

B.TECH – AUTOMOBILE ENGINEERING (FULL TIME) CURRICULUM & SYLLABUS R2015 CHOICE BASED CREDIT SYSTEM (I – VIII SEMESTERS)

DEPARTMENT OF AUTOMOBILE ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY No: 173, Agaram Road, Selaiyur, Chennai -600 073, Tamil Nadu.

FACULTY OF ENGINEERING AND TECHNOLOGY REGULATIONS 2015 CHOICE BASED CREDIT SYSTEM <u>DEGREE OF BACHELOR OF TECHNOLOGY</u> (EIGHT SEMESTERS)

(Applicable to the batches admitted from July 2015)

1.0 PRELIMINARY DEFINITIONS AND NOMENCLATURE

In these Regulations, unless the context otherwise requires:

- i. "Programme" means Degree Programme, that is B.Tech. Degree Programme.
- ii. "**Discipline**" means specialization or discipline of B.Tech. Degree Programme, like Civil Engineering, Electrical and Electronics Engineering, information Technology, etc.
- iii. "**Course**" means a theory or practical subject that is normally studied in a semester, like Mathematics, Physics, Engineering Graphics etc.
- iv. **"Head of the Institution"** means the Dean of the Institution who is responsible for all academic activities of that College/Institution and for implementation of relevant rules of these Regulations.
- v. "University" means Bharath Institute of Higher Education & Research (BIHER)

2.0 PREAMBLE

The 'Outcome Based Education (OBE)' Process is introduced to ensure that the required outcomes (knowledge, skills and attitude / behavior) are acquired by the learners of a programme. With the OBE process in mind, our educational system for the Faculty of Engineering and Technology has been framed to provide the needful scope for the learners through the Choice Based Credit System (CBCS) that will pave the path to strengthen their knowledge, skills and attitude / behavior. The CBCS offers flexibility to learners which include large number of electives, flexible pace for earning credits and audit courses.

2.1 THE OBJECTIVES OF CHOICE BASED CREDIT SYSTEM (CBCS):

- To offer the right blend of Core, Humanities & Social Sciences, Engineering Sciences and Basic Science courses to facilitate the learners to acquire the needful outcomes.
- To facilitate s t u d e n t s to choose open electives of their choice to acquire knowledge in the areas of their interest.
- To elevate the level of knowledge, skills and attitude/behavior on par with the students across the globe.
- To offer programmes in an open student centric environment with purpose, needful foundations, breadth (exposure for optimal learning) and professionalism.
- ➢ To learn at students' own pace
- > To opt for additional courses and achieve more than the required credits
- > To opt for interdisciplinary approach for learning
- To opt for Inter college/University migration within the country and outside with transfer of Credits.
- To have more scope to enhance students skills and more scope of taking up projects and assignments, vocational training, including entrepreneurship.

- > To improve the job opportunities of students
- To enable potential employers assess the performance of students on a scientific scale.

The curriculum and syllabi for B.Tech programmes confirm to outcome based teachinglearning process based on the following Programme Educational Objectives.

2.2 PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the chosen field of Engineering and Technology.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in the appropriate field of Engineering and Technology, designing, implementing, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: SKILL:

To provide Industry based training for developing professional skills and soft skills such as proficiency in languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

In general the following Program Outcomes have been identified and the curricula have been structured in such a way that each of the courses meets these outcomes. The Programme Educational Objectives and Programme Outcomes are well defined and aligned with the Vision and Mission of each of the Department and the University.

2.3 PROGRAMME OUTCOMES (POs)

Engineering Graduate will have

- a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) The ability to identify, formulate, and solve engineering problems
- c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d) The ability to design and conduct experiments, as well as to analyze and interpret data
- e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

- f) The ability to apply reasoning informed by the knowledge of contemporary issues
- g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) The ability to understand professional and ethical responsibility and apply them in engineering practices
- i) The ability to function on multidisciplinary teams
- j) The ability to communicate effectively with the engineering community and with society at large
- k) The ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- 1) The ability to recognize the need for, and an ability to engage in life-long learning

3.0 ADMISSION

- **3.1** Candidates seeking admission to the first semester of the eight semester B.Tech. Degree Programme: shall have passed the Higher Secondary Examinations of (10+2) Curriculum (Academic Stream) prescribed by the Government of Tamil Nadu with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III for Engineering group of courses and Physics, Chemistry and Biology for Bio group of courses (Industrial Bio Tech, Bio-Informatics, Genetic Engg and Bio-Medical Engg) or any examination of any other University or authority accepted by the Board of Management of University as equivalent thereto.
- **3.2** The candidates who have passed the Higher Secondary Examination (Vocational groups in Engineering/Technology) of the Government of Tamil Nadu, shall also be eligible for admission to the first 1st year programme.
- **3.3** The candidates who have passed the Diploma in Engineering / Technology, after passing 10th standard of school education conducted by the State Board of Technical Education and training, shall be eligible for admission through Lateral entry system to the third semester of the B.Tech. Degree Programmes
- **3.4** The eligibility criteria such as marks, number of attempts and physical fitness shall be as prescribed by the Board of Management of University and UGC from time to time

4.0 STRUCTURE OF PROGRAMMES

4.1 Every Programme will have curricula with syllabi consisting of theory and practical courses.

The curriculum is structured to achieve the Programme Educational Objectives (PEOs) and the corresponding Programme Outcomes (POs).

4.2 The syllabus for each course is designed based on Course Objectives and Course Outcomes (COs). COs are mapped with the POs in order to ensure the respective PO

4.3 Outline of Choice Based Credit System:

- a. **Humanity and Social Studies:** Generally a course in language, value education, Personality Development, Environmental Sciences and Ethics.
- b. **Basic Sciences:** Foundation courses like Maths, Physics, Chemistry, and Biology required to understand the Engineering Courses.
- c. **Engg Sciences:** Foundation courses like Basic Civil, Mechanical, Electrical, Electronics, Computer and Cell Biology to lay foundation to understand the core and other allied engineering & technology courses.
- d. **Professional Core Courses:** Courses which should compulsorily be studied by a candidate as core requirement are termed as Professional Core courses.

- e. **Core Elective Courses:** Generally a course which can be chosen from a pool of courses for specializing in a specific area within the discipline/domain of the core curriculum.
- f. **Non Major Elective Courses:** a course which can be chosen from a pool of courses supportive to the discipline or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the candidate's proficiency/skill.
- g. **Open Elective Courses:** a course that would improve his/her employability such as advanced technology courses offered by the industries or a course which the student thinks that would add value for his/her career.
- h. **Projects & Research:** Project work/Dissertation and Term paper, Internship, Technical Seminar and Comprehension.

Course Work – Subject Area	Credits		Suggested Distribution
	Minimum	Maximum	of Credits
Humanities and Social Sciences (HSS): Soft skills, Value Education & Professional Ethics, Languages, Environmental Science, Aptitude, Personality Development, NCC/NSS/NSO/ Yoga etc	19	21	20
Basic Sciences (BS): including Maths, Physics, Chemistry and Biology,	28	31	29
Engineering Sciences (ES): Basic Civil Engg, Electrical Engg, Mechanical Engg, Electronics Engg, Computer, etc.	18	20	18
Professional Core (PC) & Core Electives (CE): subjects under Core Engg, relevant to the chosen specialization/branch	100	104	100
Non Major and Open Electives (NE & OE): relevant to the chosen specialization/branch, other Technical, emerging subject areas, etc.	15	15	15
Project Work & Research (PR) : includes Project work, Term Paper, Seminar and/or internship in industry or elsewhere, etc.	13	17	15
Total credits for whole programmes:	174	208	197 (195-200) credits

4.4 **The details of credit allocation are given below in the** Table

Nature of the Course	Periods / Hours per Week	Credits
Theory	3	3

	4	4
Laboratory	2 or 3	1
Theory + Laboratory	2 + 2	3
Tutorial	2	1
Mini Project1	2	1
Term Paper	4	2
Tech Seminar/Industrial Training (2 weeks)	2	1
Project Work (Eighth Semester)	18 (Minimum)	9

Mini project, Technical Seminar and Industrial Training are also given 1 to 2 credits depending on the amount of time allotted based on the specific requirement of the branch concerned.

- 4.5 Each semester curriculum shall normally have a blend of theory courses not exceeding7 and practical courses not exceeding 4. The students are permitted to register for a minimum of 16 credits and maximum of 30 credits in a semester.
- 4.6 For the award of the degree, a student has to earn certain minimum total number of credits specified in the curriculum of the relevant branch of study. The minimum will be between 195-200 credits depending on the branch of study.
- 4.7 The medium of instruction, examinations and project report will be English, except for courses on language other than English.

5.0 DURATION OF THE PROGRAMME:

A student is ordinarily expected to complete the B.Tech. Programme in 8 semesters (four academic years) but in any case not more than 14 Semesters for HSC (or equivalent) candidates and not more than 12 semesters for Lateral Entry Candidates. Each semester shall normally consist of 90 working days with 450 hours. The Head of the Institution shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus and that the teacher teaches the full content of the specified syllabus for the course being taught. End –Semester Examination will ordinarily be at the end of each semester.

6.0 ATTENDANCE REQUIREMENTS FOR COMPLETION OF THE SEMESTER

- 6.1 A Candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester:
- 6.1.1. Every student is expected to earn at least 75% attendance.
- 6.1.2 However, a candidate who could secure attendance between 65% and 74% only in one particular semester due to medical reasons (hospitalization / accident / specific illness) is given exemptions of 10% of attendance on production of Medical Certificate.
- 6.1.3 Students who go for participating in Seminar or Conference will be given on duty permission. The candidate shall submit the on duty participation certificate to the HOD

who will in turn recommend and submit to the Head of the Institution for the approval. The approved certificates will be forwarded to the Controller of Examinations for record.

6.2 Candidates who do not satisfy the clauses 6.1.2 and 6.1.3 will not be permitted to write the End-Semester Examinations of the subject and are not permitted to go to the next semester, the detained semester should be repeated in the next academic year. When a student fulfills the requirement of overall attendance in a semester as per the clause 6.1.2 and 6.1.3 but fails to fulfill the attendance requirement for some of the courses, such courses should be repeated in the next academic year when offered.

7.0 CLASS ADVISOR AND STUDENT COUNSELOR

7.1 Class Advisor

Head of the Department will allot one faculty member to each class as class advisor. The role of the class advisor is to

- i. Monitor the attendance of the class,
- ii. Class work done by the faculty,
- iii. Circulate the notices and circulars pertaining to the class, class time table, test schedule, examination time table, meeting schedule, minutes of the class committee meetings, etc.,
- iv. Maintain all important documents of the students for reference/inspection by all committees
- iv. Work closely with the student counselors on matters related to students attached to the student counselor and update the students record of the students of the class.

7.2 Student Counselor (Mentor)

HOD will assign a Student Counselor (Mentor) for every 15 students at the time of admission in the first semester who will continue to be the mentor for these students till they graduate. By guiding and counseling students, teachers can create a greater sense of belongingness amongst our student community. The student counselor will monitor the courses undertaken by the students, check attendance and progress of the students and counsel them periodically. The student counselors should ensure that each student is made aware of the various options for growth and are monitored and guided to become overall performers and help the students to select and work for career choices of their interest. The student counselors shall update and maintain the record of each student attached to them. The student attached to them. The students attached to them. The student counselors shall also help the class advisors to update the record card of students attached to them. The student counselor may also discuss with the class advisor and HOD and parents about the progress of the students.

8.0 CLASS COMMITTEE

There shall be a class committee for each class in a semester.

- **8.1** The class committee for a class under a particular branch is normally constituted by the Head of the Department. However, if the students of different branches are mixed in a class of the first semester (generally common to all branches), the class committee is to be constituted by the first year class coordinator.
- **8.2** The class committee shall be constituted on the first working day of any semester or earlier.
- **8.3** At least 4 student representatives (usually 2 boys and 2 girls) shall be included in the class committee.
- **8.4** A class committee will consists of teachers of the concerned class, student representatives, class advisor, student counselors and a chairperson who is not normally teaching the class,. The function of the class committee include

- Solving problems experienced by students in the class room and in the laboratories.
- Clarifying the regulations of the degree programme and the details of rules
- Informing the student representatives, the academic schedule including the dates of assessments and the syllabus coverage for each assessment.
- Analyzing the performance of the students of the class after each test and finding the ways and means of solving the problems, if any.
- The committee shall device suitable methods for improving the performance of slow learners identified.
- **8.5** The Head of the Institution may participate in any class committee of the institution.
- **8.6** The chairperson is required to prepare the minutes of every meeting, submit the same to Head of the Institution within two days of the meeting and arrange to circulate it among the concerned students and teachers. If there are some points in the minutes requiring action by the institution, the same shall be brought to the notice of the Head of the Institution by the chairperson of the class committee through respective HODs.
- **8.7** The first meeting of the class committee shall be held within one week from the date of commencement of the semester, in order to inform the students about the nature and weightage of assessments within the framework of the Regulations. Two or three subsequent meetings may be held at suitable intervals. During these meetings the student members representing the entire class, shall meaningfully interact and express the opinions and suggestions of the class students to improve the effectiveness of the teaching-learning process.

9.0 COURSE COMMITTEE FOR COMMON COURSES

Each common theory course offered to more than one discipline or group, shall have a "Course Committee" comprising all the teachers teaching the common course with one of them nominated as Course Coordinator. The nomination of the Course Coordinator shall be made by the Head of the Department / Head of the Institution depending upon whether all the teachers teaching the common course belong to a single department or to several departments. The 'Course committee' shall meet as often as possible and ensure uniform scheme of evaluation for the test. Wherever it is feasible, the course committee may also prepare a common question paper for the test(s).

10.0 PROCEDURE FOR AWARDING MARKS FOR INTERNAL ASSESSMENT

10.1 Every teacher is required to maintain an 'ATTENDANCE AND ASSESSMENT RECORD' which consists of attendance marked in each lecture or practical or project work class, the test marks and the record of class work (topic covered), separately for each course. This should be submitted to the Head of the department periodically (at least three times in a semester) for checking the syllabus coverage and the records of test marks and attendance. The Head of the department will put his/her signature and date after due verification. At the end of the semester, the record should be verified by the Head of the Institution who will keep this document in safe custody (for two years). Any inspection team appointed by the University may inspect the records of attendance and assessment of both current and previous semesters.

% of Attendance	Marks
<75	Nil
76-80	1
81-85	2

10.1.1 The marks allocated for attendance is given in Table .

86-90	3
91-95	4
96-100	5

10.2 Theory Courses

There will be two periodical tests, each carrying weightage of 5 marks and one model examination carrying weightage of 10 marks. The distribution of marks for various components for the Internal Assessment is shown below in the table:

S.No	Components for Internal Assessment	Syllabus Coverage for the test / exam	Duration of the test in Minutes.	Marks (max.)
01.	Internal Test – I	2 Units of the Syllabus	90	5
02.	Internal Test – II	Next 2 Units of the Syllabus	90	5
03	Model Test	Full Syllabus	180	10
04	Seminar/Assignment/ Online Test/Quiz	-	-	5
06.	Attendance (Refer Clause 10.1.1)	-	-	5
	Total			30

10.3 Practical Courses:

Every practical exercise / experiment in all practical courses will be evaluated based on the conduct of exercise / experiment and records maintained by the students. There will be at least **one** model practical examination.

The criteria for awarding marks for internal assessment are given in Table below.

Items	Marks (Maximum)
Observation	7.50
Record	7.50
Model Practical	20

Attendance { Refer – 10.1.1 }	5
Total	40

10.4 Project Work

Project work may be assigned to a single student or to a group of students not exceeding 4 per group. For Project work out of 100 marks, the maximum marks for Continuous Assessment is fixed as 40. The Head of the Department shall constitute a review committee for each programme. There shall be a minimum of 3 members in the review committee. The project Guide will be one of the members of the Review Committee.

There shall be two assessments (each 100 marks) during the semester by a review committee. The student shall make presentation on the progress made before the committee. The total marks obtained in the two assessment shall be 40 marks

Continuous Assessment 40 Marks			
Review I (20 Marks) Review II (20 Marks)			
Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide
14	6	14	6

The continuous assessment marks for Project Work will be distributed as given below:

10.5 Seminar / Professional Practices:

The seminar / Professional Practices shall carry 100 marks and shall be evaluated through continuous assessment only. Every student is expected to present a minimum of 2 seminars per semester before the evaluation committee and for each seminar, marks can be equally apportioned. The three member committee appointed by the Head of the Department will evaluate the seminar and at the end of the semester the marks can be consolidated and taken as the final mark. The evaluation shall be based on the seminar paper / report (40%), presentation (40%) and response to the questions asked during presentation (20%).

10.6 Industrial / Practical Training / Internship / Mini Project

The Industrial / Practical Training shall carry 100 marks and shall be evaluated through continuous assessment only. At the end of Industrial / Practical training / internship / Summer Project, the student shall submit a brief report on the training undergone and a certificate from the organization concerned. The evaluation will be made based on this report and a Viva-Voce Examination, conducted internally by a three member Departmental Committee constituted by the Head of the Department. Certificates (issued by the Organization) submitted by the student shall be attached to the mark list and sent to the Controller of Examinations by the Head of the Department.

10.7 Term Paper

i. The students shall carry out this course under the guidance / supervision of a faculty. The "Term Paper" course is individual based.

- ii. For the Term Paper course out of 100 marks, the maximum marks for Continuous Assessment is fixed as 40. The Head of the Department shall constitute a review committee for this course. There shall be two reviews and each review carries 20 marks. Every student is expected to identify a topic with substantial literature survey and the technological development of the topic and should submit a report by end of the semester and the students should also prepare a paper on the subject matter of the Term Paper and submit the same to some journal for publication or to a conference for presentation.
- **iii.** At the end of the semester a viva-voce examination will be conducted by an external, internal examiners and the guide on the term paper report submitted by the students. The report evaluation and Viva Voce shall carry a max mark of 30 marks and the paper prepared for the publication shall carry a max mark of 30 based on the quality.

10.8 Comprehension

The comprehension course is offered as two different courses, one in the V semester and the other in the VIII semester, each carrying one credit. The comprehension courses are evaluated by Viva-Voce examination on the subjects studied till that semester of assessment

11.0 END SEMESTER EXAMINATIONS:

11.1. Theory Courses

The examinations shall ordinarily be conducted between October and December during the odd semesters and between April and June in the even semesters The End Semester Examination question paper pattern is given below:

Syllabus Coverage	Duration of the Exam in Hours	Question Pattern
Full Syllabus	3	Part - A, 10x2 = 20
		Short answer Type, 10 questions each carrying 2 marks. 2 questions from each unit.
		Part – B, 5x6 = 30
		Para /Analytical Type, 5 questions, one from each unit EITHER - OR type.
		Part - C, 5x10 = 50
		Essay/Design/Analytical Type, 5 questions out of 7 covering the full syllabus
		Max mark = 100

However, the question paper pattern for courses in engineering graphics and machine drawing may be designed differently to suit the specific needs of the courses.

11.2. Practical Courses

End Semester examination for practical courses will be conducted jointly by one internal examiner and one external examiner appointed by the Controller of Examinations with the recommendation of the Head of the Dept.

11.3. The maximum marks for each theory shall be 100 comprising of 30 marks for internal assessment and 70 marks for the end semester examinations conducted by the University. The maximum marks for each practical course (including the project Work and Viva Voce Examination in the Eighth Semester) shall be 100 comprising of 40 marks for internal assessment and 60 marks for the end semester examinations conducted by the University.

11.4 PROJECT WORK

The student(s) is expected to submit the project report on or before the last working day of the semester. The University examination for the project work shall consist of evaluation of the final project report submitted by the student or students of the project group by an external examiner followed by a viva-voce examination conducted separately for each student by a committee consisting of an external examiner and an internal examiner. The Controller of Examinations shall appoint Internal and External Examiners from the panel of examiners recommended by the Head of the Department for the End Semester Examinations of the Project Work.

The End Semester Examination marks for the Project Work and for the Viva-Voce Examination will be distributed as given below.

End Semester Examination 60 Marks		
Report Evaluation (20 Marks)Viva – Voce (40 Marks)		
External Examiner	External Examiner	Internal Examiner
20	20	20

If the project report is not submitted on or before the specified deadline, an extension of time up to a maximum of 30 days may be given for the submission of project work with due approval obtained from the Head of the Department. If the project report is not submitted even beyond the extended time then the student(s) is deemed to have failed in the Project Work. The failed student(s) shall register for the same in the subsequent semester and repeat the project work again.

12.0 SUPPLEMENTRY EXAMINATIONS.

After the publication of eighth semester results, supplementary examinations will be conducted to the students who have failed in any of theory courses in any of the semesters with no arrears in the practical Examinations. Interested students should register for the examinations required by them. Controller of examination will schedule supplementary examinations after the last date of registering for the supplementary examinations.

Pattern of evaluation will be the same as that of the end semester examinations. For non theory examinations supplementary examinations are not applicable.

13.0 MALPRACTICE

If a student indulges in malpractice in any internal test/model examination/end semester

examination, he/she shall be liable for punitive action as recommended by the Malpractice committee.

14.0 REQUIREMENTS FOR APPEARING FOR UNIVERSITY EXAMINATIONS

A candidate shall normally be permitted to appear for the semester Examinations of the current semester if he/she has satisfied the semester completion requirements (Vide Clause 6.0) and has registered for examination in all courses of the semester

15.0 PASSING REQUIREMENTS

- **15.1** A candidate who secures not less than 50% of total marks earned in the internal and end semester examination put together in theory course or practical courses or project work shall be declared to have passed the examination in that course.
- **15.2** If a candidate fails to secure a pass in a particular course, it is mandatory that he/she shall register and reappear for the examination in that course during the subsequent semester when examination is conducted in that course; he/she should continue to register and reappear for the examinations till he / she secures a pass. However the internal assessment marks obtained by the candidate in the first attempt shall be retained and considered valid for all subsequent attempts. In exceptional cases, a candidate may be permitted by the Head of the Institution to redo the courses for improving the internal assessments marks.

16.0. METHODS FOR REDRESSAL OF GRIEVANCES IN EVALUATION

16.1. Students who are not satisfied with the grades awarded can seek redressal by the methods given in the Table below:

Redressal Sought	Methodology
	To apply to COE within 7 days of declaration of the result/within 7 days of obtaining the photocopy along with the payment of the prescribed fee.

These are applicable only for theory courses in regular and arrear end semester examinations.

16.2 Challenge of Evaluation

If one is not satisfied with the result, can make an appeal to the CoE for the review of answer scripts after paying the prescribed fee within 7 days after the declaration of the examination result/revaluation result.

17.0 AWARD OF LETTER GRADES

All assessments of a course will be done on absolute marks basis. However, for the purpose of reporting the performance of a candidate, letter grades, each carrying certain number of points, will be awarded as per the range of total marks (out of 100) obtained by the candidate as detailed below:

Range of total marks	Letter Grade	Grade points
90-100	S	10

80-89	А	9
70-79	В	8
60-69	С	7
55-59	D	6
50-54	Е	5
0 to 49	U	0
Incomplete	Ι	0
Withdrawal	W	0

"U" denotes failure in the course.

"I" denotes incomplete as per clause 7.1 and hence prevention from writing End-Semester examination.

"W" denotes withdrawal from the course.

After results are declared, Grade Sheets will be issued to each student which will contain the following details:

The list of courses enrolled during the semester and the grade scored.

The Cumulative Grade Point Average (CGPA) of all courses enrolled from first semester onwards.

GPA for a semester is the ratio of the sum of the products of the number of credits for courses acquired and the corresponding grade points to the grades scored in those courses taken for all the courses to the sum of the number of credits of all the courses in the semester.

GPA = Sum of (C*GP)/Sum of C

CGPA will be calculated in a similar manner, considering all the courses enrolled from first semester. "U", "I" and "W" grades will be excluded for calculating GPA and CGPA.

18.0 ELIGIBILITY FOR THE AWARD OF THE DEGREE

A student shall be declared to be eligible for the award of the B.Tech Degree provided the student has

- **18.1** Successfully completed the course requirement and has passed all the prescribed examinations in all the 8 semesters (6 semesters for lateral entry) within a maximum period of 7 years (6 years for lateral entry) reckoned from the commencement of the first semester to which the candidate was admitted.
- **18.2** No disciplinary action is pending against him/her.
- **18.3** The award of the degree must be approved by the Board of Management of the University.

19.0 CLASSIFICATION OF THE DEGREE AWARDED

- **19.1** A candidate who qualifies for the award of the degree (vide clause 15.0) having passed examination in all the courses of all the eight semesters (six semesters in the case of lateral entry) in his/her First Appearance within eight consecutive semesters (six for lateral entry) securing a CGPA of not less than 8.0 shall be declared to have passed the examination in **first class with distinction**. For this purpose the withdrawal from examination (vide clause 20.0) will not be construed as an appearance. Further authorized break of study (vide clause 21.3) will not be counted for the purpose of classification.
- **19.2** A candidate who qualifies for the award of the degree (vide clause 18.0) having passed the examination in all the courses in eight semesters (all the six semesters for lateral entry) within a maximum period of eight consecutive semesters after his/her commencement of study in the third semester (from first semester for lateral entry) securing a CGPA of not less than 6.50 shall be declared to have passed the examination in **First Class**. For this purpose the authorized break of study (vide clause 21.3) will not be counted for the purpose of classification.
- **19.3** All other candidates (not covered in clauses 19.1 and 19.2) who qualify for the award of the degree (vide Clause 18.0) shall be declared to have passed the examination in **Second Class**.
- **19.4** A candidate who is absent in semester examination in a course / project work after having registered for the same shall be considered to have appeared in that examination for the purpose of classification.

20.0 PROVISION FOR WITHDRAWAL FROM END-SEMESTER EXAMINATION

- **20.1** A candidate may for valid reasons be granted permission to withdraw from appearing for the examination of only any one semester examination during the entire duration of the degree programme. Also only one application for withdrawal is permitted for that semester examination in which withdrawal is sought.
- **20.2** Withdrawal application shall be valid only if the candidate is otherwise eligible to write examination and if it is made within the prescribed number of days prior to the commencement of the examination in that course or courses and also recommended by the Head of the Department and the Head of the Institution.
- **20.3** Withdrawal shall not be construed as an appearance for the eligibility of a candidate for First Class with Distinction.

21.0 TEMPORARY BREAK OF STUDY FROM A PROGRAMME

- **21.1** A candidate is not normally permitted to temporarily break the study. However, if a candidate intends to temporarily discontinue the programme in the middle of the semester for valid reasons (such as accident or hospitalization due to prolonged ill health) and to rejoin the programme in a later semester he / she apply to the Head of the Institution in advance, in any case, not later than the last date for registering for the semester in question, through the Head of the Department stating the reasons thereof.
- **21.2** The candidates permitted to rejoin the programme after break of study shall be governed by the rules and regulation in force at the time of rejoining.
- **21.3** The duration specified for passing all the courses for the purpose of classification (vide clause 19.1 and 19.2) shall be increased by the period of such break of study permitted.
- **21.4** The total period for completion of the Programme reckoned from, the commencement of the first semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5.0 irrespective of the period of break of study in order that he/she may be eligible for the award of the degree (vide clause 18.0).

21.5 If any student is detained for want of required attendance, progress and good conduct, the period spent in that semester shall be considered as permitted 'Break of study' and clause 21.3 is not applicable for this case.

22.0 INDUSTRIAL VISIT

Every student is required to undergo one Industrial visit in every semester starting from the third semester of the Programme arranged by the Head of the Department.

23.0 FAST TRACK PROGRAMME

Fast track programme is introduced as an option for the bright students enabling them to complete the course in a short duration.

23.1 Eligibility

Those students who have secured CGPA of 9 and above at the end of 2^{nd} semester are eligible to opt for the fast track scheme.

23.2 Structure of the Fast Track Scheme

The curriculum is framed in such a way that the eligible students who opt for fast track scheme will be able to complete the degree course in a period of three years. There will be two summer terms conducted one after the 2^{nd} semester and another after the 4^{th} semester during the summer vacations. Each summer term will a have maximum of three theory courses and two laboratory practical courses. However, the total number of credits to be earned for the award of degree will remain the same as that of the concerned regular programme.

24.0 MIGRATION/TRANSFER OF CANDIDATES

- **24.1** Migration/Transfer of candidates from another University approved by UGC shall be granted.
- 24.2 All Migrations/Transfers are subject to the approval of the Vice Chancellor

25.0 DISCIPLINE

Every student is required to observe disciplined and decorous behavior both inside and outside the Institute and not to indulge in any activity which will tend to bring down the prestige of the University/Institute. The Dean shall constitute a disciplinary committee consisting of Dean, Head of the departments to which the student concerned belongs, and the Head of another department to enquire into acts of indiscipline and notify the University about the disciplinary action recommended for approval.

26.0 REVISION OF REGULATIONS AND CURRICULUM

The University may from time to time revise, amend or change the Regulations, Curricula, Syllabi and scheme of examinations through the Academic Council with the approval of Board of Management.

B.TECH – AUTOMOBILE ENGINEERING CURRICULUM AND SYLLABUS CHOICE BASED CREDIT SYSTEM I – VIII SEMESTERS

		I-SEMESTER								
		THEORY								
Sub Code	Category	Subject	L	Т	Р	C				
BEN101	HS	English – I	3	1	0	3				
BMA101	BS	Mathematics – I	Mathematics – I 3 1 0							
BPH101	BS	Engineering Physics – I	3	0	0	3				
BCH101	BS	Engineering Chemistry – I	3	0	0	3				
BCS101	ES	Fundamentals of Computing and Programming	3	0	0	3				
BBA101	HS	Personality Development (Civil, Mechanical and Bio branches)	1	2	0	2				
BBT 102	BS	Biology for Engineers (Civil & Mechanical branches)	2	0	0	2				
BCE101	ES	Basic Civil Engineering (Mechanical & Bio Engineering Branches)	2	0	0	2				
BME102	ES	Engineering Graphics – E (Civil, Mechanical & Aeronautical Engineering)	2	4	0	4				
	1	PRACTICAL	T		1	r				
BCM1L1	BCM1L1 ES Basic Civil and Mechanical Engineering Practices Laboratory (Civil, Mechanical and Bio Branches)		0	0	3	1				
BSS1L4/1L5 /1L6	HS	NCC/NSS/NSO to be conducted during wee	kends	8	I	1				
Total No. of	Contact Hou	Irs: 33Total No. of Credits: 27								

II-SEMESTER THEORY										
Sub Code	Category	Subject	L	Т	Р	C				
BEN201	HS	English – II	3	1	0	3				
BMA201	BS	Mathematics – II	3	1	0	3				
BPH201	BS	3	0	0	3					
BCH201	BS	Engineering Chemistry – II	3	0	0	3				
BFI201#	HS	Foreign/Indian Language	3	0	0	3				
BME202	ES	Engineering Mechanics (Civil & Mechanical Branches)	3	1	0	3				
BEE201*	ES	Basics Electrical and Electronics Engineering (Civil, Mechanical & Bio Engineering Branches)	2	0	0	2				
		PRACTICAL			•					
BCS2L2	ES	Computer Practices Lab (Civil, Mech & Bio)	0	0	3	1				
BEE2L1	ES	Basic Electrical and Electronics Engineering Practices	0	0	3	1				
BPC2L1	BS	Physics and Chemistry Laboratory	0	0	3/3	1				
BSS2L7	HS	Yoga to be conducted during weekends		1		1				
	f Contact Ho					L				
•		ing courses: BFR201 – French, BGM201 – 6 201 – Korean, BCN201 – Chinese, BTM20								
•		alternate weeks for Physics and Chemistry econd semester (including the first semester				tions				

		III SEMESTER							
THEORY									
Sub. Code	Category	L	Т	Р	C				
BMA301	BS	Mathematics – III	3	2	0	4			
BAM301	PC	Solid Mechanics	4	0	0	4			
BAM302	PC	3	0	0	3				
BAM303 PC		Engineering Thermodynamics	4	0	0	4			
BAM304	PC	Engineering Fluid Mechanics	3	0	0	3			
BAM305	PC	Production Technology	3	0	0	3			
		PRACTICAL							
		Automotive Parts and Assembly							
BAM 3L1	PC	Drawing	0	0	3	2			
BCE3L2	PC	Fluid Mechanics and Strength of							
DCEJE2		Materials Lab	0	0	3	2			
Total No. of C	ontact Hours	s: 28 Total No	o. of Cred	lits: 25					

	IV SEMESTER										
THEORY											
Sub. Code	Category	Subject Name	L	Т	P	С					
BMA402	BS	Numerical Methods	3	2	0	4					
BAM401	PC	Theory of Machines	4	0	0	4					
BAM402	PC	Automotive Chassis	3	0	0	3					
BAM403	PC	Automotive Diesel Engines	3	0	0	3					
BAM404	PC	Automotive Electrical Systems	3	0	0	3					
BCE406	HS	Environmental Studies	0	0	3						
		PRACTICAL									
BAM4L1		Automotive Engine Components									
DAM4L1	PC	Laboratory	0	0	3	2					
BAM4L2		Engine Testing and Emission									
DAM4L2	PC	Measurement Lab	0	0	3	2					
BAM4L3	PC	Automotive Electrical Lab	0	0	3	2					
BAM4S1	PR	Technical Seminar- I	0	0	2	1					
Total No. of C	ontact Hour	rs: 32 T	otal No. o	of Cred	its: 27						

		V SEMESTER THEORY				
Sub. Code	Category	Subject Name	L	Т	P	С
BAM501	PC	Computer Control of Vehicle Systems	3	0	0	3
BAM503	PC	Automotive Transmission	4	0	0	4
BAM504	PC	Electronics & Instrumentation	3	0	0	3
BAM505	5 PC Engineering Design for Automobile Engineers	4	0	0	4	
BBA501	HS	Value Education and Professional Ethics	3	0	0	3
	CE	Core Elective-I	3	0	0	3
		PRACTICAL				
DAM51 1		Automotive Chassis Components				
BAM5L1	PC	Laboratory	0	0	3	2
BME5L1	PC	Machine Shop Practice	0	0	3	2
	PC	Automotive Electronics and				
BEC5L1		Microprocessor Lab	0	0	3	2
BAM5C1	PR	Comprehension I	0	0	0	1
Total No. of C	Contact Hou	rs: 29 Total No. of Credits	: 27		•	

		VI SEMESTER								
THEORY										
Sub. Code	Category	ategory Subject Name L		Т	Р	С				
BAM601	PC	Vehicle Dynamics	4	0	0	4				
BAM602	PC	Electronic Engine Management System	3	0	0	3				
BAM603	PC	Instrumentation and Experimental								
DAM005		Techniques	3	0	0	3				
BAM604	PC	4	0	0	4					
	CE	Core Elective-II	3	0	0	3				
	NE	Non Major Elective-I	3	0	0	3				
		PRACTICAL								
BAM6L1	PC	Autotronics Lab	0	0	3	2				
BAM6L2	PC	Vehicle Dynamics Lab	0	0	3	2				
BAM6S1	PR	Technical Seminar II	0	0	2	1				
Total No. of	Total No. of Contact Hours: 28 Total No. of Credits: 25									

THEORY										
Sub. Code	Category	Subject Name	L	Т	P	C				
BAM701	PC	Vehicle Maintenance	3	0	0	3				
BAM702	PC	Vehicle Body Engineering	3	0	0	3				
BAM703	PC	Vehicle Design	4	0	0	4				
	CE	Core Elective-III	3	0	0	3				
	NE	Non Major Elective-II	3	0	0	3				
	OE	Open Elective-I	3	0	0	3				
		PRACTICAL				•				
BAM7L1	PC	Vehicle Maintenance Lab	0	0	3	2				
BME7L2	PC	CAD/CAM Lab	0	0	3	2				
BAM7P1	PR	Term Paper	0	0	4	2				
BAM7V1	PR	Inplant Training [End of 6th								
DAWI/VI		Semester 15 Days]	0	0	0	1				

THEORY									
Sub. Code	Category	L	Т	Р	C				
BAM8E1	NE	Non Major Elective-III	3	0	0	3			
BAM8E2	OE	Open Elective-II	3	0	0	3			
		PRACTICAL							
BAM8C1	PR	Comprehension II	0	0	0	1			
BAM8P1	PR	Project Work	0	0	18	9			

OVERALL CREDITS: 197

SUMMARY OF CURRICULUM STRUCTURE AND CREDIT & CONTACT HOUR DISTRIBUTION

S.No	Sub Area			Cre	dit A	s per S	Semest	er		No. of	% of	
		Ι	II	III	IV	V	VI	VII	VIII	Credit	credit	
1	Humanities & Social Sciences (HS)	6	7	-	3	3	-		-	19	9.64	
2	Basic Sciences (BS)	11	10	4	4	-	-	-	-	29	14.72	
3	Engineering Sciences (ES)	10	7	-		-	-	-	-	17	8.63	
4	Professional Core (PC)	-	-	21	19	20	18	14		92	46.70	
5	Core Electives (CE)	-	-	-	-	3	3	3		9	4.57	
6	Non major Electives (NE)	-	-	-	-	-	3	3	3	9	4.57	
7	Open Electives (OE)	-	-	-	-	-	-	3	3	6	3.05	
8	Project Work, Seminar, Internship, Term Paper, etc. (PR)	-	-		1	1	1	3	10	16	8.12	
	Total Credit	27	24	25	27	27	25	26	16	197	100%	
	Total Contact Hour	33	32	28	32	29	28	29	24	235 Hrs		

LIST OF ELECTIVES

Code No.	Course Title	L	Τ	Р	C						
	Coro Electivo (CE) I										
BAM014	Core Elective (CE)-I	3	0	0	3						
	Advanced Theory of IC Engines Finite Element Methods										
BAM002		3	0	$\frac{0}{0}$	3						
BAM017	BAM017 Special Type of Vehicles										
				C							
BAM001	Computer Simulation of IC Engine Processes	3	0	0	3						
BAM010	Product Design	3	0	0	3						
BAM003	Two and Three Wheelers	3	0	0	3						
Core Elective (CE)-III											
BAM004	Simulation of Vehicle Systems	3	0	0	3						
BAM019	Computer Aided Design and Drafting	3	0	0	3						
BAM019 BAM018	Hybrid Electric and Fuel cell vehicles	3	0	0	3						
	Non Major Elective (NE)-I	2		0	2						
BAM008	Modern Manufacturing Process Noise Vibration and Harshness	3	0	0	3						
BAM006			_	0	3						
BAM021	Industrial Engineering	3	0	0	3						
BAM016	Vehicle Air Conditioning Systems	3	0	0	3						
BAM007	Computer Integrated Manufacturing Systems	3	0	0	3						
BAM015	Automotive Safety	3	0	0	3						
BAM013	Quality Control and Reliability Engineering	3	0	0	3						
BAM020	Measurements & Metrology	3	0	0	3						
	Non Major Elective (NE)-III										
BAM009	Robotics for Automobile Engineers	3	0	0	3						
BAM005	Tyre Technology	3	0	0	3						
BAM011	Operation Research for Automobile Engineers	3	0	0	3						
BAM012	Transport management and Motor Industry	3	0	0	3						
	Onen Elective (OE) I										
BBA001	Open Elective (OE)-I Principles of Management and Organizational	3	0	0	3						
DDA001	Behaviour	3	0	0	5						
BBA002	Entrepreneurship Development	3	0	0	3						
BBA003	Marketing Management	3	0	0	3						
	Open Elective (OE)- II										
BBA004	Engineering Economics and Financial Accounting	3	0	0	3						
BBA005	Total Quality Management and Reliability Engineering	3	0	0	3						
BBA006	Indian Constitution and Society	3	0	0	3						
	-										

BI	EN101	ENG	LIS	H - I						L	μ Τ	P	С
		Tota	l Cor	tact Ho	urs –	60				3	1	0	3
		Prere	quis	ite – +2	Leve	l Englis	h						
		Cour	se D	esigned	by –	Dept of	Engli	sh					
O	BJECTIV	ES											
	make the						of co	ommu	nication f	for fluenc	y and	l attaini	nent of
	nfidence in			-	d writ	ing.							
	OURSE O					1			1		-1-		
C									logical, ar				
CC							-		linstructio		-		
C	D3 Exp	lain "ho	w th	ings wo	rk", a	nd what	t to su	ggest	when "thi	ngs don't	work		
C	D4 Dev	elop ou	r con	fidence	and a	uthority	in the	e prac	tical use o	of languag	ge.		
CO	D5 Und	erstand	the i	mportar	nce of	being r	espon	sible,	logical, ar	nd thorou	gh.		
C	D6 e to Fa	ace inte	rviev	vs and c	ompe	titive ex	amina	ations					
	I			-					gram outc				
1			1		· · · ·			1	-High, M-	-		1	1
1	COs/Pos	a	b	С	d	e	f	g	h	i	j	k	1
2	CO1 CO2	Η	Η	Н	Н	Н	Μ	L L	L	Н	Η	Н	Н
	CO2 CO3	Н						H		Н			Н
	CO4	H	Μ				М	L	Н	H			H
	CO5							L					
	CO6	Н		Н	Η	Н	Н	L		Н	Η	М	Η
3	Category	Humanities & Social Studies	(HS)	Basic Sciences &Maths (BS)	Than Criancee	(ES)	Professional	COTE (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective	Project/	I erm Paper Seminar/ Internship (PR)
					+						l		
4	Approval	,	Mee	ting of .	Acade	emic Co	uncil,	May	2015				

UNIT I STRUCTURES 12

Parts of speech - Active and passive voices - Subject verb agreement. - Writing about School life, Hobbies, Family and friends – Word formation with prefixes and suffixes - Tenses - Concord - Summarizing - Note-making

UNIT IITRANSCODING

Cause and effect relations – Punctuations –Differences between verbal and nonverbal communication -E - mail communication – Homophones - Etiquettes of E mail communication. Interpreting graphic representation - Flow chart and Bar chart.

UNIT IIIREPORTING

Degrees of comparison – Positive, Comparative, Superlative - questions- SI units -Lab reports - Physics chemistry, workshop and Survey report for introducing new product in the market.

12

UNIT IVFORMAL DOCUMENTATION

Writing project proposals - Presentation skills - Prefixes and suffixes - If conditions - Writing a review-Preparing minutes of the meeting, Agenda, official circulars.

UNIT VMETHODOLOGY

12

Accident reports (due to flood and fire) - Hints development - Imperatives - Marking the stress Connectives , prepositional relatives.

TEXT BOOK

1. Department Of Humanities and Social Sciences Division, Anna University, Oxford University Press, 2013.

REFERENCES:

- 1. S.P.Danavel, English and Communication for Students of Science and Engineering, Orient Blackswan, Chennai, 2011.
- 2. Rizvi, M.Asharaf, Effective Technical Communication, New Delhi, Tata McGraw Hill Publishibg Company, 2007.
- 3. Murali Krishna and Sunitha Moishra, Communication Skills for Engineers . Pearson, New Delhi, 2011.

BMA	A101	MAT	THE	MAT	ICS I	[L	T	P	С
		Total	Cor	ntact F	Iours	- 60					3	1	0	3
		Prere	quis	ite – +	- 2 Le	vel M	athema	atics						
		Cour	se D	esigne	ed by	– Dep	t of M	athemat	tics					
To n	ECTIVES hake the st ective field	udents				itics ir	ı order	to form	ulate and	l solve p	oroble	ems ef	ffectiv	ely in t
COU	JRSE OU	ГСОМ	1ES	(COs)									
CO1	Study	the fur	ndarr	nentals	s of m	athem	natics							
CO2	Studer	nts lear	n m	ultiple	integ	gral tec	chnique	es						
CO3	Studer	nts gain	ı kno	owled	ge in	applic	ation o	f variab	les					
CO4	Find a	rea and	d vol	ume t	based	on a f	unctior	n with or	ne or mo	re variał	oles.			
CO5	Apply	matrix	x ope	eration	ns to s	olve	relevan	t real lif	e proble	ms in en	ginee	ring.		
CO6	Formu	late a	math	emati	cal m	odel f	or three	e dimen	sional ob	jects an	d solv	ve		
	(H								gram ou -High, M					
1	COs/Pos	a	b	c	d	e	f	g	h	i	j	k		1
2	CO1	Η												
	CO2			М		Н								
	CO3		Η				М							
	CO4		<u> </u>						L		-			
	CO5							Н			L			

	CO6													L			
3	Category	Humanities & Social	(CH) Solution	Basic Sciences & Maths (BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Maior Flective	(NE)	Open Elective (OE)		Project/	Term Paper Seminar/	Internship (PR)
4	Approval	37 th	Me	eting o	of A	cadem	ic Cou	ncil,	Ma	y 2013	5				1		

UNIT-1 MATRICES

Characteristic equations- Eigen values and eigen vectors of the real matrix- Properties- Cayley-Hamilton theorem(Excluding proof)- Orthogonal transformation of a symmetric matrix to diagonal form- Quadratic form- Reduction of quadratic form to canonical form by orthogonal transformation.

1

UNIT II THREE DIMENSIONAL ANALYTICAL GEOMETRY

Equation of a Sphere- Plane section of a sphere- Tangent plane- Equation of cone- Right circular cone- Equation of a cylinder- Right circular cylinder.

UNIT III DIFFERENTIAL CALCULUS

Curvature in Cartesian coordinates- Centre and radius of curvature- Circle of curvature- Evolutes-Envelopes- Applications of Evolutes and Envelopes.

UNIT 1V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives- Euler's theorem for homogeneous functions- Total derivatives- Differentiation of implicit functions- Jacobians- Taylor's expansion- Maxima and Minima- Method of Lagrangian multipliers.

UNIT V MULTIPLE INTEGRALS

Double integration- Cartesian and Polar coordinates- Change of order of integration- Change of variables between Cartesian and Polar coordinates- Triple integration in Cartesian coordinates- Area as double integral- Volume as triple integral.

TEXT BOOK:

- 1. Ravish R.Singh and Mukkul Bhatt, "Engineering Mathematics-I" First Reprint, Tata McGraw Hill Pub Co., New Delhi. 2011.
- 2. Grewal.B.S, "Higher Engineering Mathematics", 40th Edition, Khanna Publications, Delhi. 2007.

REFERENCES:

- 1. Ramana.B.V. "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Glyn James, "Advanced Engineering Mathematics", 7thEdition, Pearson Education, 2007.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons, New York, 2003.

12

12

12

4. Murray R.Spiegel, "Advanced Calculus", Schaum's Outline Series, First Edn, McGraw Hill Intl Book Co., New Delhi, 1981.

PH1	01	ENG	INE	ERIN	IG F	PHYSI	CS I					L	Τ]	P	С	
		Total	Cor	ntact H	Iour	s - 45						3	0	()	3	
		Prerec	quis	ite – +	-2 le	vel Phy	/sics										
		Cours	e D	esigne	ed by	/ – Dep	artme	nt of	Pł	nysics							
OBJ	ECTIVES:																
To en	nhance the f	undam	enta	l knov	wled	ge in P	hysics	and	lit	s appl	ication	s rele	eva	nt to	vari	ious s	stream
U	neering and																
COL	JRSE OUT	COME	S (COs)													
CO1	Understa	nd the	Prin	ciples	and	Laws	of Phy	vsics									
CO2	To under	stand t	he i	mpact	of C	Crystal	Physic	s									
CO3	Learn the	Prope	rties	s of El	astic	city and	l Heat	tran	sfe	r.							
CO4	Acquire	Knowle	edge	e on Q	uant	um Ph	ysics.										
C05																	
CO6	Understa														Med	dicine).
	(H/N					Outcon h of con									W		
1	COs/Pos	Α	b	c	d	e	f	g		h	i	j		k		1	
2	CO1	Н						Μ				Η					
	CO2		L	Н		Μ					М			L	Н	[
	CO3																
	CO4	Н		Μ	L							L			N	1	
	CO5		L	L										L	L	,	
	CO6																
3	Category	ities &	dies	ciences		ses	Core		tive	2 m	jor NE)	tive				oer r/	(PR)
		Humanitie	Social Studies	Basic Scier	(ca)	Engg Sciences (ES)	Professional Core		Core Elective	(PE)	Non-Major Elective (NE)	Onen Elective	(OE)		Project/	I erm Pape Seminar/	Internship (
4	Approval	37'	h N	leeting	g of	Acader	nic Co	ounci	il, 1	May $\overline{2}$	2015						

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity-Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress - strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders Modes of heat transfer-thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion –Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homo junction & hetero junction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House, 2014.
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai Publishers, 2009.
- 4. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.
- 4. <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 5. <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 6. <u>https://en.wikipedia.org/wiki/Engineering_physics</u>

BCH101	ENGINEERING CHEMISTRY - I	L	Т	P	С
		3	0	0	3
	Prerequisite – +2 Level Chemistry				
	Course Designed by – Department of Chemistry				
OBJECTI To impart a	VES sound knowledge on the principles of chemistry involving	the diff	erent		

9

9

applicat	tion ori	ented	topics	s requ	uired	for a	ll engir	neerin	g bra	nches.					
COUR	SE OU	TCO	MES	(CO	s)										
C01									aracte	erization	and treatr	nent	for		
CO2		To in	npart	knov	vledge	e on t		ential		cts of Prin polymers	nciples of	poly	mer		
CO3		Havi	ng a s	ound		vledg					entional a	ind			
CO4		To in	npart	knov	vledge	e on t	the esse MF me				ctrochem	ical c	ells,		
CO5		To m contr	ake tl ol .	he stu	idents	s und	erstand	l the I	Princi	ples of c	orrosion a				
CO6		sourc	es an	d ene	ergy s	torag	e devid	ces			on-conve		al en	ergy	
		M/L		ites s		h of		tion)		ligh, M-N	omes (PO Medium, 1			1	
1	COs/	Pos	а	b	с	d	e	f	g	h	i	J	k	1	
2	CO1		Η						Η						
	CO2			L	Η		Μ								
	CO3			Μ		Η									
	CO4		Н		Μ	L			Η						
	CO5			L	L										
	CO6		Η						Η		<u> </u>				
3	3 Category			Social Studies (HS)	Basic Sciences	(63)	Engg Sciences (ES)	Professional Core		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/	Term Paper Seminar/	Internship (PR)
4	Appro	oval	37 th	ⁿ Me	eting	of A	cademi	ic Coi	uncil,	May 201	15				

UNIT I WATER TECHNOLOGY

Introduction-Characteristics : Hardness of water – types - temporary and permanent hardness - estimation by EDTA method Alkalinity – types of alkalinity - Phenolphthalein and Methyl orange alkalinity - determination –Domestic water treatment – disinfection methods (Chlorination, Ozonation , UV treatment) Boiler feed water – requirements – disadvantages of using hard water in boilers Internal conditioning (Calgon Conditioning method) – External conditioning – Demineralization process – Desalination and Reverse osmosis.

UNIT II POLYMERS

Introduction-Polymers- definition – polymerization – degree of polymerization - types of polymerization– Addition polymerization and Condensation polymerization – Mechanism of Polymerization - free radical polymerization mechanism only, Plastics: Classification – thermoplastics and thermosetting plastics – difference between thermoplastics and thermosetting

9

plastics - preparation, properties and uses of PVC, Teflon, nylon-6,6, PET, Rubber :Types – drawbacks of natural rubber -vulcanization of rubber - properties and uses of vulcanized rubber Synthetic rubbers – butyl rubber and SBR

UNIT III ELECTRO CHEMISTRY

Introduction CELLS: types of Electrochemical cells , Electrolytic cells – Reversible and irreversible cells EMF – measurement of EMF– Single electrode potential – Nernst equation Reference electrodes : Standard Hydrogen electrode -Calomel electrode Ion selective electrode :Glass electrode and measurement of pH using Glass electrode Electrochemical series – significance Titrations :Potentiometer titrations (redox - $Fe^{2+}vs$ dichromate titrations) Conduct metric titrations (acid-base – HCI vs, NaOH titrations)

UNIT IV CORROSION AND CORROSION CONTROL

Introduction: Chemical corrosion Definition - Chemical Corrosion - Electrochemical corrosion - different types - galvanic corrosion - differential aeration corrosion - mechanism of Chemical and Electrochemical corrosion factors influencing corrosion control - sacrificial anode and impressed cathodic current methods - Protective coatings :Paints- constituents of the paint and their functions Metallic coatings - electroplating of Gold and electro less plating of Nickel.

UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9

Introduction : Nuclear fission and nuclear fusion reactions – differences between nuclear fission and nuclear fusion reactions – nuclear chain Reactions – nuclear energy critical mass - super critical mass - sub - critical mass Light water nuclear reactor for power generation (block diagram only) – breeder reactor Solar energy conversion – solar cells – wind energy Fuel cells – hydrogen – oxygen fuel cell Batteries :Primary and secondary Batteries – differences between Primary and secondary Batteries Secondary batteries :Lead–acid storage battery –working –uses Nickel– cadmium battery - working –uses Solid – state battery : Lithium battery

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

REFERENCES:

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. <u>https://en.wikipedia.org/wiki/Electrochemistry</u>

BCS101	FUNDAMENTALS OF COMPUTING AND PROGRAMMING	L	Τ	Р	C
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – +2 level Physics				
	Course Designed by – Department of Physics				
OBJECTIV	VES				
Students wi	ll understand the basics of computers and solve computer	r oriented	probl	ems usi	ng

various computing tools.

9

COUR	SE OUTCO	MES (C	COs)											
CO1	Learn the fu	Indamen	tal pri	ncip	les in	com	puting.							
CO2	Learn to wr	ite simpl	e prog	gram	s usin	g cor	nputer la	nguage	;					
CO3	To enable th	ne studer	t to le	earn t	the ma	ajor c	componer	nts of a	com	puter sy	stem.			
CO4	Computing	problem	is											
CO5	To learn to	use offic	e auto	mati	on to	ols.								
CO6	To interpret	and rela	te pro	gran	18									
	(H/M/I						with Prog tion) H-					V		
1	COs/Pos	a	b	c	d	e	f	g	h	i	J	k	1	
2	CO1	Н						Н						
		CO2 L H M .												
	CO3		Μ		Η									
	CO4	Η		Μ	L			Η						
	CO5		L	L										
	CO6	Н						Н				_		
3	Category (CE) (CE) (CE) (CE) (CE) (CE) (CE) (CE)										Term Paper/ Seminar/ Internship (PR)			
4	Approval	37 th N	Ieetin	√ g of .	Acade	emic	Council,	May 2	015					

UNIT I INTRODUCTION TO COMPUTER

Introduction- Characteristics of computer-Evolution of Computers-Computer Generations -Classification of Computers- Basic Computer Organization-Number system. Computer Software: Types of Software—System software-Application software-Software Development Steps

UNIT II PROBLEM SOLVING AND OFFICE AUTOMATION

Planning the Computer Program – Purpose – Algorithm – Flowcharts– Pseudo code Introduction to Office Packages: MS Word, Spread Sheet, Power Point, MS Access, Outlook.

UNIT III INTRODUCTION TO C

Overview of C-Constants-Variables-Keywords-Data types-Operators and Expressions. Managing Input and Output statements-Decision making-Branching and Looping statements.

UNIT IV ARRAYS AND STRUCTURES

Overview of C-Constants, Variables and Data types-Operators and Expressions -Managing Input and Output operators-Decision making-Branching and Looping.

9

9

9

UNIT V INTRODUCTION TO C++

Overview of C++ - Applications of C++-Classes and objects-OOPS concepts -Constructor and Destructor- A simple C++ program –Friend classes and Friend Function.

TEXT BOOKS:

- 1. Ashok, N.Kamthane,"Computer Programming", Pearson Education (2012).
- 2. Anita Goel and Ajay Mittal,"Computer Fundamentals and Programming in C", Dorling V Kindersley (India Pvt Ltd).,Pearson Education in South Asia,(2011).
- 3. Yashavant P. Kanetkar, "Let us C",13th Edition,BPB Publications(2013).
- 4. Yashavant P. Kanetkar,"Let us C++"10th Edition, BPB Publications (2013).

REFERENCES:

- 1. Pradeep K.Sinha, Priti Sinha "Foundations of Computing", BPB Publications (2013).
- 2. Byron Gottfried, "Programming with C", 2nd edition, (Indian Adapted Edition), TMH Publication.
- 3. Pradip Dey, Manas Ghosh, Fundamentals of Computing and Programming in 'C' First Edition, Oxford University Press(2009).
- 4. The C++ Programming Language , 4th Edition, Bjarne Stroustrop, Addison-Wesley Publishing Company (2013).

BS	SS101		PER	RSO	NALI	TYI	DEVE	LOPN	MENT			L	Т	Р		С
		-	Tota	l Co	ntact	Hour	s - 30					1	1	0		2
		-	Prere	equi	site –	+2 L	evel K	Knowle	edge							
		-	Cou	rse I	Design	ned by	y – De	epartm	ent of M	lanagem	ent St	udie	s			
0	BJECTIV	ES														
	make stud					onali	ty and	l prove	themse	elves as g	good S	ama	aritar	ns of	the s	ociety.
C	OURSE O	UTCC	MES	S (C	Os)											
CC	D1	Indiv	idual	or i	n-gro	up cl	ass p	resenta	ations p	ertaining	g to th	ne a	pplic	catio	ns of	conce
		theori	es or	issu	es in l	huma	n dev	elopme	ent							
CC	02	Score	s obta	aine	d fron	n essa	ıy and	or obj	ective t	ests.						
CO	03	Atten	dance	e, cla	assroo	m pa	rticipa	ation, s	mall gr	oup inte	raction	IS.				
CC	04	Resea	urch a	ind v	vrite a	bout	releva	ant top	ics.							
CO	05	-			-			-	•	at can ta gh servi				of a	deve	elopme
CC	D6	Deve	lop ar	nd m	aintai	n a R	eflect	ion		0			-			
		N	Iappi	ngo	f Cou	rse O	utcom	nes wit	h Progr	am outc	omes ((PO	s)			
		(H/M/	L ind	icate	es stre	ngth	of cor	relatio	n) H-H	ligh, M-	Mediu	m , 1	L-Lo	w		
1	COs/Pos		a	b	с	d	e	f	g	h	i	J		k		1
2	CO1		L		Н				М							
	CO2			Η	Н				М							
	CO3								Μ	Η						
	CO4										Н	Η				
	CO5								М			Η	I	Η		
	CO6								Μ						L	

3	Category	Humanities & Social Studies (HS)	Basic Sciences &Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term Paper/ Seminar/ Internship (PR)
		\checkmark							
4	Approval	37 th M	eeting o	of Acader	nic Counci	l, May 20)15		

UNIT I INTRODUCTION TO PERSONALITY DEVELOPMENT

The concept personality- Dimensions of theories of Freud & Erickson- personality – significant of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles - Factors responsible for success – What is failure - Causes of failure. SWOT analyses.

UNIT II ATTITUDE & MOTIVATION

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages - Negative attitude - Disadvantages - Ways to develop positive attitude - Difference between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self-motivation- Factors leading to de-motivation

UNIT III SELF-ESTEEM

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive self-esteem - Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self-esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

UNIT IV OTHER ASPECTS OF PERSONALITY DEVELOPMENT

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader - Character-building -Team-work - Time management -Work ethics –Good manners and etiquette.

UNIT V EMPLOYABILITY QUOTIENT

Resume building- The art of participating in Group Discussion – Acing the Personal (HR & Technical) Interview -Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

TEXT BOOKS:

- 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill.
- 2. Stephen P. Robbins and Timothy A. Judge (2014), Organizational Behavior 16th Edition, Prentice Hall.

REFERENCE BOOKS:

- 1. Andrews, Sudhir. How to Succeed at Interviews. 21st (rep.) New Delhi.Tata McGraw-Hill 1988.
- 2. Heller, Robert. Effective leadership. Essential Manager series. Dk Publishing, 2002
- 3. Hindle, Tim. Reducing Stress. Essential Manager series. Dk Publishing, 2003
- 4. Lucas, Stephen. Art of Public Speaking. New Delhi. Tata Mc-Graw Hill. 2001
- 5. Mile, D.J Power of positive thinking. Delhi. Rohan Book Company, (2004).

9

9

6

9

- 6. Pravesh Kumar. All about Self- Motivation. New Delhi. Goodwill Publishing House. 2005.
- 7. Smith, B. Body Language. Delhi: Rohan Book Company. 2004

BI	BT10	2	BIOI	LOG	Y FO	OR E	NGI	NEER	S				L	. T	P		C
			Total	Cont	act l	Hours	- 30						2	0	0		2
			Prere	quisit	te –]	Basic	Scier	nce									
			Cours	se De	sign	ed by	– De	partm	ent of I	ndus	trial B	io Te	echnolog	gy			
		CTIVE															
		vid kn SE OU					nenta	ls and	uses of	f bio	logy, h	luma	n syster	n and	plant	sys	tem.
$\frac{C}{C}$							t fiv	e vea	rs will	he	able	to o	rasp ar	nd an	nlv h	iolo	ogical
C	51												l proble		pry c	1010	Jeicai
CC	02	To ur	ndersta	nd th	e fu	ndam							sificatio		stru	ctur	e and
C	22		emical				lant	onim	aland		abial	arata	maand	~**	4h in	-	1 1:50
C	55	situat		e cor	icep	torp	nant,	anima	ai and	mer	odial s	syste	ms and	grow	un in	rea	u me
CC	D4	То со	mpreh	end g	enet	tics an	d the	immu	ine syst	em							
C)5	To kn	ow the	e caus	e, sy	ympto	ms, d	liagno	sis and	treat	ment c	of con	mmon d	lisease	es		
CC	06	To g indus		basic	kn	owled	lge o	of the	applic	ation	ns of	biolo	ogical s	system	ns in	rel	evant
		maas		appin	g of	Cours	se Ou	itcome	es with	Prog	ram o	utcoi	mes (PC	Ds)			
	~~~		H/M/L	indi			Ŭ	of corre	1				ledium,	L-Lo		1	
1	CO	s/POs		а	b	с	d	e	f	g	,	h	i	j	k		1
2	CO			Η						Μ			TT	-			
	CO CO				Н	Н							Н	M			
	CO					11								H			
	CO	5															
	CO								Н						<u> </u>	N	1
3	Cat	egory		x	SS	es	U U	o			/e			/e	2	=	R)
				Humanities &	Social Studies (HS)	Basic Sciences	Sciences		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE	Open Elective	Ducioot/Tourn	1 C11	ar/ 5 (P
				anit	al Sti (HS)	Scie	Cur)		rofession Core (PC)		Ele (CE)		n-M tive	n Ele		ujecu ic	Seminar/ Internship (PR)
				- -	0016	asic			Prof		ore		Noi	per			Se tern
				Ц	2	B	Ευσσ	(ES)					щ			-	In
												ĺ					
4	App	proval		37 ^{tl}	^h M	eeting	of A	caden	nic Cou	ncil,	May 2	2015		I	I		

## UNIT I INTRODUCTION TO LIFE

6

Characteristics of living organisms-Basic classification-cell theory-structure of prokaryotic and eukaryotic cell-Introduction to biomolecules: definition-general classification and important functions of carbohydrates-lipids-proteins-nucleic acids vitamins and enzymes-genes and chromosome.

# UNIT II BIODIVERSITY

Plant System: basic concepts of plant growth-nutrition-photosynthesis and nitrogen fixation-Animal System: elementary study of digestive-respiratory-circulatory-excretory systems and their functions-Microbial System: history-types of microbes-economic importance and control of microbes.

# UNIT III GENETICS AND IMMUNE SYSTEM

Evolution: theories of evolution-**Mendel's** cell division-mitosis and meiosis-evidence of e **laws of inheritance**-variation and speciation-nucleic acids as a genetic material-central dogma immunity-antigens-antibody-immune response.

# UNIT IV HUMAN DISEASES

Definition- causes, symptoms, diagnosis, treatment and prevention of diabetes, cancer, hypertension, influenza, AIDS and Hepatitis

# UNIT V BIOLOGY AND ITS INDUSTRIAL APPLICATION

Transgenic plants and animals-stem cell and tissue engineering-bioreactors-biopharmingrecombinant vaccines-cloning-drug discovery-biological neural networks-bioremediationbiofertilizer-biocontrol-biofilters-biosensors-biopolymers-bioenergy-biomaterials-biochipsbasic biomedical instrumentation.

# **TEXT BOOKS:**

- 1. A Text book of Biotechnology, R.C.Dubey, S. Chand Higher Academic Publications, 2013
- 2. Diseases of the Human Body, Carol D. Tamparo and Marcia A. Lewis, F.A. Davis Company, 2011.
- 3. Biomedical instrumentation, Technology and applications, R. Khandpur, McGraw Hill Professional, 2004

# **REFERENCE BOOKS**

- 1. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 2. Cell Biology and Genetics (Biology: The unity and diversity of life Volume I), Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning, 2008
- 3. Biotechnology Expanding horizon, B.D. Singh, Kalyani Publishers, 2012

	BASIC CIVIL ENGINEERING	L	Т	Р	С
BCE 1	Total Contact Hours – 30	2	0	0	2
	Prerequisite – +2 Level Maths & Physical	Science			ł
	Course Designed by – Department of Civit	l Engineering			
OBJE	CTIVES: Understand the basic concepts of civil en	ngineering.			
COUR	SE OUTCOMES (COs)				
CO1	Will gain knowledge in Design, concept preparat	ion			
CO2	Loading calculation				
CO3	Structural component design				
CO4	Drawing and chart preparation				

6

6

6

CC	)5	Will underst	and t	he c	ompon	ents	of bui	ildings.										
CC	)6	Will learn t	he en	gine	ering a	spec	ets to c	lams , v	vater	su	pply a	nd	sewag	e disp	osa	l.		
		(H						comes correla								.ow		
1	COs	s/POs	a	b	с	d	e	f	g		h		i	j	]	k	1	
2	CO		Η	Η			Н		L									
	CO2						Н	Н	Н		L							
	CO.								п		L		L					
	CO												L	Н	L			
	CO																	
3	Cate	egory	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Enoo Sciences		Professional Core (PC)		Core Elective	(CE)		non-major Elective (NE)	Open Elective	(OE)	Project/Term	paper/ Seminar/	Internship (PR)
4	App	proval	37 ^{tl}	h M	eeting	of A	cadem	nic Cou	ncil,	Ma	ay 201	5		1				

#### UNIT I CIVIL ENGINEERING MATERIALS

Introduction – Civil Engineering – Materials – Stones – Bricks – Sand – Cement – Plain Concrete – Reinforced Cement Concrete – Steel Sections – Timber – Plywood – Paints – Varnishes (simple examples only)

#### UNIT II SURVEYING

Surveying – objectives – classification – principles of survey-Measurement of distances – Chain survey – Determination of areas – Use of compass – Use of leveling Instrument – (simple examples only)

## UNIT III FOUNDATION FOR BUILDING

Bearing Capacity of Soil – Foundation – Functions – Requirement of good foundations – Types of foundations – Merits & Demerits.

#### UNIT IV SUPERSTRUCTURE

Stone Masonry – Brick Masonry – Columns – Lintels – Beams – Roofing – Flooring – Plastering– White Washing (Simple examples only)

## UNIT V MISCELLANEOUS TOPICS

Types of Bridges –Dam- purpose – selection of site - Types of Dams – Water Treatment & Supply sources – standards of drinking- distribution system. – Sewage Treatment (simple examples only)

#### **TEXT BOOKS:**

1. Raju.K.V.B, Ravichandran .P.T, "Basics of Civil Engineering", Ayyappa Publications,

5

7

5

8

Chennai, 2012.

- 2. SeetharamanS., "Basic Civil Engineering", Anuradha Agencies, (1st ed. 2005).
- 3. Dr.M.SPalanisamy, "Basic Civil Engineering" (3rded. 2000), TUG Publishers, New Delhi/Tata McGrawHill Publication Co., New Delhi

## **REFERENCE BOOKS:**

- 1. Rangwala.S.C, "Engineering Materials", Charotar Publishing House, Anand, 41st Edition: 2014.
- 2. National Building Code of India, Part V, "Building Materials", 2005
- 3. Ramesh Babu"A Textbook on Basic Civil Engineering" (1998). Anuradha Agencies, Kumbakonam.
- 4. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co. (P) Ltd. (1999).

		0.4	ENG	INEI	ERI	NG G	RAP	HICS	- E					L	T	F	)	С
BN	ME 1	01	Total	Cont	act 1	Hours	- 60							2	0	3	;	4
			Prerec	quisit	e – -	+2 Lev	vel M	laths &	& Physi	cal S	Scien	nce						1
			Cours	se De	sign	ed by	– De	partm	ent of M	lech	anic	al En	gin	eering	5			
0	BJEC	TIVE	S															
				_			vings	in va	rious fi	elds	of e	engino	eeri	ng				
			JTCO		<u>`</u>	,												
CC	D1						pes of	f lines	& use of	of di	ffere	ent typ	pes	of per	ncils i	n an		
			leering															
CC					_				umbers	in d	rawi	ing sh	neet					
CC	03	To kn	low abo	out di	iffer	ent typ	pes of	f proje	ction									
CC	D4	To kn	low pro	ojecti	on o	f poin	ts ,sti	raight	lines, so	olids	etc.							
CC	)5	To kn	low dev	velop	men	t of di	ffere	nt typ	es of su	rface	es.							
CC	06	To kn	low abo	out is	ome	etric pi	oject	ion.										
			Ma	appin	g of	Cours	se Ou	itcome	s with I	Prog	ram	outc	om	es (PC	Ds)			
			H/M/L	indi ،	cates	s stren	gth o	f corre	elation)	H-	Higl	h, M-	Me	dium,	L-Lo	W		
1		/Pos		a	b	с	d	e	f	g		h		i	J	k		1
2	CO			Η													H	
	CO2			Μ	Η												Ν	
	CO					L			_								N	
	CO4					-			L			Η		H			L	
	COS					L								H			L	
2	CO					L				<u> </u>					Н		L	
3	Cate	egory		E)	S	s			ore		a)			~	0			,
				s s S :	cial Studies (HS)	sic Sciences	Sev.	Š	essional Core (PC)		tive		or	Ê	pen Elective		oject/Term	2
				itie	Stu S	ciei	Sciences		C)		llec	E)	Mai	e (ľ	llec	â	t/Té	er/ inal
				nan	lal Sti (HS)	c Scie		5	siona (PC)		E	(CE)	l-u	ctiv	n E	2	ject	paper/ Seminar/
				Humanities &	00	Basi			ofes		Core Elective		Nc	Elective (NE)	Ope		Proj	<u>~</u> v
				Ц		B	Ence	(ES)	Profe		0			Ц				,
													l					
4	Ann	roval		37 ^{tl}	¹ M	eeting	of A	cadem	nic Cou	ncil	May	v 201	5					
-	1 <b>1</b> PP	ioval		51	141	coung	0171	cuucii			1110	, 201	5					
	1			1														

#### UNIT I BASIC CURVES, PROJECTION OF POINTS AND STRAIGHT LINES6+6

Conics-construction of ellipse, parabola and hyperbola by eccentricity method-construction of cycloids- construction of involutes of square and circle-Drawing of tangent and normal to the above curves-Scales-Basic drawing conventions and standards-Orthographic projection principles- Principal planes-First angle projection- Projection of points. Projection of straight lines (only first angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces.

#### UNIT IIPROJECTIONS OF PLANES AND SOLIDS6+6

Projection of planes (Polygonal and circular surfaces) inclined to both the principal planes. Projection of simple solids like prisms, pyramids, cylinder, cone, tetrahedron and truncated solids when the axis is inclined to one of the principal planes/ both principal planes by rotating object method and auxiliary plane method.

#### UNITIII ORTHOGRAPHIC PROJECTIONS, ISOMETRIC PROJECTIONS & FREEHANDSKETCHING 6+6

Orthographic projection of Simple parts from 3D diagram-Principles of isometric projection and isometric view-isometric scale- Isometric projections of simple solids and truncated solids-Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems Free hand sketching of orthographic & Isometric projection

#### UNIT IVPROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+6

Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other-obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids- Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

#### UNIT VPERSPECTIVEPROJECTION,BUILDINGDRAWINGAND COMPUTERAIDEDDRAFTING 6+6

Perspective projection of simple solids-Prisms, Pyramids and cylinders by visual ray method. Introduction- components of simple residential or office building-specifications-plan and elevation of different types of Residential buildings and office buildings. Introduction to drafting packages and basic commands used in AUTO CAD. Demonstration of drafting packages.

#### **TEXT BOOKS:**

- 1. N.D.Bhatt and V.M.Panchal, "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2. K.V.Natarajan "A Text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.

#### **REFERENCES:**

- 1. K.R.Gopalakrishna, "Engineering drawing",(Vol-I & II combined) Subhas stores, Bangalore,2007.
- 2. K.Venugopal and V. Prabhu Raja, "Engineering Graphics", New Age International Private limited, 2008.
- 3. Luzzader, Warren.J., and Duff, John.M.,, "Fundamentals of Engineering Drawing with an introduction to Interactive computer graphics for design and production", Eastern Economy Edition, Prentice Hall of India Pvt Ltd, New Delhi,2005.

## Special points applicable to University Examinations on Engineering Graphics

- 1) There will be five questions, each of either or type covering all units of the syllabus.
- 2) All questions will carry equal marks of 20 each making a total of 100.

BC	M1L	.1			CIVII ATOI		<b>IECH</b>	ANICA	LEN	GIN	NEER	IN	G PRAG	CTIC	ES	L	T	Р	C
					ntact I		5 - 30									0	0	2	1
			Prere	equis	ite – 1	Basic	Civil a	nd Mecl	hanic	al E	Ingine	erir	ng						
			Cou	rse D	esign	ed by	-Dep	artment	of Me	echa	anical	Eng	gineerin	g& C	ivil	Eng	ineeri	ing	
OB	JEC'	TIVI	ES																
				re to	the s	tuden	ts with	hands of	on ex	peri	ience	on v	various	basic	Civ	vil &			
			Ingine																
			UTC(			,													
CO			1 Basi		-		1						0			1.		1 .1	
CO								ing pipe vs and fi				r pu	imps &	turbin	nes a	and t	o stuc	ly ti	ne
CO								ding sm				ope	rations	and ir	ı lat	est v	veldii	ng	
		opera	tions	such	as TI	G, M	IG, CC	02, spot	weldi	ing (	etc.,								
CO					et har	nds of	n expe	rience of	n bas	sic v	weldir	ng te	echniqu	es, m	achi	ining	g and	she	et
СО			l work		t har	da ar		ionoo on	hadi	0.000	ochini	in a f	achnicu	100					
				-			-	ience on				-	-						
CO	6	Stude	ents w				_	ience on											
			(H/N					utcomes of correl								w			
1	CO	s/P	a	b	c	d	e		f	/ -	g		h	i i		J	k		1
	Os			_															
2	CO CO		Η	L		TT													
	CO.					Η	Н	L		L									
	CO			Н				M		Ľ		L					Н		
	CO	5		Η				Μ				L					Н		
	CO			Η				M			1	L	1				H		
3	Cate	ego	22 9	ò	S							<u> </u>	e		-		$\widehat{}$		
	ry		es & die		ence	3S)	nces	onal C)	nal	PE	ijor T	IJ Z	ctiv		GIII	ur/	Hd)		
			Humanities & Social Studies	(SH)	Basic Sciences	& Maths (BS)	Sciences	Professional Core (PC)	Professional	Elective (PE)	Non-Major	Elective (INE)	Open Elective (OE)	L/to	rrojecv renn Paper	Seminar/	Internship (PR)		
			uma cial	L)	sic	<b>1</b> ath	so a	rofe Core	rofe	ecti	Jon-	ecu	en (		b G	Sen	erns		
			Hu		$\mathbf{Ba}$	2	Engg (ES)	d C	Ρ	Ξ		Ъ	Of	Ď	Z		Into		
		•					$\frac{1}{}$												
1	1				37 ^{ti}	h N/L-	·	f Acada	mic	1.011		lor	2015						
4	App val	ло			5/	wie	eung 0	f Acadei		Jour	icii, N	nay	2015						

#### LIST OF EXPERIMENTS I. CIVIL ENGINEERING PRACTICE

#### **Buildings:**

a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

## **Plumbing Works:**

- a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- b) Study of pipe connections requirements for pumps and turbines.
- c) Preparation of plumbing line sketches for water supply and sewage works.
- d) Hands-on-exercise: Basic pipe connection of PVC pipes & G.I. Pipes Mixed pipe material connection Pipe connections with different joining components.
- e) Demonstration of plumbing requirements of high-rise buildings.

#### **Carpentry using Hand tools and Power tools:**

- a) Study of the joints in roofs, doors, windows and furniture.
- b) Hands-on-exercise: Wood work, joints by sawing, planning and cutting.
- c) Preparation of half joints, Mortise and Tenon joints.

## **II MECHANICAL ENGINEERING PRACTICE**

#### Welding:

a) Preparation of butt joints, lap joints and tee joints by arc welding

## **Basic Machining:**

- a) Simple Turning and Taper turning
- **b**) Drilling Practice

## **Sheet Metal Work:**

- a) Forming & Bending:
- b) Model making Trays, funnels, etc.
- c) Different type of joints
- d) Preparation of air-conditioning ducts
- e) Preparation of butt joints, lap joints and tee joints by arc welding

## Machine assembly practice:

- a) Assembling, dismantling and Study of centrifugal pump
- b) Assembling, dismantling and Study of air conditioner
- c) Assembling, dismantling and Study of lathe

## Moulding:

a) Moulding operations like mould preparation for gear and step cone pulley etc

## Fitting:

a) Fitting Exercises – Preparation of square fitting and vee – fitting models.

## **Demonstration:**

- a) Smithy operations, upsetting, swaging, setting down and bending. Example–Exercise Production of hexagonal headed bolt.
- b) Gas welding.

## **REFERENCES:**

- 1. K. Jeyachandran, S. Nararajan& S, Balasubramanian, "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. T.Jeyapoovan, M. Saravanapandian& S. Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd. (2006)
- 3. H. S. Bawa, "Workshop Practice", Tata McGraw-Hill Publishing Company Limited, (2007).
- 4. A. Rajendra Prasad & P. M. M. S Sarma, "Workshop Practice", Sree Sai Publication, (2002).
- 5. P. Kannaiah& K.L. Narayana, "Manual on Workshop Practice", Sci tech Publication, (1999).

			ENG	LIS	HII										L	Т	P	C	
RI	EN 201	ı F	Total	Con	tact 1	Hours	s – 6	50							3	1	0	3	
DI	201		Prere	quisi	ite – I	Engli	sh I												
		F	Cour	se De	esign	ed by	/ – I	Departn	nent of	Eng	lish								
O	BJEC	<b>FIVE</b>	S																
									ate in g	grou	p d	iscuss	sion	s. Stu	dents	s will	have	Tele	pho
		· · ·					orma	tion Tr	ansfer										
	DURS				<u>`</u>	· ·													
CC	D1								ferent k				ner	-friend	dly n	nodes	of la	inguag	ge
G									g (Com							11	<u> </u>		1
CC	52						ehe	nd the	habit of	t int	elli	gent I	Rea	ding a	as we	all as	Com	puter-	- ba
CC	3		petitiv				000	d loval	of com	noto	nov	in D	mor	rt Wri	ting				
C									ferent k							odaa	of la	nauc	<u>a</u> a
	74								g (Com				ner	-meno	uly II	loues	01 12	ingua	ge
CO	)5								of com				oup	discu	issior	ns			
CC	06						-		of com	-			-						
				Map	ping	of Co	ours	e Outco	omes w	ith H	Prog	gram	out	comes	s (PO	s)			
									orrelati								W		
1	COs/	POs		a	b	с	d	e	f	g	5	h		i	J	k		1	
2	CO1			Μ	L	Η	L	М				Η			Μ	L			
	CO2					H	L					Н			Μ	L			
	CO3					H	L	M				H			H	L			
	CO4					H	L	M				H			M	L			
	CO5 CO6					H H	L L	M M				H H			M M	L L			
3	Categ	orv			I	11		111				11			1V1				
5	Calle	,01 y		Social				(ES)	Core		CE)	Ì	ective		OE)		er/		
					IS)	lces		~	Cc			_			$\smile$		paper/	PR	
				Se la	Studies (H	Basic Scien	S)	Sciences	nal כ)		tive		Ч	Î	tive		ш	Seminar Internship (	
				itie	die	c S	(BS)	ciel	siona (PC)	,	Ilec		310	(NE)	llec		/Te	emı nsh	
				janj	Stu	asi			Professional (PC)		e E	)			'nE		ect	N Iten	
				Humanities &	-	B		Engg	Prc		Core Elective		Non-Maior El		Open Elective		Project/Term	Ir	
				,				Ĩ				·		4	Ŭ		I		
4	Appr	oval		37 ^t	^h Me	eting	of .	Acaden	nic Cou	ıncil	, M	ay 20	15						

#### UNIT I ORIENTATION

Numerical adjectives - Meanings in context - Same words used as different parts of speech - Paragraph writing - Non- verbal communication - Regular and Irregular verbs.

#### UNIT II ORAL SKILL

Listening to audio cassettes - C.Ds, News bulletin - Special Lectures, Discourse - Note taking - Sentence patterns - SV, SVO, SVC, SVOC, SVOCA - and Giving Instructions - Reading Comprehension answering questions. Inferring meaning.

## 12

#### UNIT III THINKING SKILL

Self- introduction describing –Group Discussion – Debate –Role play- Telephone- Thingsetiquette- Recommendation and Sequencing jumbled sentences to make a suggestions-paragraphadvertisement and notice, Designing or drafting posters, writing formal and informal invitations and replies.

## UNIT IV WRITING SKILL

Definitions - Compound nouns - Abbreviations and acronyms - (a) business or official letters(for making enquiries, registering complaints, asking for and giving information, placing orders and sending replies): (b) Letters to the editor (giving suggestions on an issue).

#### UNIT V FORMAL INFORMATION

Editing – Prepositions - Articles - Permission letter for undergoing practical training , Essay writing - Application for a job , letter to the principal authorities regarding admissions, other issues, requirement or suitability of course etc.

#### **TEXT BOOK:**

1. Meenakshi Raman, Sangeetha Sharma, Technical English for Communication: Principle and Practice, OUP, 2009.

#### **REFERENCE BOOKS:**

- 1. Sumanth, English for Engineers, Vijay Nicole, Imprints pvt ltd.2013.
- 2. Meenakshi Raman and SangeethaSharma, Technical Communication Principles and Practice, Oxford University Press, 2009.
- 3. Sangeetha Sharma, Binodmishra , Communication skills for engineers and scientists , PHI Learning Pvt Ltd, New Delhi, 2010.

		MAT	HEN	MAT	FICS	– II					]	L	Т	P	С
		Total	Con	tact	Hours	s - 60					3	3	1	0	3
BM	A 201	Prere	quisi	te –	Math	emati	cs I								
		Cours	se De	esigr	ned by	∕ − De	partm	ent of ]	Mathem	natics					
-	<b>JECTIV</b> lity to ap		e pri	ncip	les of	math	ematio	es in pr	ojects a	nd resea	rch wo	rks.			
CO	URSE C	UTCO	MES	6 (C	Os)										
CO		Student shall be able to Solve differential equations, simultaneous linear equations, and so special types of linear equations related to engineering. Relate the use of mathematics in applications of various fields namely fluid flow, heat fl													
CO	2 Rela		se of	f ma	thema	atics i	n app				lds nar	nely	/ flui	id flo	w, heat f
CO	3 Abi	ity to te	st hy	poth	lesis										
CO		l intensi tions.	ty of	deg	gree of	f rela	tionsh	ip betw	veen tw	o variab	les and	l als	so br	ring o	ut regres
CO	5 Und	erstand	to so	lve 1	matrix	rob	lems 1	related	to real l	life prob	lems.				
CO	6 Form	nulate n	nathe	mati	ical m	odels									
	1									n outco gh, M-N				,	
1	COs/Pos		a	b	c	d	e	f	g	h	i			k	1
2	CO1		Η		L				_						

#### 12

# 12

	CO2		Η				Η		L	L		Μ	
	CO3		Η				Н		L	L		Μ	
	CO4					М						Μ	
	CO5										Μ	Μ	
	CO6										Μ		
3	Category		Social Studies (HS)	< Basic & M		(ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/Term paper/ Seminar/
4	Approval	37 ^{tl}	^h M	eeting	of A	caden	nic Cou	incil,	May 20	)15	•		

#### UNIT I **ORDINARY DIFFERENTIAL EQUATION**

Higher order linear differential equations with constant coefficients - Method of variation of parameters - Cauchy's and Legendre's linear equations - simultaneous first order linear equations with constant coefficients.

#### **UNIT II VECTOR CALCULUS**

Gradient, divergence and curl -Directional derivatives -Irrotational and solenoidal vector fields vector integration- Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (without proofs) – simple applications involving cubes and rectangular parallelepipeds.

#### **ANALYTIC FUNCTIONS** UNIT III

Functions of a complex variable - Analytic functions - Necessary conditions, Cauchy-Riemann equation and sufficient conditions (without proofs) - Harmonic and orthogonal properties of analytic functions - Harmonic conjugate - construction of analytic functions - conformal mapping: W = Z + C, CZ, 1/Z and bilinear transformation.

#### UNIT IV **COMPLEX INTEGRATION**

Complex integration - Statement and application of Cauchy's integral theorem and Cauchy's integral formula -Taylor and Laurent expansions - Singular points - Residues - Residue theorem –Application of Residue theorem to evaluate real integrals – Unit circle and semi-circular contour (excluding poles on boundaries).

#### UNIT V **STATISTICS**

Mean, Median, Mode - Moments - Skewness and Kurtosis - Correlation - Rank Correlation -Regression – Chi square test for contingency tables.

#### **TEXT BOOK:**

- R.M.Kannan and B.Vijayakumar" Engineering Mathematics-II "2ndEdition, SRB Publication, 1. Chennai 2007.
- Bali.N.P and Manish Goyal, "Engineering Mathematics", 3rdEdition, Laxmi Publications (P) 2. Lltd, 2008.
- Grewal .B/S "Higher Engineering Mathematics", 40th Editon, Khanna Publications, Delhi, 3. 2007

## **REFERENCES**:

Ramana.B.V, "Higher Engineering Mathematic", Tata McGraw Hill Publishing Company, 1.

#### 12

12

12

12

New Delhi, 2007.

2. Gupta SC, and VK.Kapoor, "Fundamentals Mathematical Statistics", 11thedition, Sultan Chand Sons, New Delhi, 2014.

			ENG	INEF	ERIN	G PH	[YS]	CS -I	I					L	T	]	P	С
BF	PH20	1	Total	Cont	act Ho	ours ·	- 45							3	0	0		3
		-	Preree	quisit	e – El	NGIN	IEEI	RING	PHYSI	CS -	·I			I				
			Cours	e De	signec	l by -	- De	partme	ent of P	hysi	cs							
OI	BJEC	CTIVE																
	•		-					+	reas of s gineerin			0		g ma	ateria	ls wł	nich	
	•								pplicati		-			Sen	nicor	nducti	ing,	
							erial	s as w	ell as th	eir c	optio	cal pro	perties	5.				
	<b>01</b>		UTCOI		`		and	advan	cement	s of	con	ductir	o mate	rials	2			
													-		•			
	02			-	-		-	-	s semic			-	erials.					
C	03	Acqu	ire Kno	wied	ge on	Mag	netic	c and c	dielectri	C M	ater	iais.						
C	04	To Ki	now ab	out th	ne crea	ation	of n	ew ma	aterials	with	nov	vel pro	perties	5				
C	05	To U	ndersta	and th	ie imp	oact c	f mo	dern 1	material	s in	tecl	nnical	uses.					
C	06	Learn	new e	ngine	ering	mate	rials	and it	ts chara	cteri	stic	s						
				Ma	pping	g of C	ours	e Outo	comes v	vith	Pro	gram						
1	CO	s/Pos	(H	/M/L a	indic: b	ates s	tren d	gth of e	correlat f	tion) g		l-High h	<u>, M-M</u> i		m, L i	<u>-Low</u> k		1
2	CO			H	U	-	u		-	5	>				J	R		
	CO				L	Η		М										
	CO3			Н	М	М	H L										-	
	CO2			п	L	L	L											
	CO	5		Н														
3	Cate	egory		k	S	SS					e				e			3)
				Humanities &	Social Studies (HS)	ience	(BS) Sciences		Professional Core (PC)		Core Elective		Non-Major Elective (NE		Open Elective (OF)	Droiect/Term	r/	har/ p (PI
				nanit	al Su (HS)	c Sc	_		rofession Core (PC)		E	(CE)	Non-Major lective (NF		n Ele	iect/	paper/	Seminar/ ernship (I
				Hun	Soci	Basic Sciences	Εησσ	(ES)	Pro		Core		Nc Elec		Ope	Droi		Seminar/ Internship (PR)
							Ĺ											
4	Ann	oroval		37 th				cadar	nic Cou	ncil		v 2014	5					
4	лрр	loval		57	wiet	ung				.ic11,	IVI	y 201.	J					

## UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum

theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

#### UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

#### UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

#### UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

#### UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials – Birefringence- optical Kerr effect – Classification of Biomaterials and its applications.

#### **TEXT BOOKS:**

- 1. Jayaraman D Engineering Physics II. Global Publishing House, 2014.
- 2. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011.
- 3. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

#### **REFERENCES:**

1. Arumugam M., Materials Science. Anuradha publishers, 2010

- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
- 4 <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 5 <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 6 <u>https://en.wikipedia.org/wiki/Engineering_physics</u>

	ENGINEERING CHEMISTRY-II	L	Т	Р	C
BCH 201	Total Contact Hours - 45	3	0	0	3
	Prerequisite – ENGINEERING CHEMISTRY –I				
	Course Designed by – Department of Chemistry				
OBJECTIV	ES				
To in	part a sound knowledge on the principles of chemistry inv	olvin	g appl	icatior	ı orier

9

9

9

		topics requir	red fo	or al	l engi	neeri	ng bra	nches.								
C	OUR	SE OUTCO	)ME	<mark>S (C</mark>	Os)											
CC	D1	Students w	ill un	ders	tand t	he co	oncept	s and f	urthe	er i	ndusti	rial aj	opli	cation	s of	surface chemi
CC	02	To impart k	know	ledg	e abo	ut the	e Indu	ıstrial i	mpo	rta	nce of	Phas	se ru	ule an	d allo	oys
CC	03	To make the importance		uder	nts to	be c	conver	rsant w	vith .	An	alytica	al tec	hni	ques	of cl	hemistry and
CC	04	To have an	idea	and	know	ledge	e abou	it the C	hem	nist	ry of I	Fuels	and	1		
CC	D5	Understand	-		-	-										
CC	06	All about b	ondii	ng ai	nd mo	lecul	lar stru	ıctures								
		(H						itcome of corre								
1	CO	s/Pos														
2	CO		Η	Η	L		Η		Η						Μ	
	CO			Η			Η		Η							
	CO		Η		L		Η		Η						Μ	_
	CO				L		H		Н							
	CO: CO				L		H		H						N	
2		-			L		Н		н						IVI	
3	Cate	egory	Humanities & Bumanities & Social Studies (HS) Basic Sciences (BS) Engg Sciences (BS) F F Engg Sciences (BS) H F Core (PC) H Core (PC) H COR (CE) COF COF (CE) COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) H COF (CE) (													
4	App	oroval	37 ^t	h M	eeting	g of A	Acader	nic Co	unci	1, N	Aay 20	015				

#### UNIT I SURFACE CHEMISTRY

Introduction : Adsorption , absorption , desorption , adsorbent , adsorbate and sorption – (definition only) Differences between adsorption and absorption Adsorption of gases on solids – factors affecting adsorption of gases on solids – Adsorption isotherms –Frendlich adsorption isotherm and Langmuir adsorption isotherm Role of adsorbents in catalysis, Ion-exchange adsorption and pollution abatement.

#### UNIT II PHASE RULE AND ALLOYS

Introduction :Statement of Phase Rule and explanation of terms involved – one component system – water system – Construction of phase diagram by thermal analysis - Condensed phase rule [Definition only] Two Component System : Simple eutectic systems (lead-silver system only) – eutectic temperature – eutectic composition – Pattinsons Process of desilverisation of Lead Alloys: Importance, ferrous alloys –nichrome and stainless steel – 18/8 stainless steel – heat treatment of steel – annealing – hardening – tempering normalizing – carburizing - nit riding . Non-ferrous alloys: Brass and Bronze

#### UNIT III ANALYTICAL TECHNIQUES

Introduction: Type of Spectroscopy - Atomic spectroscopy - molecular spectroscopy - Explanation IR spectroscopy - principles - instrumentation (block diagram only) - applications - finger print region UV-visible spectroscopy — principle - instrumentation (block diagram only) - Beer-Lambert's law- - estimation of iron by colorimetry - Atomic absorption spectroscopy-

#### 9 _

#### 9

principle - instrumentation (block diagram only) - estimation of Nickel by Atomic absorption spectroscopy Flame photometry– principles – instrumentation (block diagram only) - estimation of sodium ion by Flame photometry

### UNIT IV FUELS

Introduction : Calorific value – types of Calorific value - gross calorific value – net calorific value Analysis of Coal – Proximate and ultimate analysis – hydrogenation of coal - Metallurgical coke – manufacture by Otto-Hoffmann method Petroleum processing and fractions – cracking – catalytic cracking – types – fixed bed catalytic cracking method- Octane number and Cetane number (definition only) Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG (definition and composition only) Flue gas analysis – importance - Orsat apparatus

#### UNIT V ENGINEERING MATERIALS

**Introduction:** Refractory's – classification – acidic, basic and neutral refractory's – properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling) Manufacture of Refractory's: alumina bricks and Magnesite bricks, Abrasives – natural and synthetic abrasives Natural type : Siliceous - quartz ; Non –siliceous – diamond Synthetic Abrasives : silicon carbide and boron carbide. Lubricants: Liquid lubricants - Properties – viscosity index, flash and fire points, cloud and pour points, oiliness) Solid lubricants – graphite and molybdenum sulphide

#### **TEXT BOOKS**:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S.Dara "A text book of Engineering Chemistry" S.Chand &Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

## **REFERENCES:**

- 1. B.Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub. Co.Ltd, New Delhi,(2008)
- 2. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. https://en.wikipedia.org/wiki/Spectroscopy

BFR 2	01 FRENCH	L	Т	P	C
	Total Contact Hours – 45	3	0	0	3
	Prerequisite – +2 Level English			1	
	Course Designed by – Department of English				
OBJE	CTIVES				
0	age gives access and insights into another culture. It is a fundament themselves through languages.	tal tr	uth th	at cult	ures
COUR	SE OUTCOMES (COs)				
CO1	Introduce the basics of the language to beginners				
CO2	Understand a dialogue and dialogue presentation				
CO3	To develop their knowledge as well as their communicative skill respond in simple everyday contexts.	ls so	as to	be abl	le to

9

C	D4	Svnch	nronie	s I in	cludes	docı	iments v	which i	nitiat	te the lea	rners to a	nothe	er worl	d, another		
		•												language		
														an context		
		has be	-	-												
C	D5	Gram	matic	al and	d lexic	al no	otions as	s well a	as ac	tivities r	equired for	or con	mmuni	cation are		
		learnt	by th	e stuc	lents.						-					
CO	D6	Interp	oreting	g skill	s and c	onfi	dence ir	n the la	ngua	ge.						
CO	D6	Interp	oreting	g skill	s and c	onfi	dence ir	n the la	ngua	ge.						
			M	appin	g of Co	ourse	Outcon	nes wi	th Pro	ogram o	utcomes	(POs)	)			
		(H														
1	CC	(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowOs/Poabcdefghijkl														
	S															
2	CO1 H L															
	CC				Н	L				Н	Н	Μ	L	L		
	CC				Н	L				Н	Н	Μ	L	L		
	CC				Η					Н	Н	Μ	L	L		
	CC				Н	L				Н	Н	Μ		L		
	CC				Н					Н	Н	Μ		L		
3	Ca	tegor	£	6				G			/e	(T)		11		
	У		у Т		s) es	、		Professional Core (PC)		(CI	ctiv	Ō	e de la	R)		
			es	S	BS	,	ces	1 (		ve	Ele	ve (		ar/ ar/		
			Humanities &	Inn	Basic Sciences &Maths (BS)		Sciences	siona (PC)		cti	ajor ] (NE)	cti	ern	Seminar/ Seminar/ Internship (PR)		
			mai st	2	ic S Aatl		Sci	ssic (F		Ele	1aj (D	Ele	Ę	ien rnsl		
			IuL	Jal	Sas. &N			ofee		e.]	-L	[ us	د م	S		
			Humanities &		щ		Engg (ES)	$\Pr($		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Droiect/Term naner/	l I		
							- <b>-</b>				, ,	-				
4	-	prov	37 th	Mee	ting of	Aca	demic (	Council	l, Ma	y 2015						
	al															

#### UNIT I INTRODUCTION

At the airport: Savoir- faire: exchanging greetings, self introduction, introducing another, welcoming someone, identifying someone - Grammar: verbs 'to be', 'to call oneself', subject pronouns, interrogation

#### UNIT II GRAMMAR

At the University: Savoir-faire: enquiring after one's welfare, taking leave, expressing appreciation -Grammar: definite & indefinite articles, gender of nouns, adjectives, present tense of regular 'er' verbs, 'to have', 'to learn', negation, irregular verbs

#### UNIT III CONVERSATION

At the café: Savoir –faire: speaking about one's likes, giving information, expressing admiration, asking information about someone - Grammar: Interrogative adjectives, irregular verbs, possessive and interrogative adjectives

## UNIT IV PROPOSAL WRITING

At the beach: Savoir faire: proposing an outing, accepting/ refusing the proposal - Grammar: singular & plural, indefinite pronoun, demonstrative adjectives, negation, irregular verbs

## UNIT V FORMAL LETTERS

8

8

#### 8

A concert: Savoir -faire: inviting, accepting, expressing one's inability to accept an invitation

### UNIT VI REGULAR & IRREGULAR VERBS

Grammar: Present tense of more irregular verbs, contracted articles, future tense, interrogative adverbs, **At Nalli's** Savoir- faire: asking the price of an article, protesting against the price, Grammar: possessive adjectives, Exclamative adjectives, imperative tense

## **REFERENCES:**

- 1. Course Material: Synchronie I Méthode de Français
- 2. Madanagobalane Samita Publications, Chennai, 2007

DOI		GER	MAN	I									L	Τ	Р	С
BGN	<b>A</b> 201	Total	Cont	act H	ours ·	- 45							3	0	0	3
		Prere	quisit	e +2 I	Level	Eng	glish									
		Cours	se De	signed	d by -	– De	partm	ent of E	ngli	sh						
At t write	e and sp URSE ( Wil Wil Wil Wil		ourse man, y MES basic pread pread pasi cand C nfide	e, stud where (COs know ing an c con Germa nce to	ents by th ledge d wr versa n life surv	shall e en e of t iting tiona estyle	be al hphasi he lan skills al skill e n a glo	ble to ol s is laid nguage ls. obal env	otaii	n gc	nt			f the l	angu	age, to
								es with Helation)								
1 (	COs/Pos		a	b	c	d d	e	f	-11- 2		<u>h, M-</u> h	i	11, L'	j	k	1
	CO1 CO2 CO3 CO4 CO5 CO6 Category	/	anities & H	I Studies HS)	H H H H H	T     T     T       Sciences		Professional Core (PC)		Elective	H H H H H	Non-Major Elective (NE) H H H H	] ] ] ]	М	Project/Term	aper/ T T T T T T Shin (PR)
4 A	Approva	1		Social (F	Basic	Εμσο	(ES)	Lore Core	ncil,	Core	<u> </u>			Open F (O	Projec	paper/ Seminat Internshin (

#### **Course structure:**

- A. German Language (speaking, reading, writing, grammar and test)
- B. Life in Germany (shopping, restaurant, doctor, government, bank, post)
- C. The German Way (introduction, doing business, conversation, meetings, dining)
- D. Germany (Culture, Climate)

#### UNIT IPRONOUNCIATION

Welcome: Introduction to the Language, Spelling and Pronunciation (The alphabets and numbers) Greetings, ordering, requesting, saying thank you - Grammar – **the article "the", conjugation** of verbs

#### UNIT IISELF INTRODUCTION

Shopping - Grammar - adjectives, endings before nouns, practice. Self introduction

#### UNIT IIITRAINING

Addresses, Occupations, Studies - Grammar - **'to be', the definite/indefinite** articles, individual Training

#### **UNIT IVORAL**

Leisure Time, Sports, Hobbies - Grammar - position of a verb in a main clause , oral practice

#### UNIT VNARRATION

At a Restaurant, Food and Drink - Grammar – the personal pronoun in the Nominative and Accusative, Narrating an event

#### **RESOURCES:**

1. Sprachkurs Deutsch 1 (Verlag Diesterweg), New Delhi Learning Centre

		JAPA	ANES	E							L	Τ	P	(	С	
B.I	P 201	Total	Cont	act H	Hours	- 45					3	0	0	3	3	
20		Prere	quisit	e – -	-2 Lev	vel En	nglish									
		Cours	se Des	signe	ed by ·	– Dep	oartme	nt of E	nglish							
OI	BJECTI	Prerequisite - +2 Level English         Course Designed by - Department of English         ECTIVES         To have a basic knowledge of Japanese language, Japanese culture and heritage         To impart knowledge Japanese lifestyle.         To give sufficient exposure to develop basic conversational skills.         RSE OUTCOMES (COs)         Will have a basic knowledge of the language         Will acquire reading and writing skills.         Will develop basic conversational skills.														
	To ha	IVES         nave a basic knowledge of Japanese language, Japanese culture and heritage         mpart knowledge Japanese lifestyle.         tive sufficient exposure to develop basic conversational skills.         COUTCOMES (COs)														
	To in	part knov	art knowledge Japanese lifestyle. sufficient exposure to develop basic conversational skills.													
	To gi	ve suffici	e sufficient exposure to develop basic conversational skills.													
CC	DURSE	OUTCOMES (COs)														
CC	D1 Wi	ve sufficient exposure to develop basic conversational skills. DUTCOMES (COs) Il have a basic knowledge of the language														
CC	D2 Wi	OUTCOMES (COs) Il have a basic knowledge of the language														
CC	03 Wi	ll develo	p basi	c co	nversa	ationa	l skills	s.								
CC	04 Wi	ll underst	tand J	apar	nese li	festyl	e									
CC	05 Wi	ll gain co	onfide	nce	to surv	vive in	n a glo	bal env	vironme	ent						
CC	06 Wi	ll have at	taineo	d to s	surviv	e and	adopt	change	e in a fo	oreign cu	lture .					
		М	appin	g of	Cours	se Ou	tcome	s with ]	Progran	n outcon	nes (PC	)s)				
				-					-	gh, M-M			W			
1	COs/Pc	S	a	b	c	d	e	f	g	h	i	j	k		1	
2	CO1		Н	L												
	CO2				Н	L				Н	Н	Μ	L	L		

9

9

9

9

	CO3			Η	L					Н	Η	Μ	L	L
	CO4			Н						Η	Η	Μ	L	L
	CO5			Н	L					Η	Η	Μ		L
	CO6			Н						Η	Η	Μ		L
3	Category	Humanities &	ornurca	Basic Sciences (BS)	Engo Sciences		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (PR)
4	Approval	37 th	Me	eting	of Ac	cadem	ic Cou	ncil,	May	2015	í			

#### UNIT ICULTURAL HERITAGE

Introduction-history and origin of Japanese language-Japan and its cultural heritage-Self introduction-counting numbers (1-100)-time-conversation with the use of audio devices, grammar-usage of particles wa, no, mo and ka

#### **UNIT IIUSAGE**

Greetings, seasons, days of the week and months of the year-numbers (up to 99,999)-grammarusage of kore, sore, are, kono, sono, ano, koko and kochira, arimasu and imasu-i-ending and naending adjectives-use of audio and drills for practice

#### **UNIT IIIORAL**

Asking the price-associated vocabulary-usage of particles ni, ga and ne- use of audio and drills for practice-Introduction to basic Kanji characters- use of audio and drills for practice

#### UNIT IVART AND CULTURE

Family relationships- colours-Kanji (numbers) and festivals of Japan-religion-Japanese art and culture-ikebana, origami-introduction to hiragana- use of audio and drills for practice

#### UNIT VDRILLS AND PRACTICE

Vocobulary associated with directions-asking way-particles - e, de, mo, koko, soko, asoko, doko, nani, mae, ushiro, ue, shita- use of audio and drills for practice-introduction to katakana

#### **TEXT BOOKS**

- 1. Japanese Hiragana and Katakana for beginners, Timothy G. Stout, 2011
- 2. Genki I: An integrated course in elementary Japanese, Eri Banno and Yuko Ikeda, 2011

#### **REFERENCE BOOKS**

- 1. Japanese Reader collection Volume I, Yumi Boutwell and Clay Boutwell, Kotoba books, 2013
- 2. Living Language Japanese Complete Edition beginners through advanced course, Living Language, 2012

BKR 201	KOREAN	L	Т	Р	С
	Total Contact Hours - 45	3	1	0	3

#### 9

9

9

9

		Pre	requisi	te –	+2 Le	evel l	Englis	h									
		Cou	urse De	esig	ned by	/ – D	epartn	nent of	Eng	lish							
]	Γo ha	CTIVES we a basic l part knowl	knowle	edge	e of Ko	orean	langu	age, Ko	orea	n cu		and herit	age				
CO	OUR	SE OUTC	OMES	6 (C	Os)												
CC	D1	Will have	a basic	c kn	owled	ge of	the la	nguage	<b>;</b>								
CC	D2	Will acqui	re read	ling	and v	vritin	g skill	s.									
CC	03	Will devel	lop bas	ic c	onver	satio	nal ski	lls.									
CC		Will under															
CC	D5	Will gain	confide	ence	e to su	rvive	in a g	lobal e	nvire	onm	nent						
CC	)6	Will have	attaine	ed to	o survi	ve ar	nd ado	pt chan	ge ii	n a f	foreig	n culture	•				
1	CO	s/Pos	(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowPosabcdefghijk1														
2	CO	1	(H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low         Pos       a       b       c       d       e       f       g       h       i       j       k       l         Pos       a       b       c       d       e       f       g       h       i       j       k       l         H       L       H       L       H       H       M       L       L														
	CO	Ds/Pos         a         b         c         d         e         f         g         h         i         j         k         l           D1         H         L         Image: Constraint of the second sec															
	CO				H	L					H	H	M	L	L		
	CO				H	т					H	H	M	L	L		
	CO CO				H H	L					H H	<u>Н</u> Н	M M		L L		
3		o egory			п	<u> </u>					п		IVI				
5	Cat	CEOLA	Humanities & Social	Studies (HS)	Basic Sciences	Kuviaulis (DO) Fnor Sciences (FS)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (PR)		
4	App	proval	37 ^t	^h M	leeting	g of A	Acader	nic Cou	ıncil	l, M	ay 20	15	1	I			

#### **UNIT IPLANNING**

Asking/giving reasons for studying Korean, making plans for the holiday, writing letters, describing past travel experiences and future travel plans, shopping in a grocery store, shopping in electronics store, storytelling Grammar: would like to (do), want to (do), construct future tense.

#### **UNIT IIMODIFIERS**

Asking about feelings, asking about problems and giving advice, brief introductions - Grammar: Noun modifier, please try doing (something), irregular adjective/verb

#### UNIT IIIPLACING ORDERS

Asking about hobbies, asking about abilities (sports), job requirements, Ordering things for delivery, ordering a meal at a restaurant - Grammar: Sentence ending for the honorific form, please do something for me, have tried (something),

#### UNIT IVDESCRIPTIONS

9 Gr

9

Asking about evening plans, making plans with others, making preparations - Asking about rooms, describing your room to your classmates, describing your house. Grammar: to know/not know how to do something, must (do), have to (do), should,

#### UNIT VGRAMMAR

9

Describing your plans and giving reasons, cancelling appointments. Grammar: Shall we~? / Should we~?, with, and, irregular verbs/adjective, so, because, cannot, intend to, plan to, or hope to, (more) than, the most, tag question/is n't it?, will (do)

#### **COURSE MATERIAL:**

Korean for Non-Native Speakers (Student Book 1B) Korean Language Education Center, Sogang University

BC	N 201		CHIN	ESE							]	L	Т	Р	C
			Total C	Cont	act Ho	ours -	60					3	0	0	3
			Prerequ	isit	e – +2	2 Leve	l Eng	glish			1			-	
			Course	De	signed	l by –	Depa	artment	of Engli	ish					
OB	JECTIV	/ES				-									
			sic know							cultur	e and he	erita	age		
~~			owledge			se life	style	and her	ritage.						
			OMES (			ladaa	of 110	. 1							
$\frac{CO}{CO}$			have a ba			U		Ũ	age						
CO			acquire r												
$\frac{CO}{CO}$			develop					skills.							
$\frac{CO}{CO}$			understa					a alaba	1 onvino	nmont					
$\frac{CO}{CO}$			gain con have atta					-			on aulti	150			
CU	0														
			Mapping /L indica												
1	COs/Po			b	c c	d	e	f	g	h	i i		j	k	1
					-		-		0		_		J		_
2	CO1		Н	L	TT	T				II	TT		л	т	т
	CO2				Н	L				Н	Н		Ν	L	L
	CO3				H	L				H	H	-	M	L	L
	CO4				H	т				H	H	_	M	L	L
	CO5 CO6				H H	L				H H	H H	_	<u>Л</u> Л		L L
3	Catego	rv			11						1		~		L
5	Culogo	I y	k HS)	S				ore	Elective (CE)	Non-Maior Elective		ļ	Open Elective (OE)	Project/Term paper/	$\widehat{\boldsymbol{\mathcal{A}}}$
			nanities & Studies (HS)	Sciences		ses		1 0	ve (	lec		Ň	/e (	ı pa	(PI
			niti udi	Scie	(BS)	ciences		siona (PC)	ctiv	or I	(NE)	•	sctiv	ern	hip did
				0	$\sim$	Sc		SSSI (F	Ele	Mai	r e	i	Ele	ct/T	Seminar/ ernship (J
			Hum Social S	Basic		Engg	$\hat{\mathbf{c}}$	Professional Core (PC)	Core	-uc			Den	ojeć	Seminar/ Internship (PR)
			Sc			E	ц Ц	$\mathbf{P}$	Ŭ	ĬŽ		(	Ō	$\mathbf{Pr}$	
4	Approv	val	37 th N	leet	ing of	Acad	emic	Counci	il, May 2	2015				1	
	11 -				0		-		,,	-					

#### **UNIT 1RISE OF DIALECTS**

History, Origins, Old and middle Chinese, Rise of northern dialects

#### **UNIT IIVARIETIES**

Influences 3 Varieties of Chinese. 1. Classification 2. Standard Chinese and 3. Nomenclature

#### **UNIT III CHARACTERS**

Chinese characters, Homophones, Phonology

#### **UNIT IV TRANSCRIPTIONS**

Tones, Phonetic transcriptions, Romanization, Other phonetic transcriptions

#### **UNIT VGRAMMAR**

Grammar and morphology, Vocabulary, Loanwords, Modern borrowings and loanwords

#### **REFERENCES:**

- 1. Hannas, William C. (1997), Asia's Orthographic Dilemma, University of Hawaii Press, "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-1892-0" ISBNHYPERLINK 978-0-8248-1892-0.
- 2. Qiu, Xigui (2000), Chinese Writing, trans. Gilbert Louis Mattos and Jerry Norman, Society for the Study of Early China and Institute of East Asian Studies, University of California, Berkeley, **ISBN HYPERLINK**

http://en.wikipedia.org/wiki/Special:BookSources/978-1-55729-071-7.978-1-55729-071-7.

- 3. Ramsey, S. Robert (1987), The Languages of China, Princeton University Press, **ISBNHYPERLINK** "http://en.wikipedia.org/wiki/Special:BookSources/978-0-691-01468-5" 978-0-691-01468-5.
- 4. Schuessler, Axel (2007), ABC Etymological Dictionary of Old Chinese, Honolulu: University of Hawaii Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-2975-9"978-0-8248-2975-9.
- 5. R. L. G. " Language borrowing Why so little Chinese in English?" The Economist. June 6, 201

		ENGINEERING MECHANICS	L	Т	Р	C
BME	202	Total Contact Hours – 60	3	1	0	3
		Prerequisite – Engineering Mathematics I, II, Engg. Phys	sics	•	•	
		Course Designed by – Department of Mechanical Engine	ering	5		
OBJE	CTIV	ES: To understand the concept of basic engineering m	echa	nism		
COU	RSE O	UTCOMES (COs)				
CO1	Stude	ents will understand the concepts of engineering mechanics				
CO2	Stude	ents will understand the vectorial representation of forces a	nd m	omen	its	
CO3		ents will gain knowledge regarding center of gravity and them for practical problems.	mom	ent o	f inert	ia and
CO4		ents will gain knowledge regarding various types of fore lraw free body diagram to quicker solutions for complicate				ns and

9

9

9

9

CC	)5	Student w	ill ga	in k	nowle	dge i	in solv	ving pr	oble	ms	involv	ving wo	rk and	energy	ý		
CC	)6	Student will	l gain	n kno	wledg	ge on	fricti	on on e	equil	ibri	ium ar	nd its ap	plication	on.			
												outcon					
		(H/I	M/L i	indic	cates s	treng	gth of	correla	tion	) H	H-Higl	n, M-M	edium,	L-Lo	W		
1	CO	s/POs	а	b	с	d	e	f	g	5	h	i	j	k	1		
2	CO		Η	Η	L	Η		Н			L		Н	Η			
	CO	2	H         H         L         Image: Marcon and the second secon														
	CO	3	H         H         L         M           H         H         H         L         M														
	CO	4	H H L M														
	CO	5						Η	Η		L		Μ				
	CO	6						Н	Η		L		Μ				
3	Cat	egory			s				1								
			ss &	Social Studies (HS)	Basic Sciences		2	C)		tive	(CE)	Non-Major Elective (NE)	Open Elective	Project/Term	paper/ Seminar/ Internship (PR)		
			itie	Stu S	cie cie			Sio (PC	/	lec	Ē	Maj e (1	llec	З Ц	er/ ina		
			Humanities	al Stu (HS)	c S the	Sciences	5	Professional Core (PC)		Γ.	<u>j</u>	n-N tiv	μE	ect [C	paper/ Seminar/ srnship (]		
			un	oci	asi(			CC		ore		No lec	pei	roj	Se Sterr		
			Η	Ň	g «	Enoo	(ES)	I		C	)	Щ	0	Ц	In		
4	Apr	oroval	37 ^{ti}	^h M	eetino	of A	cade	nic Co	unci	L N	1av 20	15					
	4 <b>•</b> Pł		57	111	count	, 01 1			w1101	-, -,	1aj 20						

#### UNIT I BASICS AND STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics – Lame's theorem, Parallelogram and triangular Law of forces – Vectors –Vectorial representation of forces and moments – Vector operations on forces - Coplanar Forces – Resolution and Composition of forces – Resultant of several concurrent forces - Equilibrium of a forces – Forces in space -Equilibrium of particle in space - Equivalent systems of forces – Principle of transmissibility – Single equivalent force.

#### UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – **Varignon's theorem** - Equilibrium of Rigid bodies in two dimensions -Equilibrium of Rigid bodies in three dimensions.

#### UNITIII PROPERTIES OF SURFACES AND SOLIDS

Determination of areas – First moment of area and the Centroid of standard sections – T section, I section, Composite figures, Hollow section – second moments of plane area – Rectangle, triangle, circle - T section, I section, Hollow section – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia – Basic concept of Mass moment of inertia.

#### UNITIV FRICTION

Frictional force – Laws of Coloumb friction – Cone of friction – Angle of repose – Simple contact friction – Sliding of blocks – Wedge friction - Ladder friction – Screw Jack – Belt friction - Rolling resistance.

#### 12

12

12

#### UNIT V DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Relative acceleration – Curvilinear motion of particles – **Newton's law** – work energy equation – impulse and Momentum – Impact of elastic bodies.

#### **TEXT BOOK:**

- 1. Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers: Vol. 1 Statics and vol. 2 Dynamics", McGraw-Hill International Edition, 2013.
- 2. Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt., Ltd., 2011.

#### **REFERENCES**:

- 1. Kumar, K. L Kumar, V., Engineering Mechanics, Tata McGraw Hill, New Delhi, 2010
- 2. Palanichamy, M.S., Nagan, S., Engineering Mechanics Statics & Dynamics, Tata McGraw Hill, 2013.
- 3. Timoshenko, and Young, Engineering Mechanics, Tata McGraw-Hill, New Delhi, 2013.
- 4. Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition Pearson Education Asia Pvt., Ltd., 2006.

						CTRIC			RING			]	L	T	P	C
						Hours						4	2	0	0	2
BI	EE 2	01	Prere	quisi	te –	Engin	eering	g Mat	hemati	cs, Engi	ineering	Physics	s-I (	& II		
			Cours	se De	sign	ed by	– De	partm	ent of l	Electric	al & Eleo	ctronics	s Er	ngine	ering	5
0	BJE	CTIVE	S: To	unde	rstai	nd the	laws	of ele	ctrical	enginee	ering.					
C	OUR	SE OU	TCO	MES	(C0	Ds)										
CO	D1					nowle	edge	regard	ling the	e variou	s laws	and pri	inci	ples	asso	ciated v
C	22	electri				1	1		1. 1	. 1	1 '	1		1 /	1	<u> </u>
C	02	proble		ill g	ain I	cnowl	eage	regarc	iing ei	ectrical	machine	es and	ap	piy t	nem	for pract
CO	03	1		ll ga	in k	nowle	dge r	egardi	ng var	ious typ	es semic	onduct	ors	•		
CO	D4	Stude	nt wi	ll gai	n kn	owled	ge di	gital e	electror	nics.						
C	D5	Stude	nt will	gain	kno	wledg	e on	electro	onic sy	stems.						
CO	D6				uire	know	ledge	in us	ing the	concep	ots in the	field of	f el	ectric	cal er	ngg. proj
		and re	search													
			(H								ogram o H-High, I					
1	CO	s/Pos	(11)	a	b	c	d	e	f	g g	h	i			k	1
2	CO	1		М	Н	М			L		L	L		,		
2	CO			111	H	M			L		L	L				
	CO				Η	Μ			L		L					
	CO	4		Μ	Η	М			L		L	L				
	CO			Μ	Η	М			L		L					
	CO	6			Η				L		L	Η				

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (PR)
				N					
4	Approval	37 th M	eeting o	f Academ	nic Council	, May 201	5		

#### UNIT I **ELECTRIC CIRCUITS**

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C - Current and voltage source transformation - mesh current & node voltage method -superposition theorem -Thevenin's and Norton's Theorem -Problems.

#### **UNIT II ELECTRICAL MACHINES**

Construction, principle of operation, Basic Equations and applications - D.C.Generators and D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

#### UNIT III BASIC MEASUREMENT SYSTEMS

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method and Energy meter.

#### UNIT IV SEMICONDUCTOR DEVICES

Basic Concepts of semiconductor devices - PN Junction Diode Characteristics and its Applications – HWR, FWR –Zener Diode – BJT (CB, CE, CC) configuration & Characteristics.

#### **UNIT V DIGITAL ELECTRONICS**

Number system - Logic Gates - Boolean Algebra- De-Morgan's Theorem - Half Adder & Full Adder – Flip Flops.

## **TEXT BOOKS:**

- 1. N.Mittal "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', 2. Dhanpat Rai and Co, 2004.
- Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", Tata McGraw Hill 3.

## **REFERENCE BOOKS:**

- 1. Edminister J.A. "Theory and Problems of Electric Circuits" Schaum's Outline Series. McGrawHill Book Compay, 2nd Edition, 1983.
- 2. Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill Internatinal Editions. 1993.
- 3. D. P. Kothari and I. J. Nagrath" Electric Machines" Tata McGraw-Hill Education, 2004
- 4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

6

6

6

6

			COMPUT	ſER	PRA	CTI	CE LA	BORA	ТО	RY			LI	[ ]	2	C
BC	S 2L2	,	Total Con	tact	Hours	- 45							0 0		3	1
DC	5 212		Prerequisi	te –	Funda	men	tals of	Compu	ıter							
		-	Course De	esigr	ned by	– De	epartm	ent of C	Comj	pute	er Scie	nce	e &En	gineer	ring	
OB	JEC	<b>FIVES</b>	: To impar	t ba	sic co	mput	er kno	wledge								
СО	URS	E OUI	COMES (	(CO	s)											
CO	1	Demo	nstrate maj	or a	lgorith	nms a	nd dat	a								
CO	2	Imple	mentation of	of ar	ray op	erati	ons									
CO	3	Imple	mentation of	of bi	nary ti	ree.										
CO	4	Imple	mentation of	of lir	nked li	st										
CO	5	Studen	nts will ab	ole to	o do a	nalys	se data	using s	sprea	nd sł	neet					
CO	6	Studen	nt will abl													
			Mappin													
1	CO		I/M/L indic		1	ī	1					vle		L-Lov		1
$\frac{1}{2}$	COs CO1	/POs	A H	b H	c L	d H	e	f H	g	5	h L		i	J H	k H	H
2	CO1		11	11		11		H	Н		L			11	11	11
	CO3							H	Η		L			М		
	CO4	ļ						Н	Η		L			Μ		
	CO5							Η	Η		L			Μ		
	CO							Н	Η		L			Μ		
3	Cate	egory	Humanities & Social Studies (HS)		Basic Sciences (BS)	naa Crianaa	$\mathbf{S}$	Professional Core (PC)		Core Elective (CE)		Non-Major Flective	(NE)	Dpen Elective (OE)		roject/Term paper/ Seminar/ Internship (PR)
					щ		Ë					2	-	Ō		Pr
4	Арр	roval	37 th Me	eetin	g of A	cade	emic C	ouncil,	May	/ 20	15			<u> </u>		

## A) WORD PROCESSING

Document creation, Text manipulation with Scientific Notations. Table creation, Table formatting and Conversion. Mail merge and Letter Preparation. Drawing-Flow Chart

#### **B)** SPREAD SHEET

Chart-Line Xy Bar and Pie – Formula-Formula Editor-Spread sheet-Inclusion of Object, Picture and Graphics Protecting the document and sheet-Sorting and Import/Export features.

#### C) SIMPLE C PROGRAMMING*

Data types, Expression Evaluation, Condition Statement. Arrays structures and Unions – Functions

#### D) SIMPLE C++PROGRAMMING

15

15

9

-Classes and Objects -Constructor and Destructor

## *For Programming exercises Flow chart and Pseudo code are essential.

		BASIC ENGIN									,		L	Т	P	C
BF	E <b>E2L</b> 1	l Total C	ontac	et Ho	ours –	45							0	0	3	1
		Prerequ	isite	– Ba	sic El	ectri	cal and	d Electi	onic	s Engi	nee	ring		•	•	
		Course	Desi	gned	l by – I	Depa	artmen	t of Ele	ectri	cal & E	Elec	tronics l	Engin	eerin	g	
OI	BJEC'	TIVES: To	enha	ance	the stu	ıden	t with	knowle	edge	on ele	ctric	cal and e	electro	onic e	equip	ments.
CO	OURS	E OUTCO	MES	5 (C	Os)											
CC	D1 S	Students wi	ll al	ole to	o hand	le ł	oasic e	lectrica	l eq	uipmer	nts.					
CC	02	Students w	ill a	ble t	to do s	tairc	ase wi	ring.		_						
CC	03	Students v	will a	ble t	o unde	ersta	nd doi	mestic v	virir	ig proc	edu	res prac	ticall	y.		
CC	04	Student wil	ll abl	e to	assem	ble e	lectro	nic syst	ems	•						
CC	05	Students wi	ll un	derst	and al	l the	funda	mental	con	cepts in	nvo	lving ele	ectric	al eng	ginee	ering
CC	06	Students wi	ll un	derst	and al	l the	funda	mental	con	cepts in	nvo	lving ele	ectror	ics e	ngin	eering
		Mapping of Course	s with		s (POs (H/M/		of		Mediu							
1	COs/	POs	а	b	с	d	e	f	g		h	i	j	k		1
2	CO1		Μ	Η	М			L		L		L	М	Н		
	$\frac{\text{CO2}}{\text{CO2}}$			H	M			L		L		L		H		
	CO3 CO4		М	H H	M M			L L		L L		L	M	H H		
	CO5		Μ	Η	Μ			L		L			Μ	Н		
2	CO6			Η				L		L		Н		Η		
3	Cates	gory	Humanities &	Social Studies	Basic Sciences	L Frag Criencee	(ES)	Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective	(OE)	Project/Term	paper/ Seminar/ Internship (PR)
4	Appr	oval	37 ^t	^h M	eeting		Acader	nic Cou	ıncil	, May	201	5				

## I LIST OF EXPERIMENTS FOR ELECTRICAL ENGINEERING LAB

- 1. Fluorescent lamp wiring
- 2. Stair case wiring
- 3. Measurement of electrical quantities-voltage current, power & power factor in RLC circuit

- 4. Residential house wiring using fuse, switch, indicator, lamp and energy meter
- 5. Measurement of energy using single phase energy meter
- 6. Measurement of resistance to earth of electrical equipment

#### **II LIST OF EXPERIMENTS FOR ELECTRONICS ENGINEERING LAB**

- 1. Study of electronic components and equipments.
  - a. Resistor colour coding using digital multi-meter.
  - b. Assembling electronic components on bread board.
- 2. Measurement of ac signal parameters using cathode ray oscilloscope and function generator.
- 3. Soldering and desoldering practice.
- 4. Verification of logic gates (OR, AND, OR, NOT, NAND, EX-OR).
- 5. Implementation of half adder circuit using logic gates.

		]	PHYS	SICS A	AND CI	HEMISTE	RYL	ABORA	TORY	7		L	T	P	С
					et Hours							0	0	3	1
						cs and Che									
	PC	(	Cours	e Desi	gned by	– Departr	nent o	of Physic	cs & Cl	hemist	ry				
<b>2</b> L															
						wledge to	the stu	udents ir	n practi	cal phy	ysics a	and c	cher	nistr	y
					S (COs										
CC						and the con									
	D2					nd the con									
	D3					nd the wor									
	D4				<u> </u>	tically und									
	D5					e magnetic									
CC	D6	Stu				e Determi			<u> </u>				or		
						urse Outco									
			H/M/		cates str	ength of co	orrela	tion) H	-High,	M-Me	dium,	, L-L	JOW		1
1	COs/	Р	а	b	с	d	e	f	g	h	i	j		k	1
-	Os							_							
2	CO1		Μ	H	M			L		L	L	Μ		H	М
-	CO2			Н	М			L		L	L			H	
-	CO3			H	М			L		L	_			H	
-	CO4		Μ	H	М			L		L	L	Μ		H	М
-	CO6			Н				L	1	L	Η			Η	
3	Categ y	gor	Humanities & Social		3S)	ES)		fe	(E)	Non-Major Elective		E)		er/	
	y		So	2	s (F	s (E		CC	$\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ect		9		pap ′	PR
			& 8	Studies (H2)	Basic Sciences (BS)	Sciences (ES)		Professional Core (PC)	Core Elective (CE)	Ē	(i)	Open Elective (OE)		Project/Term paper/ Seminar/	Internship (PR)
			ies	les	ien	ien		tions (PC)	lect	jor	(NE)	ect		Ter	shi
			mit	Ind	Sc	Sc		ess (	Ē	Ma	$\smile$	E		ct/ Sei	ern
			l mî	n	asic	Engg		rof	ore	-uc		pen		oje	Int
			Hu		Bį	En		Р	Ŭ	Ž		Ō		Pr	
										<u>     I                               </u>					
4	Appr	ov	37 th	Meet	ing of A	Academic (	Counc	il, May	2015			1	I		
	al				C										

#### I -LIST OF EXPERIMENTS – PHYSICS

1. Determination of Wavelength, and particle size using Laser

- 2. Determination of acceptance angle in an optical fiber.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of thermal conductivity of a bad conductor Lee"s Disc method.
- 6. Determination of Young"s modulus by Non uniform bending method
- 7. Determination of specific resistance of a given coil of wire Carey Foster"s Bridge
- 8. Determination of Young"s modulus by uniform bending method
- 9. Determination of band gap of a semiconductor
- 10. Determination of Coefficient of viscosity of a liquid -Poiseuille"s method
- 11. Determination of Dispersive power of a prism Spectrometer
- 12. Determination of thickness of a thin wire Air wedge method
- 13. Determination of Rigidity modulus Torsion pendulum

#### **II-LIST OF EXPERIMENTS – CHEMISTRY**

- 1. EstimationofhardnessofWaterbyEDTA
- 2. EstimationofCopper in brass byEDTA
- 3. Determination of DOin water (Winkler'smethod)
- 4. Estimation of Chloride in Watersample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determinationofmolecularweight
- 7. Conduct metric titration (Simple acid base)
- 8. Conduct metric titration (Mixture of weak and strong acids)
- 9. Conduct metric titration using BaCl2vs Na 2 SO4
- 10. Potentiometric Titration (Fe²⁺ / KMnO₄ or K₂ Cr ₂ O ₇ )
- 11. pH titration (acid & base)
- 12. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 13. Estimation of Ferric iron by spectrophotometer.

BMA3	301	MATHEMATICS – III	L	Τ	Р	C								
	-	Total Contact Hours - 75	3	2	0	4								
	-	Prerequisite – Engineering Mathematics-I, Engineering M	Iathe	matic	s -II,									
	-	Course Designed by – Dept of Mathematics												
OBJE	CTIVE	ES												
	To un	derstands the concepts of Fourier series analysis, Fourier	tran	sform	techr	iques								
	and Z transform techniques													
COUF	RSE OU	UTCOMES (COs)												
CO1	To lea	rn the problem solving methods in linear differential equa	tions											
CO2	To lea	arn Dirichlet's condition and operations using Fourier serie	es											
CO3	To ha	ve a clear understanding about 2nd order equations and wa	ave e	quatio	ons									
CO4	Prope	rties of Laplace transform and problem solving using it												
CO5	Prope	rties of Fourier transform and problem solving using it												

CO6	To understand the concepts of various transform and partial differential equation	
	technique	

#### UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation-solutions of standard types of first order equations-LaGrange's equation-linear partial differential equations of second and higher order with constant coefficients.

#### UNIT II **FOURIER SERIES**

Dirichlet's condition-General Fourier series-half range sine and cosine series-Parseval's identity. Harmonic Analysis.

#### UNIT III **BOUNDARY VALUE PROBLEMS**

Classification of second order linear partial differential equations-Solutions of one-Dimensional wave equations, one-dimensional heat equations.

#### LAPLACE TRANSFORMS UNIT IV

Transforms of simple functions-basic operational properties-transforms of derivatives and integrals-Initial and Final value theorems-Inverse transforms-Convolution theorem. Periodic functions. Applications of Laplace Transforms for solving linear ordinary differential equations up to second order with constant coefficients and integral equations.

#### FOURIER TRANSFORMS UNIT V

Statement of Fourier integral theory-Fourier transforms pairs-Fourier Sine Cosine transforms-Properties-Transforms of simple functions-Convolution theory-Parseval's identity.

#### **TEXT BOOKS:**

- 1. Kreyszig, E."Advanced Engineering Mathematics"8th Edition, John Wiley and Sons, (Asia) Pvt., Ltd, Singapore, 2006.
- 2. Grewal, B.S.,"Higher Engineering Mathematics" (35thEdition), Khanna Publishers, Delhi2000.

#### **REFERENCES:**

- 1. Kandasamy, P., Thilakavathy, K., and Gunavathy, K. "Engineering Mathematics", Volumes 1 and 3(4th Edition) S Chand and Co., New.
- 2. Narayanan, S.ManicavachangamPillay, T.K.Ramanaiah, G."Advanced mathematics for Engineering Students", Volume2 and 3(2nd Edition), S.Viswanathan (printers & publishers Pte, Ltd.,) 1992.
- 3. Venkataraman, M.K"Engineering Mathematics"Volumes3-A&B, 13th Edition National Publishing Company, Chennai, 1998.
- 4. Shanmugam, T.N.: http://www.annauniv.edu/shan/trans.html.

BAM301	SOLID MECHANICS	L	Т	Р	C							
	Total Contact Hours - 60	4	0	0	4							
	Prerequisite – Strength of materials, Mechanics of Machine	es										
Course Designed by- Department of Automobile Engineering												
OBJECTIVE	OBJECTIVE:											
The main obj	ective of this course is to impart knowledge in Solid Mecha	anics	. Th	e deta	ailed							
concept, stres	ses in beams, Deflection of beams will be taught to the s	tuder	nts. S	stresse	es in							
helical springs and biaxial stresses will also be introduced to the students.												
<b>Course Outc</b>	omes											

#### 9+6

9+6

#### 9+6

9+6

9+6

C	CO1 - To learn the statically determinate and indeterminate problems in tension &														
	compres		ance	iny uc	um	nate a	na mac		ma	ic prot		CIISIOI	ı a		
C	D2 -To learn		· for	ce &	bend	ing m	oment	diao	ram	s - be	ending str	esses	– she	ear stress	
						0		<u> </u>			niform str			ui stress	
C	D3 -To learn													Bending.	
	torsion a					~		) - )							
CC	04 -To learn T					nollow	circula	ar sh	aft.						
	05 -To learn b									al stres	ses.				
											tcomes (I	POs)			
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1															
2	CO1	Н	Η	М		Н	М	N	1	М	Н	Н	Н	Н	
	CO2														
	CO3		Η	Η	М	Н		H	I		Н		Н	Н	
	CO4	Η					L			Μ		Η			
	CO5			Μ		Η		N	1		М		Μ	М	
	CO6	L	Μ	М		М	Н			L	М	Μ	Η		
3	Category						()								
		ial		S)	(S)	Ì	PC		Ê		ve	E)		er/	
		Soc	S)	S(B	E	ļ	ire (		Ũ	/	ecti	0		dao H)	
		Se l	(HS)	Ices	ces		Co		ve		) Ele	ve		m p lar/ p (	
		es	Studies	Basic Sciences(BS)	Sciences (ES)		al		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper. Seminar/ Internship (H)	
		niti	ipn	Sc			ion		Ele		Ma (]	Еľ		ct/J Ser ern	
		ma	St	sic	66	0	SSS		ore		l-n	nen		jec Int	
		Humanities & Social		$\mathbf{Ba}$	Engg		Professional Core (PC)		Ŭ		No	Op		Pro	
							P.								
4	Approval	37 ^{tl}	^h M	eeting	of A	caden	nic Cou	ncil,	Ma	y 201	5	I			
	**									•					

#### UNIT – I AXIAL LOADING

Stresses and strains – Hooke's law – stress and strain diagrams - elastic constants – statically determinate and indeterminate problems in tension & compression – thermal stresses – impact loading.

#### UNIT – II STRESSES IN BEAMS

Shear force & bending moment diagrams – bending stresses – shear stress variation inbeams of symmetric sections – beams of uniform strength.

#### UNIT – III DEFLECTION OF BEAMS

Double integration method – Macaulay's method – moment area method – conjugate beam method – principle of superposition – Strain Energy in axial, bending, torsion and shear loadings. Castigliano's theorems and their applications.

#### UNIT – IV TORSION – SPRINGS – COLUMNS

Torsion of solid and hollow circular shafts – shear stress variation – power transmission in shafts – open and closed-coiled helical springs – stresses in helical springs – classification of columns – Euler buckling – columns with different end conditions.

## UNIT – V BIAXIAL STRESSES

#### 12

14

#### 12

10

Stresses in thin-walled pressure vessels – combined bending, torsion and axial loading of circular shafts – Mohr's circle and its construction – determination of principal stresses.

#### **TEXTBOOKS:**

- 1. Gere & Timoshenko, 'Mechanics of Materials', McGraw Hill, 1993
- 2. William Nash, Strength of Materials, Tata McGraw Hill, 2004

#### **REFERENCES:**

- 1. Dym, C.L., and Shames, I.H., 'Solid Mechanics', McGraw Hill, Kogakusha, Tokyo, 1973.
- 2. Stephen Timoshenko, 'Strength of Materials', Vol I & II, CBS Publishers and Distributors, Third Edition.
- 3. R.K.Rajput, 'Strength of Materials', S. Chand and Co., 1999.
- 4. Timoshenko, S. and Young, D.H., Elements of Strength of Materials, T.Van Nostrand Co. Inc., Princeton, N.J., 1977.

BA	AM302		AUTOMOTIVE PETROL ENGINESLTPCotal Contact Hours - 453003													
		Tota	al Co	ontac	t Hou	rs - 43	5						3	0	(	) 3
		Prer	equi	site -	– IC E	ngine	es, The	ermal E	ngin	neeri	ng					
		Cou	rse I	Desig	gned b	y- De	partm	ent of A	Auto	mol	bile E	ngineerii	ng			
0	BJECTIV	Е:														
	e main ob															
de	tailed con	cept,	fue	l suj	pply s	ysten	n cool	ling an	d lu	bric	ation	system	and	com	bust	tion and
co	mbustion of	cham	bers	and	other	petro	l engi	nes wil	l be	taug	tto t	he stude	nts.			
	ourse Out															
C	<b>D1 -</b> To lea	arn E	ngin	le Co	onstruc	ction	and O	peratio	n							
C	<b>D2 -</b> To lea	arn F	uel s	suppl	ly syst	em (O	Carbui	etor ty	pe) a	und e	electro	onic Fuel	Inje	ectior	ı sy	stem
C	<b>33 -</b> To lea	To learn different cooling and types lubrication system														
C	<b>D4</b> – To le	To learn detailed combustion system To learn other petrol engines														
C	<b>D5</b> – To le	arn o	other	petr	ol eng	ines										
	Mapping of Course Outcomes with Program outcomes (POs)															
	()	H/M/	L in	indicates strength of correlation) H-High, M-Medium, L-Low												
1	COs/POs	5	a	b	с	d	e	f	g	5	h	i	j		k	1
2	CO1		Η	Μ	М		Η	Μ	N	1	Μ	Н	H	[	Η	Н
	CO2			Μ				Μ				Μ				Μ
	CO3			Η		Μ	Η		N	1		Н			Η	Н
	CO4		Η				Η	L			Μ		H	[		
	CO5				Μ		Η		N	1		Η			Μ	Н
	CO6		L	Μ	Μ		Μ	Η			L	Μ	Ν	1	Η	
3	Category	7	٦				_					0		. –		_
			Humanities & Social		Basic Sciences(BS)	Sciences (ES)		Professional Core (PC)		E E		Non-Major Elective (NE)	Open Elective (OE)			Project/Term paper/ Seminar/ Internship (H)
			S	(CI	E)Se	) SS		Ŭ		$\bigcup_{i=1}^{n}$		lec	)) ))	/		pa]
			8	Studies (HS	nce	nce		C)		tiv€		ΞΩ	tive			jject/Term paj Seminar/ Internship (H)
			tie:	lles	cie	cie		siona (PC)		leci		ajor ] (NE)	lec			Te imi nsh
			ani	m	c S			fess		E E E E		Ϋ́.	μE			sct/ Se
			un	2	asi	Engg	5	rof		Core Elective (CE)		on-	Del	-		roje In
		-														
4	Approva	1	37 th	¹ Me	eting	of Ac	adem	ic Cour	ncil	May	v 2014	ñ	_			
т	1 pprova		51	1110	Joung	01710	aucin		ivii,	171u	, 2010	·				

#### UNIT – I ENGINE CONSTRUCTION AND OPERATION

4 stroke engine - Constructional details, working principle. Otto cycle, Actual indicator diagram, Fuel air cycle. Cylinder layout and configurations. Firing order and its significance. Engine balancing. Materials of engine components.

#### **FUEL SUPPLY SYSTEM** UNIT – II

Carburettor working principle, Requirements of an automotive carburetor - starting, idling, acceleration and normal circuits of a carburetor - Compensation -Fuel filters-Constant vacuum carburetor, multi barrel and multiple venturi systems - Fuel Pumps- Mechanical and electrical pumps – Electronic Fuel Injection systems.

#### **COOLING AND LUBRICATION SYSTEM** UNIT – III

Need for cooling. Types of cooling system – air cooling and Liquid cooled systems. Forced circulation system, pressure cooling system - Need for Lubrication system. Mist lubrication system, wet sump lubrication - Properties of lubricants, properties of coolant- SAE standards of lubricants and coolants.

#### **COMBUSTION AND COMBUSTION CHAMBERS** UNIT – IV

Combustion in SI engine - Laminar Flame theory- Flame Propogation- Flame structure of turbulent and premixed flames- Stages of combustion- Rate of pressure rise - Abnormal combustion – Pre ignition and knock – Combustion chambers – Different types – Factors controlling combustion chamber design.

#### UNIT - V**OTHER PETROL ENGINES**

Two stroke engine – Types – construction and operation. Comparison of four stroke and two stroke engine operation- Rotary Engines.

## **TEXT BOOKS:**

- 1. Ramalingam. K. K., Internal Combustion Engines, SciTech publications, Chennai, 2003
- 2. Ganesan.V, Internal Combustion Engines, Tata McGraw Hill Publishing Co., New York, 1994.

## **REFERENCES:**

- 1. Heldt.P.M. High Speed Combustion Engines, Oxford IBH Publishing Co., Calcutta, 1975.
- 2. William.H.Crouse, Automotive Engines, McGraw Hill Publishers, 1985.

BAM303	ENGINEERING THERMODYNAMICS	L	Т	Р	С									
	Total Contact Hours - 60	4	0	0	4									
	Prerequisite – IC Engines, Thermal Engineering and He	at Tra	nsfer											
	Course Designed by- Department of Automobile Engine	eering												
OBJECTIVE:														
The main objective of this course is to impart knowledge in Engineering Thermodynamics.														
The detailed	concept, Basic Thermodynamics, Air cycle and Compre	essors,	Refri	geratio	on and									
Air-condition	ning, Heat Transfer and Heat exchangers will be taught to	the st	udent	5.										
<b>Course Out</b>	comes													
CO1 – To lea	rn the detailed study of zeroth and first law of thermodyr	namics												
CO2 – To lea	arn detailed study of Air cycle and Compressors													
CO3 – To lea	arn detailed study and types of Refrigeration and Air con-	ditioni	ng											
CO4 – To lea	CO4 – To learn detailed study of Heat Transfer													
CO5 – To lea	arn detailed study of Heat exchangers and its types													

10

10

9

8

	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
	(H/N	1/L in	ndica	tes stro	ength	of con	rrelatio	n) I	H-H	igh, N	I-Mediur	n, L-L	ow	
1	COs/POs	a	b	с	d	e	f	g		h	i	j	k	1
2	CO1	Н	Μ	Η		Η	М	N	1	Н	Н	Η	Η	М
	CO2		Μ				Μ				Μ			М
	CO3		Η		М	Η		N	1		Н		Η	Н
	CO4	Η				Η	Μ			М		Η		
	CO5			М		Η		N	1	М	Н		Μ	Н
	CO6	L	Μ	М		М	Н			L	Μ	Μ	Η	
3	Category	Humanities & Social	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)	~	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th	Me	eting o	of Aca	ademi	c Coun	cil, N	Лау	2015		<u> </u>		

#### UNIT – I BASIC THERMODYNAMICS

Systems, Zeroth low, First law. Properties of gases and vapours. Steady flow energy equation. Heat and work transfer in flow and non-flow processes. Second law, Kelvin-Planck statement - Clausius statement - Concept of Entropy, Clausius inequality, Entropy change in non-flow processes.

#### UNIT – II AIR CYCLE AND COMPRESSORS

Otto, Diesel, Dual and Brayton cycles. Air standard efficiency. Mean effective pressure, reciprocating compressors – Intercooling – Minimum work requirement.

#### UNIT – III REFRIGERATION AND AIR-CONDITIONING

Principles of Psychometry and refrigeration - Vapour compression - Vapour absorption types -Co-efficient of performance, Properties of refrigerants – Basic Principle and types Air conditioning.

#### UNIT – IV HEAT TRANSFER

Conduction in parallel, radial and composite wall – Basics of Convective heat transfer - Fundamentals of Radiative heat transfer.

#### UNIT-V HEAT EXCHANGERS

Types of Heat Exchangers- Radiators-Types- Design of Parallel, Counter and Cross flow Heat Exchangers.

(Use of standard thermodynamic tables, Mollier diagram and Refrigerant property tables are permitted)

#### **TEXT BOOKS:**

1. Nag.P.K., "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2007.

# 12

16

# 10

# 12

2. Rathakrishnan E., "Fundamentals of Engineering Thermodynamics", Prentice-Hall India, 2005.

#### **REFERENCES:**

- 1. Ramalingam K.K. "Thermodynamics", Sci-Tech Publications, 2006
- 2. Holman.J.P., "Thermodynamics", 3rd Ed. McGraw-Hill, 2007.
- 3. Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987
- 4. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.

BA	AM304		EN	GINE	ERI	NG F	LUID	ME	CH/	ANICS	1	L	Τ	Р	С
		Total	Cont	tact H	ours -	60						3	0	0	3
		Preree	quisi	te – M	lechar	nics of	materi	als, '	Ther	mal an	d Fluid	Power	engi	ineeri	ng
		Cours	e De	esigned	d by-	Depar	tment o	of Aı	itom	nobile I	Engineer	ing			
0	<b>BJECTIVE:</b>														
Th	e main objec	tive of	f this	cours	e is to	o impa	ırt knov	vledg	ge ir	n Engir	neering F	Fluid N	Mech	anics.	The
de	tailed concep	ot, Bas	ic the	eory o	f Eng	ineeri	ng Flui	d M	echa	inics, E	Basic Equ	uation	s of t	fluid	Flow
Ar	alysis, Incor	npress	ible ]	Invisci	id flo	w, Inc	ompres	sible	e vis	cous fl	ow and	Fluid	mach	ninery	will
be	taught to the	stude	nts.												
Co	ourse Outcon	mes													
C	<b>D1 -</b> To learn	the ba	isic t	heory	of en	gineer	ing flui	d me	echa	nics					
C	<b>D2 -</b> To learn	basic	Equa	ations	of flu	id Flo	w Anal	ysis							
	<b>D3 -</b> To learn							•							
C	<b>D4</b> – To learr	n Incor	npre	ssible	visco	us flov	W								
			ferent types of Fluid Machinery and Turbines												
			Mapping of Course Outcomes with Program outcomes (POs)												
	(H/		indicates strength of correlation) H-High, M-Medium, L-Low												
1	COs/POs	a	b	с	d	e	f	ĺ	1	h	i	j	k		1
2	CO1	Н	Μ	Н		Н	М	Ν	1	Н	Н	Н	Н		Μ
	CO2		Μ				М			L	М				Μ
	CO3		Н		Μ	Н		Ν	1		Н		Н		Н
	CO4	Н				М	М			М		Н			
	CO5			М		Н		Ν	1	М	Н		Μ		Η
	CO6	L	Μ	Μ		М	Н			L	Н	Μ	Н		
3	Category			_								_	•		
		Humanities & Social		Basic Sciences(BS)	Sciences (ES)		ore		Ĕ)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/	_
		So	S S	s(E	0 S		Professional Core (PC)		Core Elective (CE)		ect	$\underline{0}$		pap	(H)
		8	H)	Jce	Jce		) al		ive		EI EI	ive		m	Semmar/ Internship (H)
		ies .	les	ciei	iei		iona (PC)		ect		ajor ] (NE)	ect		ler	hsh
		, init	studies (HS Studies (HS sic Sciences( g Sciences) ofessional C (PC) (PC) (PC) en Elective ( ne Elective ( ne) en Elective ( seminar/ nternship (H)												
		ma	$\mathbf{\tilde{v}}$	asic	66	0	rof		ore		-uc	Den		oje	Int
		Hu		B	Engg		Р		Ŭ		ž	0ţ		$\mathbf{P}_{\mathbf{r}}$	
4	Approval	37 ^{tl}	37 th Meeting of Academic Council, May 2015												

#### UNIT – I BASIC CONCEPTS

Introduction – Fluid properties – Newton's viscosity law – Classification of fluids and fluid motion – Fluid statics – Hydrostatic force on submerged surfaces – stability of floating bodies.

#### **BASIC EQUATIONS OF FLUID FLOW ANALYSIS** UNIT – II

Basic laws for a system in integral form - Conservation of mass - Newton's 2nd law - Laws of thermodynamics - Application of the basic laws for a control volume - Kinematics -Motion of a fluid particle - Fluid deformation - Differential analysis of fluid motion -Continuity equation

#### **INCOMPRESSIBLE INVISCID FLOW** UNIT – III

Euler's equations of motion - Bernoulli's equations - Applications - Methods of pressure measurement - Flow measurement - Orifice plate - Venturi meter - Irrotational flow -Stream function and velocity potential – Laplace equation – Elementary plane flows

#### **INCOMPRESSIBLE VISCOUS FLOW** $\mathbf{UNIT} - \mathbf{IV}$

Fully developed laminar flow between infinite parallel plates – Laminar and turbulent flow through pipes - Velocity profiles - Energy considerations in pipe flow - Calculation of head loss Pipe flow problems

#### UNIT – V **FLUID MACHINERY**

Introduction and classification of fluid machines - Turbo machinery analysis - The angular momentum principle - Euler turbo machine equation- Application to fluid systems -Working principle of turbines, fans, blowers, pumps and compressors.

#### **TEXT BOOKS:**

- 1. R.K.Bansal, Fluid Mechanics & Hydraulic Machines. Laxmi Publications (P) Ltd., New Delhi 2001
- 2. Fluid Mechanics, John F.Douglas.

#### REFERENCES

- 1. Yuan S W, 'Foundations of fluid Mechanics', Prentice-Hall, 1987
- 2. Milne Thompson L M, 'Theoretical Hydrodynamics', MacMillan, 1985
- 3. Rathakrishnan, E, 'Fundamentals of Fluid Mechanics', Prentice-Hall, 2007

BA	AM305	PRO	DUC	TION	N TE	CHNO	DLOG	Y			L	Т	Р	C
		Total	Con	tact H	ours ·	- 45					3	0	0	3
		Prere	quisi	te – E	ngine	ering	Materia	als and l	Metallur	gy, En	ginee	ring l	Metro	logy,
		Tribo	logy											
		Cours	se De	esigne	d by-	Depar	rtment	of Auto	mobile E	Inginee	ering			
0	<b>BJECTIVE:</b>													
Th	e main obje	ctive	of th	is cou	irse i	s to ir	npart k	knowled	ge in Pr	oducti	on T	echno	ology.	The
de	tailed concept	ot of c	castir	ng, me	etal F	ormin	g&p	owder n	netallurg	y, We	lding	g, and	theo	ry of
me	metal Cutting & machining will be taught to the students.													
Course Outcomes														
<b>CO01 -</b> To learn the detailed study of casting and types.														
CO	<b>D02 -</b> To lear	n the	detai	led stu	idy of	f meta	l formi	ng & po	wder me	etallurg	gy.			
CO	<b>D03 -</b> To lear	n the	detai	led stu	idy of	fweld	ing and	l types.						
CO	<b>D04</b> – To lea	rn the	study	y of th	eory	of met	tal cutti	ing & m	achining	proce	ss.			
		Mapp	oing	of Cou	irse C	Outcon	nes wit	h Progra	am outco	omes (	POs)			
	(H/I	M/L in	dica	tes stro	ength	of con	rrelatio	n) H-H	ligh, M-l	Mediu	m, L-	Low		
1	COs/POs	а	b	с	d	e	f	g	h	i	j	k		1
2	CO1	Η	Μ	Η		Н	Μ	Μ	Н	Н	Η	Н		М
	CO2		Μ		М		Μ		L	М		Н		М
	CO3		H     M     H     M     H     H     H											

8

10

	CO4	Η		Н		Μ	М			Н		Н		L
	CO5			Н		Η		N	1	Μ	L		Μ	Н
	CO6	L	Μ	М		М	Н			L	Н	Μ	Η	
3	Category		Studies (HS)	Basic Sciences(BS)	Engo Sciences (ES)		Professional Core (PC)	1	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
								N						
4	Approval	37 ^{tl}	^h Me	eeting	of Ac	adem	ic Cour	ncil,	Mag	y 2015	5	•		

#### UNIT – I CASTING

Casting types, procedure to make sand mould, types of core making, moulding tools, Machine moulding, Special moulding processes-CO₂ moulding, Shell moulding, Investment moulding, Pressure die casting, Centrifugal casting, Continuous casting, Casting defects.

#### **METAL FORMING & POWDER METALLURGY** UNIT – II

Principles and applications of the following processes: Forging, Rolling, Extrusion, Wire drawing and Spinning, Powder metallurgy - Principle steps involved advantages, disadvantages and limitations of powder metallurgy.

#### UNIT – III WELDING

Classification of welding processes, Principles of Oxy-acetylene gas welding, A.C Metal arc welding, Resistance welding, Submerged arc welding, Tungsten Inert Gas welding, Metal Inert Gas welding, Electron beam welding, Laser beam welding, Defects in welding, Soldering and Brazing.

#### UNIT – IV **THEORY OF METAL CUTTING**

Mechanism of cutting, chip formation and types, tool materials, tool geometry, cutting forces, Cutting fluids, Tool wear and Tool life, machinability.

#### UNIT – V MACHINING

General principles of working and commonly performed operations in the following Machines: Lathe, Shaper, Planer, Horizontal milling machine, Universal Drilling machine, Cylindrical Grinding machine, Capstan and Turret lathe. Basics of CNC machines.

#### **TEXTBOOKS:**

- 1. Hajra Choudhury, "Elements of Workshop Technology", Vol. I & II, Media Promoters and Publishers Pvt., Ltd., Mumbai, 2005
- 2. Nagendra ParasharB.S and Mittal R.K., "Elements of Manufacturing Processes", Prentice - Hall of India Pvt., Ltd., 2007

#### **REFERENCES:**

- 1. R.K. Jain and S.C. Gupta, "Production Technology", Khanna Publishers, 16th Edition, 2001
- 2. "H.M.T. Production Technology Hand Book", Tata McGraw Hill, 2000
- 3. Roy. A. Linberg, Process and Materials of Manufacture", PHI, 2000.

# 9

9

9

9

BA	AM3L1	AUT DRA			E	PART	rs A	ND	A	ASSEN	IBLY	L	Т	Р	C		
				tact H	ours	15						0	0	3	2		
	·						Granhi	cs F	Ingi	neering	g and Te	0	•	-			
	·										Engine			a w 1112	<u>,</u>		
0	BJECTIVES			515110	uby	Depa	i tillelle	0171	uto		Liigine	ering					
	e main objec		f this	Study	y is to	Desig	gn and	draw	ving	practic	e of Au	itomo	tive I	Parts.			
	ourse Outco			÷	/					1							
CO	O1 - To learn	the D	esig	n and	drawi	ing pra	acticeof	fma	chin	e and p	oroducti	on dr	awing	z			
	<b>D2</b> - To learn		-											-			
CO	<b>D3</b> - To learn	the D	esig	n and	drawi	ing pra	actice o	f Ma	achi	ne elen	nent joi	nts					
C	<b>D4</b> – To learn and drat		letail	ed par	t drav	wing a	and asse	embl	y di	rawing	s and C	ompu	ter ai	ded de	sign		
	und und	<u> </u>	oing	of Coi	irse (	Dutcor	nes wit	h Pro	ogra	am out	comes (	(POs)					
	(H/I			ing of Course Outcomes with Program outcomes (POs)dicates strength of correlation)H-High, M-Medium, L-Lowbcdefghijkl													
1	COs/POs	a	b	с	d	i	j	k		1							
2	CO1	Н	Η	Μ		Н	Μ	N	1	М	Н	Η	Н		Н		
	CO2										Μ						
	CO3		Η	Η	Μ	Н		H	I		Н		H		Н		
	CO4	Η					L			М		Μ					
	CO5			Μ		Н		N	1		Μ		Μ		Μ		
	CO6	L	Μ	Μ		Μ	L			L	Μ	Μ	H				
3	Category	Humanities &	Social Studies (HS)	Basic Sciences(BS)	Engo Sciences	(ES)	Professional Core (PC)	ofessional Core (PC)			Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/	Internship (H)		
4	Approval		_		of Ac	cadem		√ ncil,			4			<u>д</u>			

#### UNIT-I

Instruction to machine drawing & production drawing, classification of drawing – BIS conventions – Orthographic and sectional views.

#### UNIT-II

Reviews of the concepts of limits, tolerance, fits, surface roughness, and symbols terminology used in Production drawing.

#### UNIT-III

Machine element joints – Types of joints – Screw fasteners – Pin joints, couplings welded joints.

#### **UNIT-IV**

Detailed part drawing and assembly drawings (with suitable tolerances, machine symbols, specification of fit).

1) Screw jack

- 2) Shaper tool head
- 3) Non return valve
- 4) Plummer block
- 5) Foot step drawing
- 6) Machine vice
- 7) Four jaw chuck of lathe
- 8) Lathe tail stock
- 9) Square tool post
- 10) Universal coupling
- 11) Hydraulic & Pneumatic Assembly

#### UNIT-V

Introduction to Computer aided drafting – methods of preparation of drawings – Printing/ Plotting of technical drawings.

#### **TEXT BOOK:**

1. Narayana K.L., Kannaiah P and Venkata Reddy – "Production Drawing" New Age International Limited, Delhi 2004.

#### **REFERENCE BOOKS:**

- 1. Bhat N.D., "Machine Drawing", Charotar Publishing House, Anand 2000
- 2. Nagtal G.R., "Machine Drawing", Khanna Publishers, New Delhi 1994.
- 3. Sache Singh & P.L. Shah Fundamentals of Machine Drawing, Prentice Hall India, 2003.

BO	CE3L2	FLUI	D M	ECHA	ANIC	S & S	TREN	GTH O	)F		L	Т	Р	C
		MAT	ERIA	ALS L	AB									
		Total	Cont	act Ho	ours -	45					0	0	3	2
		Prereq	uisit	e – So	lid M	[echan	ics, Me	chanics	of Mach	nines, F	luid P	ower	syste	ms
		and H	ydrau	ılic Eı	ngine	ering								
		Course	e Des	signed	by- I	Depart	tment o	f Auton	nobile Er	ngineeri	ng			
0	BJECTIVE													
Th	ne main obj	ective of	of th	is Stu	dy is	to la	b pract	ice of f	luid flov	vs, Det	ermin	ation	of F	ow
th	rough notch	es, weir	and	orific	e. The	e pract	tical stu	dy of st	rength o	f mater	ials.			
Co	ourse Outco	me												
CO01 - Determination of flow through pipes, losses in pipes.														
C	<b>CO02</b> - Calibration of orificemeter and venture meter.													
C	O03 - Perfor	mance	char	acteris	stics c	of pum	ps and	turbines	5.					
C	<b>004</b> – Tensi	on and	Tors	ion te	st of a	a mild	steel ro	od						
C	005 - Defle	ction te	st on	helica	ıl spri	ings, b	eams a	nd Impa	act test of	n Metal				
		Mapp	oing o	of Cou	irse C	)utcon	nes with	n Progra	m outco	omes (P	Os)			
	(H/	M/L in	dicat	es stre	ength	of cor	relation	n) H-H	igh, M-N	Aedium	, Ľ-L	OW		
1	COs/POs	а	b	с	d	e	f	g	h	i	j	k	]	L
2	CO1	Η	Η	Μ		Н	Μ	М	М	Н	Н	Η	ŀ	ł
	CO2									Μ				
	CO3		Η	Η	Μ	Η		Н		Н		Η	H	ł
	CO4	Η					L		Μ		Μ			
	CO5			М		Η		Μ		Μ		Μ	N	1
	CO6	L	Μ	М		Μ	L		L	Μ	Μ	Η		

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th Me	eting of	f Academ ¹	ic Council,	May 2015			
4	Approval	57 MR	eting of	Academ	ic Coulicii,	wiay 2013			

#### FLUID MECHANICS LAB

- 1. Determination of flow through pipes, losses in pipes.
- 2. Calibration of orificemeter and venture meter.
- 3. Flow through notches and weir.
- 4. Flow through open orifice.
- 5. Buoyancy experiment-Metacentric height.
- 6. Impact of jet on vanes-inclined and curved vanes.
- 7. Verification of Bernoulli's equation.

#### FLUID MACHINERY LAB

- 1. Performance characteristics of Jet pump
- 2. Performance characteristics of Vane pump
- 3. Performance characteristics of Centrifugal pump
- 4. Performance characteristics of Reciprocating pump
- 5. Performance characteristics of Gear pump
- 6. Characteristics of Impulse turbine
- 7. characteristics of Reaction turbine

#### STRENGTH OF MATERIALS LAB

- 1. Tension test of a mild steel rod
- 2. Double shear test on mild steel and Aluminium rods
- 3. Torsion test on mild steel rod
- 4. Hardness test on metals- Brinell and Rockwell hardness
- 5. Deflection test on helical springs
- 6. Deflection test on beams
- 7. Double shear test in U.T.M
- 8. Impact test on Metals

BMA402	NUMERICAL METHODS	L	Т	P	С
	Total Contact Hours - 75	3	2	0	4
	Prerequisite – +2 Mathematics, Engineeri	ng mat	hemation	cs I and	II
	Course Designed by- Department of Mat	hemati	cs		
<b>OBJECTIVE:</b>					

The main objective of this course is to impart knowledge in Numerical Methods. The detailed concept of Solution of Equations and Eigen Value problem, Interpolation (Finite Differences), Numerical Differentiation and Integration, Initial Value Problems for ordinary

Di	Differential Equations, Boundary Value Problems for ODE and PDE will be taught to the													
stı	idents.				•									-
Co	ourse Outcon	nes												
C	O1 - To learn	the d	letail	ed stu	dy of	Solut	ion of I	Equa	atio	ns and	Eigen V	alue I	Proble	em
C	<b>02</b> - To learn	the d	etail	ed stu	dy of	Interp	olation	ı (Fi	nite	e Diffe	rences)			
C	CO3 - To learn the detailed study of Numerical Differentiation and Integration													
C	<b>O4</b> – To learn		letail	ed stu	dy of	Initia	ıl Value	e Pro	oble	ems for	r ordinar	y Diff	erent	ial
	Equation													
C	<b>O5</b> - To learn				-		•							3
			<u> </u>						<u> </u>		utcomes	· ,		
		I/L in			-	of co		n)	H-I	High, l	M-Mediu	ım, L-		
1	COs/POs	a	b	с	d	e	f	g	5	h	i	j	k	1
2	CO1	Η	Μ	Η		Η	Μ	E	I	Η	Н	Н	Η	М
	CO2		Μ				Μ			L	Μ			М
	CO3		Η		Μ	Н		H	I		Н		Η	Н
	CO4	Η		М		Μ	Μ			Η	Μ			
	CO5			Μ		Η		H	I	Μ	Η		Μ	Н
	CO6	L	Μ	Μ		Μ	Н		-	L	Η	Μ	Η	
3	Category	Humanities & Social	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^t	^h Me	eeting	of Ac	cadem	nic Cou	ncil.	, Ma	ay 201	5			

**UNIT-I SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEM** 9+6 Iterative method, Newton-Raphson method for single variable-solutions of linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss-Siedel methods, Inverse of matrix by Gauss-Jordan method, Eigen value of a matrix power and Jacobian methods.

#### UNIT-II INTERPOLATION

9+6

9+6

Newton's Divide difference formula, Lagrange's interpolation-forward and backward difference formula-Stirling's Bessel's central difference formula

UNIT-IIINUMERICAL DIFFERENTIATION AND INTEGRATION9+6Numericaldifferentiation with interpolation polynomials, Numerical integration by5TrapezoidalSimpson's (Both 1/3" and 3/8") rule, Double integrals using Trapezoidal and5Simpson's ruleSimpson's rule5

# UNIT -IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERNTIAL EQUATIONS

Single step methods, Taylor series, Euler and modified Euler, Runge kutta method of first and second order differential equations, multiple step methods, Milne and Adam's –Bash forth predic and corrected method

## UNIT -V BOUNDARY VALUE PROBLEMS FOR ODE AND PDE

Finite difference for the second order ordinary differential equations, finite difference solutions for one dimensional heat equations (both implicit and explicit), one dimensional wave equation, Two dimensional, Laplace and Poisson equation

#### **TEXTBOOKS:**

1. M.K. Venkatraman'Numerical Methods', NPC, Chennai

#### **REFERENCES:**

- 1. Jain.M.K.Iyengar, S.R.K.Andjain, RK "Numerical Methods for Scientific and Engineering Computation",(3rd edition, New age International Pub,Co(1993))
- 2. Grewal.B.S."Higher Engineering Mathematics" (6th edition)Khanna Publisher, Delhi,2004.

BA	M401				THE	ORY	OF N	MACH	INE	S			L	Τ	P	)	С
					t Hou								4	0	0		4
							cs and	Mecha	nics	of I	Machin	nes, Stre	ngth	of N	/later	ials	
					of m												
		Cou	rse I	Desig	gned b	y- D	epartm	ent of A	Auto	mol	bile Er	ngineerin	ıg				
	BJECTIV																
	e main o							-			0		•				The
	tailed con	-			nisms	, Fric	ction, (	Gearing	and	Ca	ms, Ba	alancing	and	Vib	ratio	n v	vill
	taught to			nts.													
	ourse Out																
	<b>)01</b> - To l										ire						
	<b>D02</b> - To l																
	<b>D03</b> - To l					-			cams	5							
	<b>D04</b> - To l					-											
CC	<b>D05</b> – To					-											
												comes (l					
			L in		es stre	ength	of cor		I) H	I-Hi	-	-Mediur		Low			
1	COs/PO	s	a	b	с	d	e	f	g	,	h	i	j		k	1	
2	CO1		Η	Μ	Η		Η	Μ	Ν	1	Н	Η	Η	[	Η	N	Λ
	CO2			Μ				Μ			L	Μ				N	1
	CO3			Η		Μ	Н		N	1		Н			Η	H	ł
	CO4		Η				Μ	Μ			Μ		Н	[			
	CO5				Μ		Н		N	1	Μ	Н			Μ	H	ł
	CO6		L	Μ	Μ		Μ	Н			L	Н	Μ	[	Η		
3	Category	<b>V</b>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ŝ	_		ŝ			a)			e		_		
			SS :	die	R S	Sciences		C)		tiv		jor NE	tiv		ern		Ξ
			itie	Stu S)	sic		S)	Sio (Pe		lec	E)	Ma e (]	llec	$\mathbf{E}$	ΓŢ	ing.	hin
			nan 1	al Sti (HS)	Basic ences(F		(ES)	rofessiona Core (PC)		еE	(CE)	l-nu ctiv	n E	9	jeci	paper/	ernshin (
			Humanities &	Social Studies (HS)	Basic	Bugg	â	Professional Core (PC)		Core Elective		Non-Major Elective (NE)	Dee	(OE)	Project/Term	ີບ	Juternship
				2		́ц	1					Ц					Ţ
4	Approva	.1	37 th	¹ Me	eting	of A	cademi	ic Coun	cil, I	May	y 2015				I		

## UNIT – I MECHANISMS

9+6

Definition – Machine and Structure – Kinematic link, pair and chain – classification of Kinematic pairs – Constraint & motion – Degrees of freedom slider crank – Single and double – Crank rocker mechanisms – Inversions – applications, Kinematic analysis and synthesis of simple mechanisms – Determination of velocity and acceleration of simple mechanisms.

#### UNIT – II FRICTION

Types of friction – friction in screw and nut – pivot and collar – thrust bearings – collar bearing – plate and disc clutches – belt (flat & vee) and rope drives – creep in belts – Jockey pulley – open and crossed belt drives – Ratio of tensions – Effect of centrifugal and initial tensions – Effect of centrifugal and initial tensions – Effect of centrifugal and initial tensions.

#### UNIT – III GEARING AND CAMS

Gear profile and geometry – nomenclature of spur & helical gears – laws of gearing – interference – requirement of minimum number of teeth in gears – gear trains – simple and compound gear trains – determination of speed and torque in epicyclic gear trains – cams different types of followers – cam design for different follower motions.

## UNIT – IV BALANCING

Static and dynamic balancing – single and several masses in different planes – primary and secondary balancing of reciprocating masses – balancing single and multi cylinder Engines – Governors and Gyroscopic effects.

## UNIT – V VIBRATION

Free, forced and damped vibrations of single degree of freedom systems – force transmitted to supports – vibration Isolation – vibration absorption – torsional vibration of shafts – single and multirotor systems – geared shafts – critical speed of shafts.

## **TEXT BOOKS:**

- 1. Bansal Dr.R.K. "Theory of Machines" Laxmi Publications (P) Ltd., New Delhi 2001
- 2. Rattan S.S."Theory of machines" Tata McGraw Hill publishing Co., New Delhi, 2002.

## **REFERENCES:**

- 1. Rao J.S.and Dukkipati R.V. "Mechanism and Machine Theory" Second Edition, Wiley Eastern Limited, 1992.
- 2. Malhotra D.R. and Gupta H.C "The Theory of machines" Satya Prakasam, Tech. India Publications, 1989
- 3. Gosh A and Mallick A.K. "Theory of Machines and Mechanisms" affiliated east west press, 1989

BAM402	AUTOMOTIVE CHASSIS	L	Т	Р	С		
	Total Contact Hours - 45	3	0	0	3		
	Prerequisite – Automotive Technology, Automotive Suspension Systems	Brak	ting a	nd			
	Course Designed by- Department of Automobile Eng	ginee	ering				
<b>OBJECTIVE:</b>							
The main object	ive of this course is to impart knowledge in Automoti	ve C	hassis	s. The	detailed		
concept of Intro	roduction, Frame, Steering system, Propeller shaft and final drive, Axles and						

Tyres, Suspension system and Braking system will be taught to the students.

## 12

## 12

11

Co	ourse Outcom	nes												
CO	<b>D01</b> - To learn	the c	letail	led stu	dy of	frame	e, steeri	ng s	yste	em				
CO	<b>D02</b> - To learn	the s	study	of ste	ering	syste	m							
C	<b>D03</b> - To learn	the o	detail	led stu	dy of	prope	eller sha	aft a	nd f	inal dri	ve			
CO	<b>D04</b> – To learn	n the	detai	led stu	idy of	f sxles	and ty	res,	Sus	pensior	system	-		
CO	<b>D05</b> - To learn	the o	letail	led stu	dy of	suspe	ension s	yste	m a	nd brak	ting syst	tem		
		Mapping of Course Outcomes with Program outcomes (POs)												
		(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low												
1	COs/POs	a	b	с	d	e	f	g	5	h	i	j	k	1
2	CO1	Η	Μ	Н		Η	Μ	Ν	1	Η	Н	Н	Η	М
	CO2		Μ				Μ			Η	М		Μ	М
	CO3		Η		Μ	Н		Ν	1		Н			Н
	CO4	Η		Н		Η	Μ			Μ		L	Μ	
	CO5			Μ		Η	Н	N	1	Μ	Η		Μ	Н
	CO6	L	Μ	Μ		Μ	Н			L	Η	Μ	Н	
3	Category													
		Humanities &	Social Studies (HS) Basic Sciences(BS) Engg Sciences (ES) Professional Core (PC) Core (PC) Core Elective (CE) Non-Major Elective (NE) Open Elective (OE) Project/Term paper Seminar/ Internship (H)											
4	Approval	37 ^{tl}	^h Me	eeting	of Ac	adem	ic Cour	ncil,	Ma	y 2015		1	1	

#### UNIT – I INTRODUCTION, FRAME, STEERING SYSTEM

Types of Chassis layout, with reference to Power Plant location and drive, various types of frames, Loads acting on vehicle frame, Constructional details and materials for frames, Testing of frames, Types of Front Axles and Stub Axles, Front Wheel Geometry, namely, Castor, Camber, King Pin Inclination and Toe–in, Condition for True Rolling Motion of Wheels during Steering, Ackerman's and Davis Steering Mechanisms, Steering Error Curve, Steering Linkages, Different Types of Steering Gears, Slip Angle, Over–Steer and Under–Steer, Reversible and Irreversible Steering, Power–Assisted Steering- Hydraulic and Electrically assisted steering.

## UNIT – II PROPELLER SHAFT AND FINAL DRIVE

Effect of Driving Thrust, torque reactions and side thrust, Hotchkiss drive, torque tube drive, radius rods and stabilizers, Propeller Shaft, Universal Joints, Constant Velocity Universal Joints, Front Wheel drive, Final drive, different types, Double reduction and twin speed final drives, Multi–axled vehicles, Differential principle and types, Differential housings, Non–Slip differential, Differential locks, Final drive of Crawler Tractors.

## UNIT – III AXLES AND TYRES

Construction and Design of Drive Axles, Types of Loads acting on drive axles, Full – Floating, Three–Quarter Floating and Semi–Floating Axles, Axle Housings and Types, Types and Constructional Details of Different Types of Wheels and Rims, Different Types of Tyres and their constructional details.

## UNIT – IV SUSPENSION SYSTEM

#### 9 ·

9

Need for Suspension System, Types of Suspension Springs, Constructional details and characteristics of Single Leaf, Multi–Leaf, Coil, Torsion bar, Rubber, Pneumatic and Hydro–elastic Suspension Spring Systems, Independent Suspension System, Shock Absorbers, Types and Constructional details, Design of Leaf and Coil Springs-Introduction to adaptive suspension systems.

#### UNIT – V BRAKING SYSTEM

Theory of Automobile Braking, Stopping Distance Time and Braking Efficiency, Effect of Weight Transfer during Braking, Theory of Drum Brakes, Leading and Trailing Shoes, Braking Torque, Constructional Details of Drum Brake and its Activators, Disc Brake Theory, Hydraulic, Mechanical, Pneumatic and Power–Assisted Braking System, Servo Brakes, Retarders, Anti–Lock Braking System.

#### **TEXTBOOKS:**

- 1. Kirpal Singh, Automobile Engineering, Standard Publisher, New Delhi, 2006
- 2. R.K. Rajput, A TextBook of Automobile Engineering, Laxmi Publications Private Limited, 2007.
- 3. N.K. Giri, Automotive Mechanics, Khanna Publishers, 2007

#### **REFERENCES:**

- 1. Heldt P.M., Automotive Chassis, Chilton Co., New York, 1990
- 2. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.
- 3. Heinz Hazler, Modern Vehicle Technology, Butterworth, London, 2005.

BA	AM403	;		A	UTON	ΛΟΤ	IVE D	IESEI	L ENGI	NES		L	T	Р	C
			To	tal Co	ontact	Hours	s - 45					3	0	0	3
			Pre	erequi	site –	Interr	nal Co	mbusti	on Engi	nes, Auto	omotive	e Engi	nes		
			Co	urse I	Design	ed by	- Dep	artmen	t of Aut	omobile	Engine	ering			
0	BJECT	<b>FIVE:</b>													
Th	ne main	ı objec	ctive of	of this	s cours	se is t	to imp	art kno	wledge	in Auton	notive	Diese	l En	gine	s. The
			-			•			-	em, Air					
Co	ombust	ion C	hamb	bers,	Super	cha	rging	and T	urbo cł	narging,	Engine	e per	forn	nanc	e and
Ev	valuatic	on will	be ta	ught	to the	stude	nts.								
Co	ourse (	Jutcor	mes												
C	<b>D1 -</b> To	o learn	the c	letaile	ed stud	ly of	Basic	Theory	of Dies	el Engin	e				
C	<b>D2</b> - To	o learn	the c	letaile	ed stud	ly of I	Fuel I	njectior	n Systen	n and typ	es				
C	<b>D3</b> - To	o learn	the c	letaile	ed stud	ly of .	AirMo	otion Co	ombusti	on and C	ombus	tioncl	nam	bers	
C	$\mathbf{D4} - \mathbf{T}$	o learr	n the	detail	ed stu	dy of	superc	chargin	g and T	urbo cha	rging				
C	<b>D5</b> - To	o learn	stud	y of E	Ingine	perfe	ormano	ce and l	Evolutic	n					
				Map	ping o	of Cou	irse O	utcome	s with P	rogram	outcom	nes (P	Os)		
			(H/N	M/L iı	ndicate	es stre	ength o	of corre	elation)	H-High	, M-Me	edium	, L-	Low	
1	COs/	POs	a	b	с	d	e	f	g	h	i	j	ŀ	ζ.	1
2	CO1		Н	Μ	Η		Н	Μ	М	Н	Н	Η	H	Η	Μ
	CO2			Μ				Μ		Н	Μ		N	Л	М
	CO3			Н		Μ	Η		М		Н				Η
	CO4		Н		Η		Η	L		М		L	N	Л	
	CO5				Μ		Η	Н	М	М	Н		Ι		Н
	CO6		L	Μ	Μ		Μ	Н		L	Н	Μ	H	H	

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
					N				
4	Approval	37 th Mee	ting of A	Academic	Council, M	lay 2015	•		

## UNIT – I BASIC THEORY

Diesel engine construction and operation. Two stroke and four stroke diesel engines. Diesel cycle – Fuel-air and actual cycle analysis. Diesel fuel. Ignition quality. Cetane number. Laboratory tests for diesel fuel. Standards and specifications- Alternate fuels in CI engines.

## UNIT – II FUEL INJECTION SYSTEM

Requirements – solid injection. Function of components –common rail direct injection - Jerk and distributor type pumps. Pressure waves, Injection lag. Unit injector. Mechanical and pneumatic governors. Fuel injector, Types of injection nozzle, Nozzle tests. Spray formation, Spray dynamics, Spray models, Injection timing. Pump calibration. Pilot injection.

## UNIT – III AIR MOTION, COMBUSTION AND COMBUSTION CHAMBERS 10

Importance of air motion – Swirl, squish and turbulence, Swirl ratio. Fuel air mixing. Stages of combustion. Delay period – factors affecting delay period. Knock in CI engines. Comparison of knock in CI & SI engines. Direct and indirect injection combustion chambers. Air cell chamber. Combustion chamber design – objectives – Different types of combustion chamber. MAN Combustion chamber.

## UNIT – IV SUPERCHARGING AND TURBOCHARGING

Necessity and limitation – Charge cooling. Types of supercharging and turbocharging – Relative merits. Matching of turbocharger-Turbocharger waste gates- Variable geometry-Turbochargers.

## UNIT – V ENGINE PERFORMANCE AND EVALUATION

Automotive and stationary diesel engine testing and related standards – Engine power and efficiencies – performance characteristics. Variables affecting engine performance – Methods to improve engine performance – Heat balance – Performance maps.

## **TEXT BOOKS:**

- 1. K. K. Ramalingm, internal Combustion Engines, Scitech publications, Chennai, 2003.
- 2. Ganesan, V., Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New Delhi, 1994.

## **REFERENCES:**

- 1. Heldt,P.M., High Speed Combustion Engines, Oxford IBH Publishing Co., Calcutta, 1985.
- 2. Maleev, V.M., Diesel Engine Operation and Maintenance, McGraw Hill, 1974.

AM404 AUTOMOTIVE ELECTRICAL SYSTEMS	L	Т	P	С	Ī
-------------------------------------	---	---	---	---	---

9

9

9

		Total	Con	tact Ho	ure -	15					3	0	0	3
	F						lectricit	v B	Rasic	Flect	rical and	~	-	5
	-		-								Engineeri		omes	
		Cours		signed	i Uy-	Depai		Au	tom		Ingineen	ng		
	BJECTIVE:	·•	<u>c</u> .1 ·		•		· 1	1	1	• •	, , <b>.</b>	<b>D1</b>	. 1.0	
	e main objec													
	e detailed con	-				0	•		rging	g syste	em, Igniti	ion sys	stem, I	lighting
	stem & Acces		s will	De la	igin to	J the s	tudents.							
	D1 - To learn		taile	d stud	v of F	Ratteria	20							
	$\mathbf{D1} - \mathbf{T0}$ learn				·			<u> </u>						
	<b>33</b> - To learn													
	$\mathbf{D4} - \mathbf{To} \text{ learn}$					<u> </u>	<u> </u>							
	$\mathbf{D5}$ - To learn				•	-			Acc	essori	es			
0.						<u> </u>					comes (P	Os)		
	(H/										-Medium		W	
			iuicu		engen	01 001	loiution	., .		8,	111001011	, 0	•••	
1	COs/POs	a	b	c	d	e	f	g	ŗ	h	i	j	k	1
								6	2			5		
2	CO1	Η	Μ	Η		Η	Μ	N	1	Η	Н	Η	Η	М
	CO2		Μ			Η	Н			Μ	Μ		Μ	Μ
	CO3		Η		Μ	Н		Ν	1		Н			Н
	CO4	Η		Н		Н	Н			Μ		L	Μ	
	CO5			Μ		Η	Н	Ν	1	Μ	Η		L	Н
	CO6	L	Μ	L		Μ	Μ			L	Н	Μ	Н	
3	Category	Humanities & Social		3S)	Enge Sciences (ES)		ore		E)		Non-Major Elective (NE)	)E)	)er/	-
		So	$\mathbf{S}$	ss(F	) s		ŭ		$\left  \begin{array}{c} 0 \\ 0 \end{array} \right $		lect	$\bigcup_{i=1}^{n}$	Dar	$\mathbf{H}$
		8	Studies (HS)	nce	nce		C)		ive		E fi	tiv€	E	Seminar/ Internship (H)
		ties	lies	cie	cie		siona (PC)		lect		lajor I (NE)	lect	Tei	imi nsh
		ani	tuc	c S		1	Gess		Ш		Ň.	υE	sct/	Se ter
		un č	$\mathbf{S}$	Basic Sciences(BS)	ספו	0	Professional Core (PC)		Core Elective (CE)		-uo	Open Elective (OE)	Project/Term paper/	, ul
		ŀΗ		В	Ξ		ЦЦ				Z	0	P1	
4	Approval	37 th	Me	eting of	of Aca	ademia	c Counc	il. N	I ∕Iav 2	2015				
•	PPI 0 - ui	5,	1.10				. Sound	, -,						

## UNIT – I BATTERIES

Principle and construction of lead-acid battery. Characteristics of battery, rating, capacity and efficiency of batteries. Various tests on battery condition, charging methods - Modern storage batteries- Lion- Nickel and others-Batteries for electric cars-Limitations

#### UNIT – II STARTING SYSTEM

Condition of starting Behavior of starter during starting. Series motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units. Care & maintenance of starter motor, Starter switches.

#### UNIT – III CHARGING SYSTEM

Function, Components of DC and AC Charging System for Automobile, construction, operating principle, characteristics, charging circuit controls – cut out, relays, voltage and current regulators, troubleshooting

8

9

#### UNIT – IV IGNITION SYSTEM

Types, construction & working of battery coil and magneto ignition systems. Relative merits, centrifugal and vacuum advance mechanisms. Types and construction of spark plugs, Electronic Ignition systems. DLI systems.

## UNIT – V LIGHTING SYSTEM & ACCESSORIES

Insulated & earth return systems. Positive & negative earth systems. Details of head light & side light. Head light dazzling & preventive methods. Electrical fuel-pump, Speedometer, Fuel, oil & temperature gauges, Horn, Wiper system, Trafficator, wiring system.

## **TEXT BOOK:**

- 1. Judge,A.W., Modern Electrical Equipment of Automobiles, Chapman & Hall, London, 1992.
- 2. Kholi,P.L., Automotive Electrical Equipment, Tata McGraw-Hill Co. Ltd., New Delhi, 1975.

## **REFERENCES:**

- 1. Crouse, W.H., Automobile Electrical Equipment, McGraw Hill Book Co. Inc., New York, 1980.
- 2. Automotive Hand Book, fifth edition, Robert Bosch, Bently Publishers, 2003.
- 3. Kripal Singh, Automobile Engineering, Standard Publisher, New Delhi, 2006.

BCE406	ENVIRONMENTAL STUDIES	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Physical Sciences	1	1	ı	
	Course Designed by – Dept of Civil Engine	ering			
ODIECTIVES	·				

#### **OBJECTIVES**

- 1. To study the nature and facts about environment.
- 2. To find and implement scientific, technological, economic and political solutions to environmental problems.
- 3. To study the interrelationship between living organism and environment.
- 4. To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- 5. To study the dynamic processes and understand the features of the earth's interior and surface.
- 6. To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

w ab t	e management.
COURS	E OUTCOMES (COs)
CO1	Play an important role in transferring a healthy environment for future generations
CO2	Analyze the impact of engineering solutions in a global and societal context
CO3	Discuss contemporary issues that results in environmental degradation and would
	attempt to provide solutions to overcome those problems
CO4	Ability to consider issues of environment and sustainable development in his
	personal and professional undertakings
CO5	Highlight the importance of ecosystem and biodiversity
	Mapping of Course Outcomes with Program outcomes (POs)
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

10

1	COs/POs	a	b	c	d	e	f	g	,	h	i	j	k	1
2	CO1	Η	Μ	Η		Η	М	Ν	1	Η	Н	Н	Η	М
	CO2		Μ			Η	Н			Η	М		Н	М
	CO3		Η		Μ	Η		Ν	1		Η			Н
	CO4	Η		Η		Η	Н			Μ		L	Μ	
	CO5			Η		Η	Н	Ν	1	Μ	Н		L	Н
	CO6	L	Μ	L		Μ	L			L	Н	Μ	Н	
3	Category		Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th	ⁿ M	eeting	of A	cadem	ic Cour	ncil,	May	y 2015				

#### **UNIT I THE MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES 9** Definition, scope and importance, Need for public awareness.

#### Natural Resources : Renewable And Non – Renewable Resources

Natural resources and associated problems

- a) Forest resources : Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effect on forests and tribal people.
- b) Water resources : Use and over-utilization of surface and ground water, flood, drought conflicts over water, dams-benefits and problems.
- c) Mineral resources : Uses and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources : World food problems, changes caused by agriculture and overgrazing , effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources : Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, case studies.
- f) Land resources : Land as a resource, Land degradation, man induced landslides, soil erosion and desertification

Role of an individual in conversation of natural resources, Equitable use of resources for sustainable lifestyles.

#### UNIT II ECOSYSTEMS

Concepts of an ecosystem. Structure and function of an ecosystem, producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem :- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)-

Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation - Ethics : Issues and possible Solutions, Climate change, global warming, acid rain, ozone layer depletion.

#### UNIT III BIODIVERSITY AND ITS CONSERVATION

Introduction and Definition - genetic, species and ecosystems diversity, Biogeographical classification of India - Value biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels. India as a megadiversity nation, Hot-spots of biodiversity -Threats to biodiversity, habitat, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation biodiversity - In-situ and Ex-situ conservation of biodiversity.

#### **Environmental Pollution**

Definition, Causes, effects and control measures of ;- Air Pollution, Water pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solid waste Management : Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution - Pollution case studies - Disaster Management : floods earthquake, cyclone and landslides.

#### UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable development, Urban problems related to energy, nuclear accident and holocaust, case studies, wasteland reclamation, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife protection Act, Forest Conservation Act, Issues involved in enforcement of environmental Legislation, public awareness –

Fireworks and its impact on the Environment – Chemicals used in Fireworks – (Fuel – oxidizing Agent – Reducing Agent –Toxic Materials – Fuel –Binder- Regulator) – Harmful nature of ingredients – chemical effects on health due to inhaling fumes – Noise produced by fire crackers – Noise pollution – Noise level standards for fire crackers – Intensity of sound – Impact on hearing – Safety measures.

#### UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations, population explosion-Family Welfare programs, Environment and human health, Human Rights, Value Education, HIV and AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human health - Case Studies.

#### **TEXTBOOKS:**

- 1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.
- 2. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 3. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, 1989.
- 4. Benny Joseph, "Environmental Studies"., TATA McGraw Hill, 2010

#### REFERENCES

- 1. Trivedi R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol.I and II, EnviroMedia 2009
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Wager K.D. "Environmental Management", W.B. Saunders Co., Philadelphia, USA, 1998.
- 4. Trivedi R.K. and P.K. Goel, "Introduction to Air Pollution", Techno Science Publications 2013
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB),2001.
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- 7. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment &

7

8

Security. Stockholm Env. Institute Oxford Univ. Press. 473p

- 8. Jadhav, H &Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- 9. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 11. Rao M N. &Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publish Co. Pvt. Ltd. 345p.
- 12. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut.
- 13. <u>http://eng.mft.info/uploadedfiles/gfiles/c8e31c9e52d84c3.pdf</u>

BA	M4L1	AUT	ГОМ	ΟΤΙ	VE E	NGIN	NE ON	MPON	ENT	S L	AB	L	Т	P	С
		Tota	l Cor	ntact	Hours	5 - 45						0	0	3	2
								nnology							
		Cou	rse D	esigi	ned by	- Dep	oartme	ent of A	uton	nobi	ile Eng	gineering	5		
0	BJECTI	VE													
										y Di	ismant	ling, Co	mparir	ng wit	th Recent
	gine Cor	-		nd A	sseml	oling	Vario	us Parts	•						
	ourse Ou														
	<b>D01</b> – Di														
	<b>D02</b> – Di			-		of HC	CV								
	<b>D03</b> – Stu														
	<b>D04</b> – As	semb	ling p	proce	dure o	of $LC$	V and	HCV							
			Mapi	oing	of Coi	ırse (	Dutcon	nes wit	h Pro	ogra	m out	comes (	POs)		
												-Mediu		ow	
1	COs/PC		а	b	с	d	e	f	ģ		h	i	j	k	1
2	CO1		Н	Н	М		Н	М	N	1	М	Н	Н	Н	Н
	CO2											М			
	CO3			Η	Н	М	Н		H	ł		Н		Н	Н
	CO4		Н					L			М		Μ		
	CO5				М		Η		Ν	1		М		Μ	М
	CO6		L	Μ	М		М	L			L	М	Μ	Н	
3	Categor	у	Humanities & Social	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)	1	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approv	al	37 th	¹ Me	eting	of Ac	ademi	ic Coun	cil, I	May	y 2015		1		

#### LIST OF EXPERIMENTS

1. Study of the Following Engines and Its Components by Dismantling, Comparing With Recent Engine Components and Assembling Various Parts:

- a) Tata Engine
- b) Leyland Engine

- c) Anyone type of CRDI engine
- d) Anyone type of EFI engine
- e) Two Stroke Engines
- 2. Engine Overhaul Procedure
- 3. Study, Dismantling and Assembling of aCarburetor
- 4. Study, Dismantling and Assembly of a Mechanical Fuel Pump
- 5. Measurementof Critical Dimensions of
  - a) Piston
  - b) Connecting Rod
  - c) Piston Rings
  - d) Crankshaft
  - e) Valves
- 6. Find the Cubic capacity and Compression ratio of a vehicle.
- 7. Other Engine Subsystems/Components.
  - a) Fuel filter
  - b) Injector
  - c) Turbocharger
  - d) Radiator
  - e) Thermostat
  - f) Water Pump
  - g) Oil Pump
  - h) Catalytic convertor
  - i) Muffler

BA	M4L2	ENG LAB	INF	E TF	ESTIN	IG &	EMI	SSION	MEAS	UREM	ENT	]	L	Т	P	C
		Total	Co	ntac	t Hou	rs - 45	5					(	0	0	3	2
		Preree	quis	site -	- Auto	moti	ve Eng	gines ar	nd Emis	sion, IC	Engine	s, Alt	err	nate	Fuel	S
		Cours	se D	Desig	gned b	y- De	partm	ent of A	Automo	bile Eng	ineerin	g				
0	BJECTIV	/ <b>E</b>														
Pe	rformance	e stud	y o	of l	Petrol	and	Dies	el eng	gines. I	Ieat bal	ance '	Test	an	d E	Emiss	sion
	easuremen							C	·							
Co	ourse Out	tcomes	5													
C	<b>D1</b> – Stud	y of D	yna	mon	neters											
C	<b>D2</b> – Perfe	ormanc	ce st	tudy	of Pe	trol a	nd Die	esel eng	gines							
C	<b>D3</b> – Stud	y of ba	lan	ce T	'est											
C	<b>D4</b> – Stud	y of Er	niss	sion	Test a	and E	xhaus	t gas Ai	nalyzer							
		M	app	ing	of Cou	ırse C	Jutcon	nes wit	h Progra	am outco	omes (l	POs)				
	(	(H/M/L	inد ا	dicat	tes stro	ength	of con	rrelatio	n) H-H	ligh, M-l	Mediur	n, L-I	Jov	N		
1	COs/PO	s a	a	b	c	d	e	f	g	h	i	j		k		1
2	CO1	]	Η	Η	Μ		Н	Μ	Μ	М	Н	Η		H	I	Н
	CO2										Μ					
	CO3			Η	Η	Μ	Η	Н	Н		Н		]	М	I	H
	CO4	]	H					L		М		М				
	CO5				Η		Η		Μ		М		]	Μ	Ν	M
	CO6	]	Ĺ	М	Μ		Μ	L		L	Μ	Μ		H		

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th Me	eeting of	f Academ	ic Council,	May 201:	5		

- 1. Study of Dynamometers.
- 2. Valve timing diagram.
- 3. Port timing diagram.
- 4. Performance test in single cylinder diesel engine.
- 5. Performance test in twin cylinder diesel engine.
- 6. Performance test in three cylinder petrol engine.
- 7. Morse test on Petrol engine.
- 8. Heat balance test on an automotive diesel engine.
- 9. Study of NDIR Gas Analyzer and FID.
- 10. Study of Gas Chromatography.
- 11. Study of Chemiliminescent NOx analyzer.
- 12. Measurement of HC, CO, CO₂, O₂ and NOX using exhaust gas analyzer.
- 13. Diesel smoke measurement.

BA	AM4L3	AU'	ТОМ	IOTI	VE E	LEC	<b>FRICA</b>	L LAB	ORAT	ORY	L	Т	Р	С
		Tota	al Co	ntact	Hour	s - 45					0	0	3	2
		Prer	equi	site –	Basic	Elect	rical ar	nd Elect	ronics, A	utomo	tive	Electr	ical	
		Tec	hnol	ogy										
		Cou	rse I	Design	ed by	/- Dep	artmen	t of Au	tomobile	Engin	eerin	g		
0	BJECTIVE													
La	boratory stud	y of S	starti	ng, Cł	nargir	ng syst	tems an	nd Perfo	rmance s	study o	f Alt	ernato	or.	
C	ourse Outcon	ies												
C	O1 – Study of	varic	ous ty	pes o	f Batt	eries								
C	O2 – Study of	Auto	moti	ve Ele	ectric	syster	n and I	Lighting	Access	ories				
C	O3 – Study of	Starti	ng, C	Chargi	ng sy	stems								
C	O4 – Study of	Elect	trical	assist	ted po	ower s	teering							
		Mapp	oing	of Cou	ırse (	Outcon	nes wit	h Progra	am outc	omes (	POs)			
	(H/N	I/L in	dicat	tes stro	ength	of con	rrelatio	n) H-H	ligh, M-	Mediui	n, L-	Low		
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k		1
2	CO1	Η	Η	Μ		Н	М	Μ	М	Н	Η	Η		Η
	CO2									Μ				
	CO3		Η	Н	Μ	Н	Н	Н		Н		Μ		Η
	CO4	Η					L		М		Μ			
	CO5			Н		Н		Μ		М		Μ		М

	CO6	L	Μ	М		Μ	L			L	Ν	Ν	Μ	Η		
3	Category		Studies (HS)	Basic Sciences(BS)	Enge Sciences (ES)		Professional Core (PC)	1	Core Elective (CE)		Non-Major Elective	(INE)	Open Elective (OE)		Project/Term paper/ Seminar/	Internship (H)
								v								
4	Approval	37 ^{tl}	ⁿ Me	eeting	of Ac	adem	ic Cou	ncil,	May	y 2015	5					

- 1. Study of various types of Batteries
- 2. Study of Automotive Electric system and Lighting Accessories
- 3. Battery testing Specific gravity test, Voltage test.
- 4. Checking of cutoff voltage using electronic regulator.
- 5. Testing of ignition coil.
- 6. Performance test on Alternator.
- 7. Working of Stepper motors.
- 8. Study of Electrical assisted power steering.

BA	M4S1	TECH	INIC	CAL S	EMI	NAR-	I			Ι	L T	Р	C
		Total	Cont	act Ho	ours -	45				0	) 0	3	2
		Prerec	luisit	e – Ba	isic E	nginee	ering So	ciences,	Automo	tive Te	chnolo	ogy and	1
		Engin	eerin	g Basi	ics								
		Cours	e De	signed	l by- l	Depart	tment o	f Auton	nobile Er	ngineer	ing		
0	BJECTIVE					-				-			
Th	e students k	now ab	out t	he res	ent te	chniq	ues in A	Automol	oile Eval	uation	will be	made	based
on	the reports,	the pre	esenta	ations	and the	he inte	eraction	s during	g the que	stion a	nswer	sessior	IS.
Co	ourse Outco	mes											
C	<b>D1</b> – Ability	and Sk	ills to	o be in	nprov	red							
C	O2 - self con	nfidents	s to b	e imp	roved								
C	O3 –leadersl	nip qua	lity t	o be ir	nprov	ved							
C	<b>D4</b> –innovat	ive idea	as wi	ll be g	genera	ited							
								0	am outco		,		
	(H	/M/L ir	ndica	tes str	ength	of con	rrelatio	n) H-H	ligh, M-l	Mediun	n, L-L	OW	
1	COs/POs	а	b	с	d	e	f	g	h	i	j	k	1
2	CO1	Н	Η	Μ		Η	Μ	М	М	Н	Η	Н	Н
	CO2									Μ			
	CO3		Η	Η	Μ	Η	Н	Н		Н		М	Η
	CO4	Н					L		М		Μ		
	CO5			Η		Η		Μ		М		М	Μ
	CO6	L	Μ	Μ		Μ	L		L	М	М	Н	

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
									N
4	Approval	37 th Me	eeting of	f Academ	ic Council,	May 2015	5		

The students are expected to make presentations throughout the semester under the supervision of a team of respective department faculty. The students are to be grouped appropriately so that each student makes a minimum of two different presentations on engineering topics of current interest. Every student has to submit an approved technical report prior to his presentation. Evaluation will be made based on the reports, the presentations and the interactions during the question answer sessions.

BA	AM501	COM	PUT	ER CO	ONTI	ROL (	OF VE	HICLE	SYSTE	MS	L	Т	Р	С
		Total	Conta	ct Ho	urs - 2	45					3	0	0	3
		Prerec	uisite	– Bas	sic Ele	ectron	ic Engi	neering	, Sensors	s and A	ctuat	ors, F	Robo	tics
		and A	utoma	ation										
		Cours	e Des	igned	by- D	)epartr	nent of	Autom	obile En	gineeri	ng			
O	BJECTIV	E												
Th	ie main ob	jective	of th	is cou	rse is	to in	ıpart kı	nowledg	ge in Co	mputer	Con	trol c	of vel	hicles
	stems. Th													
sys	stem, Com	fort sys	tem, I	Intellig	gent T	Transp	ortatio	n system	n will be	taught	to th	e stuc	lents	
	ourse Out													
	<b>D1 -</b> To lea					1				gement	syste	em		
	<b>D2</b> - To lea							•						
	<b>D3</b> - To lea				•	-		•	ystem					
C	<b>D4</b> – To le	arn the	detail	ed stu	dy of	Comf	ort Sys	tem						
C	<b>D5</b> - To lea													
		-	· ·					0	am outco	,	,			
	(1	H/M/L i	ndica	tes str	ength	of con	rrelatio	n) H-H	ligh, M-l	Mediur	n, L-	Low		
1	COs/POs	a	b	c	d	e	f	g	h	i	j	k		1
2	CO1	Н	Μ	Η		Н	Μ	М	Н	Н	Η	Η		М
	CO2		Μ			Н	Η		М	М		Η		Μ
	CO3		Η		Μ	Н		Μ		Н				Η
	CO4	Η		Η		Н	Η		Н		L	Μ		
	CO5			Μ		Н	Η	L	М	Н		L		Н
	CO6	L	Μ	L		Μ	Μ		L	Н	Μ	Η		

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th Me	eeting of	f Academ	ic Council,	May 201	5	1	L

#### UNIT – I INTRODUCTION

Components of chassis management system - role of various sensors and actuators pertain to chassis system - construction - working principle.

#### UNIT – II **DRIVELINE CONTROL SYSTEM**

Speed control – cylinder cut- off technology, Gear shifting control – Traction / braking control, brake by wire - Adaptive cruise control, throttle by wire. Steering - power steering, collapsible and tiltable steering column – steer by wire.

#### UNIT – III SAFETY AND SECURITY SYSTEM

Airbags, seat belt tightening system, collision warning systems, child Lock, anti lock braking systems, Vision enhancement, road recognition system, Anti theft technologies, smart card system, number plate coding.

#### UNIT – IV **COMFORT SYSTEM**

Active suspension systems, requirement and characteristics, different types, Vehicle Handling and Ride characteristics of road vehicle, pitch, yaw, bounce control, power windows, thermal management system, adaptive noise control.

#### UNIT – V INTELLIGENT TRANSPORTATION SYSTEM

Traffic routing system - Automated highway systems - Lane warning system - Driver Information System, driver assistance systems - Data communication within the car, Driver conditioning warning - Route Guidance and Navigation Systems - In-Vehicle Computing -Vehicle Diagnostics system – Hybrid / Electric and Future Cars – Case studies.

## **TEXT BOOKS:**

- 1. U. Kiencke, and L. Nielsen, Automotive Control Systems, SAE and Springer-Verlag, 2000.
- 2. William B.Ribbens -Understanding Automotive Electronics, 5th edition, Butter worth Heinemann Woburn, 1998.

## **REFERENCES:**

- 1. Crouse, W.H. & Anglin, D.L., Automotive Mechanics, Intl. Student edition, TMH, New Delhi 1986.
- 2. Robert Bosch Automotive Hand Book- SAE, 5th Edition, 2000
- 3. Internet References.

9

9

9

BA	AM503	AUT	ГОМ	IOT	IVE 1	RAN	ISMI	SSION				L	r	Г	P	С
		Tota	l Co	ntact	t Hour	s - 60	)					4	(	0	0	4
		Prere	equis	site –	- Auto	motiv	ve tech	nology	, Au	itom	otive I	Braking	and S	uspei	nsio	n
		Syste	ems													
		Cour	rse D	Desig	ned by	y- De	partm	ent of A	Auto	mot	ile Eng	gineering	g			
OI	BJECTI	VE														
Th	e main o	bjecti	ve o	f this	s cour	se is	to imp	part kno	owle	dge	in Aut	omotive	e Tran	smis	sion	. The
	ailed co															
	tomatic	Transi	miss	ion .	Applic	cation	s, Hy	drostati	ic ar	nd E	lectric	Drive v	will b	e tau	ght	to the
	dents.															
	urse Ou															
	<u>01 - To le</u>															
	<u>)2 - To le</u>					-	-	-								
	<u>)3 - To le</u>					•		•				1				
	<u>)4 – Tol</u>												ns			
C	<b>)5</b> - To le												$\mathbf{D}(\mathbf{a})$			
				-						-		comes (I -Mediun		OW		
1	COs/PC			b		d	e	f		1	$\frac{1}{h}$	i	II, L-L   ;	k k		1
		/5	a			u	-		8				J			
2	CO1		Η	M	Η		Н	M	N	1	H	H	Н	Н		M
	CO2			M		M	TT	Μ		A	L	M		TT		M
	CO3		TT	Η		Μ	H	М	N	1	М	Н	тт	Н		Н
	CO4 CO5		Η		Μ		M H	Μ	N	Л	M M	Н	H	M		Н
	CO5 CO6		L	М	M		п М	Н	IV	1		Н	M	H		п
3	Categor	v	L	IVI	IVI		IVI	11			L	11	IVI	11		
5	Calegoi	y	ial		S)	(S	Ì	e		Ш		ve	Ē		er/	
			Soc	$\hat{\mathbf{x}}$	s(B	E E		Core		Ū	,	ecti	9		ap	H)
			nities & Social	udies (HS	Sciences(BS)	Sciences (ES)				Elective (CE		E	Elective (OE)		t/Term paper/	Seminar/ Internship (H)
			ies	les	zier	ien		PC		ecti		Jor NE	ect		ler.	Seminar/ ernship (
			unit	tud				ess.				Ma	, ,		ct/_	Sel
			Human	Stu	Basic	Engg	0	Professional (PC)		Core		Non-Major Elective (NE)	Open		Project	, Int
			Ηſ		В	En		Ч		U U		Ž	Ō		$\mathbf{P}_{\mathbf{r}}$	
		┝														
4	Approv	al	37 th	¹ Me	eeting	of Ac	adem	ic Cour	ncil,	May	y 2015					

## UNIT – I CLUTCH AND GEAR BOX

Problems on performance of automobile - such as resistance to motion, tractive effort, engine speed, engine power and acceleration. Requirement of transmission system. Different types of clutches, principle, Construction and torque capacity. Determination of gear ratios for vehicles. Different types of gearboxes such as Sliding mesh gearbox, Constant mesh gearbox and Synchromesh gearbox.

14

12

## UNIT – II HYDRODYNAMIC DRIVE

Fluid coupling - Principle of operation, Constructional details, Torque capacity, Performance characteristics and Reduction of drag torque. Hydrodynamic Torque converter - Principle of operation, Constructional details and Performance characteristics. Multistage torque converters. Polyphase torque converters. Converter coupling

#### UNIT – III PLANETARY GEAR BOXES

Construction and operation of Ford – T-model gearbox, Wilson Gear box and Cotal electromagnetic transmission.

#### UNIT – IV AUTOMATIC TRANSMISSION APPLICATIONS

Need for automatic transmission, Principle of operation. Hydraulic control system for automatic transmission. Chevrolet "Turboglide" Transmission, Continuously Variable Transmission (CVT) – Types – Operations-Automated Manual Transmission systems.

#### UNIT – V HYDROSTATIC AND ELECTRIC DRIVE

Hydrostatic drive - Various types of hydrostatic systems, Principles of Hydrostatic drive system. Advantages and limitations. Comparison of hydrostatic drive with hydrodynamic drive, Construction and Working of typical Janny hydrostatic drive. Electric drive - Principle of operation of Early and Modified Ward Leonard Control system, Advantages & limitations.

#### **TEXT BOOKS:**

- 1. Newton and Steeds, Motor vehicles, Illiffe Publishers, 2000.
- 2. Judge, A.W., Modern Transmission systems, Chapman and Hall Ltd., 1990.

#### **REFERENCES:**

- 1. Heldt, P.M., Torque converters, Chilton Book Co., 1992.
- 2. Crouse, W.H., Anglin, D.L., Automotive Transmission and Power Trains construction, McGraw Hill, 1992.

BA	M504	ELEC	<b>FRO</b>	NICS	AND	INST	<b>RUM</b>	ENTAT	TION		L	Т	Р	С
		Total C	ontac	ct Hou	rs - 4	5					3	0	0	3
		Prerequ Technic		– Bas	ic Ele	ectrica	l and E	lectroni	cs, Elect	ronics	and	Inst	rume	ntal
		Course	Desi	gned b	y- D	epartm	nent of	Automo	bile Eng	ineerin	g			
0	BJECTIV	Έ												
Th	ie main ob	jective o	of this	s cours	se is t	to imp	art kno	wledge	in Elect	ronics	and	Inst	rume	ntation.
Th	ne detailed	concept	of C	lassific	cation	of de	sign &	Reducti	on of St	ress co	ncer	ntrati	ion.,	Design
	Shafts an	nd spring	gs, G	ear D	esign	, Flyw	heels,	Design	of Bear	rings w	ill	be ta	aught	to the
stu	idents.													
	ourse Out													
	<b>D1</b> - To lea		etaile	d stud	y of <b>(</b>	Classif	fication	of desig	gn & Reo	duction	of	Stres	SS	
-	oncentrati													
C	<b>D2</b> - To lea	arn the d	etaile	d stud	y of l	Design	n of ana	log and	digital c	ircuits				
C	<b>D3</b> - To lea	arn the d	etaile	d stud	y of A	Autom	atic Co	ntrol Sy	/stem					
C	<b>D4</b> – To le	arn the d	letaile	ed stud	ly of	Applic	cation a	nd Cont	trol syste	em				
C	<b>05</b> – To le	arn the d	letaile	ed stuc	ly of	Micro	process	ors and	Applica	tions				
		Map	ping	of Coi	irse C	Outcon	nes witl	h Progra	m outco	omes (H	POs)	)		
	(	H/M/L ii	ndica	tes stro	ength	of con	relation	n) H-H	ligh, M-I	Mediun	n, L	-Lov	N	
1	COs/POs	s a	b	с	d	e	f	g	h	i	j		k	1
2	CO1	Н	Μ	Н		Н	М	М	Н	Н	Н	[	Н	М
	CO2		Μ				Μ		L	Μ				Μ
	CO3		Η		Η	Н		Μ		Н	L		Н	Н
	CO4	Н				Μ	Μ		Μ		Η	[ ]		L

# 12

	CO5			Μ		Μ		Ν	1	Н	Η		Μ	Н
	CO6	L	Μ	Μ		Μ	Н			L	Η	Μ	Η	
3	Category		Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
								N						
4	Approval	37 th	37 th Meeting of Academic Council, May 2015											

## UNIT – I ELECTRONIC COMPONENTS AND DEVICES

Resistors, Capacitors, Inductors and Transformers - properties, types. Simple PN Junction Diodes, Zener diode, Bipolar Junction transistor and Field Effect Transistors – operating principles and characteristics. Other Devices - UJT, SCR, LED, Photo detectors.

## UNIT – II ANALOG AND DIGITAL CIRCUITS

Rectifier and Power Supply Circuits, clipper, clamper using diodes, Operational Amplifiers (Ideal) - properties and typical circuits like differentiator, integrator, summer, comparator, single-stage BJTs and FETs amplifiers - Multistage Amplifier Principles- Flip-Flops, Shift-Registers, Counters, Decoders/Drivers, Timer, Display Devices, A/D and D/A Converters.

## UNIT – III AUTOMATIC CONTROL SYSTEM

Basic elements- Feedback Principle-Implication of Measurements Error Detectors-Final actuating elements-Two position multi position floating proportional controls- Relays- Servo amplifier- Servomotor- Mechanical, Electrical, Magnetic, Electronic, Hydraulic and Pneumatic systems.

## UNIT – IV APPLICATION OF CONTROL SYSTEM

Governing of speed kinetic and Process control- Pressure, Temperature, Fluid level, Flow thrust and Flight control Photo electric controls.

## UNIT – V MICROPROCESSORS AND APPLICATIONS

Architecture of 8085 processors, Address Modes Instruction set, simple programming like addition, subtraction, multiplication, logical operation, Peripherals and Interfacing – 8255, 8251. Applications like motor control, keyboard and PC interfacing.

## **TEXT BOOKS:**

1. Millman.J. and Grabel.S., Integrated Electronics, Tata McGraw Hill, 1995.

- 2. M.Gopal, Automatic Centrol systems, Tata McGraw Hill Edition.
- 3. Goankar.R.S., Microprocessor Architecture, Programming and Applications, Wiley Eastern 1992.

## **REFERENCES:**

- 1. Malvino.A.P., Leach.D.P., Digital Principles & Applications, Tata McGraw Hill, 1990.
- 2. Helfrick.A.D. and Cooper.W.D. Modern Electronics Instrumentation and Measurement Techniques, Prentice Hall 1990.

10

10

10

8

BA	M505	ENG	INE	ER	ING E	DESI	GN FO	OR AU	TO	MOI	BILEE	NGINE	ERS	L	ΓP	С	
		Tota	l Con	tact	Hours	s - 60								4	0 0	4	
		Prere	equisi	ite –	Engir	neerin	ig Gra	phics, l	Mach	nine	and Co	mponent	Draw	ing,			
		Macl	nine l	Deig	gn												
		Cour	se De	esig	ned by	/- Dep	partme	ent of A	Auton	nobi	le Engi	neering					
OF	BJECTI	VE															
Th	e main	objec	tive	of	this c	ourse	is to	o impa	rt kı	low	ledge i	n Engin	leering	g De	sign	for	
		-						-	Clas	ssifi	cation of	of design	n and	Redu	iction	n of	
	ess conce			ill b	e taug	ht to	the stu	idents.									
	urse Ou																
			ne de	taile	ed stud	ly of (	Classi	fication	nof de	esigi	n and R	eduction	of Sta	ess			
	ncentrati																
	<b>)2</b> - To l						-		afts a	nd s	prings						
	<b>)3</b> - To l							-									
	04 – To learn the detailed study of Flywheels																
CC	<b>205</b> – To learn of detailed study of Design of Bearings																
	<u> </u>		Mapping of Course Outcomes with Program outcomes (POs)I/M/L indicates strength of correlation)H-High, M-Medium, L-Lowabcdefghijk1														
1	COs/PC	)s				d										l	
2	CO1		Η	Μ	Н		Η	Μ	N	1	Н	Н	Н	Η		Μ	
	CO2			Μ				Μ			L	M				Μ	
	CO3			Η		Μ	Н		Ν	1		Н		Η		Η	
	CO4		Η				M	Μ		-	M		Н				
	CO5		-		M		H		N	1	M	H		M		H	
2	CO6		L	Μ	Μ		Μ	Н			L	Н	Μ	Η			
3	3 Category lies & Social HS)					z Sciences (ES)		sional Core (PC)		e Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		ect/Term paper/	Seminar/ Internship (H)	
		-	Humani		Basic S	Engg	5	Professio	V	Core El		Non	Opei		Project/	In	
4	Approv	al	37 th	¹ M	eeting	of A	cadem	nic Cou	ncil,	May	2015		I				

#### UNIT – I INTRODUCTION

Classification of design – Engineering materials and their physical properties as applied to design – Selection of materials – Factors of safety in design – Endurance limit of materials – Determination of endurance limit for ductile materials – Notch sensitivity – Principle of design optimization – Future trends – CAD Euler's formula – Rankine's formula – Tetmajer's formula – Johnson formula – Design of push rods and eccentricity loaded columns – Reduction of stress concentration.

#### UNIT – II DESIGN OF SHAFTS AND SPRINGS

12

Introduction – Material and design stresses – Design of axles – Design of shafts on the basis of strength – Design of shaft on the basis of rigidity – Design of hollow shafts – Design of close coiled helical spring subjected to axial loading – Torsion of helical springs.

#### UNIT – III GEAR DESIGN

Design considerations – strength of gear teeth – Lewis equation – Terminology of gears – Dynamic tooth load – Design of spur gears – helical gears – herringbone gears – bevel gears and worm gears.

## UNIT – IV FLYWHEELS

Determination of the mass of a flywheel for a given co-efficient of speed fluctuation. Engine flywheels stresses of rim of flywheels. Design of hubs and arms of flywheel – Turning moment diagram.

## UNIT – V DESIGN OF BEARINGS

Design of journal bearings - Ball and Roller bearings - Types of Roller bearings - Bearing life - Static load capacity - Dynamic load capacity - Bearing material - Boundary lubrication - Oil flow and temperature rise.

## **TEXTBOOKS:**

- 1. Jain, R.K., Machine Design, Khanna Publishers, 1992.
- 2. Sundararaja Murthy, T.V., Machine Design, Khanna Publishers, New Delhi, 1991.
- 3. T.J. Prabhu, Fundamentals of Machine Design, 2009.
- 4. T.J. Prabhu, Design of Transmission Elements, 2009.

#### **REFERENCES**:

- 1. Sigley, Machine Design, McGraw Hill, 1981.
- 2. Design Data Book, PSG College of Technology, Coimbatore, 1992.

BBA5	<b>VALUE EDUCATION AND PROFESSIONAL ETHICS</b>	L	Т	P	C
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Professional Courses	1			
	Course Designed by – Dept of Management Studies				
OBJE	CTIVES				
-	To teach the philosophy of Life, personal value, social value, mind personal health To teach professional ethical values, codes of ethics, responsibilitie related global issues.				
COUR	SE OUTCOMES (COs)				
CO1	To learn about philosophy of Life and Individual qualities				
CO2	To learn and practice social values and responsibilities				
CO3	To learn and practice mind culture, forces acting on the body and c and their curing	cause	s of di	sease	es
CO4	To learn more of Engineer as Responsible Experimenter.				
CO5	To learn more of Risk and Safety assessment with case studies.				
CO6	To learn more of Responsibilities and Rights as Professional Challenges	and	facing	g Glo	obal

#### 12

## 12

	(11													
	Mapping of Course Outcomes with Program outcomes (POS) (H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low         1       COs/POs       a       b       c       d       e       f       g       h       i       j       k       l         1       COs/POs       a       b       c       d       e       f       g       h       i       j       k       l         2       CO1       M       H       H       M       H       M       L       L       M         CO2       O       M       H       H       M       H       M       L       L       M         CO3       O       M       H       H       M       M       L       L       M         CO4       H       H       M       M       M       L       M       M         CO5       H       H       H       M       M       L       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M<													
		a	b	С	d	e	f	g	h		i	j	k	1
2	CO1			Μ		Η		Μ	Η	Μ		L	L	Μ
	CO2			Μ		Н		Μ	Η	Μ		L	L	Μ
	CO3			Μ		Η		Μ	Η	Μ		L	L	М
	CO4			Н		Η		Μ	Η	Μ		L	L	М
	CO5			Н		Н		М	Η	Μ		L	L	М
	CO6			Н		Н		М	Η	Μ		L	L	М
3	Category			<b>•</b>		Engg Sciences (ES)	_		Core Elective (CE)		Non-Major Elective	(NE)	Open Elective (GOE	Project/Term paper/ Seminar/ Internship (PR)
4	Approva l	ova 37 th Meeting of Academic Council, May 2015												

#### UNIT I : PHILOSOPHY OF LIFE AND INDIVIDUAL QUALITIES

Human Life on Earth - Purpose of Life, Meaning and Philosophy of Life. The Law of Nature – Protecting Nature /Universe. Basic Culture - Thought Analysis - Regulating desire - Guarding against anger - To get rid of Anxiety – The Rewards of Blessing - Benevolence of Friendship - Love and Charity - Self – tranquility/Peace

#### UNIT II : SOCIAL VALUES (INDIVIDUAL AND SOCIAL WELFARE)

Family - Peace in Family, Society, The Law of Life Brotherhood - The Pride of Womanhood - Five responsibilities/duties of Man : - a) to himself, b) to his family, c) to his environment, d) to his society, e) to the Universe in his lives, Thriftness (Thrift)/Economics. Health - Education - Governance - People's Responsibility / duties of the community, World peace.

#### UNIT III: MIND CULTURE & TENDING PERSONAL HEALTH

Mind Culture - Life and Mind - Bio - magnetism, Universal Magnetism (God –Realization and Self Realization) - Genetic Centre – Thought Action – Short term Memory – Expansiveness – Thought – Waves, Channelising the Mind, Stages - Meditation, Spiritual Value. Structure of the body - the three forces of the body- life body relation, natural causes and unnatural causes for diseases, Methods in Curing diseases

#### UNIT IV: ENGINEERING AS SOCIAL EXPERIMENTATION AND ENGINEERS'S RESPONSIBILITIES FOR SAFETY 9

Engineering as Experimentation – Engineer as Responsible Experimenters – Codes of Ethics – The Chalenger, case study. Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk – The Three Mile Island and Chernobyl case studies.

#### UNIT V: ENGINEERS'S RESPONSIBILITIES FOR RIGHTS AND GLOBAL ISSUES

9

9

9

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Whistle Blowing – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development –Engineers as Managers – Consulting Engineers – Engineers as Expert Eye Witnesses and Advisors – Moral Leadership

#### **TEXT BOOKS:**

- 1. Value Education for Health, Happiness and Harmony, The World Community Service, Centre Vethathiri Publications (Unit 1 III).
- 2. Mike W Martin and Roland Schinzinger, Ethics In Engineering, Tata Mcgraw Hill, Newyork 2005 (Units IV & V)

#### **REFERENCE:**

- 1. Philosophy of Universal Magnetism (Bio magnetism, Universal Magnetism) The World Community Service Centre Vethathiri Publications (for Unit III)
- 2. Thirukkural with English Translation of Rev. Dr. G.U. Pope, Uma Publication, 156, Serfoji Nagar, Medical College Road, Thanjavur 613 004 (for Units I III)
- 3. R S Nagaarazan, Textbook On Professional Ethics And Human Values, New AgeInternational Publishers, 2006 (for Units IV-V)
- 4. Charles D Fledderman, Engineering Ethics, Prentice Hall, New Mexico, 2004(for Units IV-V)

BA	AM5L1	AUTO	MO	<b>FIVE</b>	CHA	SSIS	COM	PONEN	TS LAE	3	L	Т	Р	С
		Total C	Conta	ct Hou	<b>1</b> rs - 4	5					0	0	3	1
		Prerequ	iisite	- Aut	tomot	ive Te	chnolo	gy, Aut	omotive	Brakin	g an	d Sus	pensi	on
		System	s, Ve	ehicle	Body	Engir	neering	and Cha	assis Ma	nagem	ent s	ysten	18	
		Course	Desi	igned	by- D	epartr	nent of	Automo	bile Eng	gineeri	ng			
0	BJECTIV	E												
St	udy of the	Follow	ing	Engin	es ar	nd Its	Comp	onents	by Disn	nantling	g, C	ompa	ring	With
Recent Engine Components and Assembling Various Parts														
Course Outcomes														
CO1 – Dismantling procedure of Clutch, Gear Box, Brake system														
CO2 – Dismantling procedure of Differential Unit														
CO3 – Study and Propeller Shaft Unit														
C	<b>CO3</b> – Study and Propeller Shaft Unit <b>CO4</b> – Assembling procedure of Clutch, Gear Box, Brake system, Differential Unit													
		Map	ping	of Cou	urse C	Outcon	nes wit	h Progra	am outco	omes (l	POs)			
	(1	H/M/L in	ndica	tes str	ength	of con	rrelatio	n) H-H	ligh, M-l	Mediur	n, L-	Low		
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k	C I	1
2	CO1	Н	Η	Μ		Н	Μ	М	М	Н	Η	H	I	Н
	CO2									М				
	CO3		Η	Н	Μ	Н	Н	Н		Н		Ν	1	Н
	CO4	Н					L		М		Μ			
	CO5			Η		Н		М		М		N	1	М
	CO6	L	Μ	Μ		Μ	L		L	М	Μ	H	I	

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
		orth a f							
4	Approval	37 th Me	eeting of	f Academi	ic Council,	May 2015	5		

- 1. Study, Dismantling & Assembling of Clutch Assembly
- 2. Study, Dismantling & Assembling of Gear Box Assembly
- 3. Study, Dismantling & Assembling of Differential Unit
- 4. Study of Propeller Shaft Unit
- 5. Study, Dismantling & Assembling of Steering Gear Boxesa) Rack and Pinion (Power and Manual) typesb) Recirculating Ball type
- 6. Measurement Of Critical Dimensions ofa) Ladder Frame Chassisb) Monocoque Body
- 7. Calculation Of Gear Ratios
  - a) Differential Unit
  - b) Gear Box
- 8. Study of Pneumatic/ Hydraulic Brake system.
- 9. Study of Front axle assembly –critical dimensions

BN	IE5L1	MAC	HIN	E SHO	)P PI	RACT	ICE			L	Т	Р	С		
		Total (	Conta	act Ho	urs -	45				0	0	3	2		
		Prereq	uisite	e – Pro	oducti	ion En	gineeri	ng, Lath	e Techno	ology, N	Aecha	nical			
		Measu	ireme	ents an	d Tri	bologi	cal pra	ctices, N	letrology	y scienc	es				
		Course	e Des	signed	by- I	Depart	ment of	f Autom	obile Eng	gineerir	ng				
0	BJECTIVE														
Ex	ercise on pro	oductio	n pro	ocess o	of usii	ng diff	ferent n	nachines	•						
Co	<b>Course Outcomes</b>														
C	<b>CO1</b> – Exercise on Plane turning, taper turning, thread cutting and Eccentric turning														
CO2 – Exercise on drilling, reaming and taping and Welding															
CO3 – Study & Exercise on Slotting (Both internal & external keyway cutting)															
C	<b>O4</b> – Exercis	e in Su	rface	e Grino	ding.										
		Map	ping	of Cou	ırse C	Outcon	nes witl	h Progra	m outco	mes (P	Os)				
	(H	/M/L ir	ndica	tes stro	ength	of con	rrelation	n) H-H	igh, M-N	/ledium	, L-Lo	W			
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k	1		
2	CO1	Н	Η	Μ		Н	Μ	Μ	М	Н	Н	Н	Η		
	CO2									Μ					
	CO3		Η	Η	Μ	Н	Н	Н		Н		Μ	Н		
	CO4	Н					L		М		Μ				
	CO5			Н		Η		М		Μ		Μ	М		

	CO6	L	Μ	Μ		Μ	L			L	N	Л	Μ	Η	
3	Category	nanities	Social Studies (HS)	Basic Sciences(BS)	Enge Sciences (ES)		Professional Core (PC)	 √	Core Elective (CE)		Non-Major Elective		Open Elective (OE)	Project/Term paper/	Seminar/ Internship (H)
4	Approval	37 th	37 th Meeting of Academic Council, May 2015												

Part-A

- 1. Exercise on Plane turning, taper turning, thread cutting and Eccentric turning.
- 2. Exercise on drilling, reaming and taping.
- 3. Exercise on Spur Gear Milling, Helical Gear Milling and Bevel Gear Milling
- 4. Study & Exercise on Boring Machine.
- 5. Study & Exercise on Slotting (Both internal & external keyway cutting).
- 6. Practice in Capstan & Turret lathes.
- 7. Exercise in Surface Grinding.

#### Part-B

Welding Practice

- 1. Arc welding
- 2. Gas welding

BF	EC5L1		AUT	OM	OTIV	E EL	ECT	RONIC	CS			L	Т	P	С
			&MI	CRO	)PRO	CES	SOR ]	LAB							
			Total	Con	tact H	lours ·	- 45					0	0	3	2
				-						Electroni r and its	•			sic	
			Cour	se De	esigne	d by-	Depar	rtment	of Auto	mobile E	Engine	erin	g		
0	BJEC	ΓΙVΕ													
La	borato	ry study	y of A	utor	notive	Elec	tronics	s and M	licropro	cessor					
Co	ourse (	se Outcomes – Verification of truth table of Logic Gates,													
C	CO1 – Verification of truth table of Logic Gates,														
C	CO2 – Characteristics of rectifiers – Half wave & Full wave														
C	CO3 – Characteristics of SCR.														
C	CO3 – Characteristics of SCK. CO4 – Assembly language programming exercise														
			]	Марј	oing o	f Cou	rse Ou	utcome	s with P	rogram	outcor	nes	(POs	5)	
			(H/M	[/L in	dicate	es stre	ngth o	of corre	lation)	H-High	, M-M	ediu	ım, I	L-Lo	W
1	COs/	POs	a	b	с	d	e	f	g	h	i	j		k	1
2	CO1		Η	Η	Μ		Η	Μ	М	М	Η	H	I	Η	Н
CO2 M															
	CO3			Η	Η	Μ	Η	Н	Н		Η			Μ	Н
	CO4		Η					L		М		Ν	1		
	CO5				Η		Η		М		Μ			Μ	М
	CO6		L	Μ	Μ		М	L		L	Μ	Ν	1	Η	

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
					$\checkmark$				
4	Approval	37 th Me	eeting of	Academ	ic Council,	May 2015	5		·

- 1. Verification of truth table of Logic Gates.
- 2. Verification of truth table of Adder, Subtractor & Flip-Flops.
- 3. Characteristics of rectifiers Half wave & Full wave.
- 4. Timer 555
- 5. Characteristics of SCR.
- 6. D/A and A/D converters.
- 7. Interfacing stepper motor control and CRT terminal
- 8. Assembly language programming exercise.
- 9. Interfacing A/D converter and simple data acquisition.

	COMPREHENSION I	L	Т	P	C						
	Total Contact Hours : Test will be conducted at the end	0	0	0	1						
BAM5C1	of the semester										
DAMOUT	Prerequisite – All the courses up to fifth semester										
	Course Designed by – Dept. Automobile Engineering										
OBJECTIVES											
-	ovide a complete review of Automobile Engineering topics of	covere	ed up	to fift	th						
	sters, so that a comprehensive understanding is achieved.										
• It will also help students to face job interviews, competitive examinations and also to enhance the employment potential.											
• To pr	ovide overview of all topics covered and to assess the overal	1 kno	wledg	e leve	el un						

• To provide overview of all topics covered and to assess the overall knowledge level up to fifth semester.

BAM601	VEHICLE DYNAMICS	L	Т	Р	С									
	Total Contact Hours - 60	4	0	0	4									
	Prerequisite – Computer aided vehicle Deign data chara	cter	istics,	Vehic	ele									
	Deign systems, Vehicle Handling and Stability control													
	Course Designed by- Department of Automobile Engineering													
OBJECTIV	OBJECTIVE:													
The main	objective of this course is to impart knowledge in in	ntroc	luctio	n v	rehicle									
dynamics,	multi degree freedom introduction vehicle dynamics	s sy	/stem	s nun	nerical									
methods, ve	hicle handling and stability of vehicles, suspension, tyres		cond	centrat	ion									
will be taught to the students.														
Course Ou	tcomes													

C	<b>D1</b> - To learn	the d	etaile	ed stu	dy of	introd	uction	vehi	cle	dynam	ics				
_	<b>D2</b> - To learn											n vehi	cle dy	namics	
	systems				•		C						•		
CO	<b>D3</b> - To learn	the d	etaile	ed stu	dy of	num	erical 1	neth	ods	5					
CO	<b>O4</b> – To learn	the c	letail	ed stu	dy of	f vehic	le hand	lling	g an	d stabil	ity of v	ehicle	S		
	<b>O5</b> – To learn														
	Ν	Ларр	ing o	of Cou	rse C	outcon	nes wit	h Pro	ogra	am out	comes (	POs)			
	(H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low         COs/POs       a       b       c       d       e       f       g       h       i       j       k       l         Os/POs       a       b       c       d       e       f       g       h       i       j       k       l														
1															
2	CO1     H     M     H     M     M     H     H     M														
	CO2   M   M   L   M														
	CO3	H M H M L H H													
	CO3         H         M         H         M         L         H         H           CO4         H         M         M         M         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H														
	CO5			Μ		Н		N	1	Μ	Η		М	Н	
	CO6	L	Μ	Μ		Μ	Н			Η	Η	Μ	Н		
3	Category	Humanities &	Social Studies (HS)	Basic Sciences(BS)	Engo Sciences	(ES)	Professional Core (PC)	1	Core Elective	(CE)	Non-Major Elective (NE)	Open Elective	Project/Term	paper/ Seminar/ Internship (H)	
		0.5*	h 1.5					•							
4	Approval	37 ^t	ⁿ Me	eting	of A	cadem	nic Cou	ncil,	, Ma	ay 2015	5				

#### UNIT – I **INTRODUCTION**

Fundamentals of vibration, single degree of freedom, two degree of freedom, multidegree freedom, free, forced and damped vibrations, modeling and simulation studies, model of an automobile, magnification factor, transmissibility, vibration absorber.

#### UNIT – II **MULTI DEGREE FREEDOM SYSTEMS**

Closed and far coupled system, eigen value problems, orthogonality of mode shapes, modal analysis, forced vibration by matrix inversion.

#### NUMERICAL METHODS UNIT – III

Approximate methods for determining fundamental frequency, Dunkerleys lower bound, Rayleighs upper bound, Holzer method for closed coupled system and branched systems.

#### UNIT – IV **VEHICLE HANDLING AND STABILITY OF VEHICLES**

Load distribution, calculation of acceleration, tractive effort and reactions for different drives, stability of a vehicle on a curved track, slope and a banked road. Oversteer, under steer, steady state cornering, effect of braking, driving torques on steering, effect of camber, transient effects in cornering.

#### UNIT - VSUSPENSION, TYRES

Requirements, sprung mass frequency, wheel hop, wheel wobble, wheel shimmy, choice of damper characteristics and suspension spring rate, calculation of effective spring rate, vehicle suspension in fore and aft direction, roll axis and vehicle under the action of side forces. Tyre - Requirements, types, testing, dynamics, ride characteristics, power consumed by a tyre.

#### 9

# 9

9

9

#### **TEXT BOOKS:**

- 1. Gillespie, T.D., Fundamentals of vehicle dynamics society of Automotive Engineers, USA, 1992.
- 2. T.Y.Wong, "Theory of Ground Vehicles", JohnWiley & Sons Inc ,New York

#### **REFERENCES:**

- 1. W.Steeds, "Mechanics of Road Vehicles", Illiffe Books Ltd, London, 1960
- 2. Heldt, P.M., Automotive Chassis, Chilton Co., New York, 1992.
- 3. Giri N.K Automotive Mechanics, Khanna Publishers, 2007.

BA	M602	ELI	ECI	ГRO	NIC	ENG	INE N	ANA	GEN	/EN	T SY	STEM	L	Τ	P		С	
		Tota	al C	onta	ct Ho	urs - 4	45						3	0	0		3	
			-						s, H	ydra	ulic a	nd Pneu	matic	Sys	tems	,		
		0			0		nd Coi											
		Cou	irse	Desi	igned	by- I	Departi	ment of	Aut	omo	bile E	Ingineeri	ing					
	BJECTIV																	
	e main ol																	
	ectronics, s						0		<u> </u>			0	mana	gem	ent;	dig	gital	
	gine contro			con	centra	tion	will be	e taught	to t	he s	tudent	s.						
	ourse Out																	
	<b>D01 -</b> To le					-						e electro	nics					
	<u>002 - To le</u>																	
	<b>D03</b> - To le							0		, ,								
								0										
CU	<b>005</b> – To le						0	0										
	(1			Lapping of Course Outcomes with Program outcomes (POs)														
1			n the detailed study of CI engine management         a of detailed study ofdigital engine control system         Mapping of Course Outcomes with Program outcomes (POs)         A/L indicates strength of correlation)         H-High, M-Medium, L-Low         a       b       c       d       e       f       g       h       i       j       k       1															
1	COs/POs					a	-						J					
2	CO1	]	H	М	Η		Н	M	M	[	H	Н	Н	H	I		M	
	CO2			М				М		-	L	H		-	-		M	
	CO3			Η		Μ	H		M			Н		ł	I		Η	
	CO4		Η		1.6		M	Н		r	M		Η		4			
	CO5 CO6		L	м	M		H	Н	M	L	M L	H	М		A I		H	
2			L	Μ	Μ		Μ	п			L	Н	Μ	1	I			
3	Category		, É	(CF	3S)		2	ore		Ē							_	
		0	જર	S (F	ss(F	JCe		ŭ		$\underline{0}$		or (E)	цvе		rm		H	
			itie	die	nce	ciei	$\widehat{\mathbf{a}}$	C) al		ыvе		1aj e (D	le ct	I	Te	er/	nar uip	
			anj.	Stuc	cie	Ŭ,	Ξ	ioi (PC		lect		n-N tive	ΞĘ	5	ect	ap	imi hsh	
			Humanities &	al	c S	٥٥	(ES)	fesc		Ш		Non-Major Elective (NE)	Open Elective		Project/Term	<u>н</u>	Seminar/ Internship (H	
			Η·	Social Studies (HS	Basic Sciences(BS)	Ц	i	Professional Core (PC)		Core Elective (CE)		Ц	0		Ц		In	
			ζ	2	В	_			_	0								
									$\checkmark$									
4	Approval		37 th	¹ Me	eting	of A	cadem	ic Cour	ncil,	Ma	y 2015							

#### UNIT – I FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

9

Components for electronic engine management system, open and closed loop control strategies, PID control, Look up tables, introduction to modern control strategies like Fuzzy logic and adaptive control. Parameters to be controlled in SI and CI engines.

#### UNIT – II SENSORS AND ACTUATORS

Inductive, Hall Effect, hot wire, thermistor, piezo electric, piezoresistive, based sensors. Throttle position, mass air flow, crank shaft position, cam position, engine and wheel speed, steering position, tire pressure, brake pressure, steering torque, fuel level, crash, exhaust oxygen level (two step and linear lambda), knock, engine temperature, manifold temperature and pressure sensors.

#### UNIT – III SI ENGINE MANAGEMENT

Three way catalytic converter, conversion efficiency versus lambda. Layout and working of SI engine management systems like Bosch Monojetronic, L-Jetronic and LH-Jetronic. Group and sequential injection techniques. Working of the fuel system components. Advantages of electronic ignition systems. Types of solid state ignition systems and their principle of operation, Contactless electronic ignition system, Electronic spark timing control.

#### UNIT – IV CI ENGINE MANAGEMENT

Fuel injection system parameters affecting combustion, noise and emissions in CI engines. Pilot, main, advanced post injection and retarded post injection. Electronically controlled Unit Injection system. Layout of the common rail fuel injection system. Working of components like fuel injector, fuel pump, rail pressure limiter, flow limiter, EGR valve.

#### UNIT – V DIGITAL ENGINE CONTROL SYSTEM

Cold start and warm up phases, idle speed control, acceleration and full load enrichment, deceleration fuel cutoff. Fuel control maps, open loop control of fuel injection and closed loop lambda control – Integrated engine control system, Exhaust emission control engineering, Electromagnetic compatibility – EMI Suppression techniques – Electronic dash board instruments – Onboard diagnosis system.

#### **TEXT BOOKS:**

1. William B Ribbens, "Understanding Automotive Electronics", 5th edition, Butterworth, Hienemann Wobum, 1998.

#### **REFERENCES:**

1. Tom Weather Jr and Cland C. Hunter, "Automotive Computers and Control System", Prentice Hall Inc., New Jersey.

BAM603	INSTRUMENTATION AND EXPERIMENTAL	L	Т	Р	С
	TECHNIQUES				
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Basic Electrical and Electronics, Instrumentation applied sciences	ı En	ginee	ering	and
	Course Designed by- Department of Automobile Engineering				
OBJECTI	VE:				
transducers	bebjective of this course is to impart knowledge in vehicle experi- s modifiers and terminating devices, mechanical measurement, en , fundamentals of measurement systems concentration will	ngin	e exp	perim	ental
Course Ou	itcomes				
<b>CO1</b> - To 1	earn the detailed study offundamentals of measurement systems				

CO2 - To learn the detailed study of transducers, modifiers and terminating devices

9

9

9

		.1 1	1	1 / 1	6	1	• 1								
	<b>D3</b> - To learn t				•										
	<b>D4</b> – To learn					<u> </u>	<b>4</b>			-					
C	<b>D5</b> – To learn	of de	taile	d study	y of	vehicl	e experi	imer	ıtal	technic	lues				
		Map	oing	of Coi	ırse C	Jutcon	nes witł	n Pro	ogra	m outo	comes (H	POs)			
	(H/M/L indicates strength of correlation)H-High, M-Medium, L-Low1COs/POsabcdefghijk1														
1		1	1				1 1			-		j		1	
2	CO1	Η	Μ	Н		Н	Μ	Ν	[	Η	Н	Н	Η	М	
	CO2MMLHMCO3HMHMHH														
	CO3HMHMHH														
	CO4HMH														
	CO4         H         M         H         M         H            CO5         M         H         M         M         H         M         H														
	CO5         M         H         M         M         H         M         H           CO6         L         M         M         M         H         L         H         M         H														
3	Category		Social Studies (HS)	Basic Sciences(BS)	Engg Sciences		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)	
								$\checkmark$							
4	Approval	37 th	Me	eting o	of Aca	ademi	c Counc	cil, N	Лау	2015					

#### UNIT - I**MEASUREMENT SYSTEMS**

Static and Dynamic Measurement systems- Requirement and characteristics- Analysis of experimental detail, Error analysis.

#### UNIT – II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICES 8

Transducers for Automotive Applications- Amplifiers- Filters- Data Acquisition- Indicators, Printers and Displays- Signal Analyzing.

#### UNIT – III **MECHANICAL MEASUREMENT**

Instrumentation for Measuring weight, Force, Torque, Pressure Power, Temperature, Fluid flow, Vibration, Rotational speed, Velocity, Acceleration and Angular motion.

#### UNIT – IV **ENGINE EXPERIMENTAL TECHNIQUES**

I S Code for Engine testing- Instrumentation for Performance testing of engine-Instrumentation for Research and Development, Instrumentation for noise, vibration, in cylinder gas flow, Flame temperature dynamic cylinder pressure measurements.

#### $\mathbf{UNIT} - \mathbf{V}$ **VEHICLE EXPERIMENTAL TECHNIQUES**

Laboratory tests- Tests tracks-Endurance tests-Crash tests- Wind tunnel tests-Brake tests.

## **TEXTBOOK:**

- 1. J.G. Giles, "Engine and Vehicle Testing", Illiffe books Ltd., London, 1968.
- 2. T.G. Beckwith and Buck, "Mechanical Measurements", Oxford and IBH Publishing House, New Delhi, 1995.

#### **REFERENCE:**

12

9

6

- 1. A.W. Judge, "Engineering Precision Measurement", Chapman and Hall Ltd, Essex Street W.C., 1951.
- 2.D.Patambis, "PrincipleofIndustrialInstrumentation", TataMcGraw Hill PublishingCompany, New Delhi, 1990.
- 3. Rangan, Sharma and Mani, "Instrumentation Devices and Systems ", Tata McGraw Hill Publishing Company, New Delhi, 1990.

BA	AM604			AU	JTOM	IOTI	VE A	EROD	YNA	AMI	ICS		L	Т	Р	С	
		To	tal C	onta	ct Hou	ırs - 4	5						3	0	0	3	
		Pre	erequ	isite	– Rad	ce car	Aero	dynami	cs, V	/ehi	cle Hai	ndling C	harac	terist	ics a	nd	
												y desigi					
		Co	urse	Desi	gned b	oy- D	epartn	nent of	Auto	omo	bile En	gineerir	ng				
	BJECTIV																
	e main o																
	rodynamic																
	nd tunnel	s fo	r au	tomo	otive a	aerod	ynami	ics syst	tems	CO	ncentra	tion with	ill be	taug	ght t	o the	
	idents.																
	ourse Out																
	01 - To lea					•											
	<b>D2</b> - To lea									-							
	<b>D3</b> - To lea					•	-			on of	f cabs						
C	<u> D5 – To le</u>	arn c															
			of detailed study of wind tunnels for automotive aerodynamics Mapping of Course Outcomes with Program outcomes (POs)														
		(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	COs/POs	5	a	b	с	d	e	f	g		h	i	j	k		1	
2	CO1		Η	Μ	Η		Η	Μ	N	1	Η	Η	Η	Н		М	
	CO2			Μ				Μ			L	Н				М	
	CO3			Η		Н	Η		N	1		Н		H		Η	
	CO4		Η				Μ	Н			Μ		H				
	CO5				Μ		Η		N	1	Μ	Η		Μ		Η	
-	CO6		L	Μ	М		Μ	Н			L	Н	Μ	L			
3	Category	r	&	Studies (HS)	Sciences(BS)	Sciences (ES)		Core		Elective (CE)		Major Elective (NE)	Elective (OE)		ct/Term paper/	<b>I</b> )	
			imanities &	es	ces	Ses				/e (		Ele	ve (		l p;	Seminar/ ernship (H)	
			niti	ipn	enc	enc		Professional (PC)		ctiv		ajor I (NE)	ctiv		ern	Seminar/ cernship (	
			mai	St	Sci	Sci		Ssic (F		Ele		1aj (D	Ele		t/T	Sen	
			tuH	cial				ofe				√-n	, ,		jec	S Inte	
			t	Social	Basic	Engg	J	$\mathbf{Pr}$		Core		Non-N	Open		Projec		
4	Approval	1	37 th	h Me	eting	of Ac	ademi	ic Coun	cil.	Mav	2015		<u> </u>		I		
	11		-		8				2	J	-						

## UNIT – I INTRODUCTION

10

Scope – historical development trends – Fundamentals of fluid mechanics – Flow phenomenon related to vehicles – External & Internal flow problems – Resistance to vehicle motion – Performance – Fuel consumption and performance – Potential of vehicle aerodynamics.

#### **AERODYNAMIC DRAG OF CABS** UNIT – II

Car as a bluff body - Flow field around car - drag force - types of drag force - analysis of aerodynamic drag - drag coefficient of cars - strategies for aerodynamic development - low drag profiles.

#### UNIT – III SHAPE OPTIMIZATION OF CABS

Front and modification - front and rear wind shield angle - Boat tailing - Hatch back, fast back and square back – Dust flow patterns at the rear – Effect of gap configuration – effect of fasteners.

#### UNIT – IV **VEHICLE HANDLING**

The origin of force and moments on a vehicle - side wind problems - methods to calculate forces and moments - vehicle dynamics Under side winds - the effects of forces and moments - Characteristics of forces and moments - Dirt accumulation on the vehicle - wind noise - drag reduction in commercial vehicles.

#### $\mathbf{UNIT} - \mathbf{V}$ WIND TUNNELS FOR AUTOMOTIVE AERODYNAMICS

Introduction - Principles of wind tunnel technology - Limitation of simulation - Stress with scale models - full scale wind tunnels - measurement techniques - Equipment and transducers - road testing methods - Numerical methods.

#### **TEXTBOOK:**

1. Hucho, W.H., Aerodynamics of Road vehicles, Butterworths Co. Ltd., 1997.

#### REFERENCES

- 1. Pope, A, Wind Tunnel Testing, John Wiley & Sons, 2nd Edn., New York, 1994.
- 2. Automotive Aerodynamics: Update SP-706, SAE, 1987.
- 3. Houghton, Aerodynamics

BA	M6L1		A	UTO	TRO	NICS	LABO	RATO	RY	L	Т	Р	С		
		Total	Con	tact H	ours -	45				0	0	3	2		
		Prere	quisi	te – Ba	asic N	/lechar	nical En	igineerin	ig, Hydra	ulics ar	d Pne	umatic	s, Fluid		
		Powe	r Sys	stems.											
	-	Cours	se De	esigneo	l by-	Depart	tment o	f Autom	obile and	l Mecha	atronic	s Engi	neering		
	BJECTIVE														
Stı	udy and perfor	manc	e of j	pneum	atic a	nd hyo	draulic	applicati	ons in au	ıtomobi	les				
Co	ourse Outcom	ies													
CO															
CO	CO1 –Design and testing of hydraulic circuits CO2 – Design and testing of pneumatic circuits														
CO	D3 – Design o	f spee	d co	ntrol c	ircuit	s and I	Design	of synch	ronizing	circuit					
CO	<b>D4</b> – Design o	f sequ	ence	circui	t										
		Map	ping	of Co	urse (	Dutcon	nes witl	h Progra	m outco	mes (PO	Ds)				
	(H/	M/L i	ndica	ates str	ength	of con	rrelation	n) H-H	igh, M-N	ledium,	L-Lo	W			
1	COs/POs	a	b	С	d	e	f	g	h	i	j	k	1		
2	CO1	Η	Μ	Η		Н	Μ	М	Н	Н	Η	Н	М		
	CO2		Μ				Μ		L	Н			М		
	CO3		Η		Η	Н		Н		Н		М	Н		
	CO4	Η				Μ	Н		М		Н				
	CO5			М		Н		М	М	Н		М	Н		

7

#### 10

	CO6	L	Μ	Μ		М	Н			L	Н	Μ	L	
3	Category	nanities	Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
								$\checkmark$						
4	Approval	37 ^{tl}	^h Me	eting of	of Ac	ademi	c Cound	cil, N	1ay 2	2015		•		

- 1. Design and testing of hydraulic circuits such as
  - a) Pressure control
  - b) Flow control
  - c) Direction control
  - d) Design of circuit with programmed logic sequence, using an optional PLC inhydraulic Electro hydraulic Trainer.
- 2. Design and testing of pneumatic circuits such as
  - a) Pressure control
  - b) Flow control
  - c) Direction control
  - d) Circuits with logic controls
  - e) Circuits with timers
  - f) Circuits with multiple cylinder sequences in Pneumatic Electro pneumatic Trainer.
- 3. Design of speed control circuits
  - a) Meter In Circuit
  - b) Meter Out Circuit
- 4. Design of continuous cycle circuit
- 5. Design of synchronizing circuit
- 6. Design of sequence circuit

BA	M6L2			VEF	IICL	E DY	NAMI	CS LAI	B		L	Т	Р	С
		Total C	onta	ct Hou	<b>irs -</b> 4	15					0	0	3	2
		-			-			cle Desi g Techn	gn Data ology	Charac	teris	tics,	Vehic	le
		Course	Desi	gned	by- D	epartr	nent of	Autom	obile and	l Mech	atror	ics E	Engine	ering
OF	BJECTIVE	£												
Stu	idy and per	formanc	e of	stabil	ity of	vehic	le unde	er test co	onditions					
Co	ourse Outc	omes												
CC	<b>)1</b> –Total F	Resistan	ce fo	r vario	ous V	ehicle	s.							
CC	<b>)2</b> – Find t	he displa	acem	ent ve	locity	y, acce	eleratio	n and in	ertia for	ce.				
CC	D3 – Deterr	nine the	Pres	sure c	listrib	oution	over a	car mod	lel.					
CC	<b>)4</b> – Deterr	nine the	Pres	sure c	listrib	oution	in a 2D	spoiler	•					
		Mapp	oing (	of Cou	irse C	Jutcon	nes wit	h Progra	am outc	omes (l	POs)			
	(H	I/M/L in	dicat	tes str	ength	of co	rrelatio	n) H-H	ligh, M-I	Mediur	n, L-	Low		
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k	C	1
2	CO1	Н	Μ	Η		Η	Μ	М	Н	Н	Η	ŀ	ł	М

	CO2		Μ				М			L	Н			М
	CO3		Η		Η	Η		H	[		Н		Μ	Н
	CO4	Η				Μ	Н			Μ		Н		
	CO5			М		Н		Ν	1	Μ	Η		Μ	Η
	CO6	L	Μ	Μ		Μ	Н			L	Н	Μ	L	
3	Category	Humanities	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	00			Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^{tl}	¹ Me	eeting	of Ac	adem	ic Cour	ncil,	Ma	y 2015				

#### Part-A

- 1. Total Resistance for various Vehicles.
- 2. To find the DHP, DF & Mechanical Efficiency.
- 3. Find the displacement velocity, acceleration and inertia force.
- 4. Find the thrust turning moment and combined turning movement.

#### Part-B

- 1. Determine the Pressure distribution over a car model.
- 2. Determination of co-efficient of lift and drag over a car model.
- 3. Determine the Pressure distribution in a 2D spoiler.

BA	AM5S1	TECH	NIC	AL S	EMIN	NAR-I	Ι				L	Т	Р	C
		Total C	Conta	ct Ho	urs - 4	45					0	0	3	1
		Prerequ	lisite	– Ba	sic E	nginee	ering So	ciences,	Automo	tive Te	chnol	ogy a	nd	
		Engine	ering	g Basio	cs									
		Course	Desi	igned	by- D	)eparti	ment of	Autom	obile En	igineeri	ng			
O	BJECTIVI	E		-		-				-	-			
Th	ne students	know ał	oout	the res	sent to	echniq	ues in	Automo	bile Eva	aluatior	will	be m	ade b	ased
	the reports													
Co	ourse Outc	omes												
C	<b>O1</b> – Ability	and Sk	ills t	o be ii	nprov	ved								
C	O2 - self co	onfident	s to b	be imp	rovec	1								
C	03 –leaders	ship qua	lity t	o be i	mpro	ved								
C	<b>O4</b> –innova	tive ide	as wi	ill be g	genera	ated								
		Mapp	ping o	of Cou	ırse C	Outcon	nes wit	h Progra	am outc	omes (	POs)			
	(H	I/M/L in	dicat	tes str	ength	of con	rrelatio	n) H-H	ligh, M-	Mediur	n, L-I	LOW		
1	COs/POs	a	b	c	d	e	f	g	h	i	j	k		1
2	CO1	Н	Η	Μ		Η	М	Μ	М	Н	Н	Η		Η
	CO2									Μ				
	CO3		Η	Н	Μ	Η	Н	Н		Н		Μ		Η
	CO4	Н					L		Μ		Μ			

	CO5			Н		Η		N	1		М		Μ	М
	CO6	L	Μ	М		Μ	L			L	Μ	Μ	Η	
3	Category		Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		<ul> <li>Project/Term paper/ Seminar/ Internship (H)</li> </ul>
4	Approval	37 ^{tl}	h Me	eting	$\frac{1}{0}$	radem	ic Cou	ncil	Ma	y 2015				
-	rippiovai	57	1010	Cullg	or At	Judem		nen,	1110	y 2013				

The students are expected to make presentations throughout the semester under the supervision of a team of respective department faculty. The students are to be grouped appropriately so that each student makes a minimum of two different presentations on engineering topics of current interest. Every student has to submit an approved technical report prior to his presentation. Evaluation will be made based on the reports, the presentations and the interactions during the question answer sessions.

BA	AM701	VEHIC	CLE	MAI	NTE	NANC	E				L	Т	Р	С
		Total C	Conta	ct Hou	urs - 2	45					3	0	0	3
		Prerequ	iisite	– Bas	sic Me	echani	cal Eng	gineerin	g, Auton	notive	systen	ns wit	h	
		Mainte	nanc	e and	repaiı	, Auto	omotive	e techno	logy					
		Course	Desi	igned	by- D	epartr	nent of	Autom	obile Er	ngineer	ing			
0	BJECTIV	E:												
Th	e main ob	jective o	f this	s cour	se is t	to imp	art kno	wledge	mainten	ance re	ecords	and	schee	lule,
	aintenance,													
	d servicing	-		•				-		cing of	cooli	ng, lu	brica	ation
sy	stem, fuel s	system a	nd bo	ody w	ill be	taught	t to the	student	s.					
	ourse Outo													
	<b>D1</b> - To lea													
	<b>D2</b> - To lea							-				-		
CO	<b>D3</b> - To lea	Irn the de	etaile	d stud	ly of	main	tenance	e, repair	and over	rhaulin	g of c	hassis	driv	e
		compon												
	<b>D4</b> – To lea				-			_		_			-	
C	D <b>5</b> – To lea syst	arn of de æm, fuel			-		nance,	repair a	nd servic	ing of	coolin	ıg lub	ricati	on
		Mapp	oing o	of Cou	irse C	Jutcon	nes wit	h Progra	am outco	omes (l	POs)			
	(H	H/M/L in	dicat	tes stro	ength	of cor	relatio	n) H-H	ligh, M-l	Mediur	n, L-L	.OW		
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k		1
2	CO1	Н	Μ	Η		Η	М	Н	Н	Н	Η	Η	1	М
	CO2		Μ				Н		L	Н				Μ
	CO3		Η		Μ	Н		Н		М		Μ		Η
	CO4	Н				Μ	М		Н		Η			
	CO5			М		Η		Н	М	Н		Μ		Η
	CO6	L	Μ	Μ		L	Н		Н	L	Μ	L		

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th Me	eeting of	f Academ	ic Council,	May 2015			

#### UNIT – I MAINTENANCE RECORDS AND SCHEDULE

Importance of maintenance. Scheduled and unscheduled maintenance. Preparation of check lists. Chassis lubrication. Cost effectiveness. Pre-trip, Post-trip. Inspection forms. Log books. Trip sheets. Other maintenance record forms.

#### UNIT – II MAINTENANCE, REPAIR AND OVERHAULING OF ENGINE

Dismantling of engine components. Cleaning methods. Visual inspection and dimensional check of various engine components. Minor and Major tune up Reconditioning, repairing methods of engine components. Assembly procedure. Special tools used for maintenance, repair and overhauling.

#### UNIT – III MAINTENANCE, REPAIR AND OVERHAULING OF CHASSIS DRIVE LINE COMPONENTS

Clutch – Mechanical, Automatic types. Gear box – Mechanical, Automatic types. Final reduction. Propeller shaft. Front and rear suspension system. Rigid and independent types. Brakes systems – Hydraulic, Servo, Air. Air bleeding. Steering system. Wheel alignment. Types.

#### UNIT – IV MAINTENANCE, REPAIR AND SERVICING OF ELECTRICAL SYSTEMS

Battery – Testing methods. Starter motor. Charging system – DC Generator, AC Alternator, Regulator. Ignition systems – Coil ignition, Transistor assisted ignition, Capacitor discharge ignition. Electric Horn, Wiper, Flasher, Electric fuel pump, Gauges. Lighting system. Head lights focusing. Wiring system.

#### UNIT – V MAINTENANCE, REPAIR AND SERVICING OF COOLING LUBRICATION SYSTEM, FUEL SYSTEM AND BODY

Cooling system – types, water pump, radiator, thermostat valve, anti corrosion and anti freezing solutions. Lubricating system – Oil analysis, oil topping up, oil change, oil filters, oil relief valve. Fuel system – Petrol, diesel fuel feed system components. Body repair tools, minor body panel beating, tinkering, soldering, polishing, painting. Door locks mechanism. Window glass actuating mechanism.

#### **TEXTBOOKS:**

- 1. Judge, A.N., Motor vehicle engine servicing, 3rd Edition, Pitman Paperpack, London, '69.
- 2. Venk.Spicer, Automotive Maintenance and Trouble shooting.

#### **REFERENCES:**

1. Judge, A.W., Maintenance of High speed diesel engines, Chapman Hall Ltd., London, '56.

9

9

9

9

2. Maleev,V.L., Diesel Engine operation and Maintenance, McGraw Hill Book Co., New York, 1954.

D	N/702							<b>TTT</b>				T	an l	n	C
BA	M702	The second se					Y ENC	<del>,</del> IN	EEF	ang		L	T	<u>P</u>	C
				ntact H								3	0	0	3
			-		•		-				dynamic				
		Cour	rse D	esigne	ed by	- Depa	artment	of A	Auto	omobil	e Engine	eering	g		
	BJECTIVE:														
	e main obje						-			0					
	odynamics,						ercial y	vehi	cle	details	, body	mat	erials,	trim	and
me	chanisms wil	ll be t	augh	t to th	e stuc	lents.									
Co	ourse Outcon	nes													
CO	D1 - To learn	the de	etaile	ed stuc	ly of	ar bo	dy deta	ils							
CO	<b>D2</b> - To learn	the de	etaile	ed stuc	ly of	vehicl	le aeroc	lyna	mic	s					
CC	<b>D3</b> - To learn	the de	etaile	ed stuc	ly of	bus t	oody de	etails	S						
CO	<b>)4</b> – To learn	the d	letail	ed stu	dy of	comm	ercial v	vehi	cle d	letails					
CO	<b>D5</b> – To learn	of de	etaile	d stud	y ofb	ody m	naterial	s, tri	m a	nd med	hanisms	5			
		Map	oing	of Cou	irse (	Jutcor	nes wit	h Pr	ogra	am ou	tcomes (	POs	)		
	(H/N	1/L in	idica	tes str	ength	of co	rrelatio	n)	H-H	ligh, N	I-Mediu	m, L	-Low		
1	COs/POs	a	b	с	d	e	f	8	5	h	i	j	k		1
2	CO1	Η	Μ	Н		Η	М	Ν	1	Η	Н	Н	Η		М
	CO2		Μ				Μ			L	Η				М
	CO3		Η		Η	Η		H	ł		Η		Μ		Η
	CO4	Η				Μ	Н			Η		Η			
	CO5			Μ		Η		Ν	1	Μ	Н		Μ		Н
	CO6	L	Μ	Μ		Μ	Н			L	Η	Μ	L		
3	Category			(		<					е	(		/.	
	~ •		Social Studies (HS	Basic Sciences(BS)	Sciences (ES)		Professional Core (PC)		Core Elective (CE)	•	Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/	
		s s	] s	es(	) Se		C		e (	/	lec	e (I		pa_	E H
		Humanities &	die	anc			C)		tiv		т Е Е)	tiv		ct/Term ] Seminar/	Internship (H)
		ĩan	Stu	Scie	cie		sion? (PC)		lec		ajor (NE)	llec		/Te	nsl
		lun	al	C C			fes		еE		M-	n E		ect	iter
		Ξ.	OCI	asi	Engg	ŏ	2 ro		Or		lon	)pe		roj	Ir
			S	Е	Щ						Z	C		Ρ	
4	Approval	37 ^{tl}	h M	eting	$\frac{1}{0}$	adem	ic Cou	ncil	Ma	v 2015					
+	Арриота	57	1110	Lung	UI A	autill		uen,	1110	y 2013					

#### UNIT – I CAR BODY DETAILS

Types of Car - Saloon, convertibles, Limousine, Estate Van, Racing and Sports car – Visibility- regulations, driver's visibility, improvement in visibility and tests for visibility. Safety - safety design, safety equipments for vehicles. Car body construction. Various panels of car bodies.

#### UNIT – II VEHICLE AERODYNAMICS

Objectives, Vehicle drag and types. Various types of forces and moments. Effects of forces and moments. Side wind effects on forces and moments. Various body optimization techniques for minimum drag. Wind tunnels – Principle of operation, Types. Various wind

#### 10

tunnel testing such as: Flow visualization techniques, Airflow management test and Test to measure forces and moments.

#### UNIT – III BUS BODY DETAILS

Types – based on capacity, based on distance traveled and based on construction such as Mini bus, Single Decker, Double Decker, Two level, Split-level and Articulated bus. Bus body lay out, Types of metal sections used, Regulations. Constructional details of Conventional and Integral type construction.

#### UNIT – IV COMMERCIAL VEHICLE DETAILS

Different types of commercial vehicle bodies. Light commercial vehicle body types. Construction details of flat platform body, Tipper body & Tanker body – Dimensions of driver's seat in relation to controls – Drivers cab design.

#### UNIT – V BODY MATERIALS, TRIM AND MECHANISMS

Steel sheet, timber, plastics, GRP, properties of materials. Corrosion: Anticorrosion methods, Modern painting process. Body trim items – Body mechanisms.

#### **TEXTBOOK:**

1. Powloski, J., Vehicle Body Engineering, Business Books Ltd., 1998.

#### **REFERENCES**:

- 1. Giles, G.J., Body construction and design, lliffe Books Butterworth & Co., 1991.
- 2. Dieler Anselm., The passenger car body, SAE International, 2000.
- 3. John Fenton, "Vehicle Body Layout and Analysis", Mechanical Engineering Publication Ltd., London.

BA	AM703					VEF	HCLI	E DES	IGN			L	Т	Р	С
		To	otal C	onta	ct Hoi	urs - 6	50					4	0	0	4
		Pr	rerequ	iisite	– Bas	ic Me	echani	cal Eng	gineerin	g, Engin	eering	Desig	n, Ma	chine	6
		an	id Co	mpoi	nent D	rawii	ng								
		C	ourse	Desi	gned	by- D	epartr	nent of	Autom	obile Er	igineeri	ing			
0	BJECT	TVE:													
Th	e mair	ı objec	tive o	of thi	is cou	rse is	to in	npart k	nowledg	ge veh	icle fra	me a	nd su	spens	sion,
fro	ont axle	and st	eering	g sys	tems,	clutcl	n, geai	r box, d	lrive lin	e and rea	r axle	will	be t	augh	t to
the	e studer														
Co	ourse (	Outcom	nes												
C	<b>D1 -</b> To	learn	the de	etaile	d stud	ly ofv	ehicle	frame	and sus	pension					
C	<b>)2</b> - To	learn	the de	etaile	d stud	ly of	front	axle an	d steerii	ng syster	ns				
C	<b>ЭЗ -</b> То	learn	the de	etaile	d stud	ly of	gear b	oox							
C	$\mathbf{D4} - \mathbf{T}$	o learn	the d	etaile	ed stud	ly of	drive	line and	d rear ay	kle					
C	D5 - T	o learn	of de	taile	d stud	y ofdi	rive lii	ne and	rear axle	e					
			l	Map	oing of	f Cou	rse Ou	utcome	s with P	rogram	outcom	nes (P	Os)		
			(H/M	/L in	dicate	s stre	ngth o	of corre	lation)	H-High	, M-Me	edium	, L-L	OW	
1	COs/l	POs	a	b	с	d	e	f	g	h	i	j	k		1
2	CO1		Н	Μ	Н		Н	М	Μ	Н	Н	Н	Η	]	М
	CO2			Μ				Η		L	Н			]	М
	CO3			Η		Η	Η		Н		Н		Μ		Н
	CO4		Η				Μ	Н		Н		Н			

9

8

	CO5			Μ		Η		N	1	Μ	Η		Μ	Н
	CO6	L	Μ	Μ		L	Η			Н	Н	Μ	L	
3	Category		Studies (HS)	Basic Sciences(BS)	Engo Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^{tl}	h Me	eeting	of Ac	cadem	ic Cou	ncil,	Mag	y 2015		•		

#### UNIT – I VEHICLE FRAME AND SUSPENSION

Study of loads - moments and stresses on frame members. Design of frame for passenger and commercial vehicle - design of leaf springs - Coil springs and torsion bar springs.

#### UNIT – II FRONT AXLE AND STEERING SYSTEMS

Analysis of loads - moments and stresses at different sections of front axle. Determination of bearing loads at Kingpin bearings. Wheel spindle bearings. Choice of bearings. Determination of optimum dimensions and proportions for steering linkages ensuring minimum error in steering. Design of Front Axle Beam.

#### UNIT – III CLUTCH

Torque capacity of single plate, multi plate and cone clutch. Design of clutch components, Design details of roller and sprag type of clutches. .

#### UNIT – IV GEAR BOX

Gear train calculations, layout of gear box constant mesh and synchrono mesh gear box. Design of three speeds and four speed gear boxes.

#### UNIT – V DRIVE LINE AND REAR AXLE

Design of propeller shaft and types of propeller shaft. Design details of final drive gearing. Design details of full floating. Semi-floating and three quarter floating rear shafts and rear axle housings. Design aspects of final drive.

#### **TEXT BOOKS:**

- 1. Heldt, P.M., Automotive Chassis, Chilton Book Co., 1992.
- 2. Heldt, P.M., Torque Converters, Chilton Book Co., 1992.

#### **REFERENCES:**

1. Giri,N.K., Automobile Mechanics, Khanna Publishers, New Delhi, 1998.

2. W. Steeds, "Mechanics of Road Vehicles", lliffe Books Ltd, London, 1990.

BAM7L1	VEHICLE MAINTENANCE LABORATORY	L	Т	Р	С
	Total Contact Hours - 45	0	0	3	2
	Prerequisite – Basic Mechanical Engineering, Vehicle Main Automotive technology	ntenar	nce ar	nd rep	oair,

#### 12 box

12

### 12

### 12

	С	ourse	Desi	gned	by- D	epartr	nent of	Aut	omo	bile E	ngineeri	ng			
0	BJECTIVE														
	Study of	an au	itomo	bile r	epair.	servi	ce and	mair	ntena	ance sh	lop.				
Co	ourse Outcon				1 7						1				
C	<b>D1</b> – Engine tu	ne up	o for	Diesel	and	Petrol	Engine	es.							
	<b>D2</b> – Study of														
	<b>CO3</b> – Fault diagnosis in electrical ignition system, gasoline fuel system, diesel Fuel system.														
	Fuel system.														
CO4 – Removal and fitting of tires and tubes.															
	Mapping of Course Outcomes with Program outcomes (POs)														
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1															
	1       COs/POs       a       b       c       d       e       f       g       h       i       j       k       1         2       CO1       H       M       H       M       M       H       H       H       M														
2															
	CO2		M				Н	-	T	L	H			M	
	CO3		Η		Μ	H		H	1		М		Μ	Н	
	CO4	Η				M	Н			H		Н			
	CO5	T		M		H		N	1	<u>M</u>	H		M	Н	
2	CO6	L	Μ	Μ		L	Н			Н	L	Μ	L		
3	Category	Hun	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	0			Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)	
4	Approval	37 ^{tl}	^h Me	eeting	of Ac	adem	ic Cour	ncil,	May	2015					

#### LIST OF EXPERIMENTS

- 1. Study of an automobile repair, service and maintenance shop.
- 2. Study and preparation of different statements/records required for the repair and maintenance works.
- 3. Study of different types of tools and instruments required for repair and Maintenance.
- 4. Engine tune up for Diesel and Petrol Engines.
- 5. Fault diagnosis in electrical ignition system, gasoline fuel system, diesel fuel system.
- 6. Study of the faults in the electrical systems such as headlights, side or parking lights, electric horn system, windscreen wiper system, starting and lighting system.
- 7. Study of fuel filters and air cleaners.
- 8. Study and adjustment of pedal play in clutch, hand brake and steering wheel play.
- 9. Practices on air bleeding from hydraulic brakes, air bleeding of diesel fuel system.
- 10. Removal and fitting of tires and tubes.

BAM7L2 COMPUTER AIDE	D DRAFTING AND	L	Т	Р	С	
----------------------	----------------	---	---	---	---	--

		MANU	JFA	CTUR	RING	LAB										
	-	Total C	Conta	ct Ho	urs - 4	45						(	0	0	3	2
	-	Prerequ	uisite	e – Te	chnic	al and	l Machi	ne I	Drav	ving, E	ngineeri	ing Gr	aphi	cs,		
		Compu	iter I	ntegra	ted M	lanufa	cturing	, CA	AD-	CAM,	AutoCA	D and	l Pro	ъ-Е	Basi	cs
		Course	Des	igned	by- D	Depart	ment of	Au	tom	obile l	Engineer	ring				
0	BJECTIVI	E:														
Stu	udy of Com	puter a	ided	draftir	ng and	d man	ufactur	ing								
	ourse Outc															
	<b>D1</b> –CNC r	<u> </u>						ous c	ont	our sha	ipes.					
	<b>D2</b> – Introd															
	$\mathbf{D3} - \mathbf{NC} \mathbf{cc}$	0			0											
	<b>D4</b> – Manu	al Part p	orogr	ammii	ng foi	CNC	machi	nes	usin	ig a sta	ndard G	-codes	s and	l M	-	
co	des.											<u> </u>				
	/ • •		-						-		comes (		r			
		-	T					-	1	-	-Mediu	1	1	-	•	
1	COs/POs	a	b	с	d	e	f	g	,	h	i	j	k		1	
2	CO1	Н	Μ	Η		Η	Μ	Н	[	Н	Η	Η	Η		Μ	[
	CO2		Μ				Н			L	Н				Μ	
	CO3		Η		Μ	Η		H	[		Μ		M		Η	[
	CO4	Н				Μ	М			Н		H				
	CO5			Μ		Н		Н	[	Μ	Η		Μ		Η	[
	CO6	L	Μ	Μ	<u> </u>	L	Н			Н	L	Μ	L			
3	Category	Humanities &	Social Studies (HS)	Basic Sciences(BS)	Engg Sciences	(ES)	Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Proiect/Term naner/	Seminar/	Internship (H)
4	Approval	37 ^t	h Me	eeting	of Ac	cadem	ic Cou	ncil,	Ma	y 2015		1				

#### LIST OF EXPERIMENTS

#### **COMPUTER AIDED MANUFACTURING**

1. Manual Part programming for CNC machines using a standard G-codes and M-codes.

Simulation of tool path, machining practice on trainer type CNC machines - straight cut, Taper turning, Profile, Parting, Thread cutting.

2. CNC milling machines; Production of various contour shapes.

3. Computer assisted part programming-APT PROGRAMMING LANGUAGE - Part

programming using APT and other NC programming languages.

4. Introduction to component modeling.

5. NC code generation using CAD/CAM software - Post Processing for standard CNC controlslike FANUC, SIMUMERIC etc.,

#### **COMPUTER AIDED DRAFTING**

CAD introduction to computer aided drawing, 2D drawing Orthographic view, Isometric views, 2D -Sectional views, Part drawing, Assembly drawing, Detailed drawing,

Dimensioning, Annotations, Symbols, Welding, Surface finish, Threads, Text, Bill of materials. Exercise - Knuckle Joint, Gib and Cotter Joint, Screw Jack, Foot step Bearing.

3D drawing part modeling - Protrusion, Cut Sweep, Draft and Loft-Modify/ Edit - Pattern-Transformation, Boolean operation. Assembly - creating assembly from parts, Modify / Edit -Pattern conversion of 3D solid model to 2D model. Surface modeling - Tabulated, Revolve, Ruled and edge surfaces, Exercise-Piston, Connecting Rod, Knuckle Joint, Universal Joint and Couplings.

#### PROGRAMMING

- 1. LISP programming
  - i) Generation of simple drawings using LISP, C program to analyze the followingmechanism
- ii) Four bar mechanism
- iii) Slider Crank mechanism
- 2.C/C++ program for the following Finite Element method problem.

BA	M7I	21				TE	RM F	PAPER	2		]	L	Т	P	C
			Total	Conta	act Ho	urs –	60				(	)	0	4	2
			Prere	quisite	e – Pro	fessio	onal C	ourses							
			Lab I	Manua	l Prep	ared	by – D	Dept of	Automo	bile Eng	ineerin	g			
-		TIVE													
							nd met	hodolo	gies for	understa	inding t	the	litera	ture s	urvey
					ch pap (COs)										
					· /		1								
C	01	1010	entity	the are	ea of re	esearc	en.								
C	02	To pr	epare	ist of	literatu	ires ii	n the re	elevant	area.						
C	03	Con	pile tl	ne abs	tract fr	om th	e liter	atures.							
C	04	Focu	is the	search	to a w	ell de	fined	theme	and title						
C	05		e and eyed.	exha	ustive	repo	rt by	compil	ling all	the liter	ratures	tha	ıt stu	dents	
C	06		prepa eeding		resea	rch	paper	for	publicat	tions in	journ	nal/c	confe	rence	2
		(H								am outco ligh, M-I				V	
1	COs	s/POs	a	b	с	d	e	f	g	h	i	j		k	1
2	CO	l	H	M	Н		Н	М	Н	Н	Н	H	I	Η	М
	CO2	2		Μ				Н		L	Н				М
	CO3			Η		Μ	Η		Н		Μ			М	Η
	CO		H				Μ	Μ		Н		Ν			
	COS				H		H		Н	M	H	_		M	Н
	CO	5	L	Μ	Μ		L	Н		Н	L	Ν	1	L	

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
									$\checkmark$
4	Approval	37 th Me	eeting of	f Academi	c Council,	May 2015			

#### LIST OF TASKS

#### 1. PREPARING PROPOSAL

Proposed Research Topic Purposes Background Method: (suggested methods – develop your own to suit your research topic)

#### 2. CONDUCTING LITERATURE REVIEW

Exploring and Sharpening your Topic Evaluating Information Taking Notes and Keeping Records

#### 3. COMPLETING ANNOTATED BIBLIOGRAPHY

Citing Your Sources and Avoiding Plagiarism Writing and Annotated Bibliography

#### 4. IDENTIFYING PROBLEM STATEMENT

Meeting the Challenges of Research Developing New Information

#### 5. COMPLETING OUTLINE FOR THE RESEARCH

Organizing Your Project into an outline Pick up your critique paper and begin editing and incorporate the suggestions from guide

- 6. SUBMITTING FIRST DRAFT Drafting your Project Entering Conversations and Supporting Your Claims
- **7. SUBMITTING WORKS CITED** Create the individual citations Apply the formatting rules

#### 8. SUBMITTING FULL PAPER

Revising, Editing, and Proofreading Designing and Presenting Your Project Conducting Research in the Disciplines Documenting Sources

#### **REFERENCES:**

1. Website.

2. Printed Journals.

BA	M7V1	IN	PLA	NT '	TRAI	NIN	G						L	Т	Р	С
													0	0	0	1
			-					esign ai	nd S	ervi	ce Eng	ineering	, Veh	icle		
					e and	-										
		Co	urse	Desi	gned	by- D	epartr	nent of	Aut	omo	bile E	Engineer	ing			
Stu	udents sho	uld	unde	rgol	Inplan	t trai	ning i	n an in	dust	ry d	uring t	heir hol	idays	for 1	5 day	ys to
aco	quire pract	ical	knov	wled	ge and	d to e	explore	e the a	ctivi	ties	going	on in th	e Ind	ustry.	A re	epor
an	d Inplant t		-			-										
												comes (l				
			/L in				of co	1		1	-	-Mediur	n, L-I			
1COs/POsabcdefghijk12CO1HMHHMHHHHHM																
2														Η		Μ
	CO2			Μ				Н			L	Н				М
	CO3			Η		Μ	Η		H	ł		Μ		Μ		Η
	CO4		Η				Μ	М			Η		Μ		_	
	CO5				H		Н		H	ł	M	Н		Μ	_	Η
	CO6		L	Μ	Μ		L	Н			Η	L	Μ	L		
3	Category	-	Humanities & Social	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)	< · · · · · · · · · · · · · · · · · · ·	Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/	Seminar/ Internship (H)
4	Approval		37 th	¹ Me	eting	of Ac	adem	ic Cour	ncil,	Ma	y 2015					

	COMPREHENSION II	L	Т	P	C
	Total Contact Hours : Test will be conducted at the end	0	0	0	1
BAM8C1	of the semesterPrerequisite – All the courses up to eighth semester				
	Course Designed by – Dept. of Automobile Engineering				
OBJECTIV	TES				
	rovide a complete review of Automobile Engineering topics constrained as the sters, so that a comprehensive understanding is achieved.	cover	ed up	to eig	hth

 It will also help students to face job interviews, competitive examinations and also to enhance the employment potential.

• To provide overview of all topics covered and to assess the overall knowledge level up to eighth semester.

BA	M8P1				WOR								L	Т	Р	C
		Tota	l Co	onta	et Hou	ırs – İ	18 Per	iods Pe	r W	eek			0	0	18	6
			-		<ul> <li>Description</li> <li>Description</li> </ul>	0	and Fa	abricati	on v	vith	Analys	is, Rese	arch	articl	e writ	ing
						•	anartr	nent of	Ant	omo	bila E	ngineer	ina			
OF	BJECTIV		150	Desi	gneu	by-D	eparti		Aut	onic		ngmeen	ing			<u> </u>
	e objective ore than for	-	•											0	-	
	theoretical				0	- ·	-			<u> </u>		0				VOIK
	urse Outc		-	// 1111	Jiitui 5	tuule	3 Iolut		0 10	spec		Sincern	ig un	<u>eipin</u>	10.	
	D1 –compr			repo	ort											
	$\mathbf{D2}$ – literat			-	-											
	<b>)3</b> – proble			-	proje	ct wo	rk det	ails								
	<b>)4</b> – projec				1 V				conc	lusi	ons					
		Mapping of Course Outcomes with Program outcomes (POs)														
		(H	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
1	COs/POs		a	b	c	d	e	f	8	5	h	i	j	k		1
2	CO1	I	H	Μ	Н		Η	М	E	I	Н	Н	Η	H	[	М
	CO2			Μ				Н			L	Η				Μ
	CO3			Η		Μ	Η		E	I		Μ		N	1	Η
	CO4	I	H				Μ	Μ			Η		Μ			
	CO5				Η		Η		H	ł	Μ	Н		N		Η
	CO6	]	L	Μ	Μ		L	Н			Н	L	Μ	L		
3	Category		Humanities & Social	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	000	Professional Core (PC)		Core Elective (CE)	<	Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/	Seminar/ Internship (H)
4	Approval		37 th	¹ Me	eting	of Ac	adem	ic Cour	cil.	Ma	v 2015		1			
•	- PP10, u		57		5	51 / <b>K</b>	auciii		,	_, _u	, 2010					

The objective of project work is to enable the students, to work in convenient groups of not more than four members in a group, on a project involving some design and fabrication work or theoretical and experimental studies related to the respective engineering discipline. Every project work shall have a Guide who is a member of the faculty of the University. Twelve periods per week shall be allotted in the Time table for this important activity and this time shall be utilized by the students to receive directions from the Guide, on library reading, laboratory work, computer analysis, or field work as assigned by the Guide and also to present in periodical seminars or viva to review the progress made in the project. Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details, estimation of cost and conclusions. This final report shall be in typewritten form as specified in the guidelines. The continuous assessment and semester evaluation may be carried out as specified in the guidelines to be issued from time to time.

#### CORE ELECTIVE (CE)-I

BA	AM014	ADVA	NCI	ED TI	HEO	RY O	F IC E	NG	INE	S		L	Т	P	С
		Total C	Conta	act Ho	urs -	45						3	0	0	3
		Prereq	uisite	e-IC	C engi	ines, <i>I</i>	Automo	otive	Poll	ution	and Con	ntrol,	Enviro	onmen	t
		and Ec	osys	tems											
		Course	e Des	igned	by- I	Depart	ment of	f Au	tom	obile	Enginee	ering			
	BJECTIV														
	ie main oł	•					-			-					
	els, combu				on-co	nvent	ional ic	eng	gines	, com	bustion	analy	vsis in	ic eng	gines
	ll be taugh		stude	ents.											
	ourse Outo														
	<b>D01</b> - To le								- 1						
-	002 - To le				•										
	003 - To le										,				
	004 – Tol														
	<b>JU5</b> - 10 le		n the detailed study of combustion analysis in IC engines Mapping of Course Outcomes with Program, outcomes (POs)												
	(I	I.1	Mapping of Course Outcomes with Program outcomes (POs) /L indicates strength of correlation) H-High, M-Medium, L-Low												
1	COs/POs		b		d	e	f			h	i	iIII, L	k k		1
2	CO1	H	M	H H	u	H	M	g H		H	H	J H	H		л И
2	CO1 CO2	п	M	п		п	H	П	1	L L	H	п	п	-	M M
	CO2 CO3		H		М	Н	11	Н	r	L	H		M	-	H
	CO3	Н	11		101	M	М	11		Н	11	Н	101		1
	CO4			М		H	101	Н	ſ	M	Н	11	М	F	H
	CO6	L	Μ	H		L	Н		-	H	L	Μ	L	1	1
3	Category														
		ial		S)	S.		e		(T)		ve	E)		ST/	
		anities & Social	$\widehat{\mathbf{O}}$	Sciences(BS)	Sciences (ES)		fessional Core (PC)		Elective (CE)		-Major Elective (NE)	n Elective (OE)		ape	Ή
		8	tudies (HS	ces	ces				ve		) Ele	ve		m p lar/	Internship (H
		les	es	ien	ien		PC		ecti		ajor (NE)	ecti		ct/Term ] Seminar/	ida
		niti	ipn				essi)				Ma	E		ct/] Sei	ern
		ma	S	Basic	Enge	0	Profe		Core		[-uc	Open		Project/Term paper/ Seminar/	Int
		Hum		B;	En		Р		Ŭ		Non	Ō		$\mathbf{Pr}$	
										1					
										N					
4	Approval	. 37 ^t	h Me	eeting	of A	cadem	nic Cou	ncil,	Ma	y 201	5		I		

#### UNIT – I INTRODUCTION

Fuel air cycle and Actual cycle analysis, Properties of IC engine fuels, Refining process, chemical composition and molecular structure of fuels, octane number, cetane number. Knock rating of SI engine fuels.

7

12

#### UNIT – II COMBUSTION OF FUELS

Combustion Stoichiometry of petrol, diesel, alcohol and hydrogen fuels – Chemical energy and heating values – Chemical equilibrium and maximum temperature – SI engine combustion – Flame velocity and area of flame front –performance number – CI engine combustion. Fuel spray characteristics – droplet size, penetration and atomization.

### UNIT – III COMBUSTION MODELLING

Basic concepts of engine simulation – Governing equations, thermodynamic models – SI engine and CI engine models.

### UNIT – IV NON-CONVENTIONAL IC ENGINES

Adiabatic and L.H.R. engines – Variable compression ratio engine – Wankel rotary combustion engine – Free piston engine - MAN combustion chamber and multi fuel engines – Stratified charge and lean burn engines – Locomotive and marine engines.

### UNIT – V COMBUSTION ANALYSIS IN IC ENGINES

Photographic studies of combustion processes –  $P-\theta$  diagrams in SI and CI engines, Rate of heat release – hot wire and laser Doppler anemometry and velocimetry for flow and combustion analysis in IC engines

### TEXTBOOK

- 1. Ganesan, V., Internal combustion engines, Tata McGraw Hill Publishing Co., 1994.
- 2. Heldt,P.M., High Speed Combustion Engines, Oxford IBH Publishing Co., Calcutta, 1985.

### REFERENCES

- 1. Ramalingam. K.K., Internal combustion engine, scitech publications, Chennai, 2003.
- 2. Ganesan, V., Compute Simulation of Spark Ignition engine process, Universities Press (India) Ltd., Hyderabad, 1996.
- 3. John, B., Heywood, Internal Combustion Engine Fundamentals, McGraw Hill Publishing Co., New York, 1990.

BI	ME002	FINIT	E E	LEMI	ENT	METI	HODS				L	Т	P	C
		Total	Conta	ct Ho	urs -	45					3	0	0	3
		Prereq	uisite	e – Nu	meric	cal Me	thods,	Enginee	ering Ma	themat	ics-	I and	l II,	
		Kinem	atics	of Ma	achin	es								
		Course	e Des	igned	by- I	Depart	ment of	f Mech	anical E	ngineer	ring			
0	BJECTIV	E:												
Th	ne main ob	jective (	of thi	s cour	se is	to im	part kn	owledge	e in intro	oductio	on, c	liscre	ete ele	ments,
co	continuum elements, isoparametricelements, field problem will be taught to the students. Course Outcomes													
Co	ourse Outo	comes												
C	COURSE Outcomes CO1 - To learn the detailed study of introduction CO2 - To learn the detailed study of discrete elements													
C	C <b>O2</b> - To le	earn the	detail	led stu	idy of	fdiscr	ete eler	nents						
C	C <b>O3</b> - To le	earn the	detail	led stu	idy of	f conti	nuum e	elements	5					
	C <b>O4</b> – To le					-			nents					
C	C <b>O5</b> - To le	earn the	detai	led stu	idy of	field	proble	m						
		<b>1</b>						0	am outc			,		
	(H	H/M/L ii	ndica	tes stro	ength	of co	rrelatio	n) H-H	ligh, M-	Mediu	m, I	L-Lo	W	
1	COs/POs	а	b	с	d	e	f	g	h	i	j		k	1
2	CO1	Н	Μ	Η		Н	М	Н	Н	Н	I	I	Μ	Μ
	CO2		Μ				М		L	Н				Μ
	CO3		Η		Η	Η		Η		М			Η	М
	CO4	Н				Μ	Н		Н		N	1		

8

10

	CO5			Η		Η		H	[	Μ	Η		Μ	Н
	CO6	L	Μ	Μ		L	Μ			Η	L	Μ	L	
3	Category		Studies (HS)	Basic Sciences(BS)	Engo Sciences (ES)		Professional Core (PC)	× ,	Core Elective (CE)		<ul><li>Non-Major Elective</li><li>(NE)</li></ul>	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
L		0 <b>-</b> t												
4	Approval	37 ^{tl}	¹ Me	eeting	of Ac	cadem	ic Cou	ncil,	Ma	y 2015				

#### UNIT – I INTRODUCTION

Review of various approximate methods – Raleigh Ritz's, Galerkin and finite difference methods- Governing equation and convergence criteria of finite element method.

#### UNIT – II DISCRETE ELEMENTS

Bar elements, uniform section, mechanical and thermal loading, varying section, truss analysis. Beam element - problems for various loadings and boundary conditions - longitudinal and lateral vibration. Use of local and natural coordinates.

#### UNIT – III CONTINUUM ELEMENTS

Plane stress, Plane strain and axisymmetric problems, constant and linear strain, triangular elements, stiffness matrix, axisymmetric load vector,

#### **UNIT – IV ISOPARAMETRIC ELEMENTS**

Definitions, Shape function for 4, 8 and 9 nodal quadrilateral elements, Stiffness matrix and consistent load vector, Gaussian integration

#### UNIT – V FIELD PROBLEM

Heat transfer problems, Steady state fin problems, Derivation of element matrices for two dimensional problems, Torsion problems

#### **TEXT BOOKS:**

- 1. Tirupathi.R. Chandrapatha and Ashok D. Belegundu Introduction to Finite Elements in Engineering Printice Hall India, Third Edition, 2003.
- 2. Rao. S.S., Finite Element Methods in Engineering, Butterworth and Heinemann, 2001

#### **REFERENCES:**

- 1. Reddy J.N. An Introduction to Finite Element Method McGraw Hill 2000.
- 2. Krishnamurthy, C.S., Finite Element Analysis, Tata McGraw Hill, 2000.
- 3. Robert D Cook, David S Malkus, Michael E Plesha, 'Concepts and Applications of Finite Element Analysis', 4th edition, John Wiley and Sons, Inc., 2003.

<b>BAM017</b>	SPECIAL TYPES OF VEHICLES	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3

9

10

8

10

							Farm Eo Vheelei				tomotiv	e Eng	ines a	and
								-			Enginee	ring		
		ourse		Igneu	0y-1	Jepan		I Au			Linginee	ing		
	BJECTIVE:		£ (1.				1 .	1	1 - 1 -		· · · · · · · · ·	1		····· - • • • • • • • • • • • • • • • •
	e main objec						-			-		0		
-	uipments, pov			-						-				
	hicles, special	<u> </u>	ose	venicie	es foi	maus	surial ap	prica	auo	IIS WIII	be taugi		ne st	udents.
	urse Outcon		ataila	datud	h. of	orth n	novina	and	0.01	atmosti		inmar	+'a	
	$\mathbf{D1}$ - To learn						Ŭ				onal equ	ipmer	it s	
	$\mathbf{D2}$ - To learn				•	•			-					
	O3- To learn the detailed study of sub systems of stv O4- To learn the detailed study offarm equipments, military and combat vehicles													
		- To learn the detailed study offarm equipments, military and combat vehicles - To learn of detailed study offspecial purpose vehicles for industrial applications												
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High M-Medium L-Low													
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
1	l COs/POs a b c d e f g h i j k l													
2	CO1	Η	Μ	Η		Η	Μ	H	[	Η	Η	Η	Μ	М
	CO2		Μ				Μ			L	Η			М
	CO3		Η		Η	Н		H	Ι		Μ		Η	М
	CO4	Η				Н	Н			Η		Μ		
	CO5			Η		Η		H	[	Η	Η		Μ	Η
	CO6	L	Μ	Μ		L	L			Η	L	Μ	L	
3	3       Category         Humanities & Social       Studies (HS)         Basic Sciences(BS)       Engg Sciences(BS)								Core Elective (CE)		Non-Major Elective	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^{tl}	ⁿ Me	eting	of Ac	cadem	ic Cou	ncil,	Ma	y 2015				

#### UNIT – IEARTH MOVING AND CONSTRUCTIONAL EQUIPMENTS 11

Construction layout, capacity and applications of earthmovers like dumpers, front-end loaders, bulldozers, excavators, backhoe loaders, scrappers, motor graders, and Water sprinklers etc. criteria for selection of prime mover fro dumpers and front end loaders based on vehicle performance characteristics.

#### **UNIT – IIPOWER TRAIN CONCEPTS**

Engine – converter match curves. Hauling & cyclic type transmissions. Selection criteria for universal joints. Constructional details of steerable and drive axles of dumper.

#### UNIT – III SUB SYSTEMS OF STV

Brake system and actuation – OCDB and dry disc caliper brakes. Body hoist and bucket operational hydraulics. Hydro-pneumatic suspension cylinders. Power steering system. Kinematics for loader and bulldozer operational linkages. Safety features, safe warning system for dumper. Tractor controls and the starting of the tractor engines – Basic notions

#### 11

and definition – Engine cycles – Operation of multicylinder engines – General engine design – Basic engine performance characteristics.

#### UNIT – IV SPECIAL PURPOSE VEHICLES FOR INDUSTRIAL APPLICATION 8

Cranes- Types, Constructional features, capacity and stability, Vibratory compactors, Material Handling vehicles- Forklift- Tippers-Others.

#### UNIT – V FARM EQUIPMENTS, MILITARY AND COMBAT VEHICLES 8

Ride and stability characteristics, power take off, special implementations. Special features and constructional details of tankers, gun carriers and transport vehicles. Classification of tractors – Main components of tractor – Safety rules.Working attachment of tractors – Farm equipment – Classification – Auxiliary equipment – Trailers and body tipping mechanism.

#### **TEXTBOOKS:**

- 1. Abrosimov. K. Bran berg.A. and Katayer.K., "Road making Machinery", MIR Publishers, Moscow, 1971.
- 2. Wong.J.T., "Theory of Ground vehicles ", John Wiley & Sons, New York, 1987.
- 3. Rodichev and G.Rodicheva, Tractor and Automobiles, MIR Publishers, 1987.

#### **REFERENCES:**

- 1. Off the road wheeled and combined traction devices Ashgate Publishing Co. Ltd. 1998.
- 2. Astokhov, Truck Cranes, MIR Publishers, Moscow.
- 3. Kolchin, A., and V.Demidov, Design of Automotive Engines for Tractor, MIR Publishers, 1972.

#### CORE ELECTIVE (CE)-II

BAM		MPU DCES			ULA	TION	OF IC	C ENGI	NE		L	Т	Р	C
				Hours	5 - 45						3	0	0	3
		equis racter			Ingine	es and	Emissi	ons, Au	tomotive	e Engino	es and	l Coi	nbust	ion
	Cou	rse D	esigi	ned by	- Dep	oartme	ent of A	utomob	ile Engi	neering	5			
OBJE	ECTIVE:													
	nain object						-		0					
-	erature, spar	-		-		-					ombu	stion	, si en	igine
	simulation with gas exchange process will be taught to the students.													
Cours	Course Outcomes													
CO1 -	Course Outcomes CO1 - To learn the detailed study of introduction													
CO2 -	- To learn t	he de	etaile	d stud	y of a	idiaba	tic flam	ne tempe	erature					
CO3 -	- To learn t	he de	etaile	d stud	y of s	park i	gnition	engine	6					
CO4 -	– To learn	the do	etaile	ed stud	ly of S	SI eng	gine sin	nulation	with adi	abatic				
	combusti	on												
CO5 -	- To learn t	he de	etaile	d stud	y of S	SI eng	ine sim	ulation	with gas	exchan	ige pr	ocess	5	
		Mapp	oing	of Cou	ırse C	Outcon	nes wit	h Progra	am outco	omes (F	Os)			
	(H/M	1/L in	idica	tes str	ength	of con	rrelatio	n) H-H	ligh, M-I	Medium	ı, L-L	.ow		
1 CC	Os/POs	a	b	с	d	e	f	g	h	i	j	k		1
2 CC	01	Η	Μ	Н		Н	М	Н	Н	Н	Н	Μ		М
CO	02		Μ				Н		L	Н				М
CO	03		Η		Μ	Н		Н		М		Μ		Η

	CO4	Η				Μ	М			Н		Η		
	CO5			М		Н		H	[	М	Η		Μ	Н
	CO6	L	Μ	Н		L	Μ			Η	L	Μ	L	
3	Category		Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th	^h Me	eeting	of Ac	ademi	ic Coun	cil,	May	2015		1		

#### UNIT – I INTRODUCTION

Simulation, advantages of computer simulation, step - by - step approach, reactive processes, heat reaction, measurement of URP, measurement of HRP.

8

8

9

#### UNIT – II ADIABATIC FLAME TEMPERATURE

Introduction, complete combustion C/H/N/O/ systems, constant – volume adiabatic combustion, constant – pressure adiabatic combustion, calculation of adiabatic flame temperature, isentropic changes of state.

#### UNIT – III SPARK IGNITION ENGINES

Introduction, Basic details and nomenclature, cylinder pressure indicator diagram, indicated power, brake power, SI Engine simulation with air as working medium, deviation between actual and ideal cycle.

#### **UNIT – IV SI ENGINE SIMULATION WITH ADIABATIC COMBUSTION** 10

Introduction, Engine details, temperature drop due to fuel vaporization, full throttle operation, work output and efficiency calculation, part-throttle operation, engine performance at part throttle, super charged operation, SI Engines simulation with progressive combustion.

#### UNIT – V SI ENGINE SIMULATION WITH GAS EXCHANGE PROCESS 10

Introduction, gas exchange process, Heat transfer process, friction calculation, compression of simulated values, validation of the computer code, engine performance simulation, pressure crank angle diagram, brake power, brake thermal efficiency, effect of speed on performance, simulation of two stroke SI Engine.

#### **TEXTBOOK:**

1. Ganesan, V., Computer Simulation of spark ignition engine process, Universities Press (I) Ltd., Hyderabad, 1996.

#### **REFERENCES:**

- 1. Ramoss, A.L., Modelling of Internal Combustion Engines Processes, McGraw Hill Publishing Co., 1992.
- 2. Ashley Campbel, Thermodynamics analysis of combustion engines, John Wiley & Sons, New York, 1986.

BA	M010	PROL	UCI	r des	IGN						]	L J		P	C	
		Total (	Conta	ict Hoi	urs - 4	15						3 (	) (	)	3	
											rocess P velopme		ng Ar	nd		
		Course	e Des	igned	by- D	epartr	nent of	Aut	omo	bile E	ngineeri	ing				
OI	BJECTIV	E:														
	e main ob															
	w produc		-		-		t plann	ning,	ne	ew pro	oduct de	evelo	pment	t, j	product	
	hitecture v		ught	to the	stude	ents.										
	urse Outo					<u> </u>										
	<b>D1</b> - To lea				-						on					
	<b><u>D2</u></b> - To lea				-	_			_	nent						
	$\mathbf{D3}$ -To lease					<b>L</b>	<b>1</b>		<u> </u>							
				tailed study of new product development railed study of product architecture												
U	<b>J5</b> - 10 lea			tailed study of product architecture												
	(			ping of Course Outcomes with Program outcomes (POs) ndicates strength of correlation) H-High, M-Medium, L-Low												
1	COs/POs	a	b	c	d	e	f	g	5	h	i	j	k		1	
2	CO1	Н	Μ	Н		Н	Μ	E	I	Н	Н	Η	M		Μ	
	CO2		Μ				Μ			L	Н				М	
	CO3		Η		Η	Η		H	I		Μ		Η		Μ	
	CO4	Н				Μ	Η			Η		Μ				
	CO5			Η		Η		H	I	Η	Н		M		Н	
-	CO6		Μ	Μ		L	L		1	Η	L	Μ	L			
3	Category			Basic Sciences(BS)	Engo Sciences		Professional Core (PC)		Core Elective (CE)	~	Non-Major Elective (NE)	Open Elective (OE)		Proiect/Term naner/	- C X	
			-													
4	Approval	. 37	th Me	eeting	of $A_{c}$	adem	ic Coun	ncil,	May	2015		_	_			

#### UNIT I - PROJECT SELECTION AND EVALUATION

Collection of ideas and purpose of project - Selection criteria - screening ideas for new products (evaluation techniques).

#### **UNIT II - NEW PRODUCT DEVELOPMENT**

Research and new product development - Patents - Patent search - Patent laws International code for patents - Intellectual property rights (IPR).

#### **UNIT III - NEW PRODUCT PLANNING**

Design of prototype - testing - quality standards - marketing research introducing new products.

9

9

#### **UNIT IV - NEW PRODUCT DEVELOPMENT**

Journeys in Product Development, Product Development Process Tools, Scoping Product Developments: Technical and Business Concerns. Understanding Customer Needs, Establishing Product Function.

#### **UNIT V - PRODUCT ARCHITECTURE**

9

Product Teardown and Experimentation, Benchmarking and Establishing Engineering Specifications, Product Architecture.

#### **TEXT BOOK:**

1. Barclay, Z. Dann, P. Holroyd, "New Product development I, Published by BH Butterworth-Heinemann a division of Reed Educational and professional publishing limited.

#### **REFERENCES:**

1. Harry Nystrom, "Creativity and innovation", John Wiley & Sons, 1979.

2. Brain Twiss, "Managing technological innovation", Pitman Publishing Ltd., 1992.

BA	M025	TWO	AND	THR	EE V	VHEI	ELERS				]	[ ]	Γ	Р	С
		Total C	Conta	ct Hou	urs - 4	15						3 (	)	0	3
								and	Suł	o Syste	ms, Auto	omoti	ve		
		Techno	ology	- Serv	ice ar	nd Rep	pair.								
		Course	Des	igned	by- D	eparti	ment of	Aut	omo	bile E	Engineeri	ing			
OI	BJECTIV	E:													
Th	e main ob	jective c	of this	s cour	se is	to imp	part kno	wle	dge	in the	power u	init, c	hassi	s an	d sub-
sys	stems, brak	tes and v	vheel	s, two	whee	elers, t	three wl	heele	ers v	will be	taught to	the s	studer	nts.	
	ourse Outc														
CC	<b>D1</b> - To lea	rn the de	etaile	d stud	y of t	he pov	wer uni	t							
C	<b>D2</b> - To lea	rn the de	etaile	d stud	y of c	hassis	s and su	b-sy	vster	ns					
	<b>D3</b> - To lea				2			neels							
CC	<b>D4</b> – To lea	arn the d	etaile	ed stuc	ly of	two w	heelers								
CC	<b>D5</b> - To lea	rn the de	etaile	d stud	y of t	hree v	vheelers	5							
		Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
	(1	H/M/L ii	ndica	tes str	ength	of co	rrelation	n) I	H-H	igh, M	-Mediur	n, L-l	Low		
1	COs/POs	a	b	с	d	e	f	g	,	h	i	j	k		1
2	CO1	Н	Μ	Н		Η	Μ	Н	[	Η	Н	Η	Μ		М
	CO2		Μ				Μ			L	L				М
	CO3		Η		Н	Η		Н	[		М		Η		М
	CO4	Н				Η	Н			М		Μ			
	CO5			Η		Η		H	[	Η	Н		Μ		Н
	CO6	L	Μ	Μ		L	Н			Η	L	Μ	L		
3	Category	_		-								_			
		cia		3S)	Sciences (ES)		ore		E)	<u>,</u>	ijvе	)E)		oer/	
		$\mathbf{S}_{\mathbf{C}}$	IS)	es(J	) SS		Ŭ		$\bigcup_{i=1}^{n}$	,	leci	e ((		pal	(H)
		S S	Ē	nce	nce		) al		ыvе		ц Ш	tive		m	nar iip
		ties	lies	cie	cie		siona (PC)		leci		ajor (NE)	lec		Te	Seminar/ ternship (
		Humanities & Social	Studies (HS	Basic Sciences(BS)			Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/	Seminar/ Internship (H)
		m		asi	Engg	ŏ	Pro:		Ore		on	Ibei		roje	, Ir
		H		В	E						Z	0		P	

4	Approval	37 th Meet	ing of Acade	emic Council,	May 2015		

#### UNIT – I THE POWER UNIT

Two stroke and four stroke SI engine, merits and demerits, Symmetrical and unsymmetrical port timing diagrams. Types of scavenging processes, merits and demerits, scavenging efficiency. Scavenging pumps. Rotary valve engine. Fuel system. Lubrication system. Magneto coil and battery coil spark ignition system. Electronic ignition System. Starting system. Kick starter system.

#### UNIT – II CHASSIS AND SUB-SYSTEMS

Main frame and its types, Chassis and shaft drive. Single, multiple plates and centrifugal clutches, Gear box and gear controls. Front and rear suspension systems. Shock absorbers, Panel meters and controls on handle bar.

#### UNIT – III BRAKES AND WHEELS

Drum brakes, Disc brakes, Front and rear brake links lay-outs. Spoked wheel, cast wheel. Disc wheel. Disc types. Tyres and tubes.

#### **UNIT – IV TWO WHEELERS**

Case study of motor cycles, scooters and mopeds. Servicing and maintenance.

#### **UNIT – V THREE WHEELERS**

Case study of Auto rickshaws, Pick up van, Delivery van and Trailer. Servicing and maintenance.

#### **TEXTBOOK:**

1. Irving, P.E., Motor cycle Engineering, Temple Press Book, London, 1992.

#### **REFERENCES:**

- 1. The Cycle Motor Manual, Temple Press Ltd., London, 1990.
- 2. Encyclopedia of Motor cycling, 20 volumes, Marshall Cavensih, New York and London, 1989.

BAM003	ALTERNATE FUELS AND ENERGY SYSTEMS	L	Τ	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Alternate Fuels and Jet Propulsion, Internal G	Comb	ustior	1	
	Engines and Emissions, Environment Pollution and Control				
	Course Designed by- Department of Automobile Engineeri	ng			
OBJECTIV	E				
The main of	pjective of this course is to impart knowledge in Alternate	Fuel	ls and	l Ene	ergy
Systems. Th	ne detailed concept of Classification of design and R	educt	ion o	of st	ress
concentration	n, Alcohols, Natural Gas, LPG, Hydrogen and Biogas, Vege	etable	Oils,	Eleo	ctric
and Solar Po	wered Vehicles will be taught to the students.				
<b>Course Out</b>	comes				
CO1-To lear	n the detailed study of Availability of alternate fuels and othe	r alte	rnate		
Energy	y sources				
CO2-To lear	n the detailed study of Alcohols				
CO3-To lear	n the detailed study of Natural Gas, LPG, Hydrogen and Biog	gas			

#### 9

8

8

10

CO4-To learn the detailed study of Vegetable Oils CO5 -To learn of detailed study of Electric and Solar Powered Vehicles

			<u> </u>						<u> </u>		comes (F -Mediun	,	ow	
1	COs/POs	a	b	c	d	e	f	g		h	i	j	k	1
2	CO1	Н	Μ	Н		Н	М	H	[	Н	Н	Н	Μ	М
	CO2		Μ				Н			L	Н			М
	CO3		Η		Н	Η		H	[		М		Μ	Н
	CO4	Η				М	Μ			Η		Μ		
	CO5			Μ		Η		M	1	Μ	Н		Μ	Н
	CO6	L	Μ	Η		L	Μ			Η	L	Μ	L	
3	Category		Studies (HS)	Basic Sciences(BS)	Enge Sciences (ES)		Professional Core (PC)		Core Elective (CE)	√	Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^{tl}	^h M	eeting	g of A	caden	nic Cou	ncil,	Ma	y 2015			ł	

#### UNIT – I INTRODUCTION

Estimation of petroleum reserve "World Energy Scenerio, Energy Survey of India" – Need for alternate fuel – Availability of alternate fuels- Other alternate energy sources

#### UNIT – II ALCOHOLS

Properties as engine fuels, alcohols and gasoline blends, Performance in SI engine. Methanol and gasoline blends - Performance combustion and emission characteristics.

#### UNIT – III NATURAL GAS, LPG, HYDROGEN AND BIOGAS

Availability of CNG, properties, modification required to use in engines – performance and emission characteristics of CNG and LPG in SI & CI engines. Performance and emission for LPG – Hydrogen – Storage and handling, performance and safety aspects.

#### **UNIT – IV VEGETABLE OILS**

Various vegetable oils for engines – Transesterification – Performance in engines – Performance and emission characteristics.

#### UNIT – V ELECTRIC AND SOLAR POWERED VEHICLES

Layout of an electric vehicle – advantage and limitations – Specifications – System component, Electronic control system – High energy and power density batteries – Hybrid vehicle – Solar powered vehicles. Fuel cell vehicles.

#### **TEXTBOOKS:**

1. Ramalingam. K.K., Internal combustion engine, scitech publications, Chennai, 2003.

2. Bechtold,R.L., Alternative Fuels Guide Book, SAE, 1997.

6

9

9

#### 10

#### **REFERENCES:**

- 1. Nagpal, Power Plant Engineering, Khanna Publishers, 1991.
- 2. Alcohols and motor fuels progress in technology, Series No.19, SAE Publication USA 1980.

BA	M018	HYBR VEHI			RIC	AND	FUEL	CE	LL		L	Т	P		С	
		Total C			rs - 4	5					3	0	0		3	_
		Prerequ	uisite	– Hyb	rid T	echnol	logy an	d Fu	el c	ells, B	asic I	Elec	trical	and		
		Electro														
		Course	Desi	gned b	oy- De	epartm	nent of	Auto	omo	bile E	ngine	eerir	ng			
	BJECTIV															
	e main ob															
	sed vehicle											etra	ains, l	ıybri	d elect	ric
	nicles, hyb		cle teo	chnolo	gy w	ill be t	aught t	o the	e stu	dents.						
	urse Outo															
	<b>)1</b> - To lea							0								
	<b>)2</b> - To lea															
	<b>)3</b> -To lea										d elec	ctric	c drive	etrain	IS	
	<b>)4</b> – To lea															
CC	<b>)5</b> - To lea													olog	у	
							nes wit									
4		H/M/L i											1, L-L			1
1	COs/POs		b	с	d	e	f	g		h	i		J	k		1
2	CO1	H	M	Н		Н	M	H	[	H	H		Η	M		M
	CO2		M				Н		_	L	H					M
	CO3		Η		Н	H		H			Ν	1		M		Η
	CO4	H				M	Μ			H		•	Μ			
	CO5			M		H		N	1	M	H			M		H
2	CO6	L	Μ	Η		L	M			Н		_	Μ	L		
3	Category	Humanities & Social	Studies (HS)	Basic Sciences(BS)	Engo Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective	(NE)	Open Elective (OE)		Project/Term paper/ Seminar/	Internship (H)
			-													
4	Approval	l 37	th Me	eeting	of Ac	ademi	ic Cour	ncil,	May	y 2015						

#### **UNIT I - FUELCELL TECHNOLOGY**

Structures, Operations and properties of Fuel cells – (Phosphoric Acid Fuel cell, Proton Exchange membrane Fuel cell, Direct Methanol fuel cell Alkaline Fuel Cells, Solid Oxide Fuel Cell, Molten Carbonate Fuel Cell) -Characteristics. Electrochemical energy conversion – Theoretical efficiency – Factors affecting electrochemical energy conversion- Helmholtz double layer model.

#### **UNIT II - FUEL CELL BASED VEHICLES STRUCTURE**

PEMFC: Operating principle (membranes, electrodes and electrolysis, optimization of membrane and electrode assembly, impurities) – Technology development (single cell and stacks, composite plates) – Fuel processing – Modeling studies (membrane, electrode, membrane-electrode assembly, fuel cell, stack and system) – Technology development and applications. DMFC: Operating principle – Noble metal issue – Electro-oxidation of methanol (Catalysts, oxygen electroreduction, electrolyte, non catalytic aspects) - Methanol crossover.

#### UNIT III - HYBRID ELECTRIC TECHNOLOGY AND ELECTRIC DRIVETRAIN 9

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

#### **UNIT IV - HYBRID ELECTRIC VEHICLES**

Principles of Hybrid Electric Drive trains, Architectures – Electrical distribution, Hybrid control Strategies – Parallel Hybrid, Series Hybrid - (Charge Sustaining, Charge Depleting), Practical Models – Toyota Prius, Honda Insight. Hybridization Effects. 42 V System for Traction Applications - Lightly Hybridized vehicles, Low –Voltage Storage System, Low – Voltage main system with High voltage bus for propulsion. Heavy Vehicles Hybrid Electric Heavy Duty Vehicles, Fuel cell Heavy duty vehicles.

#### **UNIT V - HYBRID VEHICLE TECHNOLOGY**

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems. Energy Management Strategies in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

#### **TEXT BOOKS:**

- 1. Basu .S, "Recent Trends in Fuel cell Science and Technology", Anamaya Publishers, New Delhi.,2007.
- 2. Viswanathan, B. and Aulice Scibioh, M., "Fuel Cells Principles and Applications", Universities Press (India) Pvt. Ltd., Hyderabad, 2006.
- 3. Hoogers, G., Edr. "Fuel Cell Technology Handbook", CRC Press, Washington D. C,2003.

#### **REFERENCES:**

- 1. Larminie, J. and Dicks, A., "Fuel Cell Systems Explained" John Wiley & Sons, Ltd., New York, 2001.
- 2. Ali Emadi, Mehrdad Ehsani, John M. Muller, "Vehicular Electric Power Systems", Marcel Dekker, Inc., 2004.

#### **CORE ELECTIVE III**

9

9

BA	AM004	SIMU	LAT	TION	OF V	<b>EHIC</b>	CLE SY	(ST	EM	S		L	T		P	С
		Total	Conta	act Ho	urs -	45						3	0		0	3
						Techr	nology	and	Bod	ly Engi	neering,	CIM	1, V	ehic	le	
		stabili	· · · ·													
		Cours	e Des	signed	by- I	Depart	ment of	f Au	tom	obile .	Enginee	ring				
	BJECTIV															
	e main o ntrol, later															
	spensions,															
	ngitudinal		es wi	ll be ta	aught	to the	e studen	ts.								
	ourse Out															
	01 - To lea															
	<u>D2 - To lea</u>															
	$\frac{03 - \mathrm{To}  \mathrm{lea}}{04 - \mathrm{To}  \mathrm{lea}}$				-		_	_				_				
C	D4 - To le	arn the c ensions	ietail	ed stu	dy of	mode	lling of	sem	11 ac	ctive an	d active	auto	omot	ive		
C	Suspe 05 - To lea		ataila	ad stud	ly of	lataral	and lo	naiti	udir	al tira	forces					
U	<b>J</b> J - 10 lea							-			comes (	POs)				
	(I										-Mediu			N		
1	COs/POs		b	c	d	e	f	g		h	i	i		k		1
2	CO1	Н	Μ	Н		Н	М	E		Н	Н	H	1	Μ		M
-	CO2		M				M			L	H					M
	CO3		Н		Н	Н		H	I		М		]	Μ		Н
	CO4	Η				Μ	Μ			Н		Μ				
	CO5			Μ		Н		H	I	М	Н		]	Μ		Η
	CO6	L	Μ	Η		L	М			Η	L	Μ		L		
3	Category		studies S)	BC)	nces		Core		ective		Major e (NE)	tive		/Term	_	(H)
		Humanitie	Social Stu (HS)		ξ ·Ξ	(ES)	Professional (PC)		Core Elec		Non-Maj Elective (I	Open Elective	(OE)	Project/Te	paper/	Semina Internship
4	Approval	37	th Me	eeting	of Ac	cadem	ic Cou	ncil,	Ma	y 2015						

#### UNIT I LONGITUDINAL DYNAMICS AND CONTROL

Aerodynamic drag force - Longitudinal tire force - Rolling resistance - Calculation of normal tire forces - Calculation of effective tire radius - Driveline Dynamics - Torque converter - Transmission dynamics - Engine dynamics - Wheel dynamics - Cruise Control - Anti-Lock Brake Systems - Automated Highway Systems - Longitudinal Control Architecture.

9

#### UNIT II LATERAL DYNAMICS AND ELECTRONIC STABILITY CONTROL 9

Lateral Systems - Kinematic Model - Bicycle Model. Motion of Particle Relative to a rotating Frame. Dynamic Model in Terms of Error with Respect to Road, Yaw Rate and Slip Angle. Road Model. Differential Braking Systems - Steer-By-Wire Systems - Independent All Wheel Drive Torque Distribution

#### UNIT III MODELING OF PASSIVE AUTOMOTIVE SUSPENSIONS

Introduction - Modal Decoupling - Performance Variables - Natural Frequencies and Mode Shapes - Approximate Transfer Functions - Analysis of Vibrations in the Sprung Mass Mode and Unsprung Mass Mode - Verification Using Quarter Model. Half-Car and Full-Car Suspension Models.

# UNIT IV MODELING OF SEMIACTIVE AND ACTIVE AUTOMOTIVE SUSPENSIONS

Semi-Active Suspension Model - Optimal Semi-Active Control Law - Calculation of Transfer Function Plots - Performance of Semi-Active Suspension Systems. Active Automotive Suspensions - Trade-offs and Limitations - Invariant Points and Their Influence -Hydraulic Actuators for Active Suspensions

#### UNIT V LATERAL AND LONGITUDINAL TIRE FORCES

Tire Forces - Tire Structure - Longitudinal Tire Force at Small Slip Ratios - Lateral Tire Force at Small Slip Angles - Magic Formula Tire Model - Dugoff's Tire Model - Dynamic Tire Model - Development of Lateral Tire Model for Uniform Normal Force Distribution and Parabolic Normal Pressure Distribution - Combined Lateral and Longitudinal Tire Force Generation.

#### **TEXT BOOK**

1. Rajesh Rajamani, "Vehicle Dynamics and Control", Springer, 2006.

BA	AM019	COM	PUTI	ER AI	DED	DES	IGN A	ND DR	AFTING	5 I	L T	Р	С
		Total C	Conta	ct Ho	urs - 2	15				3	3 0	0	3
	-	Prerequ	uisite	– Ma	chine	Draw	ving, Au	utomotiv	ve Parts a	and Ass	sembly	y drawi	ng,CIM
	-	Course	Des	igned	by- D	epartr	nent of	Autom	obile Er	igineeri	ng		
0	BJECTIVE	2:											
Th	ne main obj	jective	of th	nis co	urse i	is to i	impart	knowle	dge in d	comput	er aid	ed des	ign and
	afting, trans				dellir	ng of c	curves	and surf	faces wit	h autoi	natior	techn	iques. It
	so deals with		and C	CAPP.									
	ourse Outco					<u> </u>	~						
	01 - To lear				•		CAM						
	<b>O2</b> - To lear				~								
	<b>O3</b> - To lear												
C	04 – To lear	rn the d	etaile	ed stud	ly on	CAPF	and A	utomati	on				
C	05 - To lear	n the de	etaile	d stud	y on 1	Flexib	le man	ufacturi	ng Syste	m			
		Map	ping	of Cou	urse (	Outcon	nes wit	h Progra	am outco	omes (I	POs)		
	(H	[/M/L ir	ndica	tes str	ength	of con	rrelatio	n) H-H	ligh, M-l	Mediun	n, L-L	OW	
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k	1
2	CO1	Н	Μ	Н		Н	Μ	Н	Н	Н	Н	Μ	М
	CO2		Н				Μ		L	Н			М
	CO3		Η		Н	Н		Н		Μ		Μ	Н
	CO4	Н				М	М		Н		Н		
	CO5			М		Н		М	М	Н		М	Н
	CO6	L	Μ	Н		L	Μ		Н	L	Μ	L	

9

9

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
						$\checkmark$			
4	Approval	37 th Me	eeting of	Academi	ic Council,	May 2015	•	•	

#### UNIT I INTRODUCTION

Introduction to CAD/CAM, Historical developments, Industrial look at CAD/CAM, Comparison of CAD with traditional designing, Introduction to CIM; Basics of geometric and solid modeling, Packages for CAD/CAM/CAE/CAPP.

#### UNIT II TRANSFORMATIONS

Introduction, transformation of points and line, 2-D rotation, reflection, scaling and combined transformation, homogeneous coordinates, 3-D scaling, shearing, rotation, reflection and translation, combined transformations, orthographic and perspective projections, reconstruction of 3-D objects.

#### UNIT III MODELING OF CURVES & SURFACES

Algebraic and geometric forms, tangents and normal, blending functions reparametrization, straight lines, conics, cubic splines, Bezier curves and B-spline curves. Plane surface, ruled surface, surface of revolution, tabulated cylinder, bi-cubic surface, bezier surface, B-spline surfaces and their modeling techniques.

#### UNIT IV AUTOMATION AND NUMERICAL CONTROL AND APPLICATIONS OF CAD 9

Introduction, fixed, programmable and flexible automation, types of NC systems, MCU and other components, NC manual part programming, coordinate systems, G & M codes, Part program for simple parts, computer assisted part programming.

Introduction, Need and importance of solid and surface models for Interference detection, Assembly modeling, finite element analysis, and computer aided part programming, computer aided process planning, automated layout and drafting and computer aided manufacturing.

#### UNITV FLEXIBLE MANUFACTURING SYSTEMS & COMPUTER AIDED PROCESS PLANNING 9

Introduction, FMS components, types of FMS, FMS layouts, planning for FMS, advantages and applications Conventional process planning, types of CAPP, Steps in variant process planning, planning for CAPP.

#### **TEXT BOOKS**

- 1. CAD/ CAM by Groover and Zimmer, Prentice Hall.
- 2. CAD/ CAM Theory and Practice by Zeid, McGraw Hill
- 3. Numerical Control and Computer Aided Manufacturing by Kundra, Rao & Tiwari, TMH.

9

9

#### **REFERENCE BOOKS**

1 CAD/CAM (Principles, Practice & Manufacturing Management) by Chirs Mc Mohan & Jimmie Browne, Published by Addison- Wesley.

BA	M018	HYBI	RID	ELEC	TRI	C AN	D FUE	LC	EL	L VE	HICLE	S	L	Т	P	С
		Total	Conta	act Ho	ours -	45							3	0	0	3
		Prereq	uisit	e – Hy	brid	Techr	nology a	and I	Fue	l cells,	Basic E	Electri	cal a	and		
		Electro	onics	, Alte	rnate	Energ	gy resou	irces	5							
		Course	e Des	signed	by- ]	Depar	tment o	of Au	itor	nobile	Engine	ering				
	BJECTIV															
	e main ob															
	sed vehicle											trains	s, hy	ybri	d ele	ctric
	hicles, hyb		icle to	echno	logy	will b	e taught	t to t	he	studen	ts.					
	ourse Outo															
	01 - To lea								0.							
	<b>D2</b> - To lea															
	<b>D3</b> -To lea					-					and elec	etric di	rive	trai	ns	
	<b><u>D4</u></b> – To lea				-	-										
C	<b>)5</b> - To lea												chno	olog	У	
	/11										tcomes		T			
1										-	I-Mediu				1	
1	COs/POs		b	с	d	e	f	g		h	i	j	k		1	
2	CO1	H	M	Н		Н	M	Η		H	H	Η	M		M	
	CO2		M				Н			L	H			-	M	
	<u>CO3</u>		Η		Η	H		Η			М		N.		Η	
	<u>CO4</u>	H		м		M	M		r	H	TT	Μ		r		
	CO5	т	М	M H		H L	М	Μ		M H	H L	М	M L		Η	
3	CO6	L	Μ	п		L	Μ			Н	L	Μ	L			
3	Category	ial		S)	5	Ì	e		ш	<	ve	Ê		er/	ŝ	
		Soc	$\widehat{\mathbf{S}}$	B	Sciences (ES)		Col		Ũ	,	ecti	0		ano		(H
		Se	Studies (HS)	Ices	Ces		) al		ve		El(	ive		u L	ar/	Internship (H,
		ies	es	ien	ien		ions (PC)		ecti		ajor (NE)	ecti		len.	nin -	IUS
		niti	ipn	Sc	v.	2	essi)		ΕĬ		Ma	Ē		ct/]	Seminar	ern
		Humanities & Social	St	Basic Sciences(BS)	Enoo	â	Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/	- - -	Int
		Hu		B	Е'n		Р		Ŭ		ĭ	Ō		Pro	•	
			1							•						
4	Approval	37	in Me	eeting	of A	caden	nic Cou	ncil,	Ma	ay 201	5					

#### **UNIT I - FUELCELL TECHNOLOGY**

Structures, Operations and properties of Fuel cells – (Phosphoric Acid Fuel cell, Proton Exchange membrane Fuel cell, Direct Methanol fuel cell Alkaline Fuel Cells, Solid Oxide Fuel Cell, Molten Carbonate Fuel Cell) -Characteristics. Electrochemical energy conversion – Theoretical efficiency – Factors affecting electrochemical energy conversion- Helmholtz double layer model.

#### UNIT II - FUEL CELL BASED VEHICLES STRUCTURE

PEMFC: Operating principle (membranes, electrodes and electrolysis, optimization of membrane and electrode assembly, impurities) – Technology development (single cell and stacks, composite plates) – Fuel processing – Modeling studies (membrane, electrode, membrane-electrode assembly, fuel cell, stack and system) – Technology development and applications. DMFC: Operating principle – Noble metal issue – Electro-oxidation of methanol (Catalysts, oxygen electroreduction, electrolyte, non catalytic aspects) - Methanol crossover.

#### UNIT III - HYBRID ELECTRIC TECHNOLOGY AND ELECTRIC DRIVETRAIN 9

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

#### **UNIT IV - HYBRID ELECTRIC VEHICLES**

Principles of Hybrid Electric Drive trains, Architectures – Electrical distribution, Hybrid control Strategies – Parallel Hybrid, Series Hybrid - (Charge Sustaining, Charge Depleting), Practical Models – Toyota Prius, Honda Insight. Hybridization Effects. 42 V System for Traction Applications - Lightly Hybridized vehicles, Low –Voltage Storage System, Low – Voltage main system with High voltage bus for propulsion. Heavy Vehicles Hybrid Electric Heavy Duty Vehicles, Fuel cell Heavy duty vehicles.

9

9

#### **UNIT V - HYBRID VEHICLE TECHNOLOGY**

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems. Energy Management Strategies in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

#### **TEXT BOOKS:**

- 1. Basu .S, "Recent Trends in Fuel cell Science and Technology", Anamaya Publishers, New Delhi.,2007.
- 2. Viswanathan, B. and Aulice Scibioh, M., "Fuel Cells Principles and Applications", Universities Press (India) Pvt. Ltd., Hyderabad, 2006.
- 3. Hoogers, G., Edr. "Fuel Cell Technology Handbook", CRC Press, Washington D. C,2003.

#### **REFERENCES:**

- 1. Larminie, J. and Dicks, A., "Fuel Cell Systems Explained" John Wiley & Sons, Ltd., New York, 2001.
- 2. Ali Emadi, Mehrdad Ehsani, John M. Muller, "Vehicular Electric Power Systems", Marcel Dekker, Inc., 2004.

#### NON MAJOR ELECTIVE (NE)-I

BA	M008	MOD	ERN	MAN	NUFA	CTU	RING	PRO	DCI	ESS		L	Т	P	C
		Total (	Conta	act Ho	ours -	45						3	0	0	3
		Prereq	uisite	e – P	roduc	tion E	Enginee	ring	, Au	itomot	ive Man	ufac	turin	g Syst	ems,
											nd Contr				
		Course	e Des	signed	by- I	Depart	tment o	f Au	tom	obile	Enginee	ering	,		
	BJECTIV														
	e main ob														
	ming and	-				-								ic de	evices,
	nufacturin	-	npos	ites, ra	apid p	prototy	ping w	ill b	e ta	ught to	the stu	Ident	s.		
	ourse Outo						<u> </u>								
	<b>O1</b> - To le								<u> </u>			- 11			
	<b>O2</b> - To le												gy pi	ccess	es
	$\mathbf{O3}$ -To lea				•							ces			
	0 <b>4</b> – To le 0 <b>5</b> - To le									Jinpos	nes				
C	05 - 10 10									am ou	tcomes	(PO	<u>.</u> )		
	Æ										I-Mediu			v	
1	COs/POs	a	b	c	d	e	f	g		h	i	i			1
2	CO1	Н	Μ	Н		Н	М	H		Н	Н	H	N	1	М
	CO2		Μ				М			L	Н				М
	CO3		Н		L	Н		Η			Μ		ŀ	I	М
	CO4	Н				Μ	Н			Н		Μ			
	CO5			Н		Η		Η	-	Н	Н		Ν	1	Н
	CO6	L	Μ	Μ		L	М			Н	L	Μ	Ι	_	
3	Category	& Social	(HS)	Sciences(BS)	Sciences (ES)		al Core		Elective (CE)		Elective ()	Elective (OE)		ct/Term paper/	ip (H)
		Humanities & Social	Studies (HS	Basic Scien	Engo Scier		Professional Core (PC)		Core Electi		Non-Major Elective (NE)	Open Elect		Project/Ter	Seminar/ Internship (H
4	Approval	37 ^t	h Me	eeting	of A	cadem	ic Cou	ncil,	Ma	y 2015	5	1		1	

#### UNIT I ADVANCES IN CASTING

Newer casting techniques - Expendable pattern casting - Plaster mold and ceramic mold casting - Vacuum casting - Squeeze casting - Rapid solidification for amorphous alloys - Casting techniques for single crystal components.

## UNIT II ADVANCED FORMING AND POWDER METALLURGY PROCESSES

High speed forging machines - Die materials - semisolid metal forming- Peen forming of sheet metals - Super plastic forming – Forming and shaping glass. Design consideration for Powder Metallurgy forming - Production of metal powders – Compaction – Sintering – Finishing of sintered parts – Secondary and finishing operations.

#### 9

#### UNIT III FABRICATION OF MICRO ELECTRONIC DEVICES

Semiconductors and silicon - Crystal growing and wafer preparation - Film deposition, Oxidation, Lithography, Etching, Diffusion and ion implantation, Metallization and testing - Bonding and packing.

#### UNIT IV MANUFACTURING OF COMPOSITES

Introduction- Fibre reinforced, Metal matrix, Ceramics matrix composites, Nanocomposites - structure, Properties, manufacturing processes and applications.

#### UNIT V RAPID PROTOTYPING

Rapid prototyping- overview, Techniques-Stereo lithography, Laminated object manufacturing, Selective laser sintering, fused deposition modeling, solid ground curing, 3D ink jet printing-Applications of rapid prototyping-Rapid tooling-Rapid manufacturing-Future development-Virtual prototyping.

#### **TEXT BOOKS**

- 1. Serope Kalpakjian, "Manufacturing Engineering and Technology", 3rd Edition, Addison-Wesley Publishing Co., Boston, 2009.
- 2. Madou M. J, "Fundamentals of micro fabrication and nanotechnology", 3rdedition, CRC Press, USA, 2011.

#### REFERENCES

- 1. Amstead B. H, Ostwald Phillips and Bageman R.L, "Manufacturing Processes", John Wiley & Sons, New York, 1987.
- 2. Jaeger R.C, "Introduction to microelectronic Fabrication", Addision Wesley Boston, 1988.
- 3. Chua C. K, "Rapid Prototyping Principles and Applications", World Scientific Publishing Company, 2010.
- 4. Hilton P. D and "Marcel Dekker", Rapid Tooling, New York, 2000.

BAN	<b>M006</b>	NOISE	VIBR	ATION	AND	HAR	SHNES	S		L	Т	P		С
	,	Total C	ontact	Hours -	45					3	0	0		3
		Prerequ Automa		Mechan	ical V	ibratio	n and Co	ontrol Te	chniqu	ies,	Indus	strial		
	(	Course	Design	ed by- l	Depart	ment o	f Auton	nobile E	ngineer	ring				
OBJ	ECTIVE	:												
The	main obje	ective c	of this	course i	is to i	mpart 1	knowled	lge in b	asics o	of v	ibrati	on a	nalys	sis,
	ation cont													
sour	ces and co	ntrol te	chnique	es will b	e taug	ht to th	e studer	nts.						
Cou	rse Outco	mes	•											
CO	<b>1</b> - To lear	rn the d	etailed	study of	f basic	s of vil	oration a	analysis						
	<b>2</b> - To lear			-				•						
	<b>3</b> -To lear			•				1						
				•										
CO	<b>14</b> – 10 lea	rn the c	letailed	study o	of nvh	measur	ements							
CO CO				•			ements noise sc	ources an	d contr	rol t	echni	ques		
CO CO	<b>14</b> – 10 lea <b>15</b> - To lea	rn the d	etailed	study of	f autor	notive	noise sc					ques		
CO CO	<b>5</b> - To lear	rn the d Mapp	etailed ing of <b>(</b>	study of Course (	f autor Dutcor	notive nes wit	noise sc h Progra	ources an am outce ligh, M-1	omes (l	POs	)			

9

9

2	CO1	Η	Μ	Н		Н	М	Н	[	Н	Н	Η	Μ	М
	CO2		Μ				Μ			L	Н			М
	CO3		Η		Η	Η		H	[		М		Н	М
	CO4	Η				Μ	Н			Н		Μ		
	CO5			Н		Η		Н	[	Μ	Η		Μ	Н
	CO6	L	Μ	Μ		L	Μ			Н	L	Μ	L	
3	Category	Humanities	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	00	Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^{tl}	¹ Me	eeting	of Ac	cadem	ic Cou	ncil,	Ma	y 2015				

#### **INTRODUCTION TO NVH**

Noise, Vibration and Harshness (NVH) and its role in automotive design and development. Physiological effects of noise and vibration, sources of vibration and noise in automobiles.

#### UNIT I BASICS OF VIBRATION ANALYSIS

Basic concepts, mathematical models, formulating the equations of motion linear and torsional system characteristics and response – damped and undammed single & two degree of freedom systems under harmonic force, coordinate coupling, generalized coordinates and modal analysis.

#### UNIT II VIBRATION CONTROL TECHNIQUES

Vibration isolation, tuned absorbers, untuned viscous dampers, damping treatments, Applications: isolation of the engine from vehicle structure and control of torsional oscillation amplitudes in engine crankshaft.

#### UNIT III NOISE FUNDAMENTALS

Fundamentals of acoustics – general sound propagation – structure borne sound & air borne sound, Plane wave propagation - wave equation, specific acoustic impedance, acoustic intensity, Spherical wave propagation – acoustic near and far fields, Reference quantities, The decibel scale, relationship among sound power, sound intensity and sound pressure level, summation of pure tones, Decibel addition, subtraction and averaging, Effects of reflecting surfaces on sound propagation, octave band analysis, Anatomy of Human Ear, Mechanism of hearing, loudness, weighting networks, equivalent sound level.

#### UNIT IV NVH MEASUREMENTS

Vibration and Noise Standards – Pass/Drive by noise, noise from stationary vehicles, interior noise in vehicles, NVH measurement tools and techniques, Modal parameter (natural frequency, mode shape and damping) estimation techniques, signal and system analysis.

#### UNIT V AUTOMOTIVE NOISE SOURCES AND CONTROL TECHNIQUES 9

Methods for control of engine noise, Transmission Noise, Intake and Exhaust Noise, Aerodynamic Noise, Tyre Noise, Brake noise. Noise control strategy, noise control at source

#### 9

#### 9

9

- along the path - isolation, damping, balancing, resonators, absorption, barriers and enclosures.

#### **TEXT BOOK:**

1. Matthew Harrison, "Vehicle Refinement: Controlling Noise and Vibration in Road Vehicles", Elsevier, 2004.

#### **REFERENCES:**

- 1. Bell, L. H. and Bell, D. H., "Industrial Noise Control Fundamentals and Applications", Marcel Dekker Inc, New York, 1994.
- 2. Xu Wang, "Vehicle Noise and Vibration Refinement", CRC Press, 2010
- **3.** Ambekar, A. G., "Mechanical Vibrations and Noise Engineering", Prentice Hall of India, New Delhi, 2006.
- 4. Beranek, L. L. and Ver, I, L., "Noise and Vibration Control Engineering –Principles and Application", John Wiley & Sons, Inc, 1 992.
- 5. Wilson, C. E., "Noise Control Measurement, Analysis, and Control of Sound and Vibration", Harper & Row Publishers, New York, 1989.
- 6. Thomson, W. T., "Theory of Vibrations with Applications", CBS Publishers Delhi.

BA	AM026		Ι	NDU	STRI	AL E	NGIN	EERIN	G		L	Т	P	С
		Total C	Conta	ct Ho	urs - 4	45					3	0	0	3
		Prerequ	uisite	– Bas	sic En	iginee	ring Sc	iences, l	Human V	/alues	and	Profe	ession	al
		Ethics,	Stati	stical	Qual	ity and	d Contr	ol, Relia	ability er	ngineer	ing			
		Course	Des	igned	by- D	Departi	ment of	Autom	obile En	gineer	ing			
0	BJECTIV	E:												
Th	ie main ob	jective	of th	is cou	ırse i	s to ii	mpart l	knowled	lge in pi	oducti	on, j	orodu	ictivi	ty and
	ficiency, p	•		- 1		0.				0	ling	and	sched	luling,
sta	tistical qua	ality con	trol,	work	study	will b	e taugł	nt to the	students	•				
	ourse Outo													
	<b>D1</b> - To lea				<b>v</b> 1		· •	oductiv	ity and e	fficien	cy			
C	<b>D2</b> - To lea	rn the d	etaile	ed stud	ly ofp	olant la	ayout							
C	O3 -To lear			d stud	y of g	group	technol	ogy and	materia	l handl	ing/	loadi	ng	
		heduling												
	<b>O4</b> – To lea				-		_	lity con	trol					
C	<b>05</b> - To lea													
									am outco					
	(H	I/M/L ir	Idica	tes stro	ength	of co	rrelatio	n) H-H	ligh, M-	Mediu	m, L	-Low	,	
1	COs/POs	a	b	с	d	e	f	g	h	i	j	1	ς.	1
2	CO1	Н	Μ	Н		Н	М	Μ	Н	Н	Η	I	H	М
	CO2		Μ				Μ		L	Η				Μ
	CO3		Η		Η	Н		Н		Η		Ν	Л	Н
	CO4	Н				Μ	Н		М		Η			
	CO5			Μ		Η		М	М	Η		N	Л	Н
	CO6	L	Μ	Μ		Μ	Н		L	Η	M	Ι		

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th Me	eeting of	f Academ	ic Council,	May 2015			

#### UNIT I PRODUCTION, PRODUCTIVITY AND EFFICIENCY

Definitions - Productivity, Effectiveness, Partial Productivity, Total Productivity-Productivity cycle - Factors influencing productivity- Techniques to improve productivity-Technology based techniques- Material based productivity improvement - Improvement control - M.R.P - Quality circles - brainstorming Pareto analysis cause and effect analysis-Total quality management - Zero Defects - Flextime- Just in time - Kanban - Ergonomics -Reliability improvement - Modular Design - Difference between reliability and quality maintainability.

#### UNIT-II PLANT LAYOUT

Types of layout - Product/Process/Fixed position/Group-advantage/Disadvantage of Product/Process/Fixed - preference of Product/Process/Fixed position layout - Flow patterns - Tools and Techniques of layout - Operation Process chart - Flow diagram - String diagram - Travel chart method - Plant location - Plant location decision.

#### UNIT-III GROUP TECHNOLOGY AND MATERIAL HANDLING/ LOADING AND SCHEDULING

Introduction - Part families - Group technology layout - Limitation of Group technology -Design and Manufacturing attributes - The composite part concept - Machine cell design part classification and coding - Automatic storage and retrieval system - Principle of material handling - Loading - Master scheduling - Perpetual loading - Order scheduling - Loading by scheduled method - Index method of scheduling - Factors influencing scheduling - Random number table - Production planning and control - Routing - Dispatching - Job card - Job order - Production control - Order control chart machine load chart

#### UNIT-IV STATISTICAL QUALITY CONTROL

Introduction to quality control - Statistical measures - Control chart - Types - Control chart for attributes - Control chart for number of defects per unit acceptance sampling - Basic probability - normal basic distribution - Acceptance quality level - lot tolerance percent defective (LTPD) - Average outgoing quality (AOQ)

#### UNIT-V WORK STUDY

Techniques of work - Procedure of work study - Method study - Multiple activity chart utility - Unit work measurement - Micro motion study - Predetermined Motion time system - Work sampling - Job analysis - Job evaluation and merit rating - wage and wage incentive

#### **TEXT BOOK:**

1. Khanna O.P. "Industrial Engineering and Management", Khanna Publishers, New Delhi.

9

#### 9 art

#### **REFERENCES:**

- 1. B. Kumar "Industrial Engineering" Khanna Publishers. New Delhi, 1999
- 2. Gupta and Patel, "Work Study" Khanna Publishers. New Delhi, 1998.

BA	AM016	VEE	IIC	CLE	AIR-	CON	DITI	ONINO	G SY	ST	EMS		L	Т	P	С
		Tota	1 C	onta	ct Hou	urs - 2	45						3	0	0	3
												motive 7	Fechn	ology	, Eng	gines
		and l	Em	issic	ons, Tł	nermo	odynai	mics an	d He	eat [	Гransfe	r				
		Cour	rse	Desi	igned	by- D	)eparti	ment of	Aut	tom	obile I	Engineer	ing			
	BJECTIV															
	e main o															
	ndamental															ature
	ntrol, heat			ondi	tioner	troub	le sho	oting &	z ser	vice	e will b	e taught	to th	e stud	ents.	
	ourse Out															
	01 - To lea								r cor	nditi	oning	fundame	entals			
	<u>D2 - To lea</u>								•							
	03 - To lea												1			
	<u>D4 – To le</u>															
C	<b>D5</b> – To le													servi	ce	
				-						-		comes (l				
								1		1	-	-Mediur	n, L-1	1		1
1	COs/POs		a	b	С	d	e	f	g		h	1	J	k		1
2	CO1	ł	Η	M	Н		Н	M	H	ł	H	H	Η	M		M
	CO2			M				H	<b>.</b>	T	L	H				M
	CO3		T	Η		Μ	H		E	i		М	TT	Μ		H
	CO4	1	Η				M	M	T	T	H		Η	1		
	CO5		r	N	M		H		E	1	<u>M</u>	H	м	M		H
2	CO6	Ι	_	Μ	Н		L	M			Η	L	М	L		
3	Category	/ <del>.</del>	al			$\widehat{\mathbf{G}}$				<b>—</b>		e	()		Ľ/	
			, OCI		Sciences(BS)	Sciences (ES)	ĺ	Ore		Elective (CE)		Major Elective (NE)	Elective (OE)		ct/Term paper/	(I
		C o	20	SH	ses(	ses				e (	/	Ilea	/e (		ı pê	E E
		3	S S S	tudies (HS	enc	enc		C)		ctiv		ajor E (NE)	ctiv		erm i i i	semmar/ ternship (H)
			iue	die	Sci	Sci		P (P		Elec		N ajc	Ще		-7.	em
			nan G	Stu				Professional Core (PC)				<u>М</u> -г	_		ر ور	د Inte
			Humanities & Social		Basic	Enge	0	Pro		Core		Non-	Oper		Proje	Ι
		l i	Ц		_		I					<b>F</b> 1	Ŭ		<u> </u>	
4	Approva	1 3	37 th	¹ Me	eeting	of Ac	cadem	ic Cou	ncil,	Ma	y 2015					
	••				0				,		-					

#### UNIT – I AUTOMOTIVE AIRCONDITIONING FUNDAMENTALS

10

Basic air conditioning system – Components – types of Compressor, Condenser, Expansion devices and Evaporators. Location of air conditioning components in a car – Schematic layout of a air conditioning system. Compressors- Types- components – Thermostatic expansion valve & orifice tube – Expansion valve calibration – Evaporator temperature control methods.

### UNIT – II REFRIGERANT

Requirements for refrigerants – Classification of refrigerants- Refrigerant selection-Storage of refrigerants – Handling refrigerants – Discharging, Charging & Leak detection – Refrigeration system diagnosis – Diagnostic procedure – Ambient conditions affecting system pressures.

#### UNIT – III HEATING AND AIRCONDITIONING SYSTEM 10

Manually controlled air conditioner – Automatically controlled air conditioners-Electronic automatic temperature control - Auxiliary Rear Heating and Cooling systems

#### UNIT – IV AIR ROUTING & TEMPERATURE CONTROL

Objectives – Evaporator case air flow through the Dash recirculating unit – Conditioned air distribution – Ducting system in Passenger car and Bus– Controlling flow – Air conditioner safety devices - Temperature and Pressure cutoff switches - Relief valves

10

#### UNIT – V HEATER–AIR CONDITIONER TROUBLE SHOOTING & SERVICE 6

Air conditioner maintenance and service – Safety cautions for air-conditioning service - Testing the vacuum control systems - Air conditioner performance test - Checking refrigerant system pressures - Leak detectors - Charging and Discharging.

#### **TEXT BOOK:**

1. William H Crouse and Donald L Anglin, Automotive Air conditioning, McGraw Hill Inc., 1990.

#### **REFERENCES:**

- 1. Paul Weisler, Automotive Air Conditioing, Reston Publishing Co. Inc., 1990.
- 2. McDonald,K.L., Automotive Air Conditioning, Theodore Audel series, 1978.
- 3. Goings, L.F., Automotive Air Conditioning, American Technical services, 1974.

#### NON MAJOR ELECTIVE (NE)-II

BA			MPUTER INTEGRATED MANUFACTURING STEMS										P	C
	r	Fotal C	al Contact Hours - 45							3	0	0	3	
Prerequisite – Flexible manufacturing system, CAPP, CAD/CAM														
Course Designed by- Department of Automobile Engineering														
OBJECTIVE:														
Th	The main objective of this course is to impart knowledgeautomotive air conditioning													
fundamentals, refrigerant heating and air conditioning system, air routing & temperature														
control, heater – air conditioner trouble shooting & service will be taught to the students.														
Course Outcomes														
CO1 - To learn the detailed study on CAD Basics														
CC	<b>)2</b> - To learn	the de	etaile	d stud	ly on	Flexit	ole mar	nufactur	ing Syste	em				
CC	<b>)3</b> - To learn	the de	etaile	d stud	ly on	CAPF	and it	s contro	1					
CC	<b>CO4</b> – To learn the detailed study on CIM concept and CNC													
CC	<b>CO5</b> – To learn the detailed study on Product and Tolerance modeling													
Mapping of Course Outcomes with Program outcomes (POs)														
(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs/POs	a	b	С	d	e	f	g	h	i		j	k	1
2	CO1	Н	Μ	Н		Н	М	H	Н	Н	I	H	Μ	М
	CO2		Μ				Н		L	Н				Н

	CO3		Η		Μ	Н		Н	[		Μ		Μ	Н
	CO4	Η				Μ	Н			Н		Н		
	CO5			М		Η		Н	[	Μ	Η		Μ	Н
	CO6	L	Μ	Н		L	Μ			Η	L	Μ	L	
3	Category		Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)	`, ∕	Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^{tl}	h Me	eeting	of Ac	adem	ic Cour	ncil,	Ma	y 2015		•		

#### UNIT - I**INTRODUCTION TO CAD**

Fundamental concepts in manufacturing and automation - Need for automation - Automation stages - Economic analysis and production - Fundamentals of CIMS. Elements of CAD system - Graphics hardware - ALU - CPU - Input/Output devices - Geometric modeling -Automated drafting

#### UNIT – II MANUFACTURING SYSTEMS

Basics of numerical control – Types of NC systems – CNC and DNC machines – Machining centre - Tool magazine - NC tape format - Programming - Manual part programme -Simple programmes – Computer assisted part programming – APT language – Simple examples

#### UNIT – III FLEXIBLE MANUFACTURING SYSTEMS

Group technology - Part families - Part classification and coding - Production flow analysis - Machine cell design - Description of FMS - Equipment, Tooling and fixture. Design for Manufacturing and Assembly - Process Planning Techniques - Total approach to product development - Concurrent Engineering - Rapid prototyping

#### UNIT – IV **COMPUTER AIDED MANUFACTURING**

Computers in manufacturing – Automated manufacturing systems – Work piece handling – Types of transfer - Continuous, Intermittent and Non-synchronous walking beam -Computer aided process planning – Computer aided inspection – Computer aided quality control - Basic model of CIMS - Interfacing methods of CAD and CM - Computer Process Monitoring.

#### UNIT - V**PRODUCTION PLANNING AND CONTROL**

Introduction to production planning and control - Shop Floor Control Systems - Just in time approach - Emerging Challenges in CAD / CAM, Product Data Management - Product Modeling - Assembly and Tolerance Modeling.

#### **TEXT BOOKS:**

- 1. Groover, M.P., Automation Production Systems and CAM, Prentice Hall, 1990.
- 2. Ibrahim Zeid, " CAD CAM Theory and Practice ", Tata McGraw-Hill Publishing Co. Ltd., 1998.

#### **REFERENCES:**

0

9

9

9

- 1. Groover, M.P., CAD/CAM Computer Aided Design and Manufacturing, Prentice Hall, 1990.
- 2. S.Kant Vajpayee, , " Principles of Computer Integrated Manufacturing ", Prentice Hall of India Ltd., 1999
- 3. Barry Hawker, CAD/CAM Processes, Pitman, 1988

BA	M015	AU	UTOMOTIVE SAFETY L T P (											C		
					ct Hours - 45									0	0	3
		Prer	equ	isite	– Vel	hicle	Safety	and Co	omfo	ort s	systems	, Compi	uter co	ntrol	of	1
		vehi	icle	Syst	ems.	Sense	ors and	l Actua	tors		•					
		Cou	rse	Desi	igned	by- D	Departi	ment of	Au	tom	obile l	Engineer	ing			
	BJECTIV															
The main objective of this course is to impart knowledge in introduction, safety concepts,																
safety equipments, collision warning and avoidance, comfort and convenience systemwill be																
taught to the students.																
Course Outcomes																
	<b>D1</b> - To lea															
	<b>D2</b> - To lea							-								
	<b>D3</b> - To lea					5	2	1 1								
	<b>D4</b> – To le															
CO5 - To learn the detailed study of comfort and convenience system																
Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																
			_ in		tes str		of co		n) ]	H-E	-	-Mediur	n, L-L	ωw	_	
1	COs/POs		a	b	с	d	e	f	g	5	h	i	j	k		1
2	CO1	]	H	Μ	Η		Η	Μ	H	[	Н	Н	Н	Η	]	М
	CO2			Μ				Н			L	Н				М
	CO3			Η		Μ	Η		H	[		Н		Μ		Н
	CO4	]	H				Μ	Μ			Н		Н			
	CO5				Μ		Н		H	[	М	Η		Μ		H
	CO6		L	Μ	Н		L	Н			Н	L	Μ	L		
3	Category							re		Ē	Ì					
		0	ઝ .	les	Basic Sciences(RS)	ces		Co		[0]		н	ive		ш	Ĺ
			ies	tud	c C	ien l		) al		ve		(N ⁱ ajo	ecti		Ter	ar/
		•	anit	HS	asi		ES	iiona (PC)		ecti		Non-Major Elective (NE)	El		oject/Te	Seminar/
			Humanities &	ста (	B	Sciences(BS) Engg Sciences (ES) Professional Core (PC) (PC) Core Elective (CE)						Von ecti )		Project/Term	Sei	
		;	Ξ,	S0	J J	H H		rofe		Core Elective (CE)		ΔĒ	Open Elective (OE)		$\mathbf{P}_{\mathbf{r}}$	+
								P								
$\sim$																
4	Approval		37 th Meeting of Academic Council, May 2015													
	rrw				8				,		,					

#### UNIT – I INTRODUCTION

Design of the body for safety, engine location, deceleration of vehicle inside passenger compartment, deceleration on impact with stationary and movable obstacle, concept of crumble zone, safety sandwich construction.

#### UNIT – II SAFETY CONCEPTS

Active safety: driving safety, conditional safety, perceptibility safety, operating safetypassive safety: exterior safety, interior safety, deformation behaviour of vehicle body, speed and acceleration characteristics of passenger compartment on impact.

#### UNIT – III SAFETY EOUIPMENTS

Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, tiltable steering wheel, air bags, electronic system for activating air bags, bumper design for safety, antiskid braking system, regenrative braking system, speed control devices.

#### **COLLISION WARNING AND AVOIDANCE** UNIT – IV

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions, driver fitness detection.

#### UNIT - V**COMFORT AND CONVENIENCE SYSTEM**

Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system, manual and automated wiper system, satellite control of vehicle operation for safe and fast travel.

#### **TEXT BOOK:**

1. Automotive Handbook" - 5th edition - SAE publication - 2000.Bosch - "

#### **REFERENCES:**

- 1. J.Powloski "Vehicle Body Engineering" Business books limited, London 1969.
- 2. Ronald.K.Jurgen "Automotive Electronics Handbook" Second edition- McGraw-Hill Inc., - 1999.

BA	M013	QUAL	ITY	CON	TRC	DL AN	D RE	LIABII	JTY		L	Т	I		С
		Total C	Conta	ict Ho	urs -	45					3	0	0	)	3
		Prereque Reliabit					gineeri	ng, Stat	istical Q	uality	and	Con	trol,		
		Course	Des	igned	by- I	Depart	ment of	f Auton	nobile E	nginee	ring	5			
O	BJECTIVE	E:													
Th	e main ob	jective	of t	his co	ourse	is to	impar	t know	ledge in	statis	tical	qua	ality	con	ntrol,
aco	ceptance sa	mpling,	reli	ability	engi	neerir	ng, fail	ure data	analysi	s, relia	bili	ty pi	edic	tion	and
ma	anagement	rn the detailed study ofstatistical quality control													
Co	ourse Outc	omes													
C	<b>O1</b> - To lea	arn the c	letail	led stu	dy of	fstatist	tical qu	ality co	ntrol						
C	<b>O2</b> - To lea	arn the c	letail	led stu	dy of	faccep	tance s	ampling	5						
C	<b>O3</b> -To lea	arn the detailed study of acceptance sampling rn the detailed study of reliability engineering													
C	2 <b>04</b> – To le	arn the	detai	led stu	idy o	ffailur	e data	analysis							
C	2 <b>05</b> - To lea	arn the c	letail	led stu	dy of	f reliat	oility pi	rediction	n and ma	nagem	nent				
		Mapp	oing o	of Cou	irse C	Outcon	nes wit	h Progra	am outc	omes (	POs	5)			
	(H	/M/L in	dicat	tes stre	ength	of con	rrelatio	n) H-H	ligh, M-	Mediu	m, I	L-Lo	W		
1	COs/POs	а	b	С	d	e	f	g	h	i	j		k		1
2	CO1	Н	Μ	Н		Н	Μ	Н	Н	Н	Н	[	М	]	Μ
	CO2		Μ				Μ		L	Н				]	Μ
	CO3		Н		Н	Н		Н		М			Н	]	М
	CO4	Н				Μ	Н		Н		N	1			

### 9

9

	CO5			Н		Η		H	[	Н	Н		Μ	Н
	CO6	L	Μ	Μ		L	L			Η	L	Μ	L	
3	Category	nanities .	Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 ^{tl}	^h Me	eeting	of Ac	cadem	ic Cou	ncil,	Ma	y 2015		1		

#### **UNIT I - STATISTICAL QUALITY CONTROL**

Methods and Philosophy of Statistical Process Control - Control Charts for Variables and Attributes –Cumulative sum and Exponentially weighted moving average control charts - Other SPC Techniques – Process - Capability Analysis Six sigma concept.

#### **UNIT II - ACCEPTANCE SAMPLING**

Acceptance Sampling Problem - Single sampling plans for attributes – double sampling - multiple sampling - sequential sampling - Military standards - The Dodge Roming sampling plans – Random sampling.

#### **UNIT III - RELIABILITY ENGINEERING**

Definition of reliability – Performance and reliability - Reliability requirements – System life cycle – Mean time between failures – Mean time to failure - Mortality Curve - Availability – Maintainability.

#### **UNIT IV - FAILURE DATA ANALYSIS**

Statistical failures of components – failure distributions – Bath tub curve – Negative exponential distribution – Normal distribution - log normal distribution – Gamma distribution - Weibull distribution Life distribution measurements – Accelerated life tests -Data requirements for reliability.

#### UNIT V - RELIABILITY PREDICTION AND MANAGEMENT

Failure rate estimates - Effect of environment and stress - Series and Parallel systems -RDB analysis – Standby Systems - Complex Systems - Reliability demonstration testing-Reliability growth testing - Duane curve - Risk assessment – FMEA and Fault tree analysis.

#### **TEXT BOOKS:**

1. Khanna O.P, "Statistical Quality Control", Dhanpat Rai Publications (P) Ltd., 2001.

2. Lewis E.E, "Introduction to Reliability Engineering", John Wiley and Sons, 1987.

#### **REFERENCES:**

- 1. Mohamed Zairi, "Total Quality Management for Engineers", Woodhead Publishing Limited1991.
- 2. Harvid Noori and Russel, "Production and Operations Management Total Quality and Responsiveness", McGraw-Hill Inc, 1995.
- 3. Douglus C. Montgomery, "Introduction to Statistical Quality Control", 2nd Edition, John Wiley and Sons, 1991.

9

9

9

# 9

BA	M020		Μ	EAS	URE	MEN	TS Al	ND ME	ETR	OL	OGY	Ι		Т	Р	С
		Tot	al Co	ontac	t Hou	rs - 4:	5					(*)	3	0	0	3
			-		-		-	aterials	and	Me	tallurgy	, Produ	ctic	on E	Engin	eering,
		Tril	polog	gy an	d Mea	asurer	nents									
		Cou	ırse I	Desig	gned b	y- De	epartm	nent of A	Auto	omo	bile En	gineerin	ıg			
	BJECTIV															
																Aetrology.
																mperature
	easuremen			ce ar	nd Tor	que n	neasur	ement	will	be t	aught t	o the stu	ıdeı	nts.		
-	ourse Out															
	<b>D1</b> - To le															
	<b>D2</b> - To le											1				
	<b>D3</b> - To le							1								
C	<b>)4</b> – To le							<u> </u>								
												comes (				
		H/M/L indicates strength of correlation)H-High, M-Medium, L-Lowabcdefghijk														
1	COs/POs	OsabcdefghHMHHMMH							i	.	j	k	1			
2	CO1	H M H M M					Н		N	1		Н	I	Η	Η	М
	CO2									Μ			L	М		
	CO3		H M H M								Н			Η	Н	
	CO4		H H M M H								ł	Η		L		
	CO5				Η		Η		N	1	Μ	Н			Μ	Н
	CO6		L	Μ	Μ		Μ	Н		1	L	Н	N	Ν	Η	
3	Category	/	R     M     M     M     T       Core     H     W     M     T						ective	(DE)			, , H)			
		Humanities & Social Studies (HS) Basic Sciences (BS) Engg Sciences (ES) Professional Core (PC)						ctive		Non-Major Elective (NE)	Onen Flactiva (OF)	201102		Project/Term paper/ Seminar/ Internship (H)		
							fessi (]		e Ele		-Maj (1	El6			ect/T Ser itern	
			Ц	Soc	Basi	Engg	ŏ	Pro		Cor		Non	One	Che		Proj Iı
4	Approva	.1	37 th	¹ Me	eeting	of Ac	ademi	ic Cour	ncil,	Ma	y 2015		1		I	

#### UNIT – I LINEAR MEASUREMENT

Units and standards, errors in measurement, linearity, repeatability, precision and accuracy, calibration. Linear measuring instruments, taper, wire and thickness gauge, vernier instruments, micrometer, internal measurements slip gauges and its accessories, dial gauges, comparators.

#### UNIT – II INTERFEROMETRY

Interferometry surface texture measurements, flatness testing, collimators, angular measurements, metrology of screw threads, measurement and testing of gears, measuring machines.

#### UNIT – III PRESSURE MEASUREMENT

Bourden tube, diaphragm, bellows and pressure capsules: Transducers used in pressure measurement- potentiometer, strain gauges, LVDT, capacitive and variable reluctance type transducers. Dynamic pressure measurement piezo electric and piezo resistive transducers.

9

9

Farnboro engine indicator. Low pressure measurement Mc leod gauge, Pirani gauge,thermal conductivity type pressure measurement.

#### UNIT – IV FLOW AND TEMPERATURE MEASUREMENT

Obstruction type flow meter, Positive displacement flow meters – turbine flow meter, flouted tube flowmeter, anemometer, ultrasonic flow meter, magnetic flow meters. Alcock viscous air flow meter. Temperature scales – mechanical temperature sensors, liquid in glass, vapour pressure, bimetal temperature gauges. RTD, Thermistors, thermocouples, Pyrometers.

#### UNIT – V FORCE AND TORQUE MEASUREMENT

Force measuring devices- Balances, platform scales, weigh bridges, load cells, proving ring. Torque measurement – prony brake, rope brake and fan type brakes. Dynamometers – hydraulic, electric cradle and eddy current dynamometers. Transmission dynamometers. Chassis dynamometers.

#### **TEXT BOOKS:**

- 1. Jain R.K., Engineering metrology, Khanna publishers, New Delhi, 2005
- 2. Rangan C.S., Sarma G.E and Mani V.S Instrumentation devices and systems. TMH Publishing Co. New Delhi, 2001
- 3. Beckwith T.G & Buck N.L Mechanical measurements, Oxford and IBH publishing house New Delhi, 2004

#### NON MAJOR ELECTIVE (NE)-III

BA	AM009	ROBC	DTIC	S FO	R AU	JTOM	IOBIL	E ENG	INEER	S	L	Т	P	C
		Total C	Conta	ict Ho	urs -	45					3	0	0	3
		Prereq	uisite	e – Er	iginee	ering I	Design,	Industr	ial autor	nation	and	l its a	pplic	ation
		Course	e Des	igned	by- I	Depart	ment of	f Auton	nobile E	nginee	ering	g		
O	BJECTIVE	2:												
Th	e main obje	ective o	f this	s cours	se is t	o imp	art kno	wledge	in introd	luctior	to	robot	appl	ication,
en	d effectors	and ser	sors,	, robo	t cell	design	n, robo	t progra	ımming,	indus	trial	appl	icatio	ns will
be	taught to th	e stude	nts.											
Co	ourse Outco	omes												
C	CO1 - To lea	arn the	detail	led stu	idy of	fintro	duction	to robo	ot applica	ation				
	CO2 - To lea								nsors					
	CO3 -To lea													
C	2 <b>04</b> – To le	arn the	detai	led stu	udy o	f robo	t progr	amming	r					
C	2 <b>05</b> - To lea	arn the	detail	led stu	idy of	findus	strial ap	oplicatio	ons					
		Mapı	ping	of Cou	ırse (	Outcon	nes wit	h Progra	am outc	omes	(PO	s)		
	(H	/M/L in	dicat	tes str	ength	of con	rrelatio	n) H-H	ligh, M-	Mediu	m, 1	L-Lo	W	
1	COs/POs	а	b	с	d	e	f	g	h	i	j	j	k	1
2	CO1	Η	Μ	Η		Н	Μ	Н	Н	Н	H	H	Μ	М
	CO2		Μ				Μ		L	Н				Μ
	CO3		Η		L	Η		Н		Μ			Н	Μ
	CO4	Η				Μ	Н		Н		N	Л		
	CO5			Η		Η		Н	Н	Н			Μ	Η
	CO6	L	Μ	Μ		L	Μ		Н	L	N	Л	L	

#### 9

3	Category	Humanities & Social Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term paper/ Seminar/ Internship (H)
4	Approval	37 th Me	eeting of	f Academ	ic Council,	May 2015		•	

#### **UNIT I - INTRODUCTION TO ROBOT APPLICATION**

Basic concepts - Robot anatomy - Manipulators - kinematics: Forward and inverse kinematics - Precision movement, robot specifications and Work volume, Types of Robot drives - Basic robot motions - Point to point control, continuous path control. Robot control - unit control system concept - servo and non-servo control of robot joints, adaptive and optimal control.

#### **UNIT II - END EFFECTORS AND SENSORS**

End effectors - classification - mechanical, magnetic, vacuum and adhesive gripper - gripper force analysis and design. Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range sensors - acoustic sensors Robot vision systems - Sensing and digitizing - Image processing and analysis.

#### UNIT III - ROBOT CELL DESIGN

Robot work cell design and control – Safety in Robotics – Robot cell layouts – Multiple Robots and machine interference – Robot cycle time analysis.

#### **UNIT IV - ROBOT PROGRAMMING**

Robot language classification - programming methods - off and on line programming - Lead through method - Teach pendent method - VAL systems and language, simple program.

#### **UNIT V - INDUSTRIAL APPLICATIONS**

Application of robots - Material handling - Machine loading and unloading, Assembly, Inspection, Welding, Spray painting, Mobile robot, Microbots-Recent developments in robotics-safetyconsiderations.

#### **TEXT BOOKS:**

- 1. Deb S. R, "Robotics technology and flexible automation", Tata McGraw Hill publishingcompany limited, New Delhi, 2010
- 2. Mikell P. Groover, "Industrial Robotics Technology Programming and Applications", McGraw Hill Co., Singapore, 2008.

#### REFERENCES

- 1. Klafter, R. D, Chmielewski, T. A. and Noggins, "Robot Engineering: An Integrated Approach", Prentice Hall of India Pvt. Ltd., New Delhi, 2011
- 2. Fu, K. S., Gonzalez, R. C., & Lee, C.S.G., "Robotics control, sensing, vision and Intelligence", McGraw Hill Book Co., Singapore, Digitized 2007
- 3. Craig, J. J., "Introduction to Robotics mechanics and control", AddisonWesley, London, 2008.

#### 9

9

9

9

BA	AM005	TYI	RE	TE	CHNC	DLO	GY						L	Т	]	<b>P</b>	С
		Tota	al C	lonta	ct Ho	urs - 4	45						3	0	(	)	3
		Prer	equ	isite	e – A	utom	otive (	Chassis	Sys	tem	s, Brak	ing and	Sus	pen	sion		
								nanufac				e		•			
		Cou	irse	Des	igned	by- I	Depart	ment of	f Au	tom	obile E	Enginee	ring				
O	BJECTIV	E:															
	e main ob																
	ead extrus				const	ructic	on, tyre	e buildi	ng,	gree	en tyre j	prepara	tion	& c	uring	g wi	ll be
	ight to the																
	ourse Oute			40:10	ط مذبه ط	f	fahuia										
	<u>)1 - To lea</u> )2 - To lea								atior	1							
	D2 - T0 lear								on ar	nd h	ead cor	structio	n				
	D3 - T0 lea								<u> </u>	iu o		istruction	/11				
	$\overline{)5}$ - To lea					•		-	para	tior	n & cur	ing					
						-			_			outcor	nes (	PO	s)		
		(H	H/M/L indicates strength of correlation)H-High, M-Medium, L-Lowabcdefghijkl														
1	COs/POs		a	b	с	d	e	f	g	Ş	h	i	j		k		1
2	CO1	]	H	М	Н		Н	М	Н	ł	Н	Н	Н	[	М		M
	CO2	M M L							Η					М			
	CO3		H H H H									Μ			Μ		М
	CO4	]	H				Μ	М			H		Μ	[			
	CO5		-		M		H		Н	ł	M	H		-	M		H
2	CO6		L	Μ	Μ		L	Μ			Η	L	M		L		
3	3 Category		Humanities & Social Studies	(CH)	Basic Sciences(BS)	Enge Sciences (ES)		Professional Core (PC)		Core Elective (CE)	$\overline{\mathbf{A}}$	Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/	Seminar/	Internship (H)
4	Approval		37 th	¹ Me	eting	$\frac{1}{0 \int \Delta c}$	radem	ic Cour	ncil	Ma	v 2015						
4	лрргота		57	IVIC	eing	UI A	aucill		icii,	ivia	y 2013						

#### **INTRODUCTION TO BASICS OF TYRES**

Types of tyres, tyre components and its role, tread patterns, outline of production of tires, Requirements and function of tyres - Major departments of a Tyre Industry – An explanation of their function and relation to other departments. Factors influencing the performance of tyre: Compound design, degree of mixing: (open mill & internal mixing), parameters (temperature, time, speed), degree of vulcanization - Testing and dispatch of mixes, Basic quality control and mill room control Laboratory.

#### **UNIT I - FABRIC PREPARATION**

Fabrics of the Tyre Industry: Cotton, Rayon, Nylon & steel cords - manufacture, construction

8

– styles and presentations. Bonding methods – Fabric bonding necessities of stronger fabrics leading to bonding methods developments. Wet & dry bonding systems – dip and hot stretch process for Nylon. REL-VP latex systems – and parameters for dip & hot stretch process for Nylon. Modified surface treatment needed for polyesters & glass fabric - Metal coating for steel cord. Recent developments in Radical Tyre fabrics – Aromatic Nylon (Kevlar) and other special fabric reinforcement systems and their use - Testing of dipped fabrics 'U', 'H' and other tests. Dip pick up and the relation to adhesion etc.

#### **UNIT II - CALENDERING**

Calendering process: 3 and 4 roll calenders. Skimming & frictioning process preparation of bead wrapper and chaffer-on fabrics on 3 roll calenders. Topping process on calendar - Limitation of 3 roll calenders and advantages of 4 roll calenders-process control aspects – economics - Relation between ends per inch and calendering process. Inner, outer and breaker fabrics. Compound fabric ratios and compound design consideration for different styles of fabrics - Defects of calendered fabrics and their remedies. Parameters for scrap control in fabric processes in the tyre industry requirement of total quality control involving fabric supplier's dipping, calendering and bias cutting operations. Economics of fabric usage.

#### **UNIT III - THREAD EXTRUSION AND BEAD CONSTRUCTION**

Basic concepts of Extrusion. Die swell & shrinkage phenomenon – effect of compounding parameters on these phenomenon. Die design and theoretical calculation of tread weight. Effect of viscosity & temperature on extrusion. Dimensions and weight control extusion operation parameters like feeding rate, screw speed, take off conveyor speed on tread extrusion. Extruded tread profile – critical dimensions. Duel extruder – Cap & base concept relation to tyre wear parameters like tread wear heat buildup etc. Cross head extruder wire coating process - Bias cutting and pocket making: Bias angle specification and the significance Horizontal and vertical laying of coated wore. Apex preparation on extruder and profile calender Bead wrapping and flipping operations. Single and double bead concept and preliminary calculation of bead safety factors. Width and angle adjustments splicing and identification. Bias plies pocket 3-3-2 4-4-2 ply constructions Defects of pockets wrong identification over splicing wrinkles, parallel plies etc.

#### **UNIT IV - TYRE BUILDING**

Tyre building inputs: Inner liners, plies, beads, tread, side wall and gum strips – their inspection Drum inspection for drumset, drum circumference Significance of parameters for tyre building. Size making on finished tyre and the relation to building specifications. Tyre building specifications sequence of building. Intermitant consolidation use of various cements and gum strips. Importance of the state of the Art Technology. Appraisal of Tyre building as most crucial operation correlation of some of the cured tyre & service returned tyres to the lack of building skill. Green tyre inspection procedures weight tolerance techno-commercial importance of green tyre weight. Green tyre storage considerations.

#### **UNIT V - GREEN TYRE PREPARATION & CURING**

Internal and External painting – Awling – Bagging in case of Air bag cure Bag-omatic and Air bag curing – mold lubrication- Bladder assembly bead curing rings – Dimension criticality Services to the Bag-o-matic presses Curing cycle – shaping – HPS, and hot water circulation. Dome steam cold water & vacuum cycles. Determination of optimum cure of tyres by thermocouple built tyres. Economics of curing post cure inflation of Nylon tyres cured tyre inspection. Defects of tyres – Tyre classification for defects – causes and discussions - Examination of: (i) Returned tyres (ii) Tyres for retreading - Norm of tyre adjustments for fastwear, poor retreading Bead/casing failures. Hot and cold process

8

8

8

retreading concept of total price/km run increasing competition and future trends in the industry and open house discussion.

#### **TEXT BOOK:**

1. Tom French, Tyre technology, The University of Michigan, 1989.

#### **REFERENCES:**

- 1. Blow. C. M, Rubber Technology and Manufacture, Butterworth- Heinemann, London, 1982.
- 2. Maurice Morton, "Rubber Technology", Springer, 3rd edition, 1987.
- 3. Claude Hepburn, "Rubber Technology and Manufacture", Third Edition, 2005
- 4. Kovac. F. J, "Tyre Technology", Good Year Tire & Rubber Company, 1973.
- 5. Different tyre manufacturer's websites.

BA	M011						SERC		OR		L	Т	Р	C
		,	Tota	Cont	act H	ours -	45				3	0	0	3
		]	Prere	quisit	e – N	umeri	cal Met	thod	s, Ei	nginee	ring Ma	thema	tics-I	and II.
				arch N					- ,	0	0			,
		(	Cour	se Des	signe	d by- ]	Departr	nent	of I	Mather	natics			
O	BJECTIVE:													
Th	e main object	ive o	f thi	s cour	se is	to imp	part kno	owle	dge	resour	ce sche	duling	and	networks,
	ource schedul	-		etworl	ks, in	ventoi	ry mode	els, c	luen	ing m	odels, d	ecisior	n mod	el will be
	ight to the stud		•											
	ourse Outcom													
	D1 - To learn t						1 0		<u> </u>					
	<b>D2</b> - To learn t				-				_	and ne	tworks			
-	<b>D3-</b> To learn the				·									
	$\mathbf{D4} - \mathbf{To} \text{ learn}$				•	-								
C	<b>)5</b> – To learn													
											comes (		OW	
1	COs/POs	I/L indicates strength of correlation)H-High,abcdefgh					-	i	<u>in, r-r</u>	k	1			
2	CO1	H	M	H	u	H		M H H		H	H	M	M	
2	CO1 CO2	11	M	11		11	H	H H L		H	11	IVI	M	
	CO3		H		Н	Н		H	[	Ľ	M		Н	H
	CO4	Н				M	Н		-	Н		М		
	CO5			Η		Н		Н	[	Η	Μ		Μ	Н
	CO6	L	Μ	Μ		L	L			Н	L	М	L	
3	Category	I	•											
		cia		3S)	ES	Ì	Core		Έ)		ive	)E)		))
		So	(SI	I)se	) sc				ctive (CE		or Elective VE)	) e		erm paper/ ninar/ ship (H)
		s &	les (HS)	nce	nce		ional PC)		tive		r E	tive		Term J ninar/ ship (
		tie:	die	cie	Sciences (ES)		P(					Jec		
		ani	Studie	ic S			fes		еE		M-	nE		ect/T Sen nterns
		Humanities & Social	• 1	Basic Sciences(BS)	Enge	ă	Professi (I		Core Ele		Non-Maj (Ì	Open Elective (OE)		Project/T Ser Intern
		Η		Н	Щ	l					4			цц,

4	Approval	37 th Meeting of Academic Council, May 2015
---	----------	--------------------------------------------------------

#### UNIT – I LINEAR PROGRAMMING

Introduction to phase of an operation research study-Linear programming-Formulation of the programming-Graphical method-Simplex method-two phase method-assignment problems-Transportation models Vogel's approximation method-MODI method-unbalanced transportation-degeneracy in transportation models. Integer programming

#### UNIT – II RESOURCE SCHEDULING AND NETWORKS

Resource scheduling-Sequence in job through 2 machines and 3 machines network: PERT AND CPM-Network diagrams-Shortest route-minimum spanning tree-probability of achieving completion date-Crash time-Cost analysis-resource smoothing and resource leveling

#### UNIT – III INVENTORY MODELS

Inventory models-deterministic models-production models-economic ordering quantity models-quantity discount model-stochastic inventory models-Multi product models-inventory control models in practice.

#### **UNIT – IV QUEUING MODELS**

Queuing theory-queuing system and structures-notation parameter-Poisson arrival and exponential service time-Characteristics of queuing models-Single channel and multiple models-Simulation.

#### UNIT – V DECISION MODELS

Game theory: Two person zero sum games, Replacement models: Replacement of items that deteriorate with time-equipment that fails completely and their analysis-factor for evaluation of proposals of capital expenditures and comparison of alternatives-present value average investment –rate of return-pay off period-individual and group replacement policy. Application of OR models-Case studies.

#### **TEXT BOOKS:**

1. Gupta and Hira D.S. "Operation Research", S.Chand & Sons, New Delhi, 1995

#### **REFERENCE BOOKS:**

- 1. H.A.Taha, "Operation Research", Prentice hall of India, 1999, Sixth Edition
- 2. Kanti Swarup, Gupta, P.K. and Manmohan, "Operation Research", S.Chand & Sons, 1993.

BAM012	TRANSPORT MANAGEMENT AND MOTOR	L	Т	Р	С								
	INDUSTRY												
	Total Contact Hours - 45	3	0	0	3								
	Prerequisite – Road Transport Management, Traffic Eng and Shop Control, Managerial Principles and Industrial E		0		ory								
	and Shop Control, Managerial Principles and Industrial EngineeringCourse Designed by- Department of Automobile Engineering												
OBJECTIV	E:												
The main ob	jective of this course is to impart knowledge in introduc	tion	on tra	anspor	tation								
modes, trans	port organization and development, planning for new the	ransp	ort o	rganiz	ation,								
motor vehicle	e act, accident & prevention will be taught to the students.												
<b>Course Outc</b>	comes												

#### 9

9

9

9

C	<b>)1</b> - T	o learn i	the de	etaile	d stud	v of i	ntrodi	uction c	on tr	ansi	portatio	n modes	5		
												evelopm			
_							1	0				ganizati			
		o learn				·		<u> </u>			1	0	-		
		o learn t									n				
												outcom	nes (PO	Os)	
		(										h, M-Me			W
1	COs/	'POs	a	b	с	d	e	f	g	5	h	i	j	k	1
2	CO1		Н	Μ	Η		Η	Μ	Н	I	Η	Η	Н	Μ	М
	CO2			Μ				Μ			L	Η			М
	CO3			Η		Η	Η		Н	I		Μ		Н	М
	CO4														
	CO5 H H H M H M H														
	CO5HHHMHMHCO6LMMLMHLMLCategory														
3	Cate	gory	Humanities & Social	Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)
4	Appr	oval	37 ^{tl}	¹ Me	eting	of Ac	adem	ic Cour	ncil,	Ma	y 2015				

#### UNIT I INTRODUCTION ON TRANSPORTATION MODES

Elements of Mass Transportation, History of transport, modes of transport, types of transport systems

#### UNIT II TRANSPORT ORGANIZATION AND DEVELOPMENT

Transport organization structure, operations, General set up, transport industry, government / (STU) State Government Undertakings and private Bus transport organizations. Bus depot organization structure. Truck fleet operators organization. Economics of Road Transport: Theory of fares and cost of services, fare charging, costing and statistics of operating cost

#### UNIT III PLANNING FOR NEW TRANSPORT ORGANIZATION

Geographical considerations, economic factors, vehicles used, planning of trips. Concept of BRTS operations. Organization of Transport Services: Records and fleet management, vehicles schedule, booking and reservation, statistical records and shipment center, recording of goods transport

#### UNIT IV MOTOR VEHICLE ACT

Acts & definitions, Licensing of drivers and conductors, registration of vehicles, control of transport, RTO and other regulations, offences, penalties and procedures, types of form and procedures, licensing of taxies and buses, rules and regulations, testing and passing of vehicles. Taxation: Structure, method of laying taxation, goods vehicle taxation, passenger vehicle taxation, mode of payment, tax exemption, one / life time taxation. Service Life of vehicles. Toll tax- reasons & operational management. Build Operate Transfer arrangement.

#### UNIT V ACCIDENT & PREVENTION

9

9

Vehicle accident, laws, injury, safety precautions, road transport regulations. Insurance & Finance Classes/types of insurance, accident claims and settlements, duty of driver in case of accident, hire purchase.

#### **TEXT BOOK:**

- 1. Motor Vehicles Acts, Law Publishers
- 2.Myer Kutz, "Handbook of Transportation Engineering", Volume 1: SystemsandOperations,Second Edition, Tata McGraw Hill Edition, 2011.
- 3.Coleman O'Flaherty, "Transport Planning and Traffic Engineering", 4th Edition, Butterworth Heinemann Publications, 2010.
- 4. Roger P. Roess and Elena S. Prassas, "Traffic Engineering", 4th Edition.

#### **REFERENCES:**

- 1. Schumer, Economics of transport, TMH
- 2. Fair and Williams, "Economics of transportation", East West Press.
- 3. Hudson, "Motor transportation", TMH.
- 4. M.V. Act 1988-RTO rules and regulation manual
- 5. Fuel Economy of Motor Vehicle, Allied Publishers

	PRI	NCIP	LE	S OF I	MAN	AGEN	AENT A	AND	Ι		Т	Р	С	
BBA00							/IOUR							
	Tota	l Con	tact	Hours	-45				3		0	0	3	
	Prer	equisi	te –	Profe	ssion	al Cou	rses							
		_						anageme	ent Stu	idies				
OBJE	CTIVES													
Familia	arize the st	udents	s wi	th the t	funda	mental	concep	ots of Ma	inagen	nent	and t	o higl	hlight	
the app	roaches in	orgar	nizat	tion be	havio	r								
COUR	SE OUTC	OME	S (C	Os)										
CO1	Underst	anding	g the	e conce	epts o	f Mana	agemen	t						
CO2	Knowle	Knowledge on Management Functions Understanding the Organization Theory & Approach.												
CO3	Understa	anding	Orgar	nizatio	Approach	l.								
CO4	Knowle	dge oi	n the	e Conc	epts c									
CO5	Clear in	sight o	on tl	ne fact	ors co	ontribu	ting to c	liscipline	e					
CO6	In-dept	h Und	erst	anding	; abou	t the c	oncepts	of Grou	p Beh	avioi				
Manni	ng of Cou	se Or	itco	mes wi	ith Pro	ogram	outcon	nes (POs	)					
	L indicates					-				Low				
	COs/POs	a	b	с	d	e	f	g	h	i	j		k	1
2	CO1	Н	Μ	Н		Н	М	Н	Н	Н	Η		Μ	Μ
	CO2		Μ				Μ		L	L				Μ
	CO3		Η		Н	Н		Н		Μ			Η	Μ
	CO4	Η				Н	Н		Μ		Μ			
	CO5			Η		Н		Н	Н	Η			Μ	Η
	CO6	L	Μ	М		L	Н		Н	L	Μ		L	

	3	Category	Humanities and Social Studies (HS)	Basic Sciences & Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	<ul><li>✓ Open Elective (OE)</li></ul>	Internship (PR)
4 Approva 37 th Meeting of Academic Council, May 2015	4	Approva	$37^{\text{th}}$ M	eeting of	Academic	c Council	, May 20	15		

#### UNIT -I NATURE OF MANAGEMENT

Definition – theory and practice – effective management – Management : Science of Art – Management in India. Development of Management thoughts – Taylor's – Henry Fayol – Hawthrone experiment – Barnard & Social system – Herbert Simon – Peter Drucker – Various approaches – Management thoughts.

#### UNIT- II MANAGEMENT PROCESS

Co-ordination – Functions of management – Managers and environment – External and internal Business Ethics – Planning – Fundamentals – Definitions & Features – Steps in planning – types of planning – Objectives – Concepts and features – Hierarchy of objectives – role – Process of MBO – Policy & Strategy – Decision making process – Individual Vs Group Decisions.

#### UNIT- III ORGANIZATION STRUCTURE

Organizing – Theory & Approach –Authority & Responsibility – Delegation – Centralization & Decentralization – Line & Staff Relationship – Staffing – Fundamentals – System approach – Manpower Planning – Recruitment & Selection – Training and development – Performance appraisal – Direction – Fundamentals Motivation – Theories of Motivation-Maslow's Hersberg's MaClelland's theory X,Y & Z leadership – Theories and Styles – Communication – Type – Controlling – System and Process.

#### UNIT- IV ORGANIZATIONAL BEHAVIOUR

Definition – Organization – Managerial Role and Functions – Organizational Approaches, Individual behaviour – Causes – Environmental effect – Behaviour and performance, perception – Organizational implications, Personality – Contributing factors – Dimension, Motivation – Need Theories – Process Theories – Job satisfaction, Learning and Behaviour – Learning Curves, Work Design and Approaches.

#### UNIT -V GROUP BEHAVIOUR

Groups – Contributing factors –Group Norms, types – Causes – Intergroup relations – Conflict and Resolution – Change Process –Resistance to change.

#### **TEXT BOOKS:**

- 1. Herald Knootz and Heinz weihrich, 'Essentials of Management', McGraw Hill publishing Company, Singapore International Edition, 2004.
- 2. Ties AF, Stoner and R. Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd., New Delhi -110011, 1995.

#### **REFERENCE BOOKS :**

9

9

9

9

- 1. Joseph I. Massie 'Essentials of Management', Prentice Hall of India Pvt. Ltd., New Delhi -110011, 2004.
- 2. L.M. Prasad "Principles and Practice of Management", Sultan Chand & Sons.2001
- 3. Uma Sekaran, "Organizational Behaviour", Tata McGraw Hill, 2007.

BI	BA002	EN	ΓRE	PREN	EUF	RSHIP	P DEVI	ELO	PM	ENT	]	L	Т	P		С
		Tota	al Co	ntact I	Hours	s - 45					í	3	0	C	)	3
		Prer	equis	site – I	Profe	ssiona	l Cours	ses								
		Cou	rse I	Design	ed by	- Dep	artmen	t of	Bus	iness A	Admin	istra	tion			
0	<b>BJECTIVE:</b>															
	• To learn	abou	t type	es of e	ntrep	reneu	rship.									
	• To study															
		o study about government policies for small scale industries.														
Co	ourse Outcon				•											
C	O1 - To learn difference between entrepreneur and interpreneur.															
C	CO2 – To learn about entrepreneurship development programs.															
C	CO3 – To study about economic feasibility methods.															
<b>CO4</b> – To learn about taxation.																
<b>CO5</b> – To study about corrective measures methods.																
Mapping of Course Outcomes with Program outcomes (POs)																
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	COs/POs	a	b	с	d	e	f	g	5	h	i		j	k		1
2	CO1	Η	Μ	Н		Η	Μ	H	ł	Η	Н		Η	Μ		Μ
	CO2		Μ				Μ			L	Н					Μ
	CO3		Η		Η	Η		H	ł		Μ			Η		Μ
	CO4	Η				Η	Н			Η			Μ			
	CO5			Н		Н		H	ł	Η	Н			Μ		Η
	CO6	L	Μ	Μ		L	Н			Η	L		Μ	L		
Rumanities & Social       Kuodies (HS)         Basic Sciences (BS)       Basic Sciences (BS)         Basic Sciences (BS)       Core Elective (CE)         Core Elective (CE)       Dn-Major Elective (CE)         Dn-Major Elective (OE)       Dpen Elective (OE)         Project/Term paper/       Project/Term paper/												Seminar/ Internship (H)				
		2011-0	Profession		Core El		Non-Major		△ Open El		Proje	In				
4	Approval	37 ^{ti}	h Me	eting	of A	cadem	ic Cou	ncil	l Mar	v 2015						
г	1. PP10 var	57	1010	50005	JI / K	Judenn		,	171a	, 2015						

### UNIT I ENTREPRENEURSHIP

8

Entrepreneur- Types of Entrepreneurs - Difference Between Entrepreneur and Interpreneur-Role of Entrepreneurship in Economic Growth- Women and Rural Entrepreneurship - Factors Affecting Entrepreneurial Growth. Major Motives Influencing Entrepreneur – Achievement Motivation Training, Self Rating – Business Game – Thematic Apperception Test – Stress Management – Entrepreneurship Development Programs – Need, Objectives.

## UNIT III BUSINESS

Small Enterprise – Definition, Classification – Characteristics- Ownership Structure – Project Formulation – Steps Involved in Setting up a Business – Identifying, Selecting a Good Business Opportunity- Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports- Project Appraisal- Sources of Information- Classification of Needs and Agencies.

#### UNIT IV FINANCING AND ACCOUNTING

Need – Sources of Finance- Terms Loans, Capital Structure- Financial Institutions, Management of Working Capital, Costing, Break Even Analysis, Network Analysis Techniques of PERT/ CPM – Taxation – Income Tax – Excise Duty – Sales Tax.

#### UNIT V SUPPORT TO ENTREPRENEURS

Sickness in Small Business- Concept, Magnitude, Causes and Consequences, Corrective Measures- Government Policy for Small Scale Enterprises- Growth Strategies in Small Industry – Expansion- Diversification, Joint Venture, Merger, Sub Contracting.

#### **TEXT BOOKS:**

- 1. S.S.Khanka, "Entrepreneurial Development", S. Chand & Co. Ltd., Ram Nagar, New Delhi, 1999.
- 2. Hisrich RD and Peters MP, "Entrepreneurship", 5th Edition, Tata McGraw Hill, 2002.

#### **REFERENCES:**

- 1. Rabindra Kanungo, "Entrepreneurship and Innovation", Sage Publications, New Delhi, 1999
- **2.** ED II. Faculty & External Experts-A Hand book for New Entrepreneurs Publishers: Entrepreneurial Development, Institute Of India, and Ahmedabad, 1986.

BBA003	MARKETING MANAGEMENT	L	Т	Р	С							
	Total Contact Hours - 45	3	0	0	3							
	Prerequisite – Marketing Principles and Evolution, Managerial Techniques and Entrepreneurship development											
	Course Designed by- Department of Business Administra	tion										
OBJECTIV	E:											
• To le	arn about consumer marketing.											
• To st	udy about demographic factors.											
• To st	udy about retailing process.											
<b>Course Out</b>	comes											
CO1 - To lea	arn marketing concepts between industry and consumer.											
<b>CO2</b> – To le	arn about demographic factors.											
CO3 – To study about pricing methods.												
CO4 – To learn about portfolio analysis.												
CO5 – To study about advertising and sales methods.												

#### 9

10

		Map	oping	g of Co	urse (	Dutcon	nes with	n Prog	grai	n outco	omes (PC	Ds)			
	(H/M/L indicates strength of correlation)H-High, M-Medium, L-Low1COs/POsabcdefghijk1														
1	COs/POs	a	b	с	d	e	f	g		h	i	j	k	1	
2	CO1	Η	Μ	Н		Н	Μ	Η	[	Η	Н	Н	Μ	М	
	CO2		Μ				Μ			Η	Н			М	
	CO3		Η		L	Н		Η	[	Η	Μ		Η	М	
	CO4	Η				Н	Н			Η		Μ			
	CO5			Μ		Н		Н	[	Η	Н		L	Н	
	CO6	L	Μ	Μ		L	Н			Н	L	Μ	L		
3	Category		Studies (HS)	Basic Sciences(BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term paper/ Seminar/ Internship (H)	
												,			
4	Approval	37 th	¹ Me	eting c	of Aca	demic	Counci	l, Ma	ay 2	.015					

#### UNIT I INTRODUCTION

Definition- Marketing Process- Dynamics- Needs- Wants and demands-Marketing Concepts-Environment- Mix- Types- Philosophies- Selling Vs Marketing- Organizational- Industrial Vs Consumer Marketing- Consumer Goods- Industrial Goods- Product Hierarchy.

9

9

#### UNIT II BUYING BEHAVIOUR & MARKET SEGMENTATION

Cultural- Demographic Factors- Motives- Types- Buying Decisions- Segmentation factors-Demographic- Psychographic & Geographic Segmentation- Process- Patterns.

#### UNIT IIIPRODUCT PRICING AND MARKETING RESEARCH9

Objectives- Pricing- Decisions & Pricing Methods- Pricing Management- Introduction- Uses-Process of Marketing Research.

#### UNIT IV MARKETING PLANNING AND STRATEGY FORMULATION 9

Components of marketing plan- Strategy formulation and marketing process-Implementation- Portfolio analysis- BCG- GEC grids.

#### UNIT- V ADVERTISING, SALES PROMOTION AND DISTRIBUTION 9

Characteristics- Impact- Goals- Types- Sales promotion- Point of Purchase- Unique selling proposition- Characteristics- Whole selling- Retailing- Channel Design- Logistics- Modern trends in retailing.

#### **TEXT BOOKS:**

- 1. Ramasamy and Nama Kumari, "Marketing Environment: Planning, implementation and control the Indian context",2002
- 2. Govindarajan.M, "Industrial marketing management:", Vikas Publishing Pvt. Ltd, 2003

#### **REFERENCES:**

1. Philip Kotler, Marketing Management, Analysis, Planning, Implementation and

control, 1998.

- 1. Khanna O.P. Industrial Engineering and Management, Khanna Publishers, New Delhi, 2000.
- 2. Green Paul.E and Donald Tull, "Research for marketing decisions", Prentice Hall of India. 1995
- 4 .Donald S. Tull and Hawkins, "Marketing Research", Prentice Hall of India- 1997

BE	SA 004			ING EC				D			L	Т	I	2	C
		Total C	Contact	Hours -	- 45						3	0	(	)	3
		Prerequ	uisite –	Profess	sional	Cour	ses								1
		Course	Desig	ned by -	– Dep	t. of I	Manag	ement	Studie	S					
OF	BJECTIVE	S													
		re know								f econor	nic	decis	sion	maki	ng
		re know							aspects						
		op the sl			finar	icial s	tateme	nts							
	OURSE OU			,											
CC		te the ec					_	_		olicies					
CC	02 Unders														
CC		stand the	e measu	ires of n	nation	al inc	ome, tl	ne fun	ctions of	of banks	and	l con	cep	ts of	
	globali														
CC		the conc				inagei	nent fo	or proj	ect app	raisal					
CC	05 Unders	stand acc	countin	g syster	ns										
CC		e financi													
Ma	pping of C	ourse O	utcome	es with I	Progra	am oi	utcome	es (PO	s)						
	M/L indica									Low1					
1	COs/POs	a	b	c	d	e	F	g	h	i	j		K	1	
2	CO1														
_	CO2	М			М				М					Н	
	CO3							Н			ł	H		Н	
	CO4					L			М		-	-		Н	
	CO5		L						1,1		F	H			
	CO6	L				L						-			
3	Category					-									
5	cutogory	and	-	si o	nces				Ð			<b>1</b> )			6
		<u> </u>	)	nces BS)	enc		al		tive	Ê ]		tive		ш	aa,
		titie	2	cie s (]	Scier		C IO	5	Electiv	ajo (D		lec		Te	~ .
		Humanities Social studi	3	Basic Scien & Maths (B			Professiona Core (PC)	2	E	Non-Major Elective (NI	i	Open Electi (OE)		Project/Terr	Paper Seminar/ Internation (
		um	(HS)	asic M	Engg	2	ofe	5	Core	on-lect		Oper (OE)		:oje	Paper Semin Intern
		H	μ. Έ	& B	ЩЧ	Ē	L L	)	U C		(	0.6		P1	л v ч
											٦	$\checkmark$			
	Approval	37 th	Meeti	ng of A	caden	nic Co	ouncil,	May 2	2015					<u> </u>	
4				-			,	-							

#### UNIT- I ECONOMICS, COST AND PRICING CONCEPTS

9

Economic theories – Demand analysis – Determinants of demand – Demand forecasting – Supply – Actual cost and opportunity cost – Incremental cost and sunk cost – Fixed and

variable cost – Marginal costing – Total cost – Elements of cost – Cost curves – Breakeven point and breakeven chart – Limitations of break even chart – Interpretation of break even chart – Contribution – P/V-ratio, profit-volume ratio or relationship – Price fixation – Pricing policies – Pricing methods.

UNIT -II CONCEPTS ON FIRMS AND MANUFACTURING PRACTICES 9 Firm – Industry – Market – Market structure – Diversification – Vertical integration – Merger – Horizontal integration

# UNIT-III NATIONAL INCOME, MONEY AND BANKING, ECONOMIC ENVIRONMENT

National income concepts – GNP – NNP – Methods of measuring national income – Inflation – Deflation – Kinds of money – Value of money – Functions of bank – Types of bank – Economic liberalization – Privatization – Globalization

9

9

9

#### UNIT- IV CONCEPTS OF FINANCIAL MANAGEMENT

Financial management – Scope – Objectives – Time value of money – Methods of appraising project profitability – Sources of finance – Working capital and management of working capital

# UNIT- V ACCOUNTING SYSTEM, STATEMENT AND FINANCIAL ANALYSIS

Accounting system – Systems of book-keeping – Journal – Ledger – Trail balance – Financial statements – Ratio analysis – Types of ratios – Significance – Limitations

#### **TEXT BOOKS:**

- 1. Prasanna Chandra, Financial Management (Theory & Practice) TMH
- 2. Weston & Brigham, Essentials of Managerial Financel

#### **REFERENCES**:

- 1. Pandey, I. M., -Financial Management
- 2. Fundamentals of Financial ManagementI- James C. Van Horne.
- 3. <u>http://stanford.edu/dept/MSandE</u>

		TOTAL QUALITY MANAGEMENT	L	Т	Р	C						
BBA0	08	Total Contact Hours - 45	3	0	0	3						
		Prerequisite – Professional Courses										
	Course Designed by – Dept of Mechanical Engineering											
OBJEC	BJECTIVES											
	To introduce to the student about the basic terms related to quality and concepts of											
	quality man	nagement										
	To familia	ize the student about the basic principles of total quality	/ man	ageme	ent							
	To acquain	t the student with the basic statistical tools used in proce	ess co	ontrol								
	To introdue	ce to the student about the various tools used in impleme	enting	g and c	checkii	ng						
	total qualit	y management										
	To familia	ize the student about the different quality systems used	in au	diting	the qu	ality						
	of a company/industry/organization											
COUR	COURSE OUTCOMES (COs)											
CO1	By understanding about various quality terms, it will be helpful for the student to											
	maintain quality in his/her organization											

CO2	The student will be able to formulate new plans/procedures to be implemented to achieve the desired quality status by knowing about the various principles of quality management
CO3	The student will be able to analyze the periodical data in quality control using statistical tools
CO4	The total quality management tools will help the student to understand the procedures in measuring the quality of the organization/process and will also enable him/her to identify the parameters that are improving/depriving the quality
CO5	By knowing about the quality ISO systems, the student will be maintain processes/documentation properly so that the quality maintained by his/her organization gets recognized

	apping of Co					0				,					
(H	(H/M/L indicates strength of correlation)H-High, M-Medium, L-Low1COs/POsabcdefghiik1														
1	COs/POs	a	b	c	d	e	f	g	]	h	i	j	k		1
2	CO1			М		Η		Μ	]	H	М	L	L		М
	CO2			М		Η		Μ	]	H	М	L	L		М
	CO3			М		Η		Μ	]	H	М	L	L		М
	CO4			Н		Н		Μ	]	H	М	L	L		М
	CO5			Н		Н		М	]	H	М	L	L		М
	CO6			Н		Н		М	]	H	М	L	L		М
3	Category	Humanities &	Social Studies (HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional		Core Elective	(CE)	<ul> <li>Non-Major</li> <li>Elective (NE)</li> </ul>	Open Elective	(GOE	Project/Term	Paper Seminar/ Internship (PR)
4	4 Approval 37 th Meeting of Academic Council, May 2015														
CO	CO6 As a whole the students will understand the importance of quality in all the fields of engineering and the social circle.														

#### UNIT I INTRODUCTION

Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs – Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation

#### UNIT II TQM PRINCIPLES

Customer satisfaction – Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures – Basic Concepts, Strategy, Performance Measure.

9

#### UNIT III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

#### UNIT IV TQM TOOLS

Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) – Concept, Improvement Needs, FMEA – Stages of FMEA.

#### UNIT V QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System –Elements, Implementation of Quality System, Documentation, Quality Auditing, TS16949, ISO 14000 – Concept, Requirements and Benefits

#### **TEXT BOOKS:**

3. Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education, Inc.2003. (Indian reprint 2004). ISBN 81-297-0260-6.

#### **REFERENCE BOOKS:**

- 1. Evans. J. R. & Lindsay. W,M "The Management and Control of Quality", (5th Edition),South-Western (Thomson Learning), 2002 (ISBN 0-324-06680-5).
- 2. Feigenbaum.A.V. "Total Quality Management", McGraw-Hill, 1991.
- 3. Oakland.J.S. "Total Quality Management", Butterworth Heinemann Ltd., Oxford, 1989.
- 4. Narayana V. and Sreenivasan, N.S. "Quality Management Concepts and Tasks", New Age International 1996.
- 5. Zeiri. "Total Quality Management for Engineers", Wood Head Publishers, 1991.
- 6. freecomputerbooks.com/Total-Quality-Management-

<b>BBA0</b>	06 INDIAN CONSTITUTION AND SOCIETY	L	Т	Р	C
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Professional Courses				
	Course Designed by – Department of Management studi	es			
OBJEC	CTIVES				
To kno	w about Indian constitution. To know about central and state gov	ernme	ent		
functio	nalities in India. To know about Indian society.				
COUR	SE OUTCOMES (COs)				
CO1	To understand the historical background and fundamental rights				
CO2	To understand the structure and functions of governments				
CO3	To understand the Indian social structure				
CO4	To gain knowledge in Indian federal system				
CO5	To gain knowledge Indian social structure				
CO6	To gain knowledge the right of women, children and SC&ST				

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low 9

9

1	COs/POs	a	b	c	d	e	f	g	h		i	j	k	1
2	CO1	L		Η										
	CO2					Η			Μ		L			
	CO3	L					Н				L			
	CO4							Μ			L			L
	CO5	L					М		Μ					L
	CO6													
3	Category	Humanities and	Social studies (HS)	Basic Sciences	& Maths (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective		Non-Maior	Elective (NE)	Open Elective (OF)	Project/Term	Paper Seminar/ Internship (PR)
4	Approval	37 th	Mee	ting	of Aca	demic (	Council,	, May	2015	5				

#### UNIT I HISTORY

Historical Background – Constituent Assembly of India – Philosophical foundations of the Indian Constitution – Preamble – Fundamental Rights – Directive Principles of State Policy – Fundamental Duties – Citizenship – Constitutional Remedies for citizens.

#### UNIT II CENTRAL STRUCTURE

Union Government – Structures of the Union Government and Functions – President – Vice President – Prime Minister – Cabinet – Parliament – Supreme Court of India – Judicial Review.

#### UNIT III STATE STRUCTURE

State Government – Structure and Functions – Governor – Chief Minister – Cabinet – State Legislature – Judicial System in States – High Courts and other Subordinate Courts.

#### UNIT IV PARLIAMENTARY SYSTEM

Indian Federal System – Center – State Relations – President's Rule – Constitutional Amendments – Constitutional Functionaries - Assessment of working of the Parliamentary System in India.

#### UNIT V SOCIAL STRUCTURE

Society : Nature, Meaning and definition; Indian Social Structure; Castle, Religion, Language in India; Constitutional Remedies for citizens – Political Parties and Pressure Groups; Right of Women, Children and Scheduled Castes and Scheduled Tribes and other Weaker Sections.

#### **TEXT BOOKS:**

- 1. Durga Das Basu, "Introduction to the Constitution of India ", Prentice Hall of India, New Delhi.
- 2. R.C.Agarwal, "(1997) Indian Political System ", S.Chand and Company, New Delhi.

#### **REFERENCES**:

1. Sharma, Brij Kishore, "Introduction to the Constitution of India:, Prentice Hall of India, New Delhi.

9

9

9

9

- 2. U.R.Gahai, "(1998) Indian Political System ", New Academic Publishing House, Jalaendhar.
- 3. R.N. Sharma, "Indian Social Problems", Media Promoters and Publishers Pvt. Ltd.
- 4. Yogendra Singh, "(1997) Social Stratification and Charge in India ", Manohar, New Delhi
- 5. Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi.
- 6. K.L.Sharma, " (1997) Social Stratification in India: Issues and Themes ", Jawaharlal Nehru University, New Delhi.
- 7. www.cgsird.gov.in/constitution.pdf