. Herbert Schildt, Java The Complete Reference, 7th Edition. Tata McGraw-HillEdition.
- 3. Michael Morrison XML Unleashed Tech mediaSAMS.

REFERENCES:

- 1. John Pollock, Javascript A Beginners Guide, 3rd Edition Tata McGraw-HillEdition.
- 2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill,2002.
- 3. http://speckyboy.com/2015/01/12/free-web-design-ebooks-2014

COURSE OUTCOMES (COs)

CO1 Acquire knowledge about functionalities of world wide web

CO2	Explo	ore m	arkup	langu	ages f	eatur	es and	d desig	gn inte	ractive	web	pages	using	them	
CO3	Expe	rimer	t Clie	nt side	e valio	lation	ı usinş	g scrip	ting la	nguag	es				
CO4	Imple	ement	Oper	sour	e Jav	aScri	pt libr	ary fu	nction	S					
CO5	Desig	gn fro	nt enc	l web	page a	and c	onnec	t to th	e back	end d	atabas	ses			
CO6	Expla	ain th	e func	tions	of clie	nt an	d serv	ers or	Web.						
	(1			,					n Prog n) 3-H	•		,	,	w	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	1		3	2	2	2				2					3
CO2	1		3	2	2	2				2					3
CO3	1		3	2	2	2				2		2			3
CO4	1		3	2	2	2						2			3
CO5	1		3	2	2	2						2			3
CO6	1		3	2	2	2						2			
Categ	ory	Pro	fessio	nal C	ore (P	PC)									
Appro	oval	48t	h me	eting o	of the	Acad	demic	Cour	ncil						

	OPERATING SYSTEM PRINCIPLES	L	T	P	C
IIIODOITAOA	Total Contact Periods:45	3	0	0	3
U18PCIT402	Prerequisite – Computer Organization and Architecture	e			
	Course Designed by:- Dept of Information Technology	У			

To understand basic operating system controls the computing resources and provide services to the users. This course provides an introduction to the operating system functions, design and implementation.

UNITI OPERATINGSYSTEMSOVERVIEW

9

Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and Multicore Organization. Operating system overview-objectives and functions, Evolution of Operating System.-ComputerSystemOrganization-OperatingSystemStructureandOperations-System Calls, System Programs, OS Generation and SystemBoot.

UNITII PROCESSMANAGEMENT

9

Processes-Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication; Threads- Overview, Multicore Programming, Multithreading Models; Windows 7 - Thread and SMP Management.Process Synchronization - Critical Section Problem, Mutex Locks, Semophores, Monitors; CPU Scheduling and Deadlocks.

UNITIII STORAGE MANAGEMENT

9

Main Memory-Contiguous Memory Allocation, Segmentation, Paging, 32 and 64 bit architecture Examples; Virtual Memory- Demand Paging, Page Replacement, Allocation, Thrashing; Allocating Kernel Memory, OS Examples.

UNITIV I/O SYSTEMS

9

Mass Storage Structure- Overview, Disk Scheduling and Management; File System Storage-File Concepts, Directory and Disk Structure, Sharing and Protection; File System Implementation- File System Structure, Directory Structure, Allocation Methods, Free Space Management; I/O Systems.

UNITY CASE STUDY 9

Linux System- Basic Concepts; System Administration-Requirements for Linux System Administrator, Setting up a LINUX Multifunction Server, Domain Name System, Setting Up Local Network Services; Virtualization- Basic Concepts, Setting Up Xen,VMware on Linux Host and Adding Guest OS

TEXT BOOK:

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley and Sons Inc., 2012.

REFERENCES:

- 1. William Stallings, "Operating Systems Internals and Design Principles", 7th Edition, Prentice Hall, 2011.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- 3. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education", 1996.
- 4. DMDhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata McGraw-Hill Education, 2007.
- **5.** https://www.free-ebooks.net/ebook/The-Easy-Guide-to-Operating-Systems

COUR	RSE O	UTO	COMI	ES (C	Os)										
CO1	Recal	1 the	funda	menta	l com	pone	nts of	a coi	nputer	opera	ting s	ystem,	Basic	es of o	perating
	syster	n pri	nciple	s and	Syste	m cal	ls. De	efine p	rocess	state	and so	chedul	er. Lis	st mass	storage
												•		inux S	
CO2					•		•			_			nemor	y mana	gement,
				_			_		virtual			_			
CO3							•	ı calls	, Sche	dulers,	Men	nory n	nanage	ement s	systems,
			mory			•									
CO4				_			_				hedul	ing a	ılgorit	hm, r	nemory
		_						_	ucture						
CO5	Desig	gn an	d dev	elop I	Linux	mult	ifunct	tion se	erver a	nd Lo	cal ne	etwork	k servi	ices	
CO6	Deve	lop v	Virtua	lizatio	n Cor	ncept	in OS	S by s	etting	Up Xe	en, VI	Mware	on L	inux F	lost and
	Addi	ng Gi	uest O	S		-		•	_	-					
		Ma	pping	of C	ourse	Out	come	s with	1 Prog	ram (outco	mes (POs)		
	(1	1/2/3	indic	ates s	treng	gth of	corr	elatio	n) 3-H	ligh, 2	2-Me	dium,	1-Lo	W	
COs\		_		_	_	_	_	_					PS	PS	PS
POs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	3	2	2						2			1		1
CO2		3	2	2						2			2		2
CO3		3	2	2						2			2		2
CO4		3	2	2						2			2	2	2
CO5	3				2							2	2		2
CO6	3		3		2	3		2				2	2		2
Categ	gory	Pro	fessio	nal C	ore (F	PC)									

	SOFTWARE ENGINEERING METHODOLOGIES	L	T	P	C
U18PCIT403	Total Contact Periods:45	3	0	0	3
U18PC114U3	Prerequisite – Fundamentals of Computing and Programmi	ng			
	Course Designed by:- Dept of Information Technology				

- To learn about generic models of software developmentprocess.
- TounderstandfundamentalconceptsofrequirementsengineeringandAnalysisModeling.
- To understand the different design techniques and their implementation.
- To learn various testing and maintenancemeasures.

UNITI SOFTWARE PROCESS ANDPROJECTMANAGEMENT

Introduction to Software Engineering, Software Process, Perspective and Specialized Process Models – Software Project Management: Estimation – LOC and FP Based Estimation, COCOMO Model – Project Scheduling – Scheduling, Earned Value Analysis - Risk Management.

UNITII REQUIREMENTS ANALYSISAND SPECIFICATION

Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document – Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets- Data Dictionary.

UNITIII RE DESIGN

9

Design process – Design Concepts-Design Model – Design Heuristic – Architectural Design – Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design – Component level Design: Designing Class based components, traditional Components.

UNITIV TESTINGAND IMPLEMENTATION

9

Software testing fundamentals-Internal and external views of Testing-white box testing -basis path testing-control structure testing-black box testing- Regression Testing – Unit Testing – Integration Testing – Validation Testing – System Testing And Debugging – Software Implementation Techniques: Codingpractices-Refactoring.

UNITY PROJECT MANAGEMENT

9

Estimation – FP Based, LOC Based, Make/Buy Decision, COCOMO II - Planning – Project Plan, Planning Process, RFP Risk Management – Identification, Projection, RMMM - Scheduling and Tracking –Relationship between people and effort, Task Set & Network, Scheduling, EVA - Process and Project Metrics.

TEXT BOOKS:

1. Roger S. Pressman, "Software Engineering – A Practitioner"s Approach", Seventh Edition, Mc Graw-Hill International Edition, 2010.

REFERENCES:

- 1. Ian Sommerville, "Software Engineering", 9th Edition, Pearson Education Asia, 2011.
- 2. RajibMall, "FundamentalsofSoftwareEngineering", ThirdEdition, PHILearningPrivate Limited, 2009.
- 3. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 2010.
- 4. Kelkar S.A., "Software Engineering", Prentice Hall of India Pvt Ltd,2007.
- 5. Stephen R.Schach, "Software Engineering", Tata McGraw-Hill Publishing Company Limited, 2007.

6. http://www.onlineprogrammingbooks.com/software-engineering

). nup://			_			CAUDI	.COIII/	SULLW	are-er	iginee	ring				
COUR															
CO1	Expla	in th	e basi	c conc	cept of	f Soft	ware	engine	eering a	and Es	timati	ion mo	odels.		
CO2	Unde	rstan	d the	conce	ots of	softw	are re	quire	nents,	analys	sis and	l speci	ificatio	on.	
CO3	Desig	n vai	rious s	softwa	re mo	dels									
CO4	Unde	rstan	d the	basic o	concep	ots of	testin	g and	its imp	olemei	ntation	1.			
CO5	Imple	emen	t and o	leploy	the s	oftwa	ire.								
CO6	Apply	y the	proje	ct man	agem	ent ir	softv	vare e	nginee	ring ta	sks.				
				,					Prog			,			
	(1	1/2/3	indic	ates s	treng	gth of	corr	elatio	n) 3-H	ligh, 2	2-Med	lium,	1-Lo	W	
COs\	1	_	2	4	_		-	0	0	10	11	10	PS	PS	PS
POs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	1							2	2	2	2	3		
CO2	3	1							2	2	2	2	3		
CO3	3	1							2	2	2	2	3		
CO4	3	1							2	2	2	2	3		
CO5	3	1							2	2	2	2	3		
CO6	3	1							2	2	2	2	3		
Categ	ory	Pro	fessio	nal C	ore (F	PC)									
Appro	oval	481	th me	eting (of the	Aca	demic	Cour	ncil						

	DIGITAL SYSTEM DESIGN	L	T	P	C
U18ESIT404	Total Contact Periods:45	3	0	0	3
U10ES11404	Prerequisite – Basic Electrical and Electronics Engg				
	Course Designed by:- Dept of Information Technology	7			

OBJECTIVES:

- To introduce the concept of digital and binarysystems
- To design and analyze combinational logiccircuits.
- To design and analyze sequential logic circuits.
- Tounderstandthebasicsoftwaretoolsforthedesignandimplementationofdigitalcircuits and systems.

UNITI BOOLEAN ALGEBRA ANDLOGICGATES

9

Review of Number Systems – Arithmetic Operations – Binary Codes – Boolean Algebra and Theorems – Boolean Functions – Simplification of Boolean Functions using Karnaugh Map and Tabulation Methods – Logic Gates – NAND and NOR Implementations.

Combinational Circuits – Analysis and Design Procedures – Circuits for Arithmetic Operations, Code Conversion – Decoders and Encoders – Multiplexers and Demultiplexers – Introduction to HDL– HDL Models of Combinational circuits.

UNITIII SYNCHRONOUS SEQUENTIAL LOGIC

9

Sequential Circuits – Latches and Flip Flops – Analysis and Design Procedures – State Reduction and State Assignment – Shift Registers – Counters – HDL for Sequential Logic Circuits.

UNITIV ASYNCHRONOUS SEQUENTIAL LOGIC

9

Analysis and Design of Asynchronous Sequential Circuits – Reduction of State and Flow Tables – Race-free State Assignment – Hazards.

UNITY MEMORY ANDPROGRAMMABLE LOGIC

RAMandROM-MemoryDecoding-ErrorDetectionandCorrection-ProgrammableLogic Array – Programmable Array Logic – Sequential Programmable Devices – Application Specific Integrated Circuits.

TEXT BOOK:

1 MorrisManoM.andMichaelD.Ciletti, "DigitalDesign", IVEdition, PearsonEducation, 2008.

REFERENCES:

- 1. John F. Wakerly, "Digital Design Principles and Practices", Fourth Edition, Pearson Education, 2007.
- 2. Charles H. Roth Jr, "Fundamentals of Logic Design", Fifth Edition Jaico Publishing House, Mumbai, 2003.
- 3. Donald D. Givone, "Digital Principles and Design", Tata Mcgraw Hill, 2003.
- 4. Kharate G. K., "Digital Electronics", Oxford University Press,2010.

COUR	RSE O	UTO	COMI	ES (C	(Os)										
CO1									gebra a miques		simpl	ify the	Bool	ean	
CO2	Demo		ate Bo	olean	simpl	ificat	ion te	chniqı	ies and	l to de	sign a	comb	oinatio	nal har	dware
CO3	Desig	gn and	d anal	yze gi	ven d	igital	circui	it - Sy	nchror	ous s	equen	tial.			
CO4	Expe	rimer	nt and	analy	ze giv	en di	gital c	ircuit	– Asyı	nchror	ious s	equen	tial.		
CO5	Desci	ribe n	nemoi	ry and	progr	amm	able l	ogics.							
CO6	Imple	ement	t Appl	licatio	n Spe	cific I	Integr	ated C	Circuits						
	(1			,					n Prog n) 3-H			•	,	W	
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1		3	3						2	2					2
CO2		3	3						2	2					2
CO3	2	3	3						2	2				-	2
CO4	2	3	3						2	2					2
CO5	2	2	2						2	2				_	2
CO6	2	2	2						2	2					2

Category	Engineering Sciences (ES)
Approval	48th meeting of the Academic Council

	DATA COMMUNICATION AND COMPUTER NETWORKS	L	T	P	С
U18PCIT405	Total Contact Periods:45	3	0	0	3
	Prerequisite – Computer Fundamentals				
	Course Designed by:- Dept of Information Technology	У			
ODIECTIVE					

- Togettheideaofchoosingtherequiredfunctionalityateachlayerforagivenapplication
- To trace the flow of information from one node to another node in the network.
- To understanding of division of network functionalities in tolayers
- To understand the component required to build different types of networks
- To identify the solution for the functionalities in each layer.

UNIT IAPPLICATION LAYER

9

Network Architecture – Layers - HTTP – DNS – E-Mail (SMTP, MIME, POP3, IMAP, Web Mail), FTP, Telnet - SNMP.

UNIT IITRANSPORT LAYER

9

User Datagram Protocol (UDP) – Transmission Control Protocol (TCP) – Flow Control – Congestion Control – Queuing - Discipline Introduction to Quality of services (QOS).

UNIT IIINETWORKLAYER

9

Circuit Switching - Packet Switching Virtual Circuit Switching - IP - ARP - DHCP - ICMP - Routing - RIP - OSPF - Subnetting - CIDR - Interdomain Routing - BGP - IPV6 Basic Features - Inter Domain Multicast - Congestion Avoidance in Network Layer.

UNIT IV DATALINKLAYER

9

Channel access on links – SDMA – TDMA – FDMA – CDMA – Hybrid Multiple Access Techniques – Issues in the Data Link Layer – Framing - Error correction and detection – Link Level Flow Control – Medium Access – Ethernet – Token Ring – FDDI – Wireless LAN – Bridges and Switches.

UNIT VDATA COMMUNICATIONS

9

 $\label{eq:continuous_pred} Data\ Transmission\ - \ Transmission\ Media\ - \ Signal\ Encoding\ Techniques\ - \ Multiplexing\ - \ Spread\ Spectrum.$

TEXT BOOKS:

- 1. James F. Kurose, Keith W. Ross, "Computer Networking, A Top-Down Approach Featuring the Internet", Third Edition, Pearson Education, 2006.
- 2. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers Inc., 2011.
- 3. William Stallings, "Data and Computer Communications", Eighth Edition, Pearson Education, 2011.

REFERENCES:

1. Nader F. Mir, "Computer and Communication Networks", First Edition, Pearson

- Education, 2007.
- 2. Ying-Dar Lin, Ren-Hung Hwang and Fred Baker, Computer Networks: An Open Source Approach ", McGraw Hill Publisher, 2011.
- 3. Behrouz A. Forouzan, "Data communication and Networking", Tata McGraw-Hill, 2004.

COUR									a rvetv		<i>O</i> ,			ĺ	
CO1	Unde	rstan	d basi	c cond	cepts o	of cor	npute	r netw	ork ted	chnolo	gy.				
CO2	Expla	in D	ata Co	ommu	nicatio	ons S	ystem	and i	ts com	ponen	ts.				
CO3	Class	ify th	e diff	erent	types	of ne	twork	topol	ogies a	nd pro	otocols	S.			
CO4	Discu layer.		e laye	rs of t	he OS	SI mo	del ar	nd TCI	P/IP an	d to ex	xplain	the fu	ınctior	n(s) of o	each
CO5	Unde	rstan	d the	differe	ent typ	es of	netw	ork de	vices a	and the	eir fun	ctions	S.		
CO6	Appl	y sign	nal En	codin	g tech	nique	es								
	(1			,					n Prog n) 3-H			•	,	w	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	2			3	2					2			3		
CO2		1		2						2			1		
CO ₃	2				3	3				2			3		
				_						_		1	4		
CO4	1	1	2	2						2			1		
CO4 CO5	1	1	3	2	1					2 2			2		
CO4 CO5 CO6		1	3	_									2		
CO4 CO5		1 1 Pro	3	onal C		PC)				2					

U18PCIT4L1	DATA COMMUNICATION AND COMPUTER NETWORKS LAB	L	T	P	C					
	Total Contact Periods:45	0	0	3	1.5					
	Prerequisite – TCP/IP Principles and Architectures									
	Course Designed by:- Dept of Information Technology									

- Toanalyzeacommunicationsystembyseparatingoutthedifferentfunctionsprovidedby thenetwork;
- To understand that there are fundamental limits to any communications system;
- To understand the general principles behind multiplexing, addressing, routing, reliable transmission and other stateful protocols as well as specific examples ofeach;
- To understand what FEC is and how CRCs work;
- To compare communications systems in how they solve similar problems;
- To have an informed view of both the internal workings of the Internet and of a number of common Internet applications and protocols.

List of Experiments:

- 1. PC to PCCommunication
- 2. Parallel Communication using 8 bit parallelcable
- 3. Serial communication using RS 232CEthernet LANprotocol

- 4. To create scenario and study the performance of CSMA/CD protocol through simulation
 - Token bus and token ring protocols
- 5. To create scenario and study the performance of token bus and token ring protocols throughsimulation
- 6. Wireless LAN protocols
- 7. To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CDprotocols.
- 8. Implementation and study of stop and waitprotocol
- 9. Implementation and study of Goback-N and selective repeatprotocols
- 10. Implementation of distance vector routingalgorithm
- 11. Implementation of Link state routingalgorithm
- 12. Implementation of Data encryption and decryption
- 13. Transfer of files from PC to PC using Windows / Unix socketprocessing

References:

1. http://www.iconscope.net/network-laboratory-manual.pdf

COURSE OUTCOMES (COs)															
CO1	Use k	now	ledge	to imp	lemei	nt clie	ent sei	ver ap	plicati	ons.					
CO2	Deve	lop sl	kills ir	ı UNI	X soc	ket p	rograr	nming	Ţ .						
CO3	Deve	lop sl	kills to	use s	simula	tion 1	tools.								
CO4	Analyse the performance of network protocols and network traffic.														
CO5	Analyse the performance of various network tools and network programming														
CO6 Implement encryption and decryption techniques															
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			2	2					2	2				1	1
CO2			2	2					2	2				1	
CO3			2	2					2	2				2	L
CO4			2	2						2				1	
CO5			2	2						2				2	
CO6			2	2						2				1	
Categ	ory		fessio		,										
Appro	oval	48t	h mee	ting o	f the	Acad	lemic	Coun	cil						

U18PCIT4L2	WEB PROGRAMMING LABORATORY	L	T	P	C				
	Total Contact Periods:45	0	0	3	1.5				
0101 011422	Prerequisite – Internet Programming								
	Course Designed by:- Dept of Information Technology								

- To understand program basic functions in Javascript and DHTML
- To use Javascript and DHTML to create web pages with advanced interactivity
- To use variables, conditionals, and loops in Javascript and DHTMLprograms
- To use Javascript to control browser frames, windows and to create functional forms
- To use Cascading Style Sheets (CSS) to design web pages and to create web pages with specialized fonts and designelements

LIST OF EXPERIMENTS:

- 1. Write a html program for Creation of web site with forms, frames, links, tablesetc
- 2. Design a web site using HTML and DHTML. Use Basic text Formatting, Images,
- 3. Createascriptthataskstheuserforaname,thengreetstheuserwith"Hello"andtheuser name on thepage
- 4. Create a script that collects numbers from a page and then adds them up and prints them to a blank field on thepage.
- 5. Create a script that prompts the user for a number and then counts from 1 to that number displaying only the oddnumbers.
- 6. Create a script that will check the field in Assignment 1 for data and alert the user if it is blank. This script should run from abutton.
- 7. Using CSS for creating websites
- 8. CreatingsimpleapplicationtoaccessdatabaseusingJDBCFormattingHTMLwithCSS.
- 9. Program for manipulating Databases and SQL.
- 10. Program using PHP databasefunctions.
- 11. Writeawebapplicationthatfunctionsasasimplehandcalculator,butalsokeepsa"paper trail" of all your previouswork
- 12. Install Tomcat and use JSP and link it with any of the assignments above
- 13. Reading and Writing the files using.Net
- 14. Write a program to implement web service for calculatorapplication
- 15. Implement RMI concept for building any remote method of yourchoice.

References:

1. http://docsfiles.com/pdf_web_programming_lab_manual.html

COUR	COURSE OUTCOMES (COs)														
CO1	Unde	rstano	d the b	asic co	oncept	s of t	he inte	ernet a	nd insi	ghts of	finteri	net pro	gramr	ning.	
CO2	Demonstrate the important HTML tags for designing static pages.														
CO3	Design web pages using Cascading Style Sheets.														
CO4	Demonstrate HTML web pages accessing database using JDBC.														
CO5	Select web application development software tools i.e. Ajax, PHP and XML etc.														
CO6	Identi	fy the	e envii	onme	nts cui	rrentl	y avai	lable o	n the n	narket	to des	ign we	eb sites	S.	
	(1	-							Progi n) 3-H			•	,	W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1		1	3	2	2					2					3
CO ₂		1	3	2	2					2					3

CO3		1	3	2	2				2	2			3
CO4		1	3	2	2				2	2			3
CO5		1	3	2	2				2	2	2		3
CO6		1	3	2	2				2	2	2		3
Catego	ry	Pro	fessio	nal C	ore (F	PC)							
Approv	Approval 48th meeting of the Academic Council												

U18PCIT4L3	OPERATING SYSTEM DESIGN LABORATORY	L	T	P	C
	Total Contact Periods:45	0	0	3	1.5
	Prerequisite – Operating System				
	Course Designed by:- Dept of Information Technology				

- Understand the basics of operating systems like kernel, shell, types and views of operating systems
- Describe the various CPU scheduling algorithms and removedeadlocks.
- Explain various memory management techniques and concept ofthrashing
- Use disk management and disk scheduling algorithms for better utilization of external memory.
- Recognize file system interface, protection and securitymechanisms.
- Explain the various features of distributed OS like Unix, Linux, windowsetc

LIST OF EXPERIMENTS:

- 1. Basics of UNIXcommands.
- 2. ShellProgramming.
- 3. Implement the following CPU schedulingalgorithms
 - a) Round Robin b) SJF c) FCFS d)Priority
- 4. Implement all file allocation strategies
 - a) Sequential b) Indexed c)Linked
- 5. ImplementSemaphores
- 6. Implement all File Organization Techniques
- a) Single level directory b) Two level c) Hierarchical d)DAG
- 7. Implement Bankers Algorithm for Dead LockAvoidance
- 8. Implement an Algorithm for Dead Lock Detection
- 9. Implement e all page replacementalgorithms
 - a) FIFO b) LRU c) LFU
- 10. Implement Shared memory and IPC
- 11. Implement Paging Technique of memorymanagement.
- 12. Implement Threading & SynchronizationApplications

Reference:

1.http://www.faadooengineers.com/threads/5366-Operating-System-ebook

COUI	COURSE OUTCOMES (COs)									
CO1	Demonstrate the basics of operating systems like kernel, shell, types and views of operating									
	systems.									
CO2	Implement the various CPU scheduling algorithms and remove deadlocks.									
CO3	Analyse various memory management techniques and concept of thrashing									

CO4	Explain disk management and disk scheduling algorithms for better utilization of external memory.														ernal
CO5	Evalu	ate fi	le syst	em in	terface	9									
CO6	Evaluate protection and security Mechanisms														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	1	2	DS DS DS												
CO1	2	2	2						2			2		2	
CO2	2	3	3						2			2		2	
CO3	2	3	3						2			2		2	
CO4	2	3	3									2		2	
CO5	2	3	3		2						2	2		2	
CO6	2	3	3		2						2	2		2	
Categ	ory	Pro	fessio	nal C	ore (F	PC)									
Appr	oval	48tl	h mee	ting c	of the	Acad	lemic	Coun	cil						

	DATA MINING	L	T	P	C				
U18PCIT501	Total Contact Periods:45	3	0	0	3				
	Prerequisite – Database Management System								
	Course Designed by:- Dept of Information Technology								

- To understand data warehouse concepts, architecture, business analysis andtools
- To understand data pre-processing and data visualization techniques
- To study algorithms for finding hidden and interesting patterns indata
- To understand and apply various classification and clustering techniques usingtools.

UNITI DATA WAREHOUSING, BUSINESS ANALYSIS AND ON-LINE ANALYTICALPROCESSING(OLAP) 9

Basic Concepts – Data Warehousing Components – Building a Data Warehouse – Database Architectures for Parallel Processing – Parallel DBMS Vendors – Multidimensional Data Model–DataWarehouseSchemasforDecisionSupport,ConceptHierarchies-Characteristics of OLAP Systems – Typical OLAP Operations, OLAP andOLTP.

UNITII DATA MINING-INTRODUCTION

9

Introduction to Data Mining Systems – Knowledge Discovery Process – Data Mining Techniques – Issues – applications- Data Objects and attribute types, Statistical description of data, Data Preprocessing—Cleaning, Integration, Reduction, Transformation and discretization , Data Visualization, Data similarity and dissimilarity measures.

UNITIII DATA MINING – FREQUENTPATTERNANALYSIS

9

Mining Frequent Patterns, Associations and Correlations – Mining Methods- Pattern Evaluation Method – Pattern Mining in Multilevel, Multi Dimensional Space – Constraint Based Frequent Pattern Mining, Classification using Frequent Patterns

UNITIV CLASSIFICATION AND CLUSTERING

9 by

DecisionTreeInduction—BayesianClassification—RuleBasedClassification—Classification by Back Propagation — Support Vector Machines — Lazy Learners — Model Evaluation and Selection-Techniques to improve Classification Accuracy. Clustering Techniques — Cluster analysis-PartitioningMethods—HierarchicalMethods—DensityBasedMethods—GridBased Methods — Evaluation of clustering — Clustering high dimensional data—Clustering with constraints, Outlier analysis-outlier detectionmethods.

UNITY WEKA TOOL

9

Datasets – Introduction, Iris plants database, Breast cancer database, Auto imports database – Introduction to WEKA, The Explorer – Getting started, Exploring the explorer, Learning algorithms, Clustering algorithms, Association–rule learners.

TEXT BOOK:

1. Jiawei Han and Micheline Kamber, —Data Mining Concepts and Techniques, Third Edition, Elsevier, 2012.

- 1. Alex Berson and Stephen J.Smith, —Data Warehousing, Data Mining & OLAPI, Tata McGraw Hill Edition, 35th Reprint2016.
- 2 K.P.Soman, Shyam Diwakarand V.Ajay, —Insightinto Data Mining Theory and Practice, Eastern Economy Edition, Prentice Hall of India, 2006.
- 3. Ian H.Witten and Eibe Frank, —Data Mining: Practical Machine Learning Tools and Techniques, Elsevier, SecondEdition.

COUR	RSE O	UTC	COM	ES (C	(Os)										
CO1	Expla	ain th	ne bas	ic cor	ncepts	of da	ata wa	rehou	ise, bu	siness	analy	sis an	d OLA	AP syst	tem
CO2	Imple	emen	t suit	able p	re-pro	ocessi	ing an	d visi	ıalizati	ion tec	hniqu	ies for	data a	analysi	.S
CO3	Demo		ate th	ne fre	quent	patte	ern ar	nd as	sociati	on rul	e mir	ning t	echnic	ques fo	or data
CO4	Inter	pret a	approp	oriate	classi	ficati	on an	d clus	stering	techn	iques	for da	ıta ana	lysis	
CO5				roles hniqu		lata n	nining	gplay	s in va	rious	fields	and n	nanipu	late di	fferent
CO6	Appl	y dat	a min	ing al	gorith	ıms to	o buile	d ana	lytical	applic	ations	3			
	(1		`	-					n Prog on) 3-H					v	
COs\ POs	1		`	-					_					PS 02	PS 03
POs CO1		1/2/3	indic 3	4 3	5 3	6 2	corr	elatio	9 3	10 3	Z-Med	12 2	1-Lov PS 01	PS	
POs CO1 CO2	1	1/2/3	3 2 2 2	4 3 3 3	5 3 3	6 2 2	corr	elatio	9 3 3	10 3 3	Z-Med	12 2 2 2	PS 01 3 3	PS	
CO1 CO2 CO3	1 1 1	1/2/3	3 2 2 2 2 2	4 3 3 3 3 3	5 3 3 3 3	6 2 2 2 2	corr	elatio	9 3 3 3	10 3 3 3 3 3	Z-Med	12 2 2 2 2 2	PS 01 3 3 3 3	PS	
CO1 CO2 CO3 CO4	1 1 1 1	1/2/3	3 2 2 2 2 2 2 2 2	4 3 3 3 3 3 3 3	5 3 3 3 3 3 3	6 2 2 2 2 2 2 2	corr	elatio	9 3 3 3 3	10 3 3 3 3 3 3 3	Z-Med	12 2 2 2 2 2 2 2	PS 01 3 3 3 3 3	PS	
CO1 CO2 CO3 CO4 CO5	1 1 1 1 1	1/2/3	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	5 3 3 3 3 3 3 3 3 3 3	6 2 2 2 2 2 2 2 2 2	corr	elatio	9 3 3 3 3 3	10 3 3 3 3 3	Z-Med	12 2 2 2 2 2 2	PS 01 3 3 3 3 3 3 3 3 3	PS	
CO1 CO2 CO3 CO4 CO5 CO6	1 1 1 1 1 1 1	1/2/3 2 1 1 1 1 1 1 1 1	3 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	corr	elatio	9 3 3 3 3	10 3 3 3 3 3 3 3	Z-Med	12 2 2 2 2 2 2 2	PS 01 3 3 3 3 3	PS	
CO1 CO2 CO3 CO4 CO5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2/3 2 1 1 1 1 1 Pro	3 2 2 2 2 2 2 2 2 fession	3 3 3 3 3 onal C	5 3 3 3 3 3 3 3 Core (F	6 2 2 2 2 2 2 2 2 2 PC)	corr	8	9 3 3 3 3 3 3	10 3 3 3 3 3	Z-Med	12 2 2 2 2 2 2	PS 01 3 3 3 3 3 3 3 3 3	PS	

	MOBILE COMMUNICATION	L	T	P	C
III OD CITE OA	Total Contact Periods:45	3	0	0	3
U18PCIT502	Prerequisite – Computer Networks				
	Course Designed by:- Dept of Information Technology				

- To understand the basic concepts of mobilecomputing.
- To learn the basics of mobile telecommunication system.
- To be familiar with the network layer protocols and Ad-Hocnetworks.
- To know the basis of transport and application layerprotocols.
- To gain knowledge about different mobile platforms and application development.

UNITI INTRODUCTION

9

Introduction to Mobile Computing – Applications of Mobile Computing- Generations of Mobile Communication Technologies- Multiplexing – Spread spectrum -MAC Protocols – SDMA- TDMA- FDMA- CDMA

UNITH MOBILE TELECOMMUNICATION SYSTEM

9

Introduction to Cellular Systems – GSM – Services & Architecture – Protocols – Connection Establishment – Frequency Allocation – Routing – Mobility Management – Security – GPRS-UMTS – Architecture – Handover – Security

UNITHI MOBILE NETWORKLAYER

9

Mobile IP – DHCP – AdHoc– Proactive protocol-DSDV, Reactive Routing Protocols – DSR, AODV, Hybrid routing –ZRP, Multicast Routing- ODMRP, Vehicular Ad Hoc networks (VANET) –MANET Vs VANET – Security.

UNITIV MOBILE TRANSPORT AND APPLICATION LAYER

9

MobileTCP-WAP-Architecture-WDP-WTLS-WTP-WSP-WAE-WTAArchitecture - WML

UNITY MOBILE PLATFORMS AND APPLICATIONS

9

Mobile Device Operating Systems – Special Constraints & Requirements – Commercial MobileOperatingSystems–SoftwareDevelopmentKit:iOS,Android,BlackBerry,Windows Phone – MCommerce – Structure – Pros & Cons – Mobile Payment System – SecurityIssues

TEXT BOOKS:

- 1. Jochen Schiller, —Mobile Communications, PHI, Second Edition, 2003.
- 2. PrasantKumarPattnaik,RajibMall,—FundamentalsofMobileComputing||,PHILearning Pvt.Ltd, New Delhi –2012

- 1. Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.
- 2. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, —Principles of Mobile Computing, Springer, 2003.
- 3. William.C.Y.Lee,—Mobile Cellular Telecommunications-Analog and Digital Systems, Second Edition, TataMcGraw Hill Edition, 2006.
- 4. C.K.Toh,—AdHocMobileWirelessNetworks||,FirstEdition,PearsonEducation,2002.

5. Android Developers: http://developer.android.com/index.html

COUR	SE C	UT(COM	ES (C	COs)										
CO1	Eexp	lain	the ba	isics c	oncep	ots of	mobi	le tele	ecomm	nunica	tion s	ystem	ıs.		
CO2	Desc	ribe ;	gener	ations	of tel	econ	nmuni	icatio	n syste	ms in	wirel	ess ne	etwork	ζ.	
CO3					nality etwor		IAC, 1	netwo	rk laye	er and	to Id	entify	a rou	ting pr	rotocol
CO4	Class	sify tl	he fur	nction	ality o	of Tra	anspo	rt and	Appli	cation	layer	'S			
CO5	Sketo	ch a r	nobil	e appl	icatio	n usi	ng an	droid	blackt/	erry/i	os/W	indow	s SDI	K	
CO6		•							wirele cation			comm	nunica	tion a	nd use
	(1	-							Prog n) 3-H					W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	2	2		3	3	1			3	1		2		2	
CO2	2	2		3	3	1			3	1		2		2	
CO3	2	2		3	3	1			3	1		2		2	
CO4	2	2		3	3	1			3	1		2		2	
CO5	2	2		3	3	1			3	1		2		2	
CO6	2	2		3	3	1			3	1		2		2	
Categ					ore (F										
Appro	oval	48t	h mee	eting o	of the	Acad	lemic	Coun	ıcil						

	PRINCIPLES OF ARTIFICIAL INTELLIGENCE	L	T	P	C
IIIODOITEO2	Total Contact Periods:45	3	0	0	3
U18PCIT503	Prerequisite – Computer fundamentals				
	Course Designed by:- Dept of Information Technology				

OBJECTIVES

- To understand the various characteristics of Intelligent agents
- To learn the different search strategies in AI
- To learn to represent knowledge in solving Alproblems
- To understand the different ways of designing softwareagents
- To know about the various applications of AI.

UNITI INTRODUCTION

9

Introduction—Definition – Future of Artificial Intelligence – Characteristics of Intelligent Agents—Typical Intelligent Agents – Problem Solving Approach to Typical AI problems.

UNITII PROBLEMSOLVING METHODS

9

Problem solving Methods – Search Strategies- Uninformed – Informed – Heuristics – Local Search Algorithms and Optimization Problems – Searching with Partial Observations – Constraint Satisfaction Problems – Constraint Propagation – Backtracking Search – Game Playing – Optimal Decisions in Games – Alpha – Beta Pruning – Stochastic Games

UNITHI KNOWLEDGE REPRESENTATION

9

First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering-CategoriesandObjects–Events–MentalEventsandMentalObjects–ReasoningSystemsfor Categories – Reasoning with Default Information

UNITIV SOFTWARE AGENTS

9

Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.

UNITY APPLICATIONS

9

AIapplications-LanguageModels-InformationRetrieval-InformationExtraction-Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware – Perception – Planning – Moving

TEXT BOOKS:

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall, Third Edition, 2009.
- 2. I. Bratko, —Prolog: Programming for Artificial Intelligence||, Fourth edition, Addison-Wesley Educational Publishers Inc.,2011.

- 1. M.TimJones,—ArtificialIntelligence:ASystemsApproach(ComputerScience)||,Jones and Bartlett Publishers, Inc.; First Edition, 2008
- 2. Nils J. Nilsson, —The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 3. WilliamF.ClocksinandChristopherS.Mellish, ||ProgramminginProlog:UsingtheISO Standard||, Fifth Edition, Springer, 2003.

COUR	SE O	UTO	COM	ES (C	COs)										
CO1	Class	-	he ba	sic co	oncep	ts of	AI a	nd F	roblen	n Sol	ving 1	Appro	ach to	о Турі	cal AI
	•														
CO2	Oper	ate th	ne apt	agent	t strate	egy to	o solv	e a gi	ven pr	oblem	1				
CO3	Desig	gn so	ftwar	e ager	nts to	solve	a pro	blem							
CO4	Expla	ainap	plicat	ions 1	for NI	P th	at use	Artif	icial Ir	ntellig	ence				
CO5	Desc	ribe 1	he ar	chitec	ture fo	or Int	tellige	ent Ag	gents a	and ag	ent co	ommu	nicati	on	
CO6	Dem	onstr	ate fu	ndam	ental	unde	rstanc	ding c	of the h	nistory	of a	rtificia	al inte	lligenc	e (AI)
	and i	tsfou	ndatio	ons.											
	(1	-							Progin) 3-H				-	W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2		3	3			2	3	2	1	2		3	
CO2	3	2		3	3			2	3	2	1	2		3	
CO3	3	2		3	3			2	3	2	1	2		3	
CO4	3	2		3	3			2	3	2	1	2		3	
CO5	3	2		3	3			2	3	2	1	2		3	
CO6	3	2	_	3	3			2	3	2	1	2	_	3	

Category	Professional Core (PC)
Approval	48th meeting of the Academic Council

	THEORY OF COMPUTATION	L	T	P	C
IIIODOITEO A	Total Contact Periods:45	3	0	0	3
U18PCIT504	Prerequisite – Mathematics-set theory				
	Course Designed by:- Dr.A,Kumaravel, Dept of Information	matio	on Teo	chnolo	gy

- To understand the languagehierarchy
- To construct automata for any given pattern and find its equivalent regularexpressions
- To design a context free grammar for any givenlanguage
- To understand Turing machines and their capability
- To understand un decidable problems and NP classproblems.

UNITI AUTOMATAFUNDAMENTALS

9

Introduction to formal proof – Additional forms of Proof – Inductive Proofs – Finite Automata – Deterministic Finite Automata – Non-deterministic Finite Automata – Finite Automata with EpsilonTransitions

UNITII REGULAR EXPRESSIONSAND LANGUAGES

9

Regular Expressions – FA and Regular Expressions – Proving Languages not to be regular – Closure Properties of Regular Languages – Equivalence and Minimization of Automata.

UNITIII CONTEXT FREE GRAMMAR AND LANGUAGES

9

CFG – Parse Trees – Ambiguity in Grammars and Languages – Definition of the Pushdown Automata – Languages of a Pushdown Automata – Equivalence of Pushdown Automata and CFG, Deterministic Pushdown Automata.

UNITIV PROPERTIES OF CONTEXTFREE LANGUAGES

g

Normal Forms for CFG – Pumping Lemma for CFL – Closure Properties of CFL – Turing Machines – Programming Techniques for TM.

UNITY UNDECIDABILITY

9

Non Recursive Enumerable (RE) Language – Undecidable Problem with RE – Undecidable Problems about TM – Post's Correspondence Problem, The Class P and NP.

TEXT BOOK:

1. J.E.Hopcroft, R.Motwani and J.D Ullman, —Introduction to Automata Theory, Languages and Computations, Second Edition, Pearson Education, 2003.

- 1. H.R.Lewis and C.H.Papadimitriou, —Elements of the theory of Computation, Second Edition, PHI,2003.
- 2. J.Martin, —Introduction to Languages and the Theory of Computation, Third Edition, TMH, 2003.
- 3. Micheal Sipser, —Introduction of the Theory and Computation, Thomson Brokecole,

COUR	SE O	UTO	COM	ES (C	(Os)										
CO1	Creat	te au	tomat	a, regi	ular e	xpres	sion 1	or an	y patte	rn.					
CO2	Desig	gn Co	ontext	t free g	gramr	nar fo	or any	cons	struct.						
CO3	Cons	truct	Turir	ng mad	chines	s for 1	regula	ır lan	guage	and no	on reg	ular la	angua	ges.	
CO4	Selec	t the	decid	lable p	proble	ems N	VP Ha	rd Pr	oblems	S					
CO5	Ident	ify tl	ne con	ncepts	of no	rmal	form	s and	Progra	ammir	ng Teo	chniqu	ies for	·TM	
CO6	Demo			dvanc	ed kr	nowle	edge	of for	rmal c	ompu	tation	and	its re	lations	ship to
	(1			•					n Prog n) 3-H			,	-	w	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	3	2	1	1			1	3	2	2	2	3		
CO2	3	3	2	1	1			1	3	2	2	2	3		
CO3	3	3	2	1	1			1	3	2	2	2	3		
CO4	3	3	2	1	1			1	3	2	2	2	3		
CO5	3	3	2	1	1			1	3	2	2	2	3		
CO6	3	3	2	1	1			1	3	2	2	2	3		
Categ	ory	Pro	fessio	onal C	ore (F	PC)									
Appro	oval	48t	h mee	eting o	of the	Acad	emic	Cour	ncil						

U18PCIT5L1	DATA MINING LAB	L	\mathbf{T}	P	C
	Total Contact Periods:45	0	0	3	1.5
	Prerequisite – Database management system				
	Course Designed by:- Dept of Information Technolog	у			
ODICOUNTER					

- To be familiar with the algorithms of datamining,
- To be acquainted with the tools and techniques used for knowledge discoveryin databases.
- To be exposed to web mining and textmining

LIST OF EXPERIMENTS:

- Creation of a DataWarehouse.
- AprioriAlgorithm.
- FP-GrowthAlgorithm.
- K-MeansClustering.
- One Hierarchical Clustering Algorithm.
- BayesianClassification.
- DecisionTree.
- Support VectorMachines.
- Applications of Classification for WebMining.
- Case Study on Text Mining or Any Commercial Application.

COUR	SE O	UTO	COM	ES (C	COs)										
CO1	Demo	onstr	ate da	ıta mi	ning t	echn	iques	and n	nethod	s to la	rge da	ata set	S.		
CO2	Com	pare	and co	ontras	st the	vario	us cla	ssifie	rs use	Data I	Minin	g Too	ls		
CO3	Selec	t ass	ociati	on rul	les, C	lassif	icatio	n algo	orithms	S					
CO4	Imple	emen	t K-N	Ieans	Clust	ering	, one	hiera	rchical	cluste	ering	algori	thm		
CO5	Oper	ate c	ase St	udy o	n text	t min	ing or	any	comme	ercial a	applic	ation			
CO6	Exec	cute t	he kn	owled	dge re	trieve	ed thr	ough	solving	g prob	lems				
	(1	-							n Prog n) 3-H			,		w	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	1	1	2	3	3	2			3	3		2		3	
CO2	1	1	2	3	3	2			3	3		2		3	
CO3	1	1	2	3	3	2			3	3		2		3	
CO4	1	1	2	3	3	2			3	3		2		3	
CO5	1	1	2	3	3	2			3	3		2		3	
CO6	1	1	2	3	3	2			3	3		2		3	
Categ	ory	Pro	fessio	onal C	ore (I	PC)									
Appro	oval	48t	h mee	eting o	of the	Acad	lemic	Cour	ncil	_		_	_		

	IT- WORKSHOP LAB	L	T	P	C
IIIODCITEI 3	Total Contact Periods:45	0	0	3	1.5
U18PCIT5L2	Prerequisite – Matrix manipulation				
	Course Designed by:- Dept of Information Technolo	gy			
ODIECETATE					

- To be familiar with the MATLAB GUI and basic toolboxes
- To be exposed to vector and matrix operations
- To be familiar with arithmetic, logical and relational operations onmatrix

LIST OF EXPERIMENTS:

- 1. Introduction to SDK of MATLAB
- 2. Basic Syntax and scalar arithmetic operations and calculations
- 3. Working withformulas
- 4. Arithmetic operations in matrixdata
- 5. Matrix operations (Inverse, Transpose)
- 6. Reading an imagefile
- 7. Reading from and writing to a textfile
- 8. Introduction totoolboxes
- 9. Data visualization and plotting
- 10. Relational operators indata
- 11. Logical operation indata
- 12. Loops inMATLAB
- 13. Computing Eigen value for amatrix
- 14. Random number generation Monte carlomethods

REFERENCES:

- 1. Holly Moore, "MATLAB for Engineers" Third Edition PearsonPublications
- 2. Stephen J. Chapman, "MATLAB Programming for Engineers" Fourth Edition Thomson learning.

COUR	RSE C	UT(COM	ES (C	COs)										
CO1	Impl prob			a han	dling	in N	MATI	LAB	enviro	nment	and	to so	olve s	imple	matrix
CO2	-			n too natrix		s and	d be t	famili	ar wit	h aritl	nmeti	c, log	ical a	nd rel	ational
CO3		_	vecto		l matri	іх ор	eratio	ns an	d be fa	amilia	r with	the N	//ATL	AB G	UI and
CO4	Reco	gnize	e Kno	wledg	ge in I	Data '	visua	lizatio	on and	plottii	ng				
CO5	Repo	ort wi	th Ra	ndom	numl	oer ge	enera	tion –	Monte	e carlo	meth	ods			
						4	4	4	•	c				3 5 4 5	T A D
CO6	Form	ıulate	e and	contro	ol sim	ple p	lot an	d use	r-ınteri	tace g	raphic	es obje	ects in	ı MAT	LAB.
CO6		Maj	pping	g of C	ourse	Out	come	s with	r-interi n Prog on) 3-H	ram o	utcoi	nes (l	POs)		LAB.
CO6	(1	Ma _l	pping indic	g of C ates s	ourse	Outo	come corr	s with elatio	n Prog on) 3-H	ram o	outcoi 2-Med	mes (l lium,	POs)		PS
		Maj	pping	g of C	ourse	Out	come	s with	ı Prog	ram o	utcoi	nes (l	POs) 1-Lo	W	1
COs\ POs CO1	(1	Maj 1/2/3 2	pping indic	g of C ates s	ourse streng 5	Outo	come corr	s with elatio	n Prog on) 3-H	ram o	outcoi 2-Med	mes (lium,	POs) 1-Lo	w PS 02 3	PS
COs\ POs	(1	Maj 1/2/3	pping indic	g of C ates s	ourse streng 5	Outo	come corr	s with elatio 8	n Prog n) 3-H	ram o	outcon 2-Med	mes (l lium,	POs) 1-Lo	W PS 02 3 3 3	PS
COs\ POs CO1 CO2 CO3	(1) 1 2 2 2 2 2	Maj //2/3 2 2 2 2 2	pping indic	3 3 3 3	ourse streng 5 3 3 3	Outo	come corr	s with elatio 8	9 3 3 3 3 3	ram of ligh, 2	outcon 2-Med 11	mes (Ilium, 12	POs) 1-Lo	PS 02 3 3 3 3	PS
COs\ POs CO1 CO2 CO3 CO4	(1 1 2 2 2 2 2	Maj //2/3 2 2 2 2 2 2 2	pping indic	3 3 3 3 3	ourse streng 5 3 3 3 3	Outo	come corr	s with elatio	9 3 3 3 3 3 3 3 3	ram of ligh, 2 10 1 1	11 1 1	mes (llium, 12 2 2 2 2 2 2 2	POs) 1-Lo	PS 02 3 3 3 3 3 3 3	PS
COs\ POs CO1 CO2 CO3	(1 1 2 2 2 2 2 2	Maj 2 2 2 2 2 2 2 2 2	pping indic 3	3 3 3 3 3 3 3 3 3	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Outo	come corr	s with elatio	9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ram of ligh, 2 10 1 1	11 1 1	mes (Ilium, 12 2 2 2 2 2 2 2	POs) 1-Lo	PS 02 3 3 3 3 3 3 3 3 3	PS
COs\ POs CO1 CO2 CO3 CO4	(1 1 2 2 2 2 2	Maj //2/3 2 2 2 2 2 2 2	pping indic 3	3 3 3 3 3	ourse streng 5 3 3 3 3	Outo	come corr	s with elatio	9 3 3 3 3 3 3 3 3	ram of ligh, 2 10 1 1 1 1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mes (llium, 12 2 2 2 2 2 2 2	POs) 1-Lo	PS 02 3 3 3 3 3 3 3	PS
COs\ POs CO1 CO2 CO3 CO4 CO5	(1 1 2 2 2 2 2 2 2 2 2 2	Maj /2/3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 1 1 1 1 1 1 1	3 3 3 3 3 3 3 3 3	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Outoth of	come corr	s with elatio	9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ram of ligh, 2 10 1 1 1 1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mes (Ilium, 12 2 2 2 2 2 2 2	POs) 1-Lo	PS 02 3 3 3 3 3 3 3 3 3	PS

	GRID AND CLOUD COMPUTING	L	T	P	C
THO DOUBLES	Total Contact Periods:45	3	0	0	3
U18PCIT601	Prerequisite – Distributed System				
	Course Designed by:- Dept of Information Technology				

OBJECTIVES

- To identify the technical foundations of cloudsystemsarchitectures. Analyze the problems and solutions to cloud application problems.
- To apply principles of best practice in cloud application design andmanagement.
- To identify and define technical challenges for cloud applications and assess their importance

UNITI INTRODUCTION

9

Evolution of Distributed computing: Scalable computing over the Internet – Technologies for networkbasedsystems–clustersofcooperativecomputers–GridcomputingInfrastructures – cloud computing – service oriented architecture – Introduction to Grid Architecture and standards –

Elements of Grid – Overview of GridArchitecture.

UNITII GRIDSERVICES

9

Introduction to Open Grid Services Architecture (OGSA) – Motivation – Functionality Requirements–Practical&DetailedviewofOGSA/OGSI–Dataintensivegridservicemodels – OGSAservices.

UNITIII VIRTUALIZATION

9

Cloud deployment models: public, private, hybrid, community — Categories of cloud computing:Everythingasaservice:Infrastructure,platform,software—ProsandConsofcloud computing — Implementation levels of virtualization — virtualization structure — virtualization of CPU, Memoryand I/O devices—virtual clusters and Resource Management—Virtualization for data centerautomation.

UNITIV PROGRAMMINGMODEL

9

Open source grid middleware packages – Globus Toolkit (GT4) Architecture, Configuration – Usage of Globus – Main components and Programming model – Introduction to Hadoop Framework – Map reduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job – Design of Hadoop file system, HDFS concepts, command line and java interface, dataflow of File read & Filewrite.

UNITY SECURITY

9

Trust models for Grid security environment – Authentication and Authorization methods – Gridsecurityinfrastructure–CloudInfrastructuresecurity:network,hostandapplicationlevel – aspects of data security, provider data and its security, Identity and access management architecture,IAMpracticesinthecloud,SaaS,PaaS,IaaSavailabilityinthecloud,Keyprivacy issues in thecloud.

TEXT BOOKS:

1. Kai Hwang, Geoffery C. Fox and Jack J. Dongarra, "Distributed and Cloud Computing: Clusters, Grids, Clouds and the Future of Internet", First Edition, Morgan Kaufman Publisher, an Imprint of Elsevier, 2012.

- 1. Jason Venner, "Pro Hadoop- Build Scalable, Distributed Applications in the Cloud", A Press, 2009
- 2. Tom White, "Hadoop The Definitive Guide", First Edition. O'Reilly,2009
- 3. Bart Jacob (Editor), "Introduction to Grid Computing", IBM Red Books, Vervante, 2005
- 4. Ian Foster, Carl Kesselman, "The Grid: Blueprint for a New Computing Infrastructure", 2nd Edition, MorganKaufmann
- 5. Frederic Magoules and Jie Pan, "Introduction to Grid Computing" CRC Press,2009

COUI	RSE OUTCOMES (COs)
CO1	Implement grid computing techniques to solve large scale scientific problems.
CO2	Understand and apply the concept of virtualization.
CO3	Use the grid and cloud tool kits.
CO4	Apply the security models in the grid and the cloud environment.
CO5	Discuss about the basic concepts of Trust models for Grid security environment.
CO6	Describe the basic concepts of Trust models for Cloud Infrastructure security.

	(1	_							Progn n) 3-H				-	W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	3	3	1				1		2			2
CO2			1	3	3	1				1		2			2
CO3			1	3	3	1				1		2			2
CO4			1	3	3	1				1					2
CO5			1	3	3	1				1					2
CO6			1	3	3	1				1					2
Catego	ory	Pro	fessio	nal C	ore (F	PC)									
Appro	val	48t	h mee	ting o	of the	Acad	lemic	Coun	cil						

	HUMAN COMPUTER INTERACTION	L	T	P	C				
III ODCUTZOA	Total Contact Periods:45	3	0	0	3				
U18PCIT602	Prerequisite – Artificial Intelligence								
	Course Designed by:- Dept of Information Technology	ogy							

- To design, implement and evaluate effective and usable graphical computerinterfaces.
- To describe and apply core theories, models and methodologies from the field of HCI.
- To describe and discuss current research in the field of HCI.
- To implement simple graphical user interfaces using the Java Swingtoolkit.
- To describe special considerations in designing user interfaces for olderadults.

UNITI FOUNDATIONS OFHCI

9

The Human: I/O Channels – Memory – Reasoning And Problem Solving; The Computer: Devices – Memory – Processing And Networks; Interaction: Models – Frameworks – Ergonomics – Styles – Elements – Interactivity- Paradigms.

UNITII DESIGN & SOFTWARE PROCESS

9

InteractiveDesignBasics —Process—Scenarios—Navigation—ScreenDesign—IterationAnd Prototyping. HCI In Software Process — Software Life Cycle — Usability Engineering — Prototyping In Practice — Design Rationale. Design Rules — Principles, Standards, Guidelines, Rules. Evaluation techniques — UniversalDesign.

UNITIII MODELSAND THEORIES

9

Cognitive Models –Socio-Organizational Issues And Stake Holder Requirements – Communication And Collaboration Models-Hypertext, Multimedia And WWW.

UNITIV MOBILEHCI

9

Mobile Ecosystem: Platforms, Application Frameworks- Types Of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements Of Mobile Design, Tools

UNITY WEB INTERFACE DESIGN

q

DesigningWebInterfaces—Drag&Drop,DirectSelection,ContextualTools,Overlays,Inlays And Virtual Pages, Process Flow - CaseStudies.

TEXT BOOK

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004 (UNIT I, II &III)
- 2. Brian Fling, "Mobile Design And Development", First Edition, O"Reilly Media Inc., 2009 (UNIT–IV)

COUR	SE O	UTO	COM	ES (C	Os)										
CO1	Apply	y effe	ctive	dialog	For H	uman	Com	puter l	nteract	ion.					
CO2	Imple	ment	HCI 1	for cor	nmon	indiv	iduals	and p	ersons	with d	isabili	ties.			
CO3	Desc	ribe t	he im	portan	ce of ı	ıser f	eedba	ck.							
CO4	Expla	in the	e HCI	implic	cations	for c	lesign	ing mı	ıltimed	ia/ eco	mmer	ce/ e-l	earnin	g web s	sites.
CO5	Design and develop appropriate user interface.														
CO6	Develop context based user experience models.														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	1	2	2										2		
CO2	1	2	2							3		3	2		
CO3	1	2	2							3		3	2		
CO4	1	2	2										2		
CO5	1	2	2										2		
CO6	1	2	2										2		
Categ	ory	Pro	fessio	onal C	ore (F	PC)						•			
Appro	oval	48t	h mee	eting c	of the	Acad	lemic	Coun	cil						

	DATA ANALYTICS	L	T	P	C					
114 OD CVT < 0.2	Total Contact Periods:45	3	0	0	3					
U18PCIT603	Prerequisite – Data Mining Techniques									
	Course Designed by:- Dr.A.Kumarvel, Dept of Information	ation '	Гесhn	olog	у					

OBJECTIVES

- To designing the tables and graphs that will be used to display the results before any numerical analysis is started can help focus the statisticalwork.
- Tounderstandthecombination of depths and timestocompare between treatments, and include in the tables or graphs, may be fixed by the objectives.

UNITI INTRODUCTION TO BIGDATA

8

Introduction to Big Data Platform – Challenges of Conventional Systems – Web Data – Evolution Of Analytic Scalability, Analytic Processes And Tools, Analysis Vs Reporting – Modern Data Analytic Tools, Statically Concepts: Sampling Distributions, Resampling, Statistical Inference, Prediction Error.

UNITII DATA ANALYSIS

12

Regression Modeling, Multivariate Analysis, Bayesian Modeling, Inference And Bayesian Networks, Support Vector And Kernel Methods, Analysis Of Time Series: Linear Systems Analysis, Nonlinear Dynamics – Rule Induction – Neural Networks: Learning And Generalization, Competitive Learning, Principal Component Analysis And Neural Networks; Fuzzy Logic: Extracting Fuzzy Models From Data, Fuzzy Decision Trees, Stochastic Search Methods.

UNITIII MININGDATA STREAMS

8

Introduction To Streams Concepts – Stream Data Model And Architecture – Stream Computing, Sampling Data In A Stream – Filtering Streams – Counting Distinct Elements In A Stream – Estimating Moments – Counting Oneness In A Window – Decaying Window – Real-time Analytics Platform(RTAP) Applications – Case Studies – Real Time Sentiment Analysis, Stock Market Predictions.

UNITIV FREQUENT ITEMSETSANDCLUSTERING

9

MiningFrequentItemsets—MarketBasedModel—AprioriAlgorithm—HandlingLargeData Sets InMain Memory — Limited Pass Algorithm — Counting Frequent Item sets In A Stream — Clustering Techniques — Hierarchical — K- Means — Clustering High Dimensional Data — CLIQUE And PROCLUS — Frequent Pattern Based Clustering Methods — Clustering In Non-Euclidean Space — Clustering For Streams AndParallelism.

UNITY FRAMEWORKSAND VISUALIZATION

9

MapReduce—Hadoop, Hive, MapR—Sharding—NoSQLDatabases—S3—Hadoop Distributed File Systems — Visualizations — Visual Data Analysis Techniques, Interaction Techniques; Systems and Applications

TEXT BOOKS:

- 1. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 2. Anand Rajaraman And Jeffrey David Ullman, Mining Of Massive Datasets, Cambridge University Press, 2012.

- 1. Bill Franks, Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analystics, John Wiley & Sons, 2012.
- 2. GlennJ.Myatt,MakingSenseOfData,JohnWiley&Sons,2007PeteWarden,BigData Glossary, O"Reilly,2011.
- 3. Jiawei Han, Micheline Kamber "Data Mining Concepts And Techniques", Second Edition, Elsevier, Reprinted 2008.

COUI	RSE OUTCOMES (COs)
CO1	Understand the concepts of Big Data framework.
CO2	Apply different ways of Data Analysis.
CO3	Apply stream data model.
CO4	Implement different data mining techniques.
CO5	Understand the technologies Map Reduce-Hadoop, MapR, Hive, NoSQL for big data analytics
CO6	Demonstrate visualization techniques.

	(1								Progn n) 3-H				-	W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1		2	2	3	3					2			3		
CO2		2	2	3	3					2			3		
CO3		2	2	3	3					2			3		
CO4		2	2	3	3							2	3		
CO5		2	2	3	3							2	3		
CO6		2	2	3	3							2	3		
Catego	ory	Pro	fessio	nal C	ore (F	PC)									
Appro	val	48t	h mee	eting o	of the	Acad	lemic	Coun	cil						

U18PCIT6L1	DATA ANALYTICS LAB	L	T	P	C
	Total Contact Periods:45	0	0	3	1.5
	Prerequisite – Data mining techniques				
	Course Designed by:- Dr.A.Kumarvel, Dept of Inform	nation	Tecl	nolo	ogy

- To learn the probability distributions and density estimations to perform analysis of various kinds ofdata.
- $\bullet \ \ To explore the statistical analysis techniques using Python and Rprogramming languages.$

LIST OF EXPERIMENTS:

- 1. Install, Configure and Run Hadoop AndHdfs
- 2. Implement Word Count / Frequency Programs Using Mapreduce
- 3. Implement a Mr Program That Processes a Weather Dataset
- 4. Implement Linear and LogisticRegression
- 5. Implement Svm / Decision Tree ClassificationTechniques
- 6. Implement Clustering Techniques
- 7. Visualize Data Using Any PlottingFramework
- 8. Implement an Application That Stores Big Data In Hbase / Mongodb / Pig UsingHadoop

- 1. Bill Franks, Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analystics, John Wiley & Sons, 2012.
- 2. GlennJ.Myatt,MakingSenseOfData,JohnWiley&Sons,2007PeteWarden,BigData Glossary, O"Reilly,2011.

COUI	RSE OUTCOMES (COs)
CO1	Understand single node and multi-node Hadoop Clusters
CO2	Develop Map Reduce programs.
CO3	Implement different data modeling techniques.
CO4	Implement different data mining techniques.
CO5	Experiment the data using plotting framework.
CO6	Demonstrate and execute application tools-Hbase, Mongodb, PIG.

	(1	_							Progn n) 3-H				-	W	
COs\ POs	1	2	2 3 4 5 6 7 8 9 10 11 12 PS PS PS O3												
CO1	2		2	3	3					2			3		
CO2	2		2 3 3 2 2 3												
CO3	2		2	3	3					2			3		
CO4	2		2	3	3							2	3		
CO5	2		2	3	3							2	3		
CO6	2		2	3	3							2	3		
Categ	ory	Pro	fessio	nal C	ore (F	PC)									
Appro	val	48tl	h mee	ting o	f the	Acad	lemic	Coun	cil						

	GRID AND CLOUD COMPUTING LAB	L	T	P	C			
U18PCIT6L2	Total Contact Periods:45	0	0	3	1.5			
	Prerequisite – Distributed System							
	Course Designed by:- Dept of Information Technology	ogy						

- To exposed tool kits for grid and cloudenvironment.
- To familiar with developing web services/applications in gridframework
- To learn the run virtual machines of different configuration.
- To learn to usehadoop

LIST OF EXPERIMENTS:

- 1. Develop a new Web Service for Calculator.
- 2. Develop new OGSA-compliant Web Service.
- 3. Using Apache Axis develop a GridService.
- 4. Develop applications using Java or C/C++ GridAPIs
- 5. Develop secured applications using basic security mechanisms available in Globus Toolkit.
- 6. Develop a Grid portal, where user can submit a job and get the result. Implement it with and without GRAMconcept.

COUR	SE O	UTO	COMI	ES (C	Os)										
CO1	Develo	op ane	ew We	b Servi	ce for	Calcu	lator.								
CO2	Execu	te Ne	w OGS	A-Con	npliant	Web	Servic	e.							
CO3	Use A	pache	Axis a	and dev	elop a	Grid	Servic	е.							
CO4	Demo	nstrat	e Appli	cations	susing	Java	Or C/C	C++ Gr	id APIs						
CO5	Develo	op Se	cured A	Applica	tions u	sing I	Basic S	ecurity	Mecha	nisms	availab	le In G	lobus '	Γoolkit.	
CO6	_		a Grid I AM Co		where	user c	ean sub	mit a j	ob and g	get the	result.	Imple	ment it	with an	d
	1				nirse	Onto	come	with	Prog	ram o	ntcor	nes (I	POs)		
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	1 2 3 4 5 6 7 8 9 10 11 12 PS PS 01 02 03														

CO1	2	1	3								1	2
CO2	2	1	3								2	1
CO3	2	1	3								1	2
CO4	2	1	3								1	1
CO5	2	1	3								2	2
CO6	2	1	3								1	2
Category	Pro	fessic	nal C	ore (F	P C)							
Approval	48t	h mee	eting c	of the	Acac	lemic	Coun	cil				

	SOFT SKILL	L	T	P	C
	Total Contact Periods:30	0	0	2	1
	Prerequisite – English				
U18EEIT6L3	Course Designed by:- Dept of Information Technol	logy			
OBJECTIVES					

- To develop inter personal skills and be an effective goal oriented teamplayer.
- To develop professionals with idealistic, practical and moralvalues.
- To develop communication and problem solvingskills.
- To re-engineer attitude and understand its influence onbehavior.

UNITI SELFANALYSIS

4

SWOT Analysis, Who am I, Attributes, Importance of Self Confidence, Self Esteem.

UNITII CREATIVITY

8

Out of box thinking, Lateral Thinking

UNITIII ATTITUDE

6

Factors influencing Attitude, Challenges and lessons from Attitude, Etiquette

UNITIV MOTIVATION

4

Factors of motivation, self talk, Intrinsic & Extrinsic Motivators.

UNITY GOAL SETTING

8

Wish List, SMART Goals, Blue print for success, Short Term, Long Term, Life Time Goals, Time Management Value of time, Diagnosing Time Management, Weekly Planner to do list, Prioritizing work. Extempore

TEXT BOOK:

1. SOFT SKILLS, 2015, Career Development Centre, Green Pearl Publications.

REFERENCE

- 1. CoveySean, SevenHabitsofHighlyEffectiveTeens, NewYork, FiresidePublishers, 1998.
- 2. Carnegie Dale, How to win Friends and Influence People, New York: Simon & Schuster, 1998.
- 3. Thomas A Harris, I am ok, You are ok, New York-Harper and Row, 1972 4. Daniel Coleman, Emotional Intelligence, Bantam Book, 2006

COURSE OUTCOMES (COs)

CO1															
CO2				effect stenin	-		igh vo	erbal/o	oral co	mmuı	nicatio	on, cro	eative	thinki	ng and
CO3	Wri	te pre	ecise	briefs	or rep	orts	and to	echnic	al doc	umen	ts.				
CO4		icipa entat	,	group	discu	ssion	/ me	etings	/ inter	views	and p	prepai	re & d	eliver	
CO5	Set	goals	to be	come	an ef	fectiv	ve ind	ividua	al, self	-moti	vation	١.			
CO6				_					p Inter	r-pers	onal r	elatio	nships	s, conf	lict
	management and leadership quality. Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1						1		2	3	3	1	3		2	
CO2						1		2	3	3	1	3		2	
CO3						1		2	3	3	1	3		2	
CO4						1		2	3	3	1	3		2	
CO5						1		2	3	3	1	3		2	
CO6						1		2	3	3	1	3		2	
Categ		(EE													
Appro	oval	48t	h mee	eting c	of the	Acad	lemic	Coun	cil						

	WIRELESS NETWORKS	L	T	P	C
18PCIT701	Total Contact Periods:45	3	0	0	3
18PC11701	Prerequisite – Computer Networks				
	Course Designed by:- Dept of Information Technology				

- To Study about Wireless Networks, Protocol Stack and Standards.
- To Study about Fundamentals of 3G Services, Its Protocols and Applications.
- To Study about Evolution of 4G Networks, Its Architecture and Applications.

UNIT-I WIRELESSLAN

9

Introduction-WLAN Technologies: Infrared, UHF Narrowband, Spread Spectrum - IEEE802.11: System Architecture, Protocol Architecture, Physical Layer, MAC Layer, 802.11b,802.11a—HiperLAN:WATM,BRAN,HiperLAN2—Bluetooth:Architecture,Radio Layer, Baseband Layer, Link Manager Protocol, Security – IEEE802.16-WIMAX: Physical Layer, MAC, Spectrum Allocation ForWIMAX

UNIT II MOBILENETWORKLAYER

9

Introduction—MobileIP:IPPacketDelivery,AgentDiscovery,TunnelingAndEncapsulation, IPV6-Network Layer In The Internet- Mobile IP Session Initiation Protocol – Mobile Ad-Hoc Network: Routing, Destination Sequence Distance Vector, Dynamic SourceRouting

UNIT III MOBILETRANSPORT LAYER

Q

TCP Enhancements For Wireless Protocols – Traditional TCP: Congestion Control, Fast Retransmit/Fast Recovery, Implications Of Mobility – Classical TCP Improvements: Indirect

TCP, Snooping TCP, Mobile TCP, Time Out Freezing, Selective Retransmission, Transaction Oriented TCP – TCP Over 3G Wireless Networks.

UNIT IV WIRELESS WIDEAREANETWORK

9

Overview Of UTMS Terrestrial Radio Access Network-UMTS Core Network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High Speed Downlink Packet Access (HSDPA)- LTE Network Architecture And Protocol.

UNIT V4GNETWORKS

9

Introduction – 4G Vision – 4G Features And Challenges – Applications Of 4G – 4G Technologies: Multicarrier Modulation, Smart Antenna Techniques, OFDM-MIMO Systems, Adaptive Modulation And Coding With Time Slot Scheduler, Cognitive Radio.

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education 2012.(UnitI,II,III)
- 2. Vijay Garg, "Wireless Communications And Networking", First Edition, Elsevier 2007.(UnitIV,V)

- 1. Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA And LTE For Mobile Broadband", Second Edition, Academic Press, 2008.
- 2. Anurag Kumar, D.Manjunath, Joy Kuri, "Wireless Networking", First Edition, Elsevier 2011.
- 3. Simon Haykin , Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education 2013.

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1	Und	lersta	nd the	e vario	ous pr	otoc	ols an	d stan	dards	of wir	eless	comn	nunica	tions.	
CO2	Desc	cribe	about	the dif	ferent	wire	less W	'AN aı	rchitect	ures.					
CO3	Desc	cribe	the pro	otocols	s for m	obile	netwo	ork lay	er and	routin	g in n	obile	ad-hoc	netwo	rk.
CO4	Illus	trate	the TC	P enh	ancen	entsi	n mob	ile tra	nsport 1	layer f	or wir	eless p	rotoco	ols.	
CO5	Den	nonst	rate tl	ne late	est 3G	6/4G	And V	Wi-M.	AX ne	twork	s and	its arc	chitect	ture.	
CO6 Explain the 4G technologies and its applications.															
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	2	1	1	1	1					2					2
CO2	3	2	2	2	1					2					3
CO3	2	1	1	1	1					2					2
CO4	2	1	1	1	1					2					2
CO5	3	2	2	2	1					2					3
CO6	6 2 1 1 1 1 2 2														
Catego	ory	Pro	fessio	nal C	ore (P	PC)			•	•	•				
Appro	val	48t	th mee	eting o	of the	Acad	demic	Cour	ncil						

	COMPUTER VISION	L	T	P	C
	Total Contact Periods:45	3	0	0	3
U18PEIT011	Prerequisite – Matrix Manipulations				
	Course Designed by:- Dept of Information Techno	logy			

- To review image processing techniques for computervision.
- To understand shape and region analysis.
- To understand Hough Transform and its applications to detect lines, circles, ellipses
- To understand three-dimensional image analysis techniques and motionanalysis
- To study some applications of computer visionalgorithms

UNIT I IMAGE PROCESSING FOUNDATIONS

Review of image processing techniques – classical filtering operations – thresholding techniques – edge detection techniques – corner and interest point detection – mathematical morphology – texture.

UNIT II SHAPES AND REGIONS

Binaryshapeanalysis—connectedness—objectlabelingandcounting—sizefiltering—distance functions—skeletonsandthinning—deformableshapeanalysis—boundarytrackingprocedures — active contours — shape models and shape recognition — centroidal profiles — handling occlusion — boundary length measures — boundary descriptors — chain codes — Fourier descriptors — region descriptors — moments.

UNITIII HOUGH TRANSFORM

Line detection – Hough Transform (HT) for line detection – foot-of-normal method – line localization – line fitting – RANSAC for straight line detection – HT based circular object detection – accurate center location – speed problem – ellipse detection – Case study: Human Irislocation–holedetection–generalizedHoughTransform(GHT)–spatialmatchedfiltering – GHT for ellipse detection – object location – GHT for featurecollation.

UNITIV 3D VISION ANDMOTION

Methodsfor3Dvision-projectionschemes-shapefromshading-photometricstereo-shape from texture – shape from focus – active range finding – surface representations – point-based representation – volumetric representations – 3D object recognition – 3Dreconstruction – introduction to motion – triangulation – bundle adjustment – translational alignment – parametric motion – spline-based motion – optical flow – layered motion.

UNITY APPLICATIONS

Application: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance –foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locatingpedestrians.

- 1. D.L.Baggioetal.,—MasteringOpenCVwithPracticalComputerVisionProjects|,Packt Publishing,2012.
- 2. E.R.Davies,—Computer&MachineVision|,FourthEdition,AcademicPress,2012.
- 3. Jan Erik Solem, —Programming Computer Vision with Python: Tools and algorithmsfor analyzing images||, O'Reilly Media,2012.
- 4. Mark Nixon and Alberto S. Aquado, —Feature Extraction & Image Processing for Computer Vision, Third Edition, Academic Press, 2012.
- 5. R. Szeliski, —Computer Vision: Algorithms and Applications, Springer 2011.
- 6. Simon J. D. Prince, —Computer Vision: Models, Learning, and Inferencell, Cambridge University Press, 2012.

COUR	SE O	UTO	COMI	ES (C	Os)										
CO1	Imp	leme	nt fun	dame	ntal ii	mage	proc	essing	techn	iques	requii	red fo	r com	puter v	ision
CO2				•	sis, I on de			boun	dary tr	ackin	g tech	nique	s, App	oly cha	iin
CO3	App	ly H	ough '	Trans	form	for li	ne, ci	rcle, a	nd elli	pse de	etectio	ons			
CO4	App	ly 3I) visi	on tec	hniqu	es									
CO5	Implement motion related techniques														
CO6	Develop applications using computer vision techniques														
	(1	_							Progi n) 3-H			,	-	W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2	1	1	2	3						3	3		
CO2	1 2 1 1 1 3 3											3	3	•	
CO2	CO3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3														
	3	2	2	3	3				_			_	5		
	3	2													

CO6	3	2	3	3	3	3			2		2	3	3		
Catego	ory	Pro	fessio	nal C	ore (F	PC)									
Approval 49th meeting of the Academic Council															

	ADHOC AND SENSOR NETWORK	L	T	P	C
	Total Contact Periods:45	3	0	0	3
U18PEIT012	Prerequisite – Computer Network				
	Course Designed by:- Dept of Information Technology	,			

The student should be made to:

- Understand the design issues in ad hoc and sensornetworks.
- Learn the different types of MACprotocols.
- Be familiar with different types of adhoc routingprotocols.
- Be exposed to the TCP issues in adhocnetworks.
- Learn the architecture and protocols of wireless sensornetworks.

UNITI INTRODUCTION

9

Fundamentals of Wireless Communication Technology – The Electromagnetic Spectrum – Radio propagation Mechanisms – Characteristics of the Wireless Channel -mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) :concepts and architectures. Applications of Ad Hoc and Sensor networks. Design Challenges in Ad hoc and Sensor Networks.

UNITH MAC PROTOCOLS FOR AD HOCWIRELESSNETWORKS

9

Issues in designing a MAC Protocol- Classification of MAC Protocols- Contention based protocols- Contention based protocols with Reservation Mechanisms- Contention based protocols with Scheduling Mechanisms – Multi channel MAC-IEEE 802.11

UNIT III ROUTING PROTOCOLS AND TRANSPORT LAYER IN AD HOC WIRELESSNETWORKS

Issues in designing a routing and Transport Layer protocol for Ad hoc networks- proactive routing, reactive routing (on-demand), hybrid routing- Classification of Transport Layer solutions-TCP over Ad hoc wireless Networks.

UNITIV WIRELESSSENSORNETWORKS(WSNS)ANDMACPROTOCOLS9

Singlenodearchitecture:hardwareandsoftwarecomponentsofasensornode-WSNNetwork architecture:typicalnetworkarchitectures-datarelayingandaggregationstrategies-MAClayer protocols: self-organizing, Hybrid TDMA/FDMA and CSMA based MAC- IEEE802.15.4.

UNITY WSN ROUTING, LOCALIZATION&QOS

9

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and relative localization, triangulation-QOS in WSN-Energy Efficient Design-Synchronization-Transport Layer issues.

TEXT BOOK: 1. C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", Prentice Hall Professional Technical Reference, 2008.

COUR	SE C)UT(COM	ES (C	COs)										
CO1	Des	cribe	the o	concep	ot of n	etwo	rk arc	hitect	ures ai	nd app	licati	ons of	adho	c and	
	wire	eless	senso	or netv	vorks.										
CO2	Lea	rn the	e diff	erent 1	types	of M	AC p	rotoco	ols for a	adhoc	wirel	ess ne	twork	S.	
CO3	Des	_	outin	g prot	ocols	for a	dhoc	wirele	ess netv	works	consi	dering	g proto	ocol de	esign
CO4	Exp	olain	the ar	chitec	ture a	and ro	outing	conce	epts in	Wirel	ess S	ensor	Netwo	orks.	
CO5	Uno	dersta	ınd al	oout N	IAC p	protoc	cols fo	or Wii	reless S	Sensor	Netv	vorks.			
CO6	Illu	strate	the i	ssues	of rou	iting	in Wi	reless	Senso	r Netv	vorks	and e	valuat	te the (QoS
	CO6 Illustrate the issues of routing in Wireless Sensor Networks and evaluate the QoS related performance measurements.														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\	Cos\ PS PS PS														
Dog	_ ' 1 2 3 4 5 6 7 8 9 10 11 12 -~ -~ -~													PS	PS
ros	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2		4	5	6	7	8	9	10	11	12	01 3		
CO1	3	2	2	1	5	6	7	8	9	10	11	12	01 3 3		
CO1 CO2 CO3	3 3 3	3		<u> </u>	5	6	7	8	9	10	11	12	3 3 3		
CO1 CO2 CO3 CO4	3 3 3	2 3 3 2	2 2	1	5			8	9	10	11		3 3 3 3		
CO1 CO2 CO3 CO4 CO5	3 3 3 3	2 3 3 2 3	2 2 2	1	5	3	1	8	9	10	11	12 2	3 3 3 3 3 3		
CO1 CO2 CO3 CO4	3 3 3	2 3 3 2 3 3	2 2 1	1 1 1 1 1	1 1	3		8	9	10	11		3 3 3 3		
CO1 CO2 CO3 CO4 CO5	3 3 3 3 3	2 3 3 2 3 3 Pro	2 2 2 1 fession	1 1	1 1 1 Core (I	3 1 PC)	1 1			10	11	2	3 3 3 3 3 3		

	OPTIMIZATION TECHNIQUES	L	T	P	C
	Total Contact Periods:45	3	0	0	3
U18PEIT013	Prerequisite – Mathematics				
	Course Designed by:- Dept of Information Technology	ogy			
OBJECTIVES					
To Understand E	thical Issues, Environmental Impact And Acquire Ma	nage	ment S	skills	

UNITI LINEAR PROGRAMMING

9

Introduction – Formulation of Linear Programming Model-Graphical Solution–Solving LPP Using Simplex Algorithm – Revised Simplex Method.

UNITII ADVANCES IN LPP

9

Duality Theory - Dual Simplex Method - Sensitivity Analysis--Transportation Problems-Assignment Problems-Traveling Sales Man Problem - Data Envelopment Analysis

UNITIII NON LINEARPROGRAMMING

9

Classification of Non Linear Programming – Lagrange Multiplier Method – Karush – Kuhn Tucker Conditions–Reduced Gradient Algorithms–Quadratic Programming Method – Penalty and Barrier Method

UNITIV INTERIOR POINT METHODS

9

Karmarkar's Algorithm-Projection Scaling Method-Dual Affine Algorithm-Primal Affine Algorithm Barrier Algorithm.

UNITY DYNAMICPROGRAMMING

Formulation of Multi Stage Decision Problem—Characteristics—Concept Of Sub-Optimization And The Principle Of Optimality—Formulation Of Dynamic Programming—Backward And Forward Recursion— Computational Procedure—Conversion of final Value Problem In To Initial Value Problem.

TEXT BOOK

- 1. Hillier and Lieberman "Introduction To Operations Research", TMH, 2000. R.Panneerselvam, "Operations Research", PHI,2006
- 2. Hamdy ATaha, "Operations Research An Introduction", Prentice Hall India, 2003.

- 1. Philips, Ravindran and Solberg, "Operations Research", John Wiley, 2002.
- 2. RonaldL.Rardin, "OptimizationInOperationResearch" PearsonEducationPvt.Ltd.New Delhi, 2005.

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1	Und	ersta	nd the	e basi	c con	cepts	of lin	ear pi	rogram	ming					
CO2	Lear	n the	e adva	ıncem	ents i	n line	ear pr	ogran	nmingt	echni	ques				
CO3	Des	Describe the different non-linear programming techniques													
CO4		Apply interior point methods to solve linear and non-linear convex optimization problems													
CO5	Forr	nulat	e mul	ltistag	e dec	ision	probl	em ar	nd dyna	amic _I	orogra	ımmiı	ıg.		
CO6	App	ly op	otimiz	ation	techn	iques	for r	eal tin	ne prol	blems	••				
	(1	_							Progr n) 3-H				-	V	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2	2	2					2			2		3	
CO2	3	2	2	2					2			1		3	
CO3	3	2	2	2					2			2		3	
CO4	3	2	2	2					2			2		3	
CO5	3	2	2	2					2			3		3	
CO6	3	2	2	2					2			2		3	
Categ	egory Professional Core (PC)														
Appro	val	49t	th mee	eting o	of the	Aca	demic	Cour	ncil						

U18PEIT014	VISUAL ANALYTICS	L	T	P	C
	Total Contact Periods:45	3	0	0	3
	Prerequisite – Data Mining Techniques				
	Course Designed by:- Dept of Information Technology				

- 1. To understand how accurately represent voluminous complex data set in web and from other datasources
- 2. Todesignandusevariousmethodologiespresentindatavisualizationmethodologiesused for visualizing large datasets
- 3. To understand the process involved in data visualization and security aspects involved in datavisualization
- 4. Implement the process involved and security issues present in datavisualization

UNITI INTRODUCTION

9

Context of data visualization – Definition, Methodology, Visualization design objectives. Key Factors – Purpose- visualization function and tone- visualization design options – Datarepresentation- Data Presentation- Seven stages of data visualization- widgets- data visualization tools.

UNITH VISUALIZING DATAMETHODS

9

Mapping - Time series - Connections and correlations - Scatter plot maps - Trees, Hierarchies and Recursion - Networks and Graphs- Infographics

UNITIII VISUALIZING DATAPROCESS

9

Acquiring data - Where to Find Data - Tools for Acquiring Data from the Internet- Locating Files for Use with Processing- Loading Text Data- Dealing with Files and Folders- Listing Files in a Folder - Asynchronous Image Downloads- Advanced Web Techniques- Using a Database-Dealing with a Large Number of Files. Parsing data - Levels of Effort, Tools for Gathering Clues- Text Is Best- Text Markup Languages- Regular Expressions (regexps)-GrammarsandBNFNotation-CompressedData-VectorsandGeometry-BinaryDataFormats-Advanced Detective Work.

UNITIV INTERACTIVE DATA VISUALIZATION

9

Drawing with data – Scales – Axes – Updates- Transition and Motion – Interactivity - Layouts – Geo mapping – Exporting, Framework – T3- js-tablo.

UNITY SECURITY DATA VISUALIZATION

9

Port scan visualization - Vulnerability assessment and exploitation - Firewall log visualization - Intrusion detection log visualization -Attacking and defending visualization systems - Creating security visualizationsystem.

TEXT BOOK:

- 1. ScottMurray, "Interactive datavisualization for the web", O "Reilly Media, Inc., 2013.
- 2. Ben Fry, "Visualizing Data", O"Reilly Media, Inc.,2007.

REFERENCES:

1. Greg Conti, "Security Data Visualization: Graphical Techniques for Network Analysis", No Starch Press Inc,2007.

COUR	SE OUTCOMES (COs)
CO1	Understand the purpose of visualization in general and visual analytics in particular
CO2	Describe the collection of visualization and analysis techniques
CO3	Explain the concepts and techniques for visualizing data process

CO4	Dev	elop	applio	cation	s usin	g int	eracti	ve dat	ta visua	alizati	on to	ols			
CO5	The	Stud	lents v	vill be	able	to ur	derst	and th	ne tech	niques	for A	Attack	ing an	d defe	nding
	visu	aliza	tion s	ystem	ıS										
CO6	Iden	Identifying the vulnerabilities and attacks and thus create security visualization													
	syste	system.													
		Mapping of Course Outcomes with Program outcomes (POs)													
	(1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\	4	PS PS PS													
Pos	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1			1	2		1			2		1	3	2		
CO2	2	3	1	2		1			2	1		3	2		
CO3	2	3	1	2		1			2	1		3	2		
CO4	2	3	1	2		1			2	1		3	2		
CO5	2	3	1	2		1			2	2	1	3	2		
CO6	2	3	1	2		1			2	2	1		2		
Catego	ory	y Professional Core (PC)													
Appro	val	491	th me	eting o	of the	Acad	demic	Cour	ncil				-		

HEALTH INFORMATICS	L	\mathbf{T}	P	C					
Total Contact Periods:45	3	0	0	3					
Prerequisite – Mastery of a high-level programming language such as C++									
or Java									
Course Designed by:- Dept of Information Technology									
	Total Contact Periods:45 Prerequisite – Mastery of a high-level programm or Java	Total Contact Periods:45 3 Prerequisite – Mastery of a high-level programming la or Java	Total Contact Periods:45 Prerequisite – Mastery of a high-level programming language or Java	Total Contact Periods:45 3 0 0 Prerequisite – Mastery of a high-level programming language such or Java					

To learn about the historical information of hospitality and recent trends in the Hospital information system.

UNIT-I BIOMEDICALINFORMATION SYSTEM

9

Historical Highlights of health care information system-Biomedical information system-problems and pitfalls-History and evolution of Electronic resources, Multimediacomponents

UNIT-II OVERVIEW OF COMPUTER HARDWARE

9

Motherboard and its logic-Memory and I/O interfacing/memory and input output mapping-I/O peripherals and Add-on cards.

UNIT-III HOSPITALINFORMATION SYSTEM

9

Concept of HIS its position in hospital-introduction of a computerized HIS Automation of medical record-cost and Benefits of HIS-Modems and Networking in Hospitals.

UNIT-IV VISUAL PROGRAMMING ANDMULTIMEDIAINFORMATION 9 Visual Basic Principles and Programming-Design, Production and Testing of Multimedia based HIS.

UNIT-IV INTEGRATED MEDICALINFORMATIONSYSTEM

9

Integration of inter and intra hospital information system. Role of expert systems-web based Multimedia information system-Video-conferencing-PowerPoint Presentation.

TEXT BOOK:

1. R.D.Lele "Computer in Medicine" Tata McGraw Hill, Newyork, 1999.

REFERENCES:

- 1. S.K.Chauhan "PC Organisation", S.K.Kataria and Sons, Delhi2000.
- 2. Harold Sackamn "Bio Medical Information Technology", Academic Press, Newyork.

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1	Gair	n Kno	owled	lge ab	out th	e his	torica	l high	lights	of hea	ılth ca	re an	d bion	nedical	1
				stem.											
CO2	Des	cribe	the o	vervie	ew of	com	puterl	nardw	are use	ed in t	he hea	alth ca	are Inf	formati	ion
	~	ystem													
CO3		Learn about the concept of hospital Information system and automating the medical													
		records. Develop skills in the concepts of visual programming.													
CO4	Dev	elop	skills	in the	conc	cepts	of vis	ual pi	rogram	ming					
CO5	Des	ign a	nd tes	st the	web b	ased	multi	media	a based	l healt	h care	e info	rmatic	n syst	em
CO6	Acq	uire	the sk	ills fo	r inte	grati	ng int	er and	l intra	hospit	al inf	ormat	ion sy	stem.	
		Mar	ping	of Co	ourse	Out	come	s with	Prog	ram o	utcor	nes (1	POs)		
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
	(1	/2/3	indica	ates s	treng	th of	corr		_				-	W	
COs\	Ì							elatio	n) 3-H	igh, 2	2-Med	lium,	-	w PS	PS
COs\ POs	(1	/2/3	indica 3	ates st	treng	th of 6	corre		_				1-Lov		PS 03
-	Ì							elatio	n) 3-H	igh, 2	2-Med	lium,	1-Lov PS	PS	
POs	1		3	4				elatio	n) 3-H 9	10	2-Med 11	lium,	PS 01	PS	
POs CO1	1		3	4 2				elatio	9 2	10 2	11 2	12 3	1-Lov PS 01	PS	
CO1 CO2 CO3 CO4	1 2 2 2	2	3	4 2 2				elatio	9 2 2 2 2	10 2 2 2	2 2 2 2 2	12 3 3 3 3	PS 01 3 3 3 3 3	PS	
POs CO1 CO2 CO3 CO4 CO5	1 2 2 2 2 2 2 2	2	3	4 2 2 2 2				elatio	9 2 2 2 2 2 2	10 2 2 2	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 3 3 3 3 3 3 3 3	PS 01 3 3 3 3 3 3 3	PS	
CO1 CO2 CO3 CO4 CO5 CO6	1 2 2 2 2 2 2 2 2 2	3 3	3 1 1 1 1 1	2 2 2 2 2 2 2	5	6 1 1 1 1 1	7	elatio	9 2 2 2 2	10 2 2 2 2	2 2 2 2 2	12 3 3 3 3	PS 01 3 3 3 3 3	PS	
POs CO1 CO2 CO3 CO4 CO5	1 2 2 2 2 2 2 2 2 ory	3 3	3 1 1 1 1 1 1 fessio	4 2 2 2 2 2 2 2 2 2 nal E	5 lective	6 1 1 1 1 1 1 es(PI	7	8	9 2 2 2 2 2 2 2	10 2 2 2 2 2 2	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 3 3 3 3 3 3 3 3	PS 01 3 3 3 3 3 3 3	PS	

U18PEIT016	SOFTWARE TESTING	L	T	P	C					
	Total Contact Periods:45	3	0	0	3					
	Prerequisite – Software Engineering	rerequisite – Software Engineering								
	Course Designed by:- Dept of Information Tecl	hnolog	gy							
OBJECTIVE	S									
Tal asymthodas	i an oftagtaggagan dto beforeilierwithtagtman gama	ntond	tactor	tomotic						

To Learnthedesign of test cases and to be familiar with test management and test automation techniques.

UNITI INTRODUCTION

9

TestingasanEngineeringActivity—TestingasaProcess—Testingaxioms—Basicdefinitions
— SoftwareTestingPrinciples—TheTester"sRoleinaSoftwareDevelopmentOrganization—
OriginsofDefects—Costofdefects—DefectClasses—TheDefectRepositoryandTestDesign
— Defect Examples — Developer/Tester Support of Developing a Defect Repository — Defect Preventionstrategies.

UNIT II TESTCASEDESIGN

9

Test case Design Strategies – Using Black Bod Approach to Test Case Design – Random Testing – Requirements based testing – Boundary Value Analysis – Equivalence Class Partitioning – State-based testing – Cause-effect graphing – Compatibility testing – user documentation testing – domain testing – Using White Box Approach to Test design – Test

Adequacy Criteria – static testing vs. structural testing – code functional testing – Coverage and Control Flow Graphs – Covering Code Logic – Paths – code complexity testing – Evaluating Test Adequacy Criteria.

UNITIII LEVELSOFTESTING

9

The need for Levers of Testing – Unit Test – Unit Test Planning – Designing the Unit Tests – TheTestHarness–RunningtheUnittestsandRecordingresults–Integrationtests–Designing Integration Tests – Integration Test Planning – Scenario testing – Defect bash elimination System Testing – Acceptance testing – Performance testing – Regression Testing – Internationalization testing – Ad-hoc testing – Alpha, Beta Tests – Testing OO systems – Usability and Accessibility testing – Configuration testing – Compatibility testing – Testing the documentation – Websitetesting.

UNITIV TESTMANAGEMENT

9

Peopleandorganizationalissuesintesting—Organizationstructuresfortestingteams—testing services — Test Planning — Test Plan Components — Test Plan Attachments — Locating Test Items — test management — test process — Reporting Test Results — The role of three groupsin Test Planning and Policy Development — Introducing the test specialist — Skills needed by a test specialist — Building a Testing Group.

UNITY TEST AUTOMATION

9

Software test automation – skill needed for automation – scope of automation – design and architecture for automation – requirements for a test tool – challenges in automation – Test metrics and measurements – project, progress and productivity metrics.

TEXT BOOKS:

- 1. Srinivasan Desikan And Gopalaswamy Ramesh, "Software Testing Principles And Practices", Pearson Education, 2006.
- 2. Ron Patton, "Software Testing", Second Edition, Sams Publishing, Pearson Education, 2007.

- 1. Ilene Burnstein, "Practical Software Testing", Springer International Edition, 2003.
- 2. Edward Kit," Software Testing In The Real World Improving The Process", Pearson Education, 1995.
- 3. Boris Beizer," Software Testing Techniques" 2nd Edition, Van Nostrand Reinhold, New York,1990.
- 4. Aditya P. Mathur, "Foundations Of Software Testing _ Fundamental Algorithms And Techniques", Dorling Kindersley (India) Pvt. Ltd., Pearson Education, 2008.

COUR	SE OUTCOMES (Cos)
CO1	Design test cases suitable for a software development for different domains.
CO2	Apply different test case design strategies.
CO3	Execute various levels of testing.
CO4	Document the test design, test plan, test reports and project management.
CO5	Acquire the skills required for a test specialist.
CO6	Describe the concepts of software test automation, test metrics and measurements.

	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
CO1	3		2						3		1		3		
CO2	3		2			1			3		1	1	3		
CO3	3		2		1				3	2	1	2	3		
CO4	3		2	1					3	2	1	2	3		
CO5	3		2			1			3	2	1	3	3		
CO6	3		2	1	1	1			3	2	1	3	3		
Categ	Category Professional Electives(PE)														
Appro	Approval 49th meeting of the Academic Council														

	HIGH SPEED NETWORKS	L	T	P	C
U18PEIT021	Total Contact Periods:45	3	0	0	3
	Prerequisite – Computer Networks				
	Course Designed by:- Dept of Information Techn	ology	7		

- Students will be provided with an up-to-date survey of developments in High Speed Networks.
- Enable the students to know techniques involved to support real-time traffic and congestion control.
- Students will be provided with different levels of quality of service (Q.S) to different applications.

UNIT1 HIGH SPEED NETWORKS

9

Frame Relay Networks - Asynchronous transfer mode - ATM Protocol Architecture, ATM logical Connection, ATM Cell - ATM Service Categories - AAL. High Speed LAN's: Fast Ethernet, Gigabit Ethernet, Fibre Channel - Wireless LAN's: applications, requirements - Architecture of 802.11

UNIT2 CONGESTION AND TRAFFICMANAGEMENT

9

Queuing Analysis - Queuing Models - Single Server Queues - Effects of Congestion - CongestionControl-TrafficManagement-CongestionControlinPacketSwitchingNetworks - Frame Relay CongestionControl.

UNIT3 TCP AND ATMCONGESTION CONTROL

9

TCP Flow control - TCP Congestion Control - Retransmission - Timer Management - ExponentialRTObackoff-KARN'sAlgorithm-Windowmanagement-PerformanceofTCP over ATM.Traffic and Congestion control in ATM - Requirements - Attributes - Traffic ManagementFramework,TrafficControl-ABRtrafficManagement-ABRratecontrol,RM cell formats, ABR Capacity allocations - GFR trafficmanagement.

UNIT4 INTEGRATED ANDDIFFERENTIATEDSERVICES

9

IntegratedServicesArchitecture-Approach,Components,Services-QueuingDiscipline,FQ, PS, BRFQ, GPS, WFQ - Random Early Detection, DifferentiatedServices.

UNIT5 PROTOCOLS FOR QOSSUPPORTRSVP

9

Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms - Multiprotocol Label Switching - Operations, Label Stacking, Protocol details - RTP - Protocol Architecture,

Data Transfer Protocol, RTCP.

TEXTBOOK

- William Stallings, "High Speed Networks And Internet", Pearson Education, Second Edition, 2002. [Chapter - 4-6, 8, 10, 12, 13,17,18]
- Warland & Pravin Varaiya, "High Performance Communication Networks", Jean 2. Harcourt Asia Pvt. Ltd., II Edition, 2001.

REFERENCE BOOKS

Irvan Pepelnjk, Jim Guichard and Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2,2003

COUR	COURSE OUTCOMES (COs) CO1 Understand the basic concepts of asynchronous transfer mode and wireless LAN														
CO1	Und	ersta	nd the	e basi	c cond	cepts	of as	ynchr	onous	transf	er mo	de an	d wire	eless L	AN
CO2	Ana	lyze	the co	ncept	of co	onges	tion c	ontro	l and ti	raffic	mana	gemei	nt.		
CO3	Study about TCP and ATM congestion control														
CO4	Und	Understand techniques involved to support real-time traffic and congestion control.													
CO5	Und	Understand different levels of Quality of Service (QoS) to different applications.													
CO6															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	2	3	1	2		1			2		1	3	3		
CO2	2	3	1	2		1			2	1		3	3		
CO3	2	3	1	2		1			2	1		3	3		
CO4	2	3	1	2		1			2	1		3	3		
CO5	2	3	1	2		1			2		1	3	3		
CO6	2	3	1	2		1			2	1	1	3	3		
Categ	ory	Pro	fessio	nal E	lective	es(PI	Ξ)			•					
Appro	val	49t	th mee	eting (of the	Aca	demic	Cour	ncil						

U18PEIT022	NATURAL LANGUAGE PROCESSING	L	T	P	С
	Total Contact Periods - 45	3	0	0	3
	Prerequisite –NIL				
	Course Designed by:- Dept of Information Technolog	y			
ORIECTIVES					

OBJECTIVES

This course is designed to introduce some of the problems and solutions of NLP, and their relation to linguistics and statistics.

UNIT-I INTRODUCTION

Introduction - The issues arid difficulties in natural language processing -Linguistics and computational linguistics - Language under- standing and generation - Understanding of spoken, written and textual information.

Syntactic Parsing - English grammar - Structure of the sentence - words and organization of thelexicon-Contextfreeandcontextsensitivegrammar-Transformationalgrammar-Therole of syntax analysis in semantics ATN's - Definite clause grammar and WASPparsers.

UNIT-III INTERPRETATION

9

Semantic interpretation - The conceptual dependency model for semantic representation - Semantic network - Frames and scripts - Semantics in the lexicon.

UNIT-IV SEMANTICNETWORK

9

Discourses interpretation - The interconnections between pragmatics -Pragmatics in discourse analysis-Speechactsplan-basedTheoryofspeechacts-Semanticnetwork-Frameandscripts - Semantics in thelexicon.

UNIT-V CASESTUDY

9

Generation - Strategies for generation - Planning English referring expressions -KING, a Natural language generation systems. Typical systems - ELIZA - Baseball - GLJS - PARRY - LADDER - SOPGIE & POET current trends in NLP.

TEXTBOOK

- 1. James Alien Benjamin Cummings, "Natural language understanding", 2nd Edition 1995. Benjamin/Cummins PublishingCompany.
- 2. Natural Language Processing by Elakumar, 2011

REFERENCE BOOK

COLIDGE OUTCOMES (COg)

- 1. Windgrad, "Language as a Cognitive Process; Syntax", Addison WesleyPublication.
- 2. F Popov, "Talking with Computer in Natural Language", Springer-Verlag, 1986.

COUR	SE O	UTC	COMI	ES (C	(Os)										
CO1	Outli	ne Na	tural I	Langua	age Pr	ocess	ing tas	sks in	syntax,	semai	ntics, a	and pra	agmati	cs.	
CO2	Expla	in M	orphol	logy aı	nd Par	t of S	peech	Taggi	ing.						
CO3	Desci	ribe l	now sy	ntax p	arsing	g tech	niques	s can b	e used.						
CO4	Expla	explain the use of semantic analysis methods.													
CO5	Relate a few applications of Natural Language Processing.														
CO6	**														
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	2		1			2		1	2	2		
CO2	2	3	1	2		1			2	1		2	2		
CO3	2	3	1	2		1			2	1		2	2		1
CO4	2		1	2		1			2	1		2	2		1
CO5	2		1	2		1			2		1	2	2		1
CO6	2	1	1	2		1			2	1	1	2	2		1
Categ	ory	Pro	fessio	nal E	lective	es(PI	Ξ)								
Appro	oval	49t	h me	eting (of the	Aca	demic	Cour	ncil						

	SOCIAL NETWORK ANALYSIS	L	T	P	C					
U18PEIT023	Total Contact Periods - 45	3	0	0	3					
	Prerequisite – Computer networks and data mining									
	Course Designed by:- Dept of Information Technology									
ODIECTIVEC										

- To understand the concept of semantic web and related applications.
- To learn knowledge representation using ontology.
- To understand human behaviour in social web and related communities.
- To learn visualization of socialnetworks

UNITI INTRODUCTION

9

Introduction to Semantic Web: Limitations of current Web - Development of Semantic Web - Emergence of the Social Web - Social Network analysis: Development of Social Network Analysis - Key concepts and measures in network analysis - Electronic sources for network analysis: Electronic discussionnetworks, Blogsandonline communities - Web-based networks - Applications of Social Network Analysis.

UNIT II MODELLING, AGGREGATING AND KNOWLEDGE REPRESENTATION

9

Ontology and their role in the Semantic Web: Ontology-based knowledge Representation - OntologylanguagesfortheSemanticWeb:ResourceDescriptionFramework-WebOntology

Language - Modelling and aggregating social network data: State-of-the-art in network data representation - Ontological representation of social individuals - Ontological representation of social relationships - Aggregating and reasoning with social network data - Advanced representations.

UNITIII EXTRACTION AND MINING COMMUNITIES IN WEB SOCIAL NETWORKS

Extracting evolution of Web Community from a Series of Web Archive - Detecting communities in social networks - Definition of community - Evaluating communities - Methodsforcommunitydetectionandmining-Applicationsofcommunityminingalgorithms - Tools for detecting communities social network infrastructures and communities - Decentralized online social networks - Multi-Relational characterization of dynamic social networkcommunities.

UNITIV PREDICTING HUMAN BEHAVIOUR ANDPRIVACY ISSUES 9

Understanding and predicting human behaviour for social communities - User data management - Inference and Distribution - Enabling new human experiences - Realitymining - Context-Awareness-Privacyinonlinesocialnetworks-Trustinonlineenvironment-Trust models based on subjective logic - Trust network analysis - Trust transitivity analysis - Combiningtrustandreputation-Trustderivationbasedontrustcomparisons-Attackspectrum and countermeasures.

UNITY VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS 9

Graph theory - Centrality - Clustering - Node-Edge Diagrams - Matrix representation - Visualizing online social networks, Visualizing social networks with matrix-based representations - Matrix and Node-Link Diagrams - Hybrid representations - Applications - Cover networks - Community welfare - Collaboration networks - Co-Citation networks.

TEXT BOOKS:

- 1. PeterMika,—SocialNetworksandtheSemanticWebl,FirstEdition,Springer2007.
- 2. BorkoFurht,—HandbookofSocialNetworkTechnologiesandApplications||,1stEdition, Springer,2010.

REFERENCES:

- 1. Guandong Xu ,Yanchun Zhang and Lin Li, —Web Mining and Social Networking Techniques and applications||, First Edition, Springer,2011.
- Dion Goh and Schubert Foo, —Social information Retrieval Systems: Emerging TechnologiesandApplicationsforSearchingtheWebEffectively|,IGIGlobalSnippet, 2008.
- 3 Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, —Collaborative and Social InformationRetrievalandAccess:TechniquesforImproveduserModelling|,IGIGlobal Snippet, 2009.
- 4. John G. Breslin, Alexander Passant and Stefan Decker, —The Social Semantic Webl, Springer,2009.

COUR	SE O	UTO	COM	ES (C	Os)										
CO1	Dev	elop	sema	ntic w	eb re	lated	appli	cation	S.						
CO2	Rep	reser	nt kno	wledg	ge usii	ng on	tolog	y.							
CO3	Extr	act a	nd m	ine co	mmu	nities	in w	eb soc	ial net	works	5				
CO4	Predict human behavior in social web and related communities														
CO5	Analyze the security issues and privacy policies in Social networks														
CO6	Visualize social networks in real time applications														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\		_			_		_			10		10	PS	PS	PS
Pos	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	2	3	2	2		1		2		1	1		3		
CO2	2	3	2	2		1		2		1			3		
CO3	2	3	2	2		1		2	2	1			3		
CO4	2	3	2	2		1		2	2	1		3	3		
CO5	2	3	2	2		1		2	2	1	1	3	3		
CO6	2	3	2	2		1		2	2	1	1	3	3		
Catego	ory	Pro	fessio	nal E	lectiv	es(PF	Ξ)								
Appro															

	BUSINESS ANALYTICS	L	T	P	C					
U18PEIT024	Total Contact Periods - 45	3	0	0	3					
C101 L11024	Prerequisite – Data mining techniques									
	Course Designed by:- Dept of Information Technology									

OBJECTIVES

- 1. To understand the role of business analytics within anorganization.
- 2. To analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of anorganization.
- 3. Use advanced analytical tools to analyze complex problems underuncertainty.
- 4. Manage business processes using analytical and managementtools.

UNIT-I INTRODUCTION

9

Introduction to Business Analytics - Business View of Information TechnologyApplications - Key purpose of using IT in Business - Characteristics of Internet Ready IT Applications - Information Users and their Requirements- Types of digital data - Introduction to OLTP and OLAP.

UNIT-II BUSINESS INTELLIGENCE

9

Using Analytical Information for Decision Support - Definition and examples in business intelligence - Evolution of BI and Role of DSS- EIS- MIS and Digital Dashboards - BI Definition and Concepts - BI Component Framework - Purpose of BI - Business Intelligence Applications - BI Roles and Applications.

UNIT-III DATA MODELING

9

Basic Data Integration - Data Warehouse -p Data Integration Technologies - Data Quality - DataProfiling-MultidimensionalDataModelling-Inrtoduction-DataModellingTechniques - Fact table - Dimension table - typical dimensional Models - Dimensional Modelling Life Cycle - Measure- Metrics and Performance Management.

UNIT-IV STATISTICS ANDALGORITHMS

9

BasicofEnterpriseReporting-UnderstandingStatistics-RoleofStatisticsinAnalytics-Data, DataDescriptionandSummarization-StatisticalTests-UnderstandingHypothesisandt-test-Correlation Analysis - Regression - The F-Test - Time Series analysis - Application of Analytics-DataminingAlgorithms-AssociationRuleMining-k-MeanClustering-Decision Tree.

UNIT-V CASE STUDIES

9

Segmenting bank customer transaction histories - Association analysis of Web services data - Creatingasimplecreditriskmodelfromconsumerloandata-Predictinguniversityenrolment management

TEXT BOOKS:

- 1. Fundamentals of Business Analytics, R.N. Prasad, Seema Acharys, 2nd Edition, Wiley India Pvt Ltd., 2016.
- 2. Business Analytics, James R. Evans, 2nd Edition, Pearson Education Limited- 12-Jan-2016

- 1. Business Analytics an Application focus, Purba Halady Rao PHI Learning Pvt. Ltd 2013
- 2. Business Analytics: Data Analysis & Decision Making Standalone, S. Christian Albright, Wayne L. Winston- Cengage Learning, Business & Economics-31-Mar-2016
- 3. Competing on Analytics: Updated, with a New Introduction: The New Science of Winning, Thomas H. Davenport, Jeanne G. Harris Harvard Business Review Press, 2017.

COUR	COURSE OUTCOMES (COs)								
CO1	Understand the concept and role of analytics in business.								
CO2	Use business intelligence to formulate and solve business problems and to support managerial decision making.								
CO3	Describe the data integration and data modeling techniques.								
CO4	Learn the concept of enterprise reporting, statistical techniques and data mining algorithms in analytics,								

CO5	Imp	Implement analytics in real time applications-bank management, general management, marketing, finance, operations and supply chainmanagement.													
	man	agen	nent, 1	marke	ting,f	inand	e,ope	ration	ısandsı	upply	chaini	manag	gemen	t.	
CO6	App	ly an	alytic	princ	ciples	and 1	techni	ques 1	to a bu	siness	prob	lem			
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
Cos\ Pos	1	2	01 02 03												
CO1	2	3	2	2		1			2		1	3	3		
CO2	2	3	2	2					2	1		3	3		
CO3	2	3	2	2					2	1		3	3		
CO4	2	3	2	2					2	1		3	3		
CO5	2	3	2	2		1			2	1	2	3	3		
CO6	2	3	2	2		1			2	1	2	3	3		
Categ	ory	Pro	fessic	nal E	lective	es(PI	Ξ)								
Appro	val														

	MOBILE APPLICATION DEVELOPMENT	L	T	P	C					
18PEIT025	Total Contact Periods - 45 3 0									
10FE11U25	Prerequisite – mobile communication									
	Course Designed by:- Dept of Information Technology									
OBJECTIVES										

- To learn the characteristics of mobile applications.
- To learn about the intricacies of UI required by mobile applications.
- To study about the design aspects of mobile application.

UNITI INTRODUCTION

Mobile Applications – Characteristics and Benefits – Application Model – Infrastructure and Managing Resources - Mobile Software Engineering - Frameworks and Tools - Mobile devices Profiles.

UNITII USER INTERFACE

9

Generic UI Development - VUIs and Mobile Applications - Text to Speech techniques -Designing the right UI - Multimodal and Multichannel UI - Gesture based UIs - Screen Elements and Layouts – Voice XML – Java API.

UNITIII **APPLICATION DESIGN**

Memory Management – Design patterns for limited memory – Work flow for Application Development - Techniques for composing Applications - Dynamic Linking - Plug ins and rules of thumb for using DLLs – Concurrency and Resource Management – Look and feel.

UNITIV APPLICATION DEVELOPMENT

9

IntentsandServices-StoringandRetrievingdata-CommunicationviatheWeb-Notification Alarms - Graphics and Multimedia - Telephony - Location based services - Packaging and Deployment – Security and Hacking.

UNITV TOOLS

9

Google Android Platform – Eclipse Simulator – Android Application Architecture – Event based programming - Apple iPhone Platform - UI tool kit interfaces - Event handling and Graphics services – Layer Animation.

TEXT BOOKS:

- 1. Share Conder, Lauren Darcey, "Android Wireless Application Development" Pearson 3rd Edition.
- 2. Zigurd Mednieks, Laird Dornin, G, Blake Meike and Masumi Nakamura,—Programming Androidl, O"Reilly,2011.

REFERENCES:

- 1. Professional mobile Application Development paperback,2012 Jeff Mcherter (Author),Scott Gowell (Author), Wiley India PrivateLimited
- 2. RetoMeier, WroxWiley, —Professional Android 2 Application Development 1,2010.
- 3. Alasdair Allan, —iPhone Programmingl, O"Reilly,2010.

COOK	SE O	UTC	COMI	ES (C	COs)															
CO1									bile de neworl		, nativ	e app	deve	lopme	nt					
CO2	Learn the intricacies of user interfaces and implement the user interfaces for mobileapplications.																			
CO3	Design the mobile applications considering the resource constraints in mobile devices.																			
CO4	Design a secure mobile application based on user requirements																			
CO5	Select appropriate framework and tool for developing mobile applications based on the problem requirements																			
CO6	Design and develop mobile applications for societal and environmental problems																			
	(1	_					Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low													
Cos\	1 2 3 4 5 6 7 8 9 10 11 12 PS PS PS												1-Lov	V						
Pos	1	2	3	4	5	6	7			,					PS 03					
CO1	2	2	3	4	5	2	7		9	10			PS 01 3	PS						
CO1	2 2	2 2	1 1	4		2 2	7		9 3 3	10	11	12	PS 01 3	PS						
CO1 CO2 CO3	2 2 2	2 2 2	1 1 1	4	1 1 1	2 2 2	7		9 3 3 3	10 2 2	3	12	PS 01 3 3 3	PS						
CO1 CO2 CO3 CO4	2 2 2 2	2 2 2 2	1 1	4		2 2 2	7		9 3 3 3 3	10 2 2 2	3 3	3 3	PS 01 3 3 3 3 3	PS						
CO1 CO2 CO3 CO4 CO5	2 2 2 2 2	2 2 2 2 2	1 1 1	4	1 1 1	2 2 2 2 2	7		9 3 3 3 3 3	10 2 2 2 2	3 3 3	3 3 3	PS 01 3 3 3 3 3 3	PS						
CO1 CO2 CO3 CO4 CO5	2 2 2 2 2 2	2 2 2 2 2 2	1 1 1 1 1		1 1 1 1 1	2 2 2 2 2 2			9 3 3 3 3	10 2 2 2	3 3	3 3	PS 01 3 3 3 3 3	PS						
CO1 CO2 CO3 CO4 CO5	2 2 2 2 2 2 2 ory	2 2 2 2 2 2 Pro	1 1 1 1 1 1 fessio	onal E	1 1 1 1 1 1 lective	2 2 2 2 2 2 2 es(PH	Ξ)		9 3 3 3 3 3 3	10 2 2 2 2	3 3 3	3 3 3	PS 01 3 3 3 3 3 3	PS						

	WAVELET TRANSFORMS AND ITS APPLICATION	L	T	P	C			
U18PEIT026	Total Contact Periods - 45	3	0	0	3			
U18PE11026	Prerequisite – mobile communication Course Designed by:- Dept of Information Technology							
	Course Designed by Dept of information Technology							

OBJECTIVES

To in

troduce the fundamentals concepts of wavelet transforms.

To study system design using Wavelets

O To learn the different wavelet families & theirapplications.

UNITI INTRODUCTION TOWAVELETS

9

Introduction to Multirate signal processing- Decimation and Interpolation, Quadrature Mirror Filters, Subbandcoding, Limitations of Fouriertransform, Shorttime Fouriertransform and its drawbacks, Continuous Wavelet transform, Time frequency representation, Wavelet System and its characteristics, Orthogonal and Orthonormal functions and functionspace

UNITII MULTIRESOLUTION CONCEPT AND DISCRETE WAVELET TRANSFORM

9

Multiresolution formulation of wavelet systems- signal spaces, scaling function, wavelet function and its properties, Multiresolution analysis, Haar scaling and wavelet function, Filter banks Analysis and Synthesis, 1D and 2D Discrete wavelet transform, Wavelet Packets, Tree structured filter bank, Multichannel filter bank, Undecimated wavelet transform.

UNITIII WAVELETSYSTEMDESIGN

9

Refinement relation for orthogonal wavelet systems, Restrictions on filter coefficients, Design of Daubechiesorthogonal wavelet system coefficients, Design of Coiflet and Symlet wavelets.

UNITIV WAVELETFAMILIES

9

Continuous Wavelets- Properties of Mexican hat wavelet, Morlet, Gaussian and Meyer wavelets. Orthogonal wavelets- Properties of Haar wavelets, Daubechies wavelets, Symlets, Coiflets and Discrete Meyer wavelets. Properties of Biorthogonal wavelets, Applications of wavelet families.

UNITY WAVELET APPLICATIONS

9

Denoising of Signals and Images, Image enhancement, Edge detection, Image Fusion, Image compression, Waveletbased feature extraction, Analysis of phonocardiograms ignals, Analysis of EEG signals, Speech enhancement for hearingaids

- 1. C.Sidney Burrus, Ramesh Gopinath & Haito Guo, _Introduction to wavelets and wavelet transform,,, Prentice Hall,1998.
- 2. G.Strang and T.Nguyen, _Wavelet and filter banks,,, Wesley and CambridgePress.
- 3. M.Vetterli and J. Kovacevic, _Wavelets and sub band coding,,, Prentice Hall,1995.
- 4. Metin Akay, _Time frequency and wavelets in biomedical signal processing,,, Wiley-IEEE Press, October1997.
- 5. P.P.Vaidyanathan, _Multi rate systems and filter banks,,, Prentice Hall 1993 4. Raguveer m Rao & Ajith S. Bopardikar, _Wavelet transforms Introduction to theory and applications,, Addison Wesley,1998
- 6. S.Mallet, _A Wavelet tour of signal processing,,, Academic Press1998

COUR	COURSE OUTCOMES (COs)								
CO1	Understand the basic concepts of wavelet and its types								
CO2	Analyze multi resolution concepts and discrete wavelet transform.								
CO3	Design the different wavelet system.								

CO4	Des	cribe	the p	ropert	ties ar	ıd ap	plicat	ions c	f wave	elet fa	milies	S.			Describe the properties and applications of wavelet families.												
CO5		-					_	,	G sign	als, S	peech	enha	nceme	ent for													
	hear	hearing aids and de-noising technique.																									
CO6	Implement wavelet applications in real time.																										
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low																											
Cos\ Pos	1	2	3 4 5 6 7 8 9 10 11 12 PS PS 03 03																								
CO1			1	2		1			2		1	3	3														
CO2	2	3							2	1		3	3														
CO3	2	3							2	1		3	3														
CO4	2	3	1	2					2	1		3	3														
CO5	2	3	1	2		1			2		1	3	3														
CO6	2	3	1	2		1			2	1	1	3	3														
Categ	ory			nal E		,	,																				
Appro	val	491	th me	eting	of the	Aca	demic	Cour	ncil																		

	CYBERFORENSICS	L	T	P	C				
18PEIT031	Total Contact Periods - 45	0	3						
	Prerequisite –Computer Networks								
	Course Designed by:- Dept of Information Technology								
OBJECTIVES									

- To learn computer forensics
- To become familiar with forensics tools
- To learn to analyze and validate forensics data

INTRODUCTION TO COMPUTER FORENSICS

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

UNIT II EVIDENCE COLLECTION ANDFORENSICSTOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensics Tools: Software/ Hardware Tools.

UNIT III ANALYSISAND VALIDATION

9

Validating Forensics Data - Data Hiding Techniques - Performing Remote Acquisition -Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics

UNIT IVETHICALHACKING

Introduction to Ethical Hacking - Footprinting and Reconnaissance - Scanning Networks -Enumeration - System Hacking - Malware Threats - Sniffing

UNIT V ETHICAL HACKINGIN WEB

Social Engineering - Denial of Service - Session Hijacking - Hacking Web servers - Hacking Web Applications - SQL Injection - Hacking Wireless Networks - Hacking Mobile Platforms.

TEXT BOOKS:

- 1. Bill Nelson, Amelia Phillips, Frank Enfinger, Christopher Steuart, —Computer Forensics and Investigations, Cengage Learning, India Edition, 2016.
- 2. CEH official Certfied Ethical Hacking Review Guide, Wiley India Edition, 2015.

REFERENCES

- 1. John R. Vacca, —Computer Forensics, Cengage Learning, 2005
- 2. MarjieT.Britz,—ComputerForensicsandCyberCrime#:AnIntroduction#,3rdEdition, Prentice Hall,2013.
- 3. AnkitFadia Ethical Hacking|Second Edition,MacmillanIndiaLtd, 2006

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1	Expla	ain co	omput	ter for	ensic	s and	its te	chniq	ues						
CO2					e coll	lectio	n and	apply	ying fo	rensic	tools	for c	rime		
			tions.												
CO3	Analyze and validate forensics data.														
CO4	Exp	lore t	the fu	ndam	entals	of et	thical	hacki	ng						
CO5	Exe	cute	peneti	ration	techn	ique	using	stanc	lard ha	cking	tools	in an	ethica	al man	ner
CO6	Lea	rn ab	out re	conna	issan	ce, p	rotoco	ols, wi	indows	hack	ing,				
	hack	king v	web to	echno	logies	s, wir	eless	netwo	rks an	d mol	oile pl	atforr	ns		
		Map	ping	of Co	ourse	Out	come	s with	Prog	ram o	utcor	nes (I	POs)		
	(1	/2/3 i	indica	ates st	treng	th of	corre	elatio	n) 3-H	igh, 2	-Med	lium,	1-Lov	W	
Cos\	1		2	4	_		_	0	Δ	10	11	10	PS	PS	PS
Pos	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	2		1		2				2				2		
CO2	2	2	1	2	2	2		2	2			3	2		
CO3	2	2	1	2	2	2		2	2			3	2		
CO4	2		1		2				2				2		
CO5	2	2	1	2	2	2		2	2			3	2		
CO6	2	2	1	2	2	2			2			3	2		
Categ				nal E		,									
Appro	val	491	th me	eting (of the	Aca	demic	Cour	ncil						

	APPLICATIONS OF DATAMINING	L	T	P	C						
U18PEIT033	Total Contact Periods - 45	3	0	0	3						
UlorElluss	Prerequisite – Data Warehousing and Data mining Techniques										
	Course Designed by:- Dept of Information Technol	logy									

OBJECTIVES

- To learn how to prepare, process, understand, analyze and present thedata.
- To analyze the problem and Implement differenttechniques.
- To Evaluate and Refine them for analyze the problem.
- To implement data mining tools such as R/Weka

UNIT-I INTRODUCTION

9

Introduction to Data and Big Data -Data Types and Data Qualities - Sampling, Sample Sets and Data Population - Statistical Inference and Introduction to Supervised and Unsupervised Learning method - Data Mining Goals - Stages of the Data Mining Process - Data Mining Techniques - Introduction to Data Mining Tools - R and WEKA

UNIT-II DATA MININGKNOWLEDGEREPRESENTATION 9

Task relevant data- Background knowledge -Interestingness measure-Representing input data and output knowledge - Data Visualization- Basic concepts - Visualization techniques - Experiments with Weka/R using visualization- Attribute-oriented analysis -Attribute generalization-Attributerelevance-Classcomparison-Statisticalmeasures-Experimentswith Weka / R using filters and statistics

UNIT-III CLASSIFICATION

9

Basic learning/mining tasks - Inferring rudimentary rules: 1R algorithm - Covering rules - Introduction to Decision Trees -Rule Based Classifier - Experiments with Weka/R using decision trees, rules -The predictiontask - Statistical (Bayesian) classification - Bayesian networks -Instance-based methods (nearest neighbor)-Linear models -Experiments with Weka/R usingPrediction

UNIT-IV CLUSTERINGANALYSIS

9

Clustering Analysis - Basic issues in clustering - conceptual clustering system: Cluster/2 - Partitioning methods: k-means, expectation maximization (EM) - Hierarchical methods: distance-based agglomerative and divisible clustering - Conceptual clustering: Cobweb - Experiments with Weka/R using k-means, EM, Cobweb - Association rules - Generating item sets and rules efficiently-Correlation analysis - Experiments with Weka/R - miningassociation rules

UNIT-V CASESTUDY

9

Training and testing - Estimating classifier accuracy (holdout, cross-validation, leave-one-out) - Combining multiple models (bagging, boosting, stacking) - Experiments with Weka/R for training and testing- Mining Real data - Preprocessing data - Applying various data mining techniques to create a comprehensive and accurate model of the data - Text mining: extracting attributes (keywords), structural approaches (parsing, softparsing).

TEXT BOOKS:

- 1. Data Mining: Concepts and Techniques, 3rd ed. by Jiawei Han, Micheline Kamber and Jian Pei, Elsevier, eBook ISBN: 9780123814807, June2011
- 2. Sumathi, S., Sivanandam, S.N., Introduction to Data Mining and its Applications, ISBN 978-3-540-34351-6
- 3. Bater Makhabel, Learning Data Mining with R, Packt Publishing Ltd, 31 Jan2015

REFERENCES:

- 1. Kevin Patrick Murphy, Machine Learning: a Probabilistic Perspective, 2012 http://www.cs.ubc.ca/~murphyk/MLbook/
- 2. P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
- 3. Yanchang Zhao, Yonghua Cen, Data Mining Applications with R, 30 Dec 2013
- 4. http://web.engr.illinois.edu/~hanj/bk3/
- 5. Kenneth C.Brancik —Insider Computer Fraudl Auerbach Publications Taylor& FrancisGroup–2008.

COURSE OUTCOMES (COs)

CO1 Understand different data mining tasks and the functionalities of Weka/R tools.

CO2	Expla	ain k	nowle	dge r	eprese	entati	on an	d met	rics.							
CO3	Unde	erstan	d and	impl	ement	the	differ	ent Cl	assific	ation	techn	iques.				
CO4	Demo	onstr	ate an	d imp	lemei	nt un	super	vised	learnin	g tecl	nniqu	es.				
CO5	Understand ensemble models.															
CO6	Demonstrate case studies for analyzing the performance of the data models.															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
Cos\ Pos	1	1 2 3 4 5 6 7 8 9 10 11 12 PS PS PS 03														
CO1	3	3	3	3	2					2	2	2		3		
CO2	3		2	3	3					2		2		3		
CO3		1	3				,			2	2	2		3		
CO4	3	2		2	3					2	2	2		3		
CO5	2	2	2		2					2		2		3		
CO6		1	2	3	3					2	2	2		3		
Categ	ory		fessio			,	/	•			•		•			
Appro	oval	491	th me	eting	of the	Aca	demic	Cour	ncil							

	VIRTUAL AND AUGMENTED REALITY	L	T	P	C
U18PEIT032	Total Contact Hours - 45	3	0	0	3
C161 E11032	Prerequisite – CISB110(C/C++), CISB210(Data Structure CISB355(CG)	cture),	COIS	712/	
	Course Designed by:- Dept of Information Technolog	у			

- To learn Virtual reality; multiple modal interaction, visual-auditory-haptic, interaction in interaction
- To learn imagination, visual computation and environmental modeling; geometric behavior and physically basedsimulation
- To understand the management of large scale environment, VR development tools, augmented reality, mixed reality, digitalentertainment.

UNIT-1 Introduction of Virtual Reality

g

Fundamental Concept and Components of Virtual Reality Primary Features and Present Development on Virtual Reality

UNIT- II Multiple Modals of Input and Output Interface in Virtual Reality

9

Input -- Tracker, Sensor, Digital Glove, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output -- Visual / Auditory / Haptic Devices

UNIT- III Visual Computation in Virtual Reality

9

Fundamentals of Computer Graphics Software and Hardware Technology on Stereoscopic DisplayAdvancedTechniquesinCG:ManagementofLargeScaleEnvironments&RealTime Rendering

UNIT- IV Environment Modeling in Virtual Reality

9

Geometric Modeling, Behavior Simulation, Physically Based Simulation Interactive Techniques in Virtual Reality: Body Track, Hand Gesture, 3D Manus, Object

System Structure of Augmented Reality Key Technology in AR Development Tools and Frameworks in Virtual Reality: Frameworks of Software Development Tools in VR. X3D Standard; Vega, MultiGen, Virtools etc

TEXT BOOK

- 1. Bush, V. (1945) As We May Think, TheAtlantic.
- 2. Feiner, S.K. (2002) Augmented Reality: A New Way of Seeing, Scientific American, 286(4), pp.34-41.
- 3. Billinghurst, M., Poupyrev, I., Kato, H., May, R. (2000) Mixing Realities in Shared Space: An Augmented Reality Interface for Collaborative Computing, Proc. of the IEEE Int'l Conf. on Multimedia and Expo (ICME), pp. 1641-1644.
- 4. UchiyamaH., SaitoH. (2011) Random Dot Markers, Proc. of IEEE VR 2011, pp. 35-38.

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1	Und	lersta	nd the	e basi	c con	cept a	and fr	amew	ork of	virtua	ılreali	ty.			
CO2	Des	cribe	the n	nultipl	e mo	dals o	of inp	ut and	loutpu	it inte	rface i	in virt	ual re	ality.	
CO3	Explain the fundamentals of computer graphics.														
CO4	Applydisplay advanced techniques in computer graphics.														
CO5	Explore about the environment modeling in virtual reality.														
CO6 Learn about the fundamentals of Augmented Reality and implement software development tools in Virtual Reality															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	COs\														
CO1			1	2		1			2		1	3		3	
CO2	2	3	1	2		1			2	1		3		3	
CO3	2	3	1	2		1			2	1		3		3	
CO4	2		1	2		1			2	1		3		3	
CO5	2		1	2		1			2		1	3		3	
CO6	2	3	1	2		1			2	1	1	3		3	
Catego	ory			nal E											
Appro	val	49t	th mee	eting o	of the	Aca	demic	Cour	ncil						

	MACHINE LEARNING TECHNIQUES	L	T	P	C						
IIIODEITO24	Total Contact Periods - 45	3	0	0	3						
U18PEIT034	Prerequisite – Artificial Intelligence and Expert System.										
	Course Designed by:- Dept of Information Technology	nolog	y								

OBJECTIVES

- To understand the concepts of machinelearning
- To appreciate supervised and unsupervised learning and their applications
- To understand the theoretical and practical aspects of Probabilistic Graphical Models.
- To understand probabilistic graphical models.
- To understand sample complexity analysis.

Machine Learning - Machine Learning Foundations –Overview – Design of a Learning system - Typesofmachinelearning–ApplicationsMathematicalfoundationsofmachinelearning-random variables and probabilities - Probability Theory – Probability distributions -Decision Theory- Bayes Decision Theory - Information Theory.

UNITII SUPERVISED LEARNING

9

LinearModelsforRegression-LinearModelsforClassification—NaïveBayes-Discriminant Functions -Probabilistic Generative Models -Probabilistic Discriminative Models - Bayesian Logistic Regression. Decision Trees - Classification Trees - egression Trees - Pruning. Neural Networks -Feed-forward Network Functions - Back- propagation. Support vector machines - Ensemble methods- Bagging-Boosting.

UNITHI UNSUPERVISED LEARNING

9

Clustering- K-means - EM Algorithm- Mixtures of Gaussians. The Curse of Dimensionality - Dimensionality Reduction - Factor analysis - Principal Component Analysis - Probabilistic PCA- Independent components analysis.

UNITIV PROBABILISTIC GRAPHICALMODELS

9

Graphical Models - Undirected graphical models - Markov Random Fields - Directed Graphical Models -Bayesian Networks - Conditional independence properties - Inference - Learning- Generalization - Hidden Markov Models - Conditional random fields(CRFs)

UNITY ADVANCED LEARNING

9

Sampling – Basic sampling methods – Monte Carlo - Reinforcement Learning – K - Armed Bandit - Elements - Model-Based Learning- Value Iteration- Policy Iteration. Temporal Difference Learning- Exploration Strategies- Deterministic and Non-deterministic Rewards and Actions Computational Learning Theory - Mistake bound analysis, sample complexity analysis- VC dimension. Occam learning- accuracy and confidence boosting

TEXT BOOK

- 1. Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007.
- 2. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 3. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2014.

- 1. Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer, Second Edition, 2011.

COUR	SE OUTCOMES (COs)
CO1	Understand the fundamentals and concept of Machine learning.
CO2	Apply probabilistic techniques for real time application in uncertain environment.
CO3	Explain the concepts of supervised and unsupervised learning techniques.
CO4	Designandimplementprobabilistic graphical models in real time applications.
CO5	Use machine learning tools to implement typical clustering algorithms for different types of applications.
CO6	Explore the different advanced learning techniques.
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low

COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	2		1			2		1	3	3		
CO2	2	3	1	2		1			2	1		3	3		
CO3	2	3	1	2		1			2	1		3	3		
CO4	2	3	1	2		1			2	1	2	3	3		
CO5	2	3	1	2		1			2	1	2	3	3		
CO6	2	3	1	2		1			2	1	2	3	3		
Catego	ory	Pro	fessio	nal E	lective	es(PF	Ξ)								
Appro	val	491	49th meeting of the Academic Council												

	BIO-INSPIRED COMPUTING	L	T	P	C					
U18PEIT035	Total Contact Periods - 45	3	0	0	3					
U18PE11U35	Prerequisite – Artificial Intelligence									
	Course Designed by:- Dept of Information Techno	logy								

- Learn evolutionary theory and algorithms
- Understand Cellular Automata and artificiallife
- Learn artificial neural systems and related learning algorithms

UNITI EVOLUTIONARY ANDCELLULARSYSTEMS

Foundations of evolutionary theory – Genotype – artificial evolution – genetic representations – initial population – fitness functions – selection and reproduction – genetic operators – evolutionary measures – evolutionary algorithms – evolutionary electronics – evolutionary algorithm case study Cellular systems – cellular automata – modeling with cellular systems – other cellular systems – computation with cellular systems – artificial life – analysis and synthesis of cellular systems

UNITH NEURAL SYSTEMS

9

Biologicalnervoussystems—artificialneuralnetworks—neuronmodels—architecture—signal encoding — synaptic plasticity — unsupervised learning — supervised learning — reinforcement learning — evolution of neural networks — hybrid neural systems — casestudy

UNITHI DEVELOPMENTAL AND IMMUNESYSTEMS 9

Rewriting systems – synthesis of developmental systems – evolutionary rewriting systems – evolutionary developmental programs Biological immune systems – lessons for artificial immune systems – algorithms and applications – shape space – negative selection algorithm – clonal selection algorithm - examples

UNITIV BEHAVIORAL SYSTEMS

9

Behavior is cognitive science – behavior in AI – behavior based robotics – biological inspiration for robots – robots as biological models – robot learning – evolution of behavioral systems – learning in behavioral systems – co-evolution of body and control – towards self reproduction – simulation and reality

UNITY COLLECTIVE SYSTEMS

9

Biological self-organization – Particle Swarm Optimization (PSO) – ant colony optimization (ACO) – swarm robotics – co-evolutionary dynamics – artificial evolution of competing systems – artificial evolution of cooperation – case study

TEXT BOOK:

- 1. D. Floreano and C. Mattiussi, "Bio-Inspired Artificial Intelligence", MIT Press, 2008.
- 2. F. Neumann and C. Witt, "Bioinspired Computation in combinatorial optimization: Algorithms and their computational complexity", Springer, 2010.
- 3. A. E. Elben and J. E. Smith, "Introduction to Evolutionary Computing", Springer, 2010.

REFERENCES:

- 1. D. E. Goldberg, "Genetic algorithms in search, optimization, and machine learning", Addison- Wesley, 1989.
- 2. Simon O. Haykin, "Neural Networks and Learning Machines", Third Edition, Prentice Hall, 2008.

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1				l appl											
CO2				ar auto					e.						
CO3	Imp	leme	nt and	l appl	y neu	ral sy	stems	S.							
CO4	Exp	Explain developmental and artificial immune systems.													
CO5	Des	Describebehavioralsystemsandtoimplementin collective intelligencesystems.													
CO6	Desi	ign b	io ins	pired	soluti	ons f	or rea	ıl wor	ld prob	olems.	1				
Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
COs\ POs	1 2 3 4 5 6 7 8 9 10 11 12 PS O1 O2 O3														
CO1			1	2		1			2		1	3	2		
CO2	2	3	1	2		1			2	1		3	2		
CO3	2	3	1	2		1			2	1		3	2		
CO4	2		1	2		1			2	1		3	2		
CO5	2		1	2		1			2	1	1	3	2		
CO6	2	3 1 2 1 2 1 3 2													
Categ	ory	Pro	fessio	nal E	lective	es(PI	E)			1		1			
Appro	val	49t	th mee	eting (of the	Aca	demic	Cour	ncil						

	SOFTWARE CONFIGURATION MANAGEMENT	L	T	P	C
U18PEIT036	Total Contact Periods - 45	3	0	0	3
0101L11030	Prerequisite – software Engineering				
	Course Designed by:- Dept of Information Technology				

OBJECTIVES

- To Introduce the basic concepts of software configurationmanagement
- To learn the importance of SCM in softwaredevelopment
- TounderstandthedifferentSCMphasesandactivities,branching,releasemanagement, configuration managementroles.

UNIT1 INTRODUCTION

9

Introduction to software configuration Management, SCM and Process Improvement, Measurements and Metrics – Benefits of SCM – Configuration Identification – Configuration Change control – Implementing SCM in the Organization – Project Management in CM Environment- Software Scope- Project Estimation – Risk Management Strategies.

CM Benefits, Risks, CM Life-Cycle Management and Planning- Relation to system engineering process – Implementing the CM process – measuring and Evaluating the CM process.

UNITIII CONFIGURATION IDENTIFICATION

Product structure – configuration items – configuration documentation – specification types – software requirement analysis and design – software architecture and design – software integration and qualification – configuration base line concept.

UNITIV CONFIGURATION CONTROL

The process of configuration control – Configuration status accounting – Typical CSA information over the acquisition program – Life cycle - Configuration status accounting process Evaluation.

UNITY CONFIGURATION VERIFICATIONAND AUDITING 9

Configuration identification – the effective documentation of the system – Methods and standards – Generating documentation – configuration verification and Audit – Concepts and principles – configuration verification – configuration audit – application of audits.

TEXT BOOK:

1. Software Configuration Management, Jessica Keyes, Auerbach Publication, 2004

REFERENCES:

1. Enterprise Software Configuration Management Solutions for Distributed and System z, Paolo Cravino, David Lawrence, Antonio Alonso, López Brandt Onorato Zhenhua (Eric) Shen, January 2009

COUR	SE O	UTC	COMI	ES (C	(Os)										
CO1	Und	lersta	nd the	e conc	cepts a	and p	rincip	oles of	softw	areco	nfiguı	ation	mana	gemen	ıt.
CO2	Exp	lain a	about	config	gurati	on M	Ianage	ement	and p	lannin	ıg.				
CO3	deve	elopn	nent.						igurati						ware
CO4	Select configuration items at appropriate levels of the product structure														
CO5	Describe the configuration management activities like control, status accounting, auditing and verification.														
CO6															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs															
CO1	3		2						3		1		3		
CO2	3		2			1			3		1	1	3		
CO3	3		2		1				3	2	1	2	3		
CO4	3		2	1					3	2	1	2	3		
CO5	3		2	1		1			3		1	3	3		
CO6	3		2	1	1	1			3	2	1	3	3		
Categ	ory	Pro	fessio	nal E	lective	es(PI	Ξ)								

Approval	49th meeting of the Academic Council

	CLOUD COMPUTING AND SECURITY	L	T	P	C
U18PEIT041	Total Contact Periods - 45	3	0	0	3
U16FEI1U41	Prerequisite – software Engineering				
	Course Designed by:- Dept of Information Technology	nolog	y		

- To understand the concept of cloudcomputing.
- To appreciate the evolution of cloud from the existingtechnologies.
- To have knowledge on the various issues in cloudcomputing.
- To be familiar with the lead players incloud.
- To appreciate the emergence of cloud as the next generation computingparadigm.

UNITI INTRODUCTION

9

Introduction to Cloud Computing – Definition of Cloud – Evolution of Cloud Computing – Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics – Elasticity in Cloud – On-demand Provisioning.

UNITII CLOUD ENABLINGTECHNOLOGIES

10

Service Oriented Architecture – REST and Systems of Systems – Web Services – Publish-SubscribeModel–BasicsofVirtualization—TypesofVirtualization—ImplementationLevels of Virtualization – Virtualization Structures – Tools and Mechanisms – Virtualization ofCPU – Memory – I/O Devices – Virtualization Support and DisasterRecovery.

UNITIII CLOUD ARCHITECTURE, SERVICESAND STORAGE

8

Layered Cloud Architecture Design – NIST Cloud Computing Reference Architecture – Public, Private and Hybrid Clouds – laaS – PaaS – SaaS – Architectural Design Challenges – Cloud Storage – Storage-as-a-Service – Advantages of Cloud Storage – Cloud Storage Providers – S3.

UNITIV RESOURCE MANAGEMENT AND SECURITYIN CLOUD

10 rovisioning

Inter Cloud Resource Management – Resource Provisioning and Resource Provisioning Methods – Global Exchange of Cloud Resources – Security Overview – Cloud Security Challenges – Software-as-a-Service Security – Security Governance – Virtual Machine Security – IAM – Security Standards.

UNITY CLOUD TECHNOLOGIES ANDADVANCEMENTS

8

Hadoop – MapReduce – Virtual Box — Google App Engine – Programming Environment for Google App Engine — Open Stack – Federation in the Cloud – Four Levels of Federation – Federated Services and Applications – Future of Federation.

TEXT BOOKS:

- 1. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. Rittinghouse, John W., and James F. Ransome, —Cloud Computing: Implementation, Management and Security, CRC Press, 2017.

REFERENCES:

1. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, —Mastering Cloud

- Computing, Tata Mcgraw Hill, 2013.
- 2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach, Tata Mcgraw Hill, 2009.
- 3. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Transactional Systems for EC2 and Beyond (Theory in Practice), O'Reilly, 2009.

COUR	RSE O	UTC	COMI	ES (C	Os)										
CO1					oncep	ts, ko	ey tec	hnolo	gies, s	trengt	hs and	l limi	tation	s of	
			nputin												
CO2	Learr	the	key a	nd ena	abling	g tech	nolog	gies th	at help	in th	e dev	elopm	ent of	fcloud.	
CO3				itytou: delive				ethear	chitect	ureof	comp	utean	dstora	geclo	
CO4	Expla andse			e issu	es of o	cloud	l com _l	outing	such a	as res	ource	mana	geme	nt	
CO5	Be at	ole to	insta	ll and	use c	urrer	nt clou	ıd tecl	hnolog	ies.					
CO6	Evalu appro		and es for	choo imple					tech	nolog	ies,	algor	ithms	and	
	(1								Progi n) 3-H					w	
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	2		1			2		1	3	2		
CO2	2	3	1	2		1			2	1		3	2		
CO3	2	3	1	2		1			2	1		3	2		
CO4	2		1	2		1			2	1		3	2		
CO5	2		1	2		1			2	1	1	3	2		
CO6	2	3	1	2		1			2	1	1	3	2		
Categ	gory	Pro	fessio	nal E	lectiv	es(PI	Ξ)								
Appr	oval	491	th me	eting (of the	Aca	demic	Cour	ncil						

	MULTI AGENT SYSTEMS	L	T	P	C
U18PEIT042	Total Contact Periods - 45	3	0	0	3
UIOFEIIU42	Prerequisite – Artificial Intelligence				
	Course Designed by:- Dept of Information Technology	ology			
OBJECTIVES	S				
 Taxonomy 	of agent architectures, formal languages	for n	nulti-a	gent	systems

 Taxonomy of agent architectures, formal languages for multi-agent systems specification,languagesandschemesforknowledgerepresentation,formallanguages

- and models for modeling of agent and environment behavior, agent communication languages and associated semantic models.
- Basic inter-agent interaction patterns and coordination of cooperative and antagonistic agents. Coordination techniques: organizational structure, contracting, multi-agent planning andnegotiation.
- Application of multi-agent systems in computer and robot vision, decision support systems, electronic commerce, robotics, and simulation of societies.

UNIT-I INTRODUCTION

9

Intelligent Agents-Deductive reasoning Agents – Agents as theorem provers- Agent Oriented Programming - Concurrent Metate M- Practical Reasoning Agents

UNIT-II TYPESOFAGENTS

9

Reactive and Hybrid Agents - Brook's and Subsumption Architecture –The Limitations of Reactive Agents - Hybrid Agents. Communication - Speech Acts - Agent Communication Languages, Working Together - Cooperative Distributed Problem Solving - Task Sharing and Result Sharing Coordination – Multi agent Planning and Synchronization

UNIT-III MULTI-AGENTINTERACTIONS

9

Making group decisions- Co-operative games - Allocating scarce resources

UNIT-IV BARGAINING

q

Bargaining for resource division, task allocation and resource allocation - Arguing - Abstract, deductive, dialogue and implemented argumentation systems - Applications - Agents for different domains

UNIT-V JADE 9

Agent Oriented Language - The JADE Platform – Programming with JADE – BasicFeatures

- 1. Michael Wooldridge, —An Introduction to MultiAgent Systems^{||}, II edition, JohnWiley & Sons, Ltd.2009.
- 2. Fabio Bellifemine, Giovanni Caire, Dominic Greenwood, Developing Multi agent Systems with JADE, John Wiley and Sons Ltd,2007.
- 3. Gerhard Weiss, —Multi Agent Systems: A Modern Approach to Distributed Artificial Intelligence, The MIT press,2000.

COUR	SE O	UTC	COMI	ES (C	Os)										
CO1	Und	lersta	nd the	e notio	ons of	the	intelli	gent a	igent a	nd mu	ılti				
CO2	Des	cribe	Reac	tive a	nd Hy	brid	Agen	its							
CO3	Iden	tify	the ba	sic ap	plicat	ion a	reas o	of inte	lligent	agen	ts				
CO4	App	ly ba	rgain	ing an	d aug	men	tative	techn	iques.						
CO5	Exp	lore	the ba	sics o	f the a	agent	torier	ited la	ınguag	es.					
CO6	Des	ign n	nulti a	gent s	systen	ns fo	r real	time _I	probler	ns.					
		Maj	ping	of Co	ourse	Out	comes	s with	Prog	ram o	utcoi	nes (I	POs)		
	(1	/2/3	indica	ates st	treng	th of	corre	elatio	n) 3- H	igh, 2	2-Med	lium,	1-Lov	W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03

CO1			1	2		1			2		1	3	3	1	1
CO2	2	3	1	2		1			2	1		3	3	1	1
CO3	2	3	1	2		1			2	1		3	3	1	1
CO4	2		1	2		1			2	1		3	3	1	1
CO5	2		1	2		1			2		1	3	3	1	1
CO6	2		1	2		1			2	1	1	3	3		
Categ	ory	Pro	Professional Electives(PE)												
Appro	oval	49	49th meeting of the Academic Council												

	MINING SOCIAL MEDIA	L	T	P	C
	Total Contact Periods - 45	3	0	0	3
U18PEIT043	Prerequisite – Data Mining Techniques				
	Course Designed by:- Dept of Information Technology				

- To use different tools for collecting, analyzing, and exploring social media data for research and development purposes.
- Toprocessthecollecteddata, primarily structured using methods involving correlation, regression, and classification to derive insights about the sources and people who generated that data.
- To apply best practices in SearchEngine

UNIT-I INTRODUCTION

9

What is Social Media Mining - New Challenges fir Mining - Essentials - Graph Essentials-Graph Basics - Graph Representation p- Types of Graph - Connctivity in Graphs - Special Graphs - Graph Algorithms.

UNIT-II NETWORKMEASURES

9

Network Measures - Entity - Transitivity and Reciprocity - Balance and Status - Network Models - Properties of Real-World Networks - Random Graphs - Small-World Models - Preferential Attached Models - Data Mining Essentials - Data Pre-processing - Data mining Algorithms - Supervised Learning - Unsupervised Learning.

UNIT-III COMMUNITY ANDINTERACTIONS

9

Community Analysis - Community Detection - Community Evolution - Community Evaluation - Information Diffusion in Social Media - Herd Behavior - Information Cascades - Diffusion of innovations - Epidemics.

UNIT-IV APPLICATIONS

9

Inference and Homophily - Measuring Assortativity - Influence - Homophily- Distinguishing Influence and Homophily - Recommendation in Social Media -Challenges - Classical Recommendation Algorithms - Recommendation Using Social Context - Evaluating Recommendation- Behavior Analytics Individual Behavior - collective Behavior.

UNIT-V CASE STUDY

9

Gathering social media data - Building social media networks - Analyzing network effects-Simulating network dispersion

TEXT BOOK

1. Social Media Mining: An Introduction, Reza Zafarinin, Mohammad Ali Abbasi, Huan Lui - April 2014.

REFERENCES:

- 1. Mining Text Data, Charu C. Aggarwal, ChengXiang Zhai, Springer2012.
- 2. Mastering Social Media Mining with Python, Macro Bonzanini, Packt publications July 2016.

COUR	SE O	UT(COM	ES (C	COs)										
CO1							_		g Inter as You					collect ckr.	t data
CO2	corr	elatio	on, re	gressi		nd cla	assific							s invo source	
CO3	soci		ors,su	_			sters)	andno	alysis etwork	to aprope		ident isocia	-	impo asites	ortant such
CO4	App	ly be	est pra	actices	s in Se	earch	Engi	ne.							
CO5	Des	ign e	thical	l princ	ciples	to the	e use	of we	b and s	social	media	a data	•		
	D '1	d so	cial n	etwor	ks										
CO6	Buil	iu 50	ciai ii	Ct W 01											
CO6		Maj	pping	g of C	ourse				Prog					W	
Cos\ Pos		Maj	pping	g of C	ourse				_					W PS 02	PS 03
Cos\	(1	Ma _]	pping indic	g of Coates s	ourse treng	th of	corr	elatio	n) 3-H	ligh, 2	-Med	lium,	1-Lov PS	PS	
Cos\ Pos	(1	Ma _]	pping indic	g of Coates s	ourse treng	th of	corr	elatio 8	n) 3-H 9	ligh, 2	-Med 11	lium,	PS 01	PS	
Cos\ Pos CO1	(1 1 3	Ma _]	pping indic	g of Coates s	ourse treng	th of	corr	8 2	9 3	ligh, 2	11 1	12	PS 01 3	PS	
Cos\ Pos CO1 CO2	(1 1 3 3	Ma _]	pping indic	g of Coates s	ourse treng	th of	corr	8 2 2	9 3 3	10	11 1	12 1	PS 01 3 3	PS	
Cos\Pos CO1 CO2 CO3	(1 1 3 3 3	Ma _]	pping indic	g of Coates s	ourse treng	th of	corr	8 2 2 2 2 2	9 3 3 3	10 2	11 1 1 1	12 1 1 2	PS 01 3 3 3	PS	
Cos\ Pos CO1 CO2 CO3 CO4	(1 1 3 3 3 3	Maj /2/3 2	pping indic 3 2 2 2 2 2 2 2 2	g of Coates s	ourse treng 5	6 1 1 1 1 1	7	8 2 2 2 2	9 3 3 3 3	10 2	11 1 1 1 1 1 1	12 1 2 2	PS 01 3 3 3 3 3	PS	
Cos\ Pos CO1 CO2 CO3 CO4 CO5	(1 3 3 3 3 3 3	Maj /2/3 2 Pro	pping indic 3 2 2 2 2 2 2 2 fession	g of Coates s 4	ourse treng	6 1 1 1 es(PI	7 7 E)	8 2 2 2 2 2 2 2 2 2	9 3 3 3 3 3 3	10 2 2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 1 2 2 3	PS 01 3 3 3 3 3	PS	

PROCESSING					
U18PEIT044 Total Contact Periods - 45		3	0	0	3
Prerequisite – Image processing					
Course Designed by:- Dept of Information	mation Technology	,			

OBJECTIVES

• The aim of the course is to show how to extract, model, and analyze information from medicaldataandapplicationinordertohelpdiagnosis,treatmentandmonitoring of diseases through computer science.

UNIT-I DIGITALIMAGEFUNDAMENTAL

Elementsofdigitalimageprocessingsystems, Elementsof Visual perception, Image formation model, Image sampling and quantization, aliasing, zooming and shrinking of digital images. Monochrome Vision Model, Colour Vision Model. Image transforms – Discrete Fourier transform, Properties of Fourier transform, Fast Fourier transform and inverse fast Fourier

UNIT-II IMAGEFUNDAMENTALS

9

9

Imagesamplingandquantization, Matrix and Singular Valuere presentation of discrete images. Image pre-processing, point operation, Histogram 121 odeling, spatial operations, transform operations.

UNIT-III IMAGEENHANCEMENT

9

Enhancement by point processing –Simple intensity transformation –Histogram processing – Image subtraction –Image averaging.Spatial filtering –Smoothing filters, sharpening filters. Enhancements in frequency domain-Low pass filtering –High pass filtering.

UNIT-IV IMAGEANALYSIS, CLASSIFICATIONANDRECONSTRUCTIONOF ACT ANDMRIIMAGES 9

Image analysis, Spatial feature extraction, edge detection, Image segmentation. Image reconstruction from projections, Random transform, filter back projection algorithm, reconstruction of CT images, Imaging methods in MF images, fourier reconstruction of MRI.

UNIT-V TRANSMISSION OFMEDICALIMAGES

9

Medical Image, data compression of transmission, transform coding, pixelCoding, predictive coding, Interference coding.

TEXT BOOKS:

transform.

- 1. Kavyan Najarian and Robert Splerstor "Biomedical Signals and Image Processing", CRC Taylor and Francisn, New York, 1991.
- 2. John L. Semmlow, "Biosignal and Biomedical Image Processing Matlab Based applications" Marcel Dekker Inc., New York,2004.

COUR	SE O	UTC	COMI	ES (C	os)										
CO1		uire a		lamen	ital kn	owle	edge o	of digi	tal ima	ige pr	ocessi	ng wi	ith Fo	urier	
CO2	Lear	n ab	out th	e ima	ge sar	nplir	ng, Mo	odelin	g and	quanti	izatio	n tech	nique	S.	
CO3		lain t essir		age e	nhanc	eme	nt, its	proce	ss and	types	of fil	ters u	sed in	image	;
CO4	App	ly in	nage a	nalys	is, cla	ssifi	cation	and r	econst	ructio	n tecl	nnique	es in i	mages.	,
CO5	Acq	uire 1	the sk	ills in	the tr	ansn	nissio	n of n	nedical	l imag	es.				
CO6	Desi	ign re	eal tin	ne app	olicati	ons f	for pro	ocessi	ng med	dical i	mage	s.			
									Progi n) 3-H					w	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	2		1			2		1	3	3		
CO2	2	3	1	2		1			2	1		3	3		

CO3	2	3	1	2		1			2	1		3	3		
CO4	2		1	2		1			2	1		3	3		
CO5	2		1	2		1			2		1	3	3		
CO6	2	3	1	2		1			2	1	1	3	3		
Catego	ry	Pro	fessio	nal E	lective	es(PF	Ξ)								
Appro	oval	491	49th meeting of the Academic Council												

	MULTIMEDIA COMPRESSION TECHNIQUES	L	T	P	C
	Total Contact Hours – 45	3	0	0	3
U18PEIT045	Prerequisite –NIL				
	Course Designed by:- Dept of Information Technology				

The student should be made to:

- Understand error–controlcoding.
- Understand encoding and decoding of digital datastreams.
- Be familiar with the methods for the generation of these codes and their decoding techniques.
- Be aware of compression and decompressiontechniques.
- Learn the concepts of multimediacommunication.

UNIT I MULTIMEDIA COMPONENTS

Introduction - Multimedia skills - Multimedia components and their characteristics - Text, sound, images, graphics, animation, video, hardware.

UNIT II AUDIO AND VIDEO COMPRESSION

Audio compression—DPCM-Adaptive PCM –adaptive predictive coding-linear Predictive coding-code excited LPC-perpetual coding Video compression –principles-H.261-H.263-MPEG 1, 2, and 4.

UNIT III TEXT AND IMAGE COMPRESSION

Compression principles-source encoders and destination encoders-lossless and lossy compression- entropy encoding –source encoding -text compression – static Huffman coding dynamic coding – arithmetic coding –Lempel Ziv-Welsh Compression-image compression.

UNIT IV VOIP TECHNOLOGY

Basics of IP transport, VoIP challenges, H.323/ SIP -Network Architecture, Protocols, Call establishment and release, VoIP and SS7, Quality of Service- CODEC Methods- VOIP applicability.

UNIT V MULTIMEDIA NETWORKING

Multimedia networking -Applications-streamed stored and audio-making the best Effort service- protocols for real time interactive Applications-distributing multimedia-beyond best effortservice-secludingandpolicingMechanisms-integratedservices-differentiatedServices-RSVP.

TEXT BOOKS:

- 1. Fred Halshall "Multimedia Communication Applications, Networks, Protocols and Standards", Pearson Education, 2007.
- 2. Tay Vaughan, "Multideai: Making it Work", 7 th Edition, TMH 200898.

3. Kurose and W.Ross" Computer Networking "a Top down Approach, Pearson Education 2005.

REFERENCES:

- 1. Marcus Goncalves "Voice over IP Networks", Mc Graw Hill1999.
- 2. KR. Rao,Z S Bojkovic, D A Milovanovic, "Multimedia Communication Systems: Techniques, Standards, and Networks", Pearson Education 2007.
- 3. R.Steimnetz, K.Nahrstedt, "Multimedia Computing, Communications and Applications", Pearson Education Ranjan Parekh, "Principles of Multimedia", TMH2007.

COUR	SE O	UTO	COMI	ES (C	Os)										
CO1	Exp	lore 1	the ba	sic co	mpon	ents	of mu	ıltime	dia.						
CO2	Ana	lyze	audio	and v	video	comp	pressi	on tec	hnique	es.					
CO3	App	Apply text and image compression techniques.													
CO4	Eval	Evaluate the basic concepts of Voice Over Internet Protocol.													
CO5	Und	Understand the concepts of worker over internet Protects. Understand the concepts of multimedia networking and its applications.													
CO6	Design interactive real time multimedia applications.														
	(1								Progi n) 3-H					W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	2		1			2		1	3	2		
CO2	2	3	1	2		1			2	1		3	2		
CO3	2	3	1	2		1			2	1		3	2		
CO4	2		1	2		1			2	1		3	2		
CO5	2		1	2		1			2		1	3	2		
CO6	2	3	1	2		1			2	1	1	3	2		
Categ	ory	Pro	fessio	nal E	lectiv	es(PI	Ξ)								
Appro	val	491	th mee	eting (of the	Aca	demic	Cour	ncil						

	AGILE METHODOLIGY	L	T	P	C				
U18PEIT046	Total Contact Periods - 45	3	0	0	3				
U16PE11U40	Prerequisite –Nil								
	Course Designed by:- Dept of Information Technolog	y							

OBJECTIVES

- Toprovidestudentswithatheoreticalaswellaspracticalunderstandingofagilesoftware
- Todeveloppractices and how small teams can apply them to create high-quality software.

UNITI AGILE METHODOLOGY

9

TheoriesforAgileManagement—AgileSoftwareDevelopment—TraditionalModelvs.Agile Model

- Classification of Agile Methods - Agile Manifesto and Principles - Agile Project

Management - Agile Team Interactions - Ethics in Agile Teams - Agility in Design-Testing

- Agile Documentations - Agile Drivers- Capabilities and Values

UNIT HAGILE PROCESSES

9

Lean Production – SCRUM, Crystal, Feature Driven Development–Adaptive Software Development–ExtremeProgramming:MethodOverview–Lifecycle–WorkProducts-Roles andPractices.

UNITIII AGILITY AND KNOWLEDGE MANAGEMENT 9

Agile Information Systems – Agile Decision Making – Earl_S Schools of KM – Institutional Knowledge Evolution Cycle – Development, Acquisition, Refinement, Distribution, Deployment, Leveraging – KM in Software Engineering – Managing Software Knowledge – Challenges of Migrating to Agile Methodologies – Agile Knowledge Sharing – Role of Story-Cards – Story-Card Maturity Model(SMM).

UNITIV AGILITY ANDREQUIREMENTS ENGINEERING

9

Impact of Agile Processes in RE-Current Agile Practices – Variance – Overview of REUsing Agile – Managing Unstable Requirements – Requirements Elicitation – Agile Requirements Abstraction Model – Requirements Management in Agile Environment- Agile Requirements Prioritization – Agile Requirements Modeling and Generation – Concurrency in Agile RequirementsGeneration.

UNITY AGILITY ANDQUALITY ASSURANCE

9

AgileProductDevelopment-AgileMetrics-FeatureDrivenDevelopment(FDD)-Financial and Production Metrics in FDD – Agile Approach to Quality Assurance – Test Driven Development – Agile Approach in Global SoftwareDevelopment.

TEXT BOOKS:

- 1. DavidJ.AndersonandEliSchragenheim,—AgileManagementforSoftwareEngineering: Applying the Theory of Constraints for Business Results, Prentice Hall,2003.
- 2. Hazza and Dubinsky, —Agile Software Engineering, Series: Undergraduate Topics in Computer Science, Springer, 2009.

- 1. Craig Larman, —Agile and Iterative Development: A Managers Guide, Addison-Wesley, 2004.
- 2. Kevin C. Desouza, —Agile Information Systems: Conceptualization, Construction, and Management, Butterworth-Heinemann, 2007.

COUR	SE OUTCOMES (COs)
CO1	Understand the fundamentals of agile methodology.
CO2	Explore the various agile processes for software development.
CO3	Demonstrateknowledge management in Agile methodology.
CO4	DescribethebenefitsandpitfallsofworkinginanAgileteam and to understand Agile
	development, deployment andtesting.
CO5	Apply agile approach to quality assurance.
CO6	Design applications using Agile approach in Global Software Development
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low

COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3		2					2	3		1				2
CO2	3		2			1		2	3		1	1			2
CO3	3		2		1			2	3	2	1	2			2
CO4	3		2	1				2	3	2	1	2			2
CO5	3		2			1		2	3		1	3			2
CO6	3		2	1	1	1		2	3	2	1	3			2
Categ	ory	Pro	Professional Electives(PE)												
Appro	val	491	49th meeting of the Academic Council												

	INTERNET OF THINGS	L	T	P	C			
LI10DETEO51	Total Contact Periods - 45	3	0	0	3			
U18PEIT051	Prerequisite – Computer Architecture							
	Course Designed by:- Dept of Information Technolo	gy						

- To understand Smart Objects and IoT Architectures
- To learn about various IOT-related protocols
- To build simple IoT Systems using Arduino and RaspberryPi.
- To understand data analytics and cloud in the context of IoT

UNITI FUNDAMENTALSOFIOT

9

Evolution of Internet of Things - Enabling Technologies - IoT Architectures: oneM2M, IoT World Forum (IoTWF) and Alternative IoT models - Simplified IoT Architecture and Core IoT Functional Stack -- Fog, Edge and Cloud in IoT - Functional blocks of an IoT ecosystem - Sensors, Actuators, Smart Objects and Connecting SmartObjects

UNITII IoT PROTOCOLS

9

IoTAccessTechnologies:PhysicalandMAClayers,topologyandSecurityofIEEE802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained Networks – Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks – Application Transport Methods: Supervisory Control and Data Acquisition – Application Layer Protocols: CoAP andMQTT

UNITIII DESIGN ANDDEVELOPMENT

9

Design Methodology - Embedded computing logic - Microcontroller, System on Chips - IoT systembuildingblocks-Arduino-Boarddetails,IDEprogramming-RaspberryPi-Interfaces and Raspberry Pi with PythonProgramming.

UNITIV DATA ANALYTICS AND SUPPORTING SERVICES

9

Structured Vs Unstructured Data and Data in Motion Vs Data in Rest – Role of Machine Learning – No SQL Databases – Hadoop Ecosystem – Apache Kafka, Apache Spark – Edge Streaming Analytics and Network Analytics – Xively Cloud for IoT, Python WebApplication Framework – Django – AWS for IoT – System Management withNETCONF-YANG

UNITY CASE STUDIES/INDUSTRIAL APPLICATIONS

9

Cisco IoT system - IBM Watson IoT platform - Manufacturing - Converged Plantwide

Ethernet Model (CPwE) – Power Utility Industry – GridBlocks Reference Model - Smart and ConnectedCities:Layeredarchitecture,SmartLighting,SmartParkingArchitectureandSmart TrafficControl

TEXTBOOK:

1.DavidHanes,GonzaloSalgueiro,PatrickGrossetete,RobBartonandJeromeHenry,—IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press,2017

- 1. Arshdeep Bahga, Vijay Madisetti, —Internet of Things A hands-on approachl, Universities Press, 2015
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things Key applications and Protocols^{||}, Wiley, 2012 (for Unit2).
- 3. Jan Ho" ller, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier, 2014.
- 4. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Things, Springer, 2011.
- 5. Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media,2011.

COUR				•	,										
CO1	Exp	lain t	the co	ncept	of Io	Γ.									
CO2	Ana	lyze	vario	us pro	tocols	s for	IoT.								
CO3	Desi	Design a PoC of an IoT system using Rasperry Pi/Arduino													
CO4	Appl	Apply data analytics and use cloud offerings related to IoT.													
CO5	Anal	Analyze applications of IoT in real time scenario													
CO6	Implement Industrial IoT applications														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	2		1			2		1	3	3	1	1
CO2	2	3	1	2		1			2	1		3	3	1	1
CO3	2	3	1	2		1			2	1		3	3	1	1
CO4	2		1	2		1			2	1		3	3	1	1
CO5	2		1	2		1			2		1	3	3	1	1
CO6	2	3	1	2		1			2	1	1	3	3		
Categ	ory	Pro	ofessi	onal E	Electiv	ves(P	E)								
Appro	oval	401													

	ARTIFICIAL INTELLIGENT GAME	L	T	P	C
	Total Contact Periods – 45	3	0	0	3
U18PEIT052	Prerequisite – Artificial Intelligence				

Course Designed by:- Dept of Information Technology

OBJECTIVES

- Study The Concepts Of ArtificialIntelligence.
- Learn The Methods Of Solving Problems Using ArtificialIntelligence.
- Introduce The Concepts Of Expert Systems And MachineLearning.

UNITI INTRODUCTION

q

Introduction—Definition — Future of Artificial Intelligence — Characteristics of Intelligent Agents—Typical Intelligent Agents — Problem Solving Approach to Typical AI problems.

UNITII PROBLEMSOLVING METHODS

9

Problem solving Methods – Search Strategies- Uninformed – Informed – Heuristics – Local Search Algorithms and Optimization Problems – Searching with Partial Observations – Constraint Satisfaction Problems – Constraint Propagation – Backtracking Search – Game Playing – Optimal Decisions in Games – Alpha – Beta Pruning – Stochastic Games

UNITIII KNOWLEDGE REPRESENTATION

9

First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering-CategoriesandObjects–Events–MentalEventsandMentalObjects–ReasoningSystemsfor Categories – Reasoning with Default Information

UNITIV SOFTWARE AGENTS

9

Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems

UNITY APPLICATIONS

9

AIapplications—LanguageModels—InformationRetrieval-InformationExtraction—Natural Language Processing — Machine Translation — Speech Recognition — Robot — Hardware — Perception — Planning —Moving

TEXT BOOK

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall, Third Edition, 2009.
- 2. I. Bratko, Prolog: Programming for Artificial Intelligence, Fourth edition, Addison-Wesley Educational Publishers Inc.,2011.

- I. M.TimJones,—ArtificialIntelligence:ASystemsApproach(ComputerScience)||,Jones and Bartlett Publishers, Inc.; First Edition, 2008
- Nils J. Nilsson, —The Quest for Artificial Intelligence, Cambridge University Press, 2009.
- 3. WilliamF.ClocksinandChristopherS.Mellish, ||ProgramminginProlog:UsingtheISO Standard||, Fifth Edition, Springer, 2003.
- 4. Gerhard Weiss, —Multi Agent Systems, Second Edition, MIT Press, 2013.
- 5. David L. Poole and Alan K. Mackworth, —Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010.

COURSE OUTCOMES (COs)									
CO1	Identify problems that are amenable to solution by Artificial Intelligence methods.								
CO2	Select appropriate Artificial Intelligencemethods to solve a given problem.								

CO3			e agiv			n in t	he lan	iguage	e/frame	ework	of di	fferen	t Arti	ficial	
CO4				_		_		_	gents a			ne suit	table 1	Artific	ial
CO5		Designandcarryoutanempiricalevaluationofdifferent Artificial Intelligence algorithms													
CO6	unde	erstai		, con	puter	vis	ion a	_		_	-	_		al lang n real	_
	(1								Progi n) 3-H					W	
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1			1	2		1			2		1	3	3		
CO2	2	3	1	2		1			2	1		3	3		
CO3	2	3	1	2		1			2	1		3	3		
CO4	2		1	2		1			2	1		3	3		
CO5	2		1	2		1			2		1	3	3		
CO6	2	3	1	2		1			2	1	1	3	3		
Catego	ory	Pro	fessio	nal E	lectiv	es(PI	Ξ)								
Appro	val	491	th mee	eting (of the	Aca	demic	Cour	ncil				•		

	INFERENTIAL STATISTICS	L	T	P	C					
U18PEIT053	Total Contact Periods - 45	3	0	0	3					
Ulorelluss	Prerequisite – Data mining									
	Course Designed by:- Dept of Information Technology									
ODIECTIVES				•						

To enable students to analyze and interpret data, collected data from a variety of types of research designs, within a linear model framework.

UNIT1 INTERVAL ESTIMATION

10

Concepts of confidence interval and confidence coefficient - confidence interval for mean - difference between means - variance and ratio of variances under normality. Large sample confidence interval for proportions and correlation coefficients

UNITII TESTINGOFHYPOTHESIS

9

Definition of Most Powerful (MP) - Uniformly Most Powerful(UMP) - Neyman Pearson Lemma - Monotone Likelihood Ratio Property - Statement of the theorem -UMP tests for testing one sided hypothesis for distribution with MLR property.

UNITIII LIKELIHOOD RATIOTEST

9

Likelihood Ratio test- LRT for single mean for normal case (large and small samples)- for equality of two means for unknown but equal variances. LRT for single variance and equality of two variances

UNITIV NON PARAMETRICTESTS

9

Need for non parametric tests- Sign test for one sample and two samples- Wilcoxon signed rank test- Median test- Wald Wolfowitz run test- Mann Whitney U test- Run test for randomness-testforindependencebasedonSpearman'srankcorrelationcoefficient(smalland large samples)- Chi square test- goodness of fit- independence of attributes in contingency table - and equality of many proportions. Kruskal Wallis Test for equality of severalmeans.

UNITY SEQUENTIAL PROBABILITY RATIO TEST

8

Need for sequential test- Wald's SPRT- Sequential test for the mean of Normal population when variance is known and for the proportion- Derivation of expressions for OC and ASN functions in Bernoulli and Normal distributions.

TEXT BOOK

- 1. InferentialStatistics,S.RoychowdhuryD.Bhattacharya,U.N.DHUR&SonsPrivateLtd, 2012 **REFERENCES**
- 1. Probability and Statistical Inference Theory & Practices, S. Roychowdhury D. Bhattacharya, U.N.DHUR & Sons Private Ltd .2015
- 2. Statistics and Data Analysis, A. Abebe, J.Daniel, J.W.McKean,

COUR	SE C)UT	COM	ES (C	COs)			Dame							
CO1		dersta NCO		he ar	nalysis	s of	Vari	ance	(ANC	OVA)	or A	Analys	is of	Cova	ariance
CO2	Ana	alyze	and i	nterpr	et dat	a col	lected	from	factor	rial de	signs.				
CO3				L		_	,) procethe res		to co	mput	e part	ial and	l semi-
CO4	pred	dicto	r vari	ables.											ultiple
CO5		rpret earch		OVA,	ANC	OVA	A, and	l ML	R resu	lts rep	orted	in pu	ıblish	ed rep	orts of
CO6	Eva	luate	the r	eliabi	lity an	d val	lidity	of a r	neasur	ing (o	r surv	ey) in	strum	ent.	
	(1			-					n Prog on) 3-H					w	
Cos\ Pos	(1			-					_					w PS 02	PS 03
•		1/2/3	indic	ates s	treng	th of	corr	elatio	on) 3-H	ligh, 2	2-Med	lium,	1-Lo	PS	
Pos	1	2	indic	ates s	treng	th of	corr	elatio	on) 3-H	ligh, 2	2-Med 11	lium,	1-Lo	PS 02	
Pos CO1	1 3	2 2	indic 3	ates s	treng	th of	corr	elatio	9 3	ligh, 2	2-Med 11	lium,	1-Lo	PS 02 2	
Pos CO1 CO2	1 3 3	2 2 2 2	3 2 2 2	ates s	treng 5	th of	corr	elatio	9 3 3	10	11 1 1	12 1	1-Lo	PS 02 2 2	
Pos CO1 CO2 CO3	1 3 3 3	2 2 2 2 2	3 2 2 2 2 2	ates s	treng 5	th of	corr	elatio	9 3 3 3	10 2	11 1 1 1	12 1 1 2	1-Lo	PS 02 2 2 2	
Pos CO1 CO2 CO3 CO4	3 3 3 3	2 2 2 2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2	4	5	6 1 1 1 1 1	7	elatio	9 3 3 3 3	10 2	11 1 1 1 1	12 1 2 2	1-Lo	PS 02 2 2 2 2 2	
Pos CO1 CO2 CO3 CO4 CO5	3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 Pro	3 2 2 2 2 2 2 2 2 2 5 fession	4 1 onal E	treng 5	6 1 1 1 es(Pl	7 7 E)	8	9 3 3 3 3 3 3 3 3 3	10 2	11 1 1 1 1 1	12 1 2 2 3	1-Lo	PS 02 2 2 2 2 2 2 2	

	DEEP LEARNING	L	T	P	C						
U18PEIT054	Total Contact Hours - 45	3	0	0	3						
U10FE11U54	Prerequisite – Neural networks										
	Course Designed by:- Dept of Information Technology										
		0,									

This course covers the basics of machine learning, neural networks and deep learning. Model for deep learning technique and the various optimization and generalization mechanisms are included. Major topics in deep learning and dimensionality reduction techniques are covered.

UNITI INTRODUCTION

9

Introductiontomachinelearning-Linearmodels(SVMsandPerceptrons,logisticregression)-IntrotoNeuralNets:Whatashallownetworkcomputes-Traininganetwork:lossfunctions,

back propagation and stochastic gradient descent- Neural networks as universal function approximates

UNITH DEEPNETWORKS

9

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning

UNITIII DIMENTIONALITY REDUCTION

9

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures - AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization

UNITIV OPTIMIZATION AND GENERALIZATION

9

Optimization in deep learning— Non-convex optimization for deep networks- Stochastic Optimization Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

UNITY CASE STUDY ANDAPPLICATIONS

9

Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint DetectionBioInformatics-FaceRecognition-SceneUnderstanding-GatheringImageCaptions

- 1. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.
- 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

COUR	SE OUTCOMES (COs)
CO1	Explain the mathematical, statistical and computational challenges of building neural networks
CO2	Understand the concepts of Machine Learning
CO3	Explore the concepts of deep learning

CO4	App	ly di	mens	ionalit	ty red	uctio	n tech	nnique	es in de	eep le	arning	g appl	ication	ns		
CO5	Des	cribe	the o	ptimiz	zation	and	gener	alizat	ion for	deep	netw	orks				
CO6	Design real time applications using deep learning techniques															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
COs\ POs	1 2 3 4 5 6 7 8 9 10 11 12 PS PS PS 03															
CO1		1 2 1 2 1 3 3														
CO2	2	2 3 1 2 1 2 1 3 3														
CO3	2	3	1	2		1			2	1		3	3			
CO4	2		1	2		1			2	1		3	3			
CO5	2		1	2		1			2		1	3	3			
CO6	2		1	2		1			2		1	3	3			
Categ	Category Professional Electives(PE)															
Appro	oval	49	th me	eting (of the	Aca	demic	Cou	ncil							

	SOFTWARE QUALITY	L	T	P	C
U18PEIT055	Total Contact Periods - 45	3	0	0	3
UIOPEIIUSS	Prerequisite – Software Engineering				
	Course Designed by:- Dept of Information Technolog	gy			
OD TO CONTINUE					

- To develop a broad understanding of SQA processes from planning untilexecution
- To have detailed knowledge of techniques in an appropriate engineering and management context.

UNITI 9

Introduction to software quality – Software modeling – Scope of the software quality program – Establishingqualitygoals–Purpose,qualityofgoals–SQAplanningsoftware–Productivity and documentation.

UNITII 9

Software quality assurance plan – Purpose and Scope, Software quality assurance Management – Organization – Quality tasks – Responsibilities – Documentation.

UNITIII 9

Standards, Practices, Conventions and Metrics, Reviews and Audits—Management-Technical review—Software inspection process—Walkthrough process—Audit process—Test processes—ISO, cmm compatibility—Problem reporting and corrective action.

UNITIV 9

Tools, Techniques and methodologies, Code control, Media control - Supplier control - Records collection - Maintenance and retention - Training and risk management.

UNITV 9

ISO 9000 model - CMM model- Comparisons- ISO 9000 weaknesses- CMM weaknesses-

SPICE – Software process improvement and capability determination.

TEXT BOOK

1. Mordechai Ben – Meachem and Garry S.Marliss, "Software Quality – Producing Practical, Consistent Software", International Thompson Computer Press, 1997.

REFERENCES

- 1. Watt. S. Humphrey, "Managing Software Process", Addison Wesley, 1998.
- 2. Philip.B.Crosby, "QualityisFree:TheArtofmakingqualitycertain", MassMarket, 1992.

COUR	SE O	UTO	COM	ES (C	(Os)										
CO1	Und	lersta	and th	e qual	ity m	anage	ement	proc	esses						
			the v	arious	s activ	vities	of qu	ality a	assurar	ice, qi	ıality	plann	ing a	nd qua	lity
CO2	cont	trol													
CO3	Define the importance of standards in the quality														
G0.4	Discuss the needs for software processassessment and improvement														
CO4															
CO5	Explore the different software quality factors models														
CO6	Apply tools, techniques and methodologies to ensure software quality														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\	DC DC DC														
Pos	1 2 3 4 5 6 7 8 9 10 11 12 PS														
CO1			1	2		1			2		1	3	3	3	3
CO2	2	3	1	2		1			2	1		3	3	3	3
CO3	2	3	1	2		1			2	1		3	3	3	3
CO4	2		1	2		1			2	1		3	3	3	3
CO5	2		1	2		1			2		1	3	3	3	3
CO6	2		1	2		1			2		1	3	3	3	3
Categ	ory			onal E		` `									
Appro	oval	49	th mee	eting o	of the	Acad	lemic	Coun	cil						

	SOFTWARE ARCHITECTURE	L	T	P	C
U18PEIT056	Total Contact Periods – 45	3	0	0	3
016FE11030	Prerequisite –Nil				
	Course Designed by:- Dept of Information Technolog	gy			

OBJECTIVES

- To develop Computer Science, Software Engineering or Computer Engineering student
- Tounderstandtheemergingfieldofsoftwarearchitecturemeanstothefieldofsoftware development.

UNIT I 9

Software Architecture Architectural Styles – Pipes and Filters – Data Abstraction and Object Oriented Organization – Event Based Implicit Invocation – Layered Systems – Repositories – Interpreters – Process Control – Other Architectures – Hetero Generous Architecture – Case Studies.

UNITII 9

Shared Information Systems – Database Integration – Integration in Software Development Environments – Integration in the Design of Build – Architectural Structures for Shared Information Systems – Conclusions.

UNITIII 9

Architectural Design Guidance – Guidance for User-Interface Architectures – The Quantified Design Phase.

UNITIV 9

Formal Model and Specification – The Value of Architectural Formalism – Formalizing the Architecture of a Specific System – Formalizing an Architectural Style – Formalizing and Architectural Design Space – Theory of Software Architecture – Notation Linguistic Issues – Requirement for Architecture – Description Languages – First Class Connectors – Adding Implicit Invocation to Traditional Programming Languages.

UNITV 9

Tools for Architectural Design – Unicon – Exploiting Style in Architectural Design Environments – Beyond Definition / Use.

TEXT BOOK

1. Mary Shaw and David Garlan, "Software Architecture: Perspectives on an Emerging Discipline", Prentice – Hall of India, New Delhi, 2000.

REFERENCE

1. Bass, Lan, Clements, Paul and Kazman, Rick, "Software Architecture in Practice, Addison Wesley, 1998.

COUR	J /		COMI	ES (C	os)										
CO1						Arcl	nitectu	ıral pe	erspect	ive ar	nd how	v it di	ffers f	rom lo	wer-
	leve							1	1						
CO2	Describe the integration in Software Development process.														
CO3	Apply the architectural structures for shared information systems.														
CO4	Develop architectural approaches from basic requirements.														
CO5	Define the architectural frameworks within product line development.														
CO6	Apply tools for software architectural designs.														
	Tappin tools for sorthare are interested a congilor														
	Mapping of Course Outcomes with Program outcomes (Pos) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3		2						3		1		3		
CO2	3		2			1			3		1	1	3		
CO3	3		2		1				3	2	1	2	3		

CO4	3		2	1					3	2	1	2	3		
CO5	3		2			1			3		1	3	3		
CO6	3		2 1 3 1 3 3												
Categ	ory	Prof	Professional Electives(PE)												
Appro	oval	49th meeting of the Academic Council													

	QUANTUM COMPUTING	L	T	P	C
U18PEIT061	Total Contact Periods – 45	3	0	0	3
	Prerequisite –Nil				
	Course Designed by:- Dept of Information Techno	ology			
OBJECTIVES	Students will be well versed in Quantum compu			_	
	Basic quantum mechanics, quantum cryptograph	-		_	
	teleportation, polynomial-time factoring, quantum			ection	, and a
	new graphical calculus for reasoning about quantu	m syst	ems		

UNITI FOUNDATION

9

Overview of traditional computing – Church-Turing thesis – circuit model of computation – reversible computation – quantum physics – quantum physics and computation – Dirac notation and Hilbert Spaces – dual vectors – operators – the spectral theorem – functions of operators – tensor products – Schmidt decomposition theorem.

UNITII QUBITS AND QUANTUM MODELOFCOMPUTATION

0

State of a quantum system – time evolution of a closed system – composite systems – measurement – mixed states and general quantum operations – quantum circuit model – quantum gates – universal sets of quantum gates – unitary transformations – quantum circuits.

UNITIII QUANTUM ALGORITHMS-I

9

Superdense coding – quantum teleportation – applications of teleportation – probabilistic versus quantum algorithms – phase kick-back – the Deutsch algorithm – the Deutsch-Jozsa algorithm – Simon's algorithm – Quantum phase estimation and quantum FourierTransform.

UNITIV QUANTUM ALGORITHMS-II

9

Order-finding problem – eigen value estimation approach to order finding – Shor's algorithm for order finding – finding discrete logarithms – hidden subgroups – Grover's quantum search algorithm – amplitude amplification – quantum amplitude estimation – quantum counting – searching without knowing the successprobability.

UNITY QUANTUM COMPUTATIONAL COMPLEXITY AND ERROR CORRECTION 9

Computational complexity – black-box model – lower bounds for searching – general black-box lower bounds – polynomial method – block sensitivity – adversary methods – classical error correction – classical three-bit code – fault tolerance – quantum error correction – three-and nine-qubit quantum codes – fault-tolerant quantum computation.

TEXTBOOK:

1. P. Kaye, R. Laflamme, and M. Mosca, "An introduction to Quantum Computing", Oxford University Press, 1999.

1. V. Sahni, "Quantum Computing", Tata McGraw-Hill Publishing Company, 2007.

COUR	SE O	UTO	COMI	ES (C	(SOs)										
CO1	Tran	ıslate	efluen	tlybet	ween	them	ajorm	athen	naticalı	repres	entati	ons.			
CO2	Imp	leme	nt bas	sic qu	antum	algo	orithm	ıs.							
CO3	Und	lersta	nd qu	antun	n deco	ohere	ence in	ı syste	ems for	r com	putati	on.			
CO4	App	ly ei	genva	lue es	stimat	ion a	pproa	ch to	order f	findin	g.				
CO5	Describe the quantum error correction techniques.														
CO6	Designing fault tolerant quantum computing systems														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	1 2 3 4 5 6 7 8 9 10 11 12 PS PS PS 03														
CO1	3 3 2 3 1 2 2														
CO2					3		2	3	2	3		2	2		
CO3	1	1		1		2					3		2		
CO4	3	3		2	2	3	2	2	2			1	2		
CO5	3			2	2	2	2	1		2	2		2		
CO6	3			2	2	2	2	1		2	2		2		
Categ	ory	Pro	fessio	nal E	lectiv	es(Pl	E)								
Appro	val	49 ^t	mee mee	eting o	of the	Acac	lemic	Coun	cil						

U18PEIT062	REAL TIME SYSTEMS	L	T	P	C
	Total Contact Periods – 45	3	0	0	3
	Prerequisite – Database Management System		•		•
	Course Designed by:- Dept of Information Technolog	gy			
OBJECTIVES	The main objective of this course is to cover the promethods of real-time computer systems. It cover techniques and microprocessor system realization. The time operating systems and real-time software systems.	ers t	he	inter	facing

UNITI INTRODUCTION

9

Issues in Real Time Computing, Structure of a Real Time System. Task Classes, Performance Measures for Real Time Systems, Estimating Program Run times. Task Assignment and Scheduling –Classical Uniprocessor scheduling algorithms, UniProcessor. Scheduling of IRIS Tasks, Task Assignment, Mode Changes, and Fault Tolerant Scheduling.

UNITII PROGRAMMING LANGUAGESANDTOOLS

9

Programming Language and Tools – Desired Language characteristics, Data Typing, Control structures, Facilitating Hierarchical Decomposition, Packages, Runtime (Exception) Error handling, Overloading and Generics, Multitasking, Low Level programming, Taskscheduling, Timing Specifications, Programming Environments, Run-timeSupport.

Basic Definition, Real time Vs General Purpose Databases, Main Memory Databases, 136ransact ion priorities, Transaction Aborts, Concurrency Control Issues, Disk Scheduling Algorithms,

Twophase Approach to improve Predictability, Maintaining Serialization Consistency, Data bases for Hard Real Time systems.

UNITIV COMMUNICATION

9

Real-Time Communication – Communications Media, Network Topologies Protocols, Fault Tolerant Routing. Fault Tolerance Techniques – Fault Types, Fault Detection. Fault Error containment Redundancy, Data Diversity, Reversal Checks, Integrated Failure handling.

UNITY EVALUATIONTECHNIQUES

9

Reliability Evaluation Techniques – Obtaining Parameter Values, Reliability Models for Hardware Redundancy, Software Error models. Clock Synchronization – Clock, A Nonfault-Tolerant Synchronization Algorithm, Impact of Faults, Fault Tolerant Synchronization in Hardware, Fault Tolerant Synchronization in Software

TEXT BOOK:

1. C.M. Krishna, Kang G. Shin, "Real-Time Systems", McGraw-Hill International Editions, 1997.

- 1. Stuart Bennett, "Real Time Computer Control-An Introduction", Second edition Prentice Hall PTR, 1994.
- 2. Peter D. Lawrence, "Real time Micro Computer System Design An Introduction", McGr aw Hill, 1988.
- 3. S.T. Allworth and R.N. Zobel, "Introduction to real time software design", Macmillan, II Edition, 1987.
- 4. R.J.ABuhur, D.L.Bailey, "AnIntroductiontoReal-TimeSystems", Prentice-HallInternational, 1999.
- 5. Philip.A.Laplante "Real Time System Design and Analysis" PHI, III Edition, April2004.

COURSE OUTCOMES (Cos) CO1 Understand the basics concepts of real-time systems.															
CO1	Und	ersta	nd the	e basi	cs cor	ncept	s of re	eal-tin	ne syst	ems.					
CO2	Gen	erate	a hig	h-leve	el ana	lysis	docu	ment l	oased o	on req	uirem	ents s	specifi	cation	s.
CO3	Describe the basic multi-task scheduling algorithms for periodic, aperiodic.														
CO4	Apply fault tolerant routing for the real time communication and communications media.														
CO5	Implement reliability evaluation techniques to identify software error models.														
CO6	Design real time systems by interacting with the environment.														
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	3		2		1						3	2		
CO2	3	3			3		1	3	2	3			2		
CO3	3	3	1			2					3		2		
CO4	3	3		2	2	3	1	2	2			2	2		

CO5	3	3		2	2	2	2			2	2		2		
CO6	3	3		2	2	2	2			2	2		2		
Categ	ory	Pro	Professional Electives(PE)												
Approval 49 th meeting of the Academic Council															

U18PEIT063	COMPUTER GRAPHICS	L	T	P	C
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Computer Architecture				
	Course Designed by:- Dept of Information Technology				

- Be familiar with both the theoretical and practical aspects of computing within ages.
- Have described the foundation of image formation, measurement, and analysis.
- Understand the geometric relationships between 2D images and the 3Dworld.

UNITI INTRODUCTION

9

Survey of computer graphics, Overview of graphics systems – Video display devices, Raster scansystems,Randomscansystems,GraphicsmonitorsandWorkstations,Inputdevices,Hard copy Devices, Graphics Software; Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled areaprimitives.

UNITII TWODIMENSIONALGRAPHICS

9

Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; widow-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.

UNITIII THREEDIMENSIONALGRAPHICS

9

Three dimensional concepts; Three dimensional object representations – Polygon surfaces-Polygon tables- Plane equations – Polygon meshes; Curved Lines and surfaces, Quadratic surfaces;Blobbyobjects;Splinerepresentations—Beziercurvesandsurfaces—B-Splinecurves and surfaces.

TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations — Translation, Rotation, Scaling, composite transformations; Three dimensional viewing — viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods.

UNITIV ILLUMINATION AND COLOURMODELS

9

Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection.

UNITY ANIMATIONS & REALISMANIMATIONGRAPHICS

9

Design of Animation sequences – animation function – raster animation – key frame systems – motion specification –morphing – tweening. COMPUTER GRAPHICS REALISM: Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – raytracing.

TEXT BOOKS:

- 1. John F. Hughes, Andries Van Dam, Morgan Mc Guire, David F. Sklar, James D. Foley, Steven K. Feiner and Kurt Akeley, "Computer Graphics: Principles and Practice", , 3rd Edition, Addison- Wesley Professional, 2013. (UNIT I, II, III, IV).
- 2. Donald Hearn and Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007 (UNITV).

- 1. Donald Hearn and M. Pauline Baker, Warren Carithers, "Computer Graphics With Open GL", 4th Edition, Pearson Education, 2010.
- 2. Jeffrey McConnell, "Computer Graphics: Theory into Practice", Jones and Bartlett Publishers, 2006.
- 3. Hill F S Jr., "Computer Graphics", Maxwell Macmillan", 1990.
- 4. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, KelvinSung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.
- 5. William M. Newman and Robert F.Sproull, "Principles of Interactive Computer Graphics", Mc GrawHill1978.

COUR	SE C	UT(COM	ES (C	(sos)										
CO1	Equ	ip w	ith the	pract	tical s	kills	neces	sary t	o build	l com	puter	vision	appli	cation	s.
CO2	Des	cribe	the o	bject,	scene	e reco	ognitio	on an	d categ	orizat	ion fr	om in	nages.		
CO3	edge		tectio						ion rel primi						
CO4	Explore the different illumination and color models.														
CO5	Imp	leme	nt mo	tion r	elated	l tech	nnique	es.							
CO6	Dev	elop	appli	cation	s usir	ng co	mpute	er visi	on tecl	nnique	es.				
	Mapping of Course Outcomes with Program outcomes (Pos) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low														
Cos\ Pos	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	3		2								2	3		
CO2					3		2		2	3			3		
CO3						2					3	2	3		
CO4	3	2		2	2	3	2		2				3		
CO5	3			2	2	2	2			2	2	3	3		
CO6	3			2	2	2	2			2	2	3	3		
Categ	ory	Pro	fessio	nal E	lectiv	es(Pl	E)	•	•	•	•	•			
Appro	oval	49	th me	eting	of the	Aca	demic	Cou	ncil						

U18PEIT064	BUSINESSINTELLIGENCE	L	T	P	C	1
------------	----------------------	---	---	---	---	---

Total Contact Hours: 45	3	0	0	3
Prerequisite: Database Management System				
Course Designed by:- Dept of Information Technology				

The objective of this course is to explore business intelligence and data mining, using powerful yet user friendly tools, with exposure to real world business applications.

UNITI BUSINESS INTELLIGENCE

9

EffectiveAndTimelyDecisions—Data,InformationAndKnowledge—RoleOfMathematical Models — Business Intelligence Architectures: Cycle of A Business Intelligence Analysis — Enabling Factors In Business Intelligence Projects — Development of a Business Intelligence System — Ethics And BusinessIntelligence.

UNITII KNOWLEDGE DELIVERY

9

The Business Intelligence User Types, Standard Reports, Interactive Analysis and Ad Hoc Querying, Parameterized Reports And Self-Service Reporting, Dimensional Analysis, Alerts/Notifications, Visualization: Charts, Graphs, Widgets, Scorecards And Dashboards, Geographic Visualization, Integrated Analytics, Considerations: Optimizing The Presentation For The Right Message.

UNITIII EFFICIENCY

9

Efficiency Measures – The CCR Model: Definition Of Target Objectives- Peer Groups – Identification Of Good Operating Practices; Cross Efficiency Analysis – Virtual Inputs And Outputs – Other Models. Pattern Matching – Cluster Analysis, Outlier Analysis.

UNITIV BUSINESS INTELLIGENCEAPPLICATIONS

9

Marketing Models – Logistic And Production Models – Case Studies.

UNITY FUTURE OFBUSINESS INTELLIGENCE

9

Future of Business Intelligence – Emerging Technologies, Machine Learning, Predicting The Future, BI Search & Text Analytics – Advanced Visualization – Rich Report, Future Beyond Technology.

TEXT BOOK:

1. Efraim Turban, Ramesh Sharda, Dursun Delen, "Decision Support And Business Intelligence Systems", 9th Edition, Pearson 2013.

- 1. LarissaT.Moss,S.Atre,"BusinessIntelligenceRoadmap:TheCompleteProjectLifecycle Of Decision Making", Addison Wesley,2003.
- 2. Carlo Vercellis, "Business Intelligence: Data Mining And Optimization For Decision Making", Wiley Publications, 2009.
- 3. David Loshin Morgan, Kaufman, "Business Intelligence: The Savvy Manager"S Guide", Second Edition, 2012.
- 4 Cindi Howson, "Successful Business Intelligence: Secrets To Making BI A Killer App", McGraw-Hill, 2007.
- 5. Ralph Kimball , Margy Ross , Warren Thornthwaite, Joy Mundy, Bob Becker, "The Data Warehouse Lifecycle Toolkit", Wiley Publication Inc.,2007.

COUR	SE OUTCOMES (COs)
CO1	Understand the basics Business Intelligence.

CO2	Lear	rn Sta	andaro	d Repo	orts, I	ntera	ctive	Analy	sis an	d Ad	Нос С)ueryi	ing.			
CO3	Und	ersta	nd Ef	ficien	су Ме	easur	es and	d CCF	R Mod	el.						
CO4	Und	ersta	nd bu	siness	Intel	ligen	ce ap	plicati	ions.							
CO5	Desi	ign B	usine	ss Inte	ellige	nce A	Applic	ations	s for re	al tin	ne cas	es.				
CO6	Predict the future of Business Intelligence and explore the emerging technologies															
	Mapping of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
COs\ POs	1	2	PC PC PC													
CO1	3	3		2	3	3						1	2			
CO2							2	3	2	3			2			
CO3						2					3	2	2			
CO4	3	2		2	2		2	2	2				2			
CO5	3			2	2	2	2			2	2	3	2			
CO6	3	2		2	2	2	2			2	2	3	2			
Categ	ory	Pro	fessio	nal El	lective	es(PI	Ξ)									
Appro	val	49t	th med	eting o	of the	Acad	demic	Cour	ncil	_						

	INFORMATION THEORY AND CODING	L	T	P	C							
U18PEIT065	Total Contact Periods – 45	3	0	0	3							
	Prerequisite – Multimedia Systems											
	Course Designed by:- Dept of Information Techno	Course Designed by:- Dept of Information Technology										
OBJECTIVES	Understand Error–ControlCoding.											
	Understand encoding and decoding of digital d	atastre	ams.	•								
	Be Familiar with the methods for the generation	n of th	ese o	codes	and							
	their decodingtechniques.											
	Be aware of compression and decompressionte	chniqu	ies.									
	Learn the Concepts of MultimediaCommunication	tion.										

UNITI INFORMATION ENTROPYFUNDAMENTALS

9

Uncertainty, Information And Entropy – Source Coding Theorem – Huffman Coding – Shannon Fano Coding – Discrete Memory Less Channels – Channel Capacity – Channel Coding Theorem – Channel Capacity Theorem.

UNITII DATA ANDVOICE CODING

9

DifferentialPulseCodeModulation—AdaptiveDifferentialPulseCodeModulation—Adaptive SubbandCoding—DeltaModulation—AdaptiveDeltaModulation—CodingOfSpeechSignal At Low Bit Rates (Vocoders,LPC).

UNITIII ERROR CONTROL CODING

9

Of

LinearBlockCodes—SyndromeDecoding—MinimumDistanceConsideration—CyclicCodes — GeneratorPolynomial—ParityCheckPolynomial—EncoderForCyclicCodes—Calculation Syndrome — ConvolutionalCodes.

UNITIV COMPRESSION TECHNIQUES

9

Principles – Text Compression – Static Huffman Coding – Dynamic Huffman Coding – ArithmeticCoding–ImageCompression–GraphicsInterchangeFormat–TaggedImageFile Format – Digitized Documents – Introduction to JPEG Standards.

UNITY AUDIO AND VIDEOCODING

9

Linear Predictive Coding – Code Excited LPC – Perceptual Coding, MPEG Audio Coders – Dolby Audio Coders – Video Compression – Principles – Introduction To H.261 & MPEG VideoStandards.

TEXTBOOKS:

- 1. Simon Haykin, "Communication Systems", 4th Edition, John Wiley And Sons, 2001.
- 2. Fred Halsall, "Multimedia Communications, Applications Networks Protocols And Standards", Pearson Education, Asia 2002; Chapters: 3,4,5.

- 1. Mark Nelson, "Data Compression Book", BPB Publication1992.
- 2. Watkinson J, "Compression InVideo And Audio", Focal Press, London, 1995.

COUR	SE O	UTC	COM	ES (C	(Os)										
CO1	Und	erstar	nd the	funda	menta	ls of	Inforr	nation	Entrop	y and	chann	el cap	acity f	or vario	ous
	chan														
CO2	Com	pare	variou	ıs data	and v	oice	source	codin	g techr	niques					
CO3	Insp	Inspect error detection and describe the different error control coding techniques													
CO4	Apply the different compression techniques for real time applications.														
CO5	Describe the concepts of Audio and video coding techniques.														
CO6	Implement the different coding techniques to design applications in multimedia														
	communication systems.														
	Mapping of Course Outcomes with Program outcomes (POs)														
(1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
COs\ POs	1	2	3	4	5	6	7	8	9	10	11	12	PS 01	PS 02	PS 03
CO1	3	2	1	1								2	2	2	
CO2	3	1	1	1							2		2	2	
CO3	3	2	2	2									2	2	
CO4	3	2	2	2					2		2	2	2	2	
CO5	3	2	2	2					2			2	2	2	
CO6	3	2	2	2					2			2			
Categ	ory	Pro	fessio	nal E	lectiv	es(Pl	Ξ)			·					
Appro															

	MULTI AGENT INTELLIGENT SYSTEMS	L	T	P	C
U18PEIT066	Total Contact Periods – 45	3	0	0	3
	Prerequisite – Artificial Intelligence				

	Course Designed by:- Dept of Information Technology
OBJECTIVES	The purpose of this course is to impart concepts of ArtificialIntelligence and different agents.

UNITI INTRODUCTION

9

Definitions - Foundations - History - Intelligent Agents-Problem Solving-Searching - Heuristics - Constraint Satisfaction Problems - Game playing.

UNITII KNOWLEDGE REPRESENTATION AND REASONING

Logical Agents-First order logic-First Order Inference-Unification-Chaining- Resolution Strategies Knowledge Representation-Objects-Actions-Events.

UNITIII PLANNINGAGENTS

Q

Planning Problem-State Space Search-Partial Order Planning-Graphs-Nondeterministic Domains Conditional Planning-Continuous Planning-Multi Agent Planning.

UNITIV AGENTS AND UNCERTAINITY

9

Acting under uncertainty – Probability Notation-Bayes Rule and use - Bayesian Networks-Other Approaches-Time and Uncertainty-Temporal Models- Utility Theory - Decision Network – Complex Decisions.

UNITY HIGHER LEVEL AGENTS

9

Knowledge in Learning-Relevance Information-Statistical Learning Methods-Reinforcement Learning Communication-Formal Grammar-Augmented Grammars- Future of AI.

TEXTBOOKS:

- 1. Stuart Russell and Peter Norvig, "Artificial Intelligence A Modern Approach", 2nd Edition, Prentice Hall,2002.
- 2. Michael Wooldridge, "An Introduction to Multi Agent System", John Wiley, 2002.

- REFERENCE BOOKS:
 1. Patrick Henry Winston, Artificial Intelligence, 3rd Edition, AW,1999.
 2. Nils.J.Nilsson, Principles of Artificial Intelligence, Narosa Publishing House,1992.

COUR	SE C	UT(COM	ES (C	Os)										
CO1									idy of	agent	s that	receiv	e per	cepts f	rom
	the	Envi	ronme	ent an	d perf	orm	actior	ıs.							
CO2	Den	Demonstrate awareness of informed search and exploration Methods.													
CO3	Exp	Explain about Altechniques for knowledge representation and planning.													
CO4	Apply probabilistic/statistical approaches to act in uncertain environment.														
CO5	Understand the different learning approaches and make the machine to perform														
	human-like tasks.														
CO6	Prepare for future by integrating Artificial Intelligence in real time.														
Mapping of Course Outcomes with Program outcomes (POs)															
(1/2/3 indicates strength of correlation) 3-High, 2-Medium, 1-Low															
Cos\	1			4	_		7	0		10	11	10	PS	PS	PS
Pos	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	3	2	2					3	2		2	3		
CO2	2	3	2	2					2	2		2	3		
CO3	2	3	2	2				2	2	2			3		
CO4	3	3	2	2					2	2		2	3		
CO5	2	3	2	2				2	2	2	2	2	3	2	
CO6	3	3	2	2					2	2	2	2	3	2	
Categ	ory	Co	re Ele	ctive(CE)										
Appro															