

FACULTY OF ENGINEERING AND TECHNOLOGY

REGULATIONS 2015

&

CURRICULUM & SYLLABUS

CHOICE BASED CREDIT SYSTEM

B. TECH – INDUSTRIAL BIO TECHNOLOGY

(FULL TIME)

I-VIII SEMESTERS

DEPARTMENT OF INDUSTRIAL BIO TECHNOLOGY

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY

NO: 173, AGARAM ROAD, SELAIYUR,

CHENNAI -600 073, TAMIL NADU

FACULTY OF ENGINEERING AND TECHNOLOGY

REGULATIONS 2015

CHOICE BASED CREDIT SYSTEM

DEGREE OF BACHELOR OF TECHNOLOGY

(EIGHT SEMESTERS)

(Applicable to the batches admitted from July 2015)

1.0 PRELIMINARY DEFINITIONS AND NOMENCLATURE

In these Regulations, unless the context otherwise requires:

- i. "Programme" means Degree Programme, that is B.Tech. Degree Programme.
- ii. "**Discipline**" means specialization or discipline of B.Tech. Degree Programme, like Civil Engineering, Electrical and Electronics Engineering, information Technology, etc.
- iii. "**Course**" means a theory or practical subject that is normally studied in a semester, like Mathematics, Physics, Engineering Graphics etc.
- iv. **"Head of the Institution"** means the Dean of the Institution who is responsible for all academic activities of that College/Institution and for implementation of relevant rules of these Regulations.
- v. "University" means Bharath Institute of Higher Education & Research (BIHER)

2.0 PREAMBLE

The 'Outcome Based Education (OBE)' Process is introduced to ensure that the required outcomes (knowledge, skills and attitude / behavior) are acquired by the learners of a programme. With the OBE process in mind, our educational system for the Faculty of Engineering and Technology has been framed to provide the needful scope for the learners through the Choice Based Credit System (CBCS) that will pave the path to strengthen their knowledge, skills and attitude / behavior. The CBCS offers flexibility to learners which include large number of electives, flexible pace for earning credits and audit courses.

2.1 THE OBJECTIVES OF CHOICE BASED CREDIT SYSTEM (CBCS):

- To offer the right blend of Core, Humanities & Social Sciences, Engineering Sciences and Basic Science courses to facilitate the learners to acquire the needful outcomes.
- > To facilitate students to choose open electives of their choice to acquire knowledge in the areas of their interest.
- To elevate the level of knowledge, skills and attitude/behavior on par with the students across the globe.

- To offer programmes in an open student centric environment with purpose, needful foundations, breadth (exposure for optimal learning) and professionalism.
- ➢ To learn at students' own pace
- > To opt for additional courses and achieve more than the required credits
- > To opt for interdisciplinary approach for learning
- > To opt for Inter college/University migration within the country and outside with transfer of Credits.
- To have more scope to enhance students skills and more scope of taking up projects and assignments, vocational training, including entrepreneurship.
- > To improve the job opportunities of students
- > To enable potential employers assess the performance of students on a scientific scale.

The curriculum and syllabi for B.Tech programmes confirm to outcome based teachinglearning process based on the following Programme Educational Objectives.

2.2 PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the chosen field of Engineering and Technology.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in the appropriate field of Engineering and Technology, designing, implementing, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: SKILL:

To provide Industry based training for developing professional skills and soft skills such as proficiency in languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

In general the following Program Outcomes have been identified and the curricula have been structured in such a way that each of the courses meets these outcomes. The Programme Educational Objectives and Programme Outcomes are well defined and aligned with the Vision and Mission of each of the Department and the University.

2.3 PROGRAMME OUTCOMES (POs)

Engineering Graduate will have

- a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) The ability to identify, formulate, and solve engineering problems
- c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d) The ability to design and conduct experiments, as well as to analyze and interpret data
- e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f) The ability to apply reasoning informed by the knowledge of contemporary issues
- g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) The ability to understand professional and ethical responsibility and apply them in engineering practices
- i) The ability to function on multidisciplinary teams
- j) The ability to communicate effectively with the engineering community and with society at large
- k) The ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- 1) The ability to recognize the need for, and an ability to engage in life-long learning

3.0 ADMISSION

- **3.1** Candidates seeking admission to the first semester of the eight semester B.Tech. Degree Programme: shall have passed the Higher Secondary Examinations of (10+2) Curriculum (Academic Stream) prescribed by the Government of Tamil Nadu with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III for Engineering group of courses and Physics, Chemistry and Biology for Bio group of courses (Industrial Bio Tech, Bio-Informatics, Genetic Engg and Bio-Medical Engg) or any examination of any other University or authority accepted by the Board of Management of University as equivalent thereto.
- **3.2** The candidates who have passed the Higher Secondary Examination (Vocational groups in Engineering/Technology) of the Government of Tamil Nadu, shall also be eligible for admission to the first 1st year programme.
- **3.3** The candidates who have passed the Diploma in Engineering / Technology, after passing 10th standard of school education conducted by the State Board of Technical Education and

training, shall be eligible for admission through Lateral entry system to the third semester of the B.Tech. Degree Programmes

3.4 The eligibility criteria such as marks, number of attempts and physical fitness shall be as prescribed by the Board of Management of University and UGC from time to time

4.0 STRUCTURE OF PROGRAMMES

4.1 Every Programme will have curricula with syllabi consisting of theory and practical courses.

The curriculum is structured to achieve the Programme Educational Objectives (PEOs) and the corresponding Programme Outcomes (POs).

4.2 The syllabus for each course is designed based on Course Objectives and Course Outcomes (COs). COs are mapped with the POs in order to ensure the respective PO

4.3 Outline of Choice Based Credit System:

- a. **Humanity and Social Studies:** Generally a course in language, value education, Personality Development, Environmental Sciences and Ethics.
- b. **Basic Sciences:** Foundation courses like Maths, Physics, Chemistry, and Biology required to understand the Engineering Courses.
- c. **Engg Sciences:** Foundation courses like Basic Civil, Mechanical, Electrical, Electronics, Computer and Cell Biology to lay foundation to understand the core and other allied engineering & technology courses.
- d. **Professional Core Courses:** Courses which should compulsorily be studied by a candidate as core requirement are termed as Professional Core courses.
- e. **Core Elective Courses:** Generally a course which can be chosen from a pool of courses for specializing in a specific area within the discipline/domain of the core curriculum.
- f. **Non Major Elective Courses:** a course which can be chosen from a pool of courses supportive to the discipline or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the candidate's proficiency/skill.
- g. **Open Elective Courses:** a course that would improve his/her employability such as advanced technology courses offered by the industries or a course which the student thinks that would add value for his/her career.
- h. **Projects & Research:** Project work/Dissertation and Term paper, Internship, Technical Seminar and Comprehension.

Course Work – Subject Area	Credits		Suggested
	Minimum	Maximum	of Credits
Humanities and Social Sciences(HSS): Soft skills, Value Education & Professional Ethics,	19	21	20

Languages, Environmental Science, Aptitude, Personality Development, NCC/NSS/NSO/			
roga etc			
Basic Sciences(BS): including Maths,	28	31	29
Physics, Chemistry and Biology,			
Engineering Sciences (ES): Basic Civil	18	20	18
Engg, Electrical Engg, Mechanical Engg,			
Electronics Engg, Computer, etc.			
Professional Core (PC) & Core Electives	100	104	100
(CE): subjects under Core Engg, relevant to			
the chosen specialization/branch			
Non Major and Open Electives (NE & OE):	15	15	15
relevant to the chosen specialization/branch,			
other Technical, emerging subject areas, etc.			
Project Work & Research (PR): includes	13	17	15
Project work, Term Paper, Seminar and/or			
internship in industry or elsewhere, etc.			
Total credits for whole programmes:	174	208	197
			(195-200)
			credits

4.4 The details of credit allocation are given below in the **Table**

Nature of the Course	Periods / Hours per Week	Credits
	3	3
Theory	4	4
Laboratory	2 or 3	1
Theory + Laboratory	2 + 2	3
Tutorial	2	1
Mini Project1	2	1
Term Paper	4	2
Tech Seminar/Industrial Training (2 weeks)	2	1
Project Work (Eighth Semester)	18 (Minimum)	9

Mini project, Technical Seminar and Industrial Training are also given 1 to 2 credits depending on the amount of time allotted based on the specific requirement of the branch concerned.

- 4.5 Each semester curriculum shall normally have a blend of theory courses not exceeding 7 and practical courses not exceeding 4. The students are permitted to register for a minimum of 16 credits and maximum of 30 credits in a semester.
- 4.6 For the award of the degree, a student has to earn certain minimum total number of credits specified in the curriculum of the relevant branch of study. The minimum will be between 195-200 credits depending on the branch of study.
- 4.7 The medium of instruction, examinations and project report will be English, except for courses on language other than English.

5.0 DURATION OF THE PROGRAMME:

- 4.1 The minimum period for completion of the B.Tech Programmes for HSC (or equivalent) candidates shall be eight (8) semesters/four (4) years and a maximum period of twelve (12) semesters/ six (6) years.
- 4.2 The minimum period for completion of the B.Tech Programmes (Lateral Entry) shall be eight (6) semesters/three (3) years and a maximum period of twelve (10) semesters/ five (5) years.
- 4.3. In exceptional circumstance a further extension of two more semesters/one year shall be granted. During the extended period the student shall be considered as a private candidate and also not be eligible for ranking.
- 4.4 Each semester shall normally consist of 90 working days with 450 hours. The Head of the Institution shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus and that the teacher teaches the full content of the specified syllabus for the course being taught. End –Semester Examination will ordinarily be at the end of each semester.

6.0 ATTENDANCE REQUIREMENTS FOR COMPLETION OF THE SEMESTER

- 6.1 A Candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester:
- 6.1.1. Every student is expected to earn at least 75% attendance.
- 6.1.2 However, a candidate who could secure attendance between 65% and 74% only in one particular semester due to medical reasons (hospitalization / accident / specific illness) is given exemptions of 10% of attendance on production of Medical Certificate.
- 6.1.3 Students who go for participating in Seminar or Conference will be given on duty permission. The candidate shall submit the on duty participation certificate to the HOD who will in turn recommend and submit to the Head of the Institution for the approval. The approved certificates will be forwarded to the Controller of Examinations for record.

6.2 Candidates who do not satisfy the clauses 6.1.2 and 6.1.3 will not be permitted to write the End-Semester Examinations of the subject and are not permitted to go to the next semester, the detained semester should be repeated in the next academic year. When a student fulfills the requirement of overall attendance in a semester as per the clause 6.1.2 and 6.1.3 but fails to fulfill the attendance requirement for some of the courses, such courses should be repeated in the next academic year.

7.0 CLASS ADVISOR AND STUDENT COUNSELOR

7.1 Class Advisor

Head of the Department will allot one faculty member to each class as class advisor. The role of the class advisor is to

- i. Monitor the attendance of the class,
- ii. Class work done by the faculty,
- iii. Circulate the notices and circulars pertaining to the class, class time table, test schedule, examination time table, meeting schedule, minutes of the class committee meetings, etc.,
- iv. Maintain all important documents of the students for reference/inspection by all committees
- iv. Work closely with the student counselors on matters related to students attached to the student counselor and update the students record of the students of the class..

7.2 Student Counselor (Mentor)

HOD will assign a Student Counselor (Mentor) for every 15 students at the time of admission in the first semester who will continue to be the mentor for these students till they graduate. By guiding and counseling students, teachers can create a greater sense of belongingness amongst our student community. The student counselor will monitor the courses undertaken by the students, check attendance and progress of the students and counsel them periodically. The student counselors should ensure that each student is made aware of the various options for growth and are monitored and guided to become overall performers and help the students to select and work for career choices of their interest. The student counselors shall update and maintain the record of each student attached to them. The student counselors shall also help the class advisors to update the record card of students attached to them. The student counselor may also discuss with the class advisor and HOD and parents about the progress of the students.

8.0 CLASS COMMITTEE

There shall be a class committee for each class in a semester.

- **8.1** The class committee for a class under a particular branch is normally constituted by the Head of the Department. However, if the students of different branches are mixed in a class of the first semester (generally common to all branches), the class committee is to be constituted by the first year class coordinator.
- 8.2 The class committee shall be constituted on the first working day of any semester or earlier.

- **8.3** At least 4 student representatives (usually 2 boys and 2 girls) shall be included in the class committee.
- **8.4** A class committee will consists of teachers of the concerned class, student representatives, class advisor, student counselors and a chairperson who is not normally teaching the class,. The function of the class committee include
 - Solving problems experienced by students in the class room and in the laboratories.
 - Clarifying the regulations of the degree programme and the details of rules
 - Informing the student representatives, the academic schedule including the dates of assessments and the syllabus coverage for each assessment.
 - Analyzing the performance of the students of the class after each test and finding the ways and means of solving the problems, if any.
 - The committee shall device suitable methods for improving the performance of slow learners identified.
- **8.5** The Head of the Institution may participate in any class committee of the institution.
- **8.6** The chairperson is required to prepare the minutes of every meeting, submit the same to Head of the Institution within two days of the meeting and arrange to circulate it among the concerned students and teachers. If there are some points in the minutes requiring action by the institution, the same shall be brought to the notice of the Head of the Institution by the chairperson of the class committee through respective HODs.
- **8.7** The first meeting of the class committee shall be held within one week from the date of commencement of the semester, in order to inform the students about the nature and weightage of assessments within the framework of the Regulations. Two or three subsequent meetings may be held at suitable intervals. During these meetings the student members representing the entire class, shall meaningfully interact and express the opinions and suggestions of the class students to improve the effectiveness of the teaching-learning process.

9.0 COURSE COMMITTEE FOR COMMON COURSES

Each common theory course offered to more than one discipline or group, shall have a "Course Committee" comprising all the teachers teaching the common course with one of them nominated as Course Coordinator. The nomination of the Course Coordinator shall be made by the Head of the Department / Head of the Institution depending upon whether all the teachers teaching the common course belong to a single department or to several departments. The 'Course committee' shall meet as often as possible and ensure uniform scheme of evaluation for the test. Wherever it is feasible, the course committee may also prepare a common question paper for the test(s).

10.0 PROCEDURE FOR AWARDING MARKS FOR INTERNAL ASSESSMENT

10.1 Every teacher is required to maintain an 'ATTENDANCE AND ASSESSMENT RECORD' which consists of attendance marked in each lecture or practical or project work class, the test marks and the record of class work (topic covered), separately for each course. This should be submitted to the Head of the department periodically (at least three times in a semester) for checking the syllabus coverage and the records of test marks and attendance. The Head of the department will put his/her signature and date after due verification. At the end of the semester, the record should be verified by the Head of the Institution who will keep this document in safe custody (for two years). Any inspection team appointed by the University may inspect the records of attendance and assessment of both current and previous semesters.

% of Attendance	Marks
<75	Nil
76-80	1
81-85	2
86-90	3
91-95	4
96-100	5

10.1.1 The marks allocated for attendance is given in **Table**.

10.2 Theory Courses

There will be two periodical tests, each carrying weightage of 5 marks and one model examination carrying weightage of 10 marks. The distribution of marks for various components for the Internal Assessment is shown below in the table:

S.No	Components for Internal Assessment	Syllabus Coverage for the test / exam	Duration of the test in Minutes.	Marks (max.)
01.	Internal Test – I	2 Units of the Syllabus	90	5
02.	Internal Test – II	Next 2 Units of the Syllabus	90	5
03	Model Test	Full Syllabus	180	10
04	Seminar/Assignment/ Online Test/Quiz	-	-	5

06.	Attendance (Refer Clause 10.1.1)	-	-	5
		Total		30

10.3 Practical Courses:

Every practical exercise / experiment in all practical courses will be evaluated based on the conduct of exercise / experiment and records maintained by the students. There will be at least **one** model practical examination.

The criteria for awarding marks for internal assessment are given in Table below.

Items	Marks (Maximum)
Observation	7.50
Record	7.50
Model Practical	20
Attendance { Refer – 10.1.1 }	5
Total	40

10.4 Project Work

Project work may be assigned to a single student or to a group of students not exceeding 4 per group. For Project work out of 100 marks, the maximum marks for Continuous Assessment is fixed as 40. The Head of the Department shall constitute a review committee for each programme. There shall be a minimum of 3 members in the review committee. The project Guide will be one of the members of the Review Committee.

There shall be two assessments (each 100 marks) during the semester by a review committee. The student shall make presentation on the progress made before the committee. The total marks obtained in the two assessment shall be 40 marks

The continuous assessment marks for Project Work will be distributed as given below:

Continuous Assessment 40 Marks				
Review I (20 Marks)Review II (20 Marks)				
Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	
14	6	14	6	

10.5 Seminar / Professional Practices:

The seminar / Professional Practices shall carry 100 marks and shall be evaluated through continuous assessment only. Every student is expected to present a minimum of 2 seminars per semester before the evaluation committee and for each seminar, marks can be equally apportioned. The three member committee appointed by the Head of the Department will evaluate the seminar and at the end of the semester the marks can be consolidated and taken as the final mark. The evaluation shall be based on the seminar paper / report (40%), presentation (40%) and response to the questions asked during presentation (20%).

10.6 Industrial / Practical Training / Internship / Mini Project

The Industrial / Practical Training shall carry 100 marks and shall be evaluated through continuous assessment only. At the end of Industrial / Practical training / internship / Summer Project, the student shall submit a brief report on the training undergone and a certificate from the organization concerned. The evaluation will be made based on this report and a Viva-Voce Examination, conducted internally by a three member Departmental Committee constituted by the Head of the Department. Certificates (issued by the Organization) submitted by the student shall be attached to the mark list and sent to the Controller of Examinations by the Head of the Department.

10.7 Term Paper

- i. The students shall carry out this course under the guidance / supervision of a faculty. The "Term Paper" course is individual based.
- **ii.** For the Term Paper course out of 100 marks, the maximum marks for Continuous Assessment is fixed as 40. The Head of the Department shall constitute a review committee for this course. There shall be two reviews and each review carries 20 marks. Every student is expected to identify a topic with substantial literature survey and the technological development of the topic and should submit a report by end of the semester and the students should also prepare a paper on the subject matter of the Term Paper and submit the same to some journal for publication or to a conference for presentation.
- **iii.** At the end of the semester a viva-voce examination will be conducted by an external, internal examiners and the guide on the term paper report submitted by the students. The report evaluation and Viva Voce shall carry a max mark of 30 marks and the paper prepared for the publication shall carry a max mark of 30 based on the quality.

10.8 Comprehension

The comprehension course is offered as two different courses, one in the V semester and the other in the VIII semester, each carrying one credit. The comprehension courses are evaluated by Viva-Voce examination on the subjects studied till that semester of assessment.

10.9 Massive Open Online Course (MOOC)

The students are permitted to opt for Massive Open Online Course(s) listed in the UGC website or any other Organisation or Institution either within India or Abroad as Open Elective with 3 credits. The Assessment method if specified any for the respective course in the web site or as standard procedure followed for any theory course as per the regulation shall be followed.

11.0 END SEMESTER EXAMINATIONS:

11.1. Theory Courses

The examinations shall ordinarily be conducted between October and December during the odd semesters and between April and June in the even semesters The End Semester Examination question paper pattern is given below:

Syllabus	Duration	Question Pattern
Coverage	of the	
	Exam in	
	Hours	
Full Syllabus	3	Part - A, 10x2 = 20
		Short answer Type, 10 questions each carrying
		2 marks. 2 questions from each unit.
		Part $- B, 5x6 = 30$
		Para /Analytical Type, 5 questions, one from each unit EITHER - OR type.
		Part - C, 5x10 = 50
		Essay/Design/Analytical Type, 5 questions out of 7 covering the full syllabus
		Max mark = 100

However, the question paper pattern for courses in engineering graphics and machine drawing may be designed differently to suit the specific needs of the courses.

11.2. Practical Courses

End Semester examination for practical courses will be conducted jointly by one internal examiner and one external examiner appointed by the Controller of Examinations with the recommendation of the Head of the Dept.

11.3. The maximum marks for each theory shall be 100 comprising of 30 marks for internal assessment and 70 marks for the end semester examinations conducted by the University.

The maximum marks for each practical course (including the project Work and Viva Voce Examination in the Eighth Semester) shall be 100 comprising of 40 marks for internal assessment and 60 marks for the end semester examinations conducted by the University.

11.4 PROJECT WORK

The student(s) is expected to submit the project report on or before the last working day of the semester. The University examination for the project work shall consist of evaluation of the final project report submitted by the student or students of the project group by an external examiner followed by a viva-voce examination conducted separately for each student by a committee consisting of an external examiner and an internal examiner. The Controller of Examinations shall appoint Internal and External Examiners from the panel of examiners recommended by the Head of the Department for the End Semester Examinations of the Project Work.

The End Semester Examination marks for the Project Work and for the Viva-Voce Examination will be distributed as given below.

End Semester Examination 60 Marks			
Report Evaluation (20 Marks)Viva – Voce (40 Marks)			
External Examiner	External Examiner	Internal Examiner	
20	20	20	

If the project report is not submitted on or before the specified deadline, an extension of time up to a maximum of 30 days may be given for the submission of project work with due approval obtained from the Head of the Department. If the project report is not submitted even beyond the extended time then the student(s) is deemed to have failed in the Project Work. The failed student(s) shall register for the same in the subsequent semester and repeat the project work again.

12.0 SUPPLEMENTRY EXAMINATIONS

After the publication of eighth semester results, supplementary examinations will be conducted to the students who have failed in any of theory courses in any of the semesters with no arrears in the practical Examinations. Interested students should register for the examinations required by them. Controller of examination will schedule supplementary examinations after the last date of registering for the supplementary examinations.

Pattern of evaluation will be the same as that of the end semester examinations. For non theory examinations supplementary examinations are not applicable.

13.0 MALPRACTICE

If a student indulges in malpractice in any internal test/model examination/end semester

examination, he/she shall be liable for punitive action as recommended by the Malpractice committee.

14.0 REQUIREMENTS FOR APPEARING FOR UNIVERSITY EXAMINATIONS

A candidate shall normally be permitted to appear for the semester Examinations of the current semester if he/she has satisfied the semester completion requirements (Vide Clause 6.0) and has registered for examination in all courses of the semester

15.0 PASSING REQUIREMENTS

- **15.1** A candidate who secures not less than 50% of total marks earned in the internal and end semester examination put together in theory course or practical courses or project work shall be declared to have passed the examination in that course.
- **15.2** If a candidate fails to secure a pass in a particular course, it is mandatory that he/she shall register and reappear for the examination in that course during the subsequent semester when examination is conducted in that course; he/she should continue to register and reappear for the examinations till he / she secures a pass. However the internal assessment marks obtained by the candidate in the first attempt shall be retained and considered valid for all subsequent attempts. In exceptional cases, a candidate may be permitted by the Head of the Institution to redo the courses for improving the internal assessments marks.

16.0. METHODS FOR REDRESSAL OF GRIEVANCES IN EVALUATION

16.1. Students who are not satisfied with the grades awarded can seek redressal by the methods given in the Table below:

Redressal Sought	Methodology
Request for photocopy of the answer script and or request for revaluation	To apply to COE within 7 days of declaration of the result/within 7 days of obtaining the photocopy along with the payment of the prescribed fee.

These are applicable only for theory courses in regular and arrear end semester examinations.

16.2 Challenge of Evaluation

If one is not satisfied with the result, can make an appeal to the CoE for the review of answer scripts after paying the prescribed fee within 7 days after the declaration of the examination result/revaluation result.

17.0 AWARD OF LETTER GRADES

All assessments of a course will be done on absolute marks basis. However, for the purpose of reporting the performance of a candidate, letter grades, each carrying certain number of

Range of total marks	Letter Grade	Grade points
90-100	S	10
80-89	А	9
70-79	В	8
60-69	С	7
55-59	D	6
50-54	Е	5
0 to 49	U	0
Incomplete	Ι	0
Withdrawal	W	0

points, will be awarded as per the range of total marks (out of 100) obtained by the candidate as detailed below:

"U" denotes failure in the course.

"I" denotes incomplete as per clause 6.0 and hence prevention from writing End-Semester examination.

"W" denotes withdrawal from the course.

After results are declared, Grade Sheets will be issued to each student which will contain the following details:

The list of courses enrolled during the semester and the grade scored.

The Cumulative Grade Point Average (CGPA) of all courses enrolled from first semester onwards.

GPA for a semester is the ratio of the sum of the products of the number of credits for courses acquired and the corresponding grade points to the grades scored in those courses taken for all the courses to the sum of the number of credits of all the courses in the semester.

GPA = Sum of (C*GP)/Sum of C

CGPA will be calculated in a similar manner, considering all the courses enrolled from first semester. "U", "I" and "W" grades will be excluded for calculating GPA and CGPA.

18.0 ELIGIBILITY FOR THE AWARD OF THE DEGREE

A student shall be declared to be eligible for the award of the B.Tech Degree provided the student has

- **18.1** Successfully completed the course requirement and has passed all the prescribed examinations in all the 8 semesters (6 semesters for lateral entry) within a maximum period of 7 years (6 years for lateral entry) reckoned from the commencement of the first semester to which the candidate was admitted.
- **18.2** No disciplinary action is pending against him/her.
- 18.3 The award of the degree must be approved by the Board of Management of the University.

19.0 CLASSIFICATION OF THE DEGREE AWARDED

- **19.1** A candidate who qualifies for the award of the degree (vide clause 18.0) having passed examination in all the courses of all the eight (8) semesters (six (6) semesters in the case of lateral entry) in his/her First Appearance within eight (8) consecutive semesters (six (6) consecutive semesters for lateral entry) and securing a CGPA of not less than 8.0 shall be declared to have passed the examination in **first class with distinction**. For this purpose the withdrawal from examination (vide clause 20.0) will not be construed as an appearance. Further authorized break of study (vide clause 21.3) will not be counted for the purpose of classification.
- **19.2** A candidate who qualifies for the award of the degree (vide clause 18.0) having passed the examination in all the courses within a maximum period of twelve (12) semesters (ten (10) semesters for lateral entry) and securing a CGPA of not less than 6.50 shall be declared to have passed the examination in **First Class**. For this purpose the authorized break of study (vide clause 21.3) will not be counted for the purpose of classification.
- 19.3 All other candidates (not covered in clauses 19.1 and 19.2) who qualify for the award of the degree (vide Clause 18.0) within a maximum period of twelve (12) semesters (ten (10) semesters for lateral entry) shall be declared to have passed the examination in Second Class.
- 19.4 All other candidates (not covered in clauses 19.1, 19.2 & 19.3) who qualify for the award of the degree during the extended period as per the clause 4.2 shall be considered as a private candidate and also not be eligible for ranking and they shall be eligible to get only a **pass** certificate.
- **19.5** A candidate who is absent in semester examination in a course / project work after having registered for the same shall be considered to have appeared in that examination for the purpose of classification.

20.0 PROVISION FOR WITHDRAWAL FROM END-SEMESTER EXAMINATION

- **20.1** A candidate may for valid reasons be granted permission to withdraw from appearing for the examination of only any one semester examination during the entire duration of the degree programme. Also only one application for withdrawal is permitted for that semester examination in which withdrawal is sought.
- **20.2** Withdrawal application shall be valid only if the candidate is otherwise eligible to write examination and if it is made within the prescribed number of days prior to the

commencement of the examination in that course or courses and also recommended by the Head of the Department and the Head of the Institution.

- **20.3** A candidate for valid reasons like sudden illness or accident or unexpected natural calamities not able to be present in the examination hall in time or absent for the examination may seek post permission for the withdrawal from the examination.
- 20.4 Withdrawal shall not be construed as an appearance for the eligibility of a candidate for First Class with Distinction.

21.0 TEMPORARY BREAK OF STUDY FROM A PROGRAMME

- **21.1** A candidate is not normally permitted to temporarily break the study. However, if a candidate intends to temporarily discontinue the programme in the middle of the semester for valid reasons (such as accident or hospitalization due to prolonged ill health) and to rejoin the programme in a later semester he / she apply to the Head of the Institution in advance, in any case, not later than the last date for registering for the semester in question, through the Head of the Department stating the reasons thereof.
- **21.2** The candidates permitted to rejoin the programme after break of study shall be governed by the rules and regulation in force at the time of rejoining.
- **21.3** The duration specified for passing all the courses for the purpose of classification (vide clause 19.1 and 19.2) shall be increased by the period of such break of study permitted.
- **21.4** The total period for completion of the Programme reckoned from, the commencement of the first semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5.0 irrespective of the period of break of study in order that he/she may be eligible for the award of the degree (vide clause 18.0).
- **21.5** If any student is detained for want of required attendance, progress and good conduct, the period spent in that semester shall be considered as permitted 'Break of study' and clause 21.3 is not applicable for this case.

22.0 INDUSTRIAL VISIT

Every student is required to undergo one Industrial visit in every semester starting from the third semester of the Programme arranged by the Head of the Department.

23.0 FAST TRACK PROGRAMME

Fast track programme is introduced as an option for the bright students enabling them to complete the course in a short duration.

23.1 Eligibility

Those students who have secured CGPA of 9 and above at the end of 2^{nd} semester are eligible to opt for the fast track scheme.

23.2 Structure of the Fast Track Scheme

The curriculum is framed in such a way that the eligible students who opt for fast track scheme will be able to complete the degree course in a period of three years. There will be

two summer terms conducted one after the 2nd semester and another after the 4th semester during the summer vacations. Each summer term will a have maximum of three theory courses and two laboratory practical courses. However, the total number of credits to be earned for the award of degree will remain the same as that of the concerned regular programme.

24.0 MIGRATION/TRANSFER OF CANDIDATES

- **24.1** Migration/Transfer of candidates from another University approved by UGC shall be granted.
- 24.2 All Migrations/Transfers are subject to the approval of the Vice Chancellor

25.0 DISCIPLINE

Every student is required to observe disciplined and decorous behavior both inside and outside the Institute and not to indulge in any activity which will tend to bring down the prestige of the University/Institute. The Dean shall constitute a disciplinary committee consisting of Dean, Head of the departments to which the student concerned belongs, and the Head of another department to enquire into acts of indiscipline and notify the University about the disciplinary action recommended for approval.

26.0 REVISION OF REGULATIONS AND CURRICULUM

The University may from time to time revise, amend or change the Regulations, Curricula, Syllabi and scheme of examinations through the Academic Council with the approval of Board of Management.

CURRICULUM AND SYLLABUS (R2015) CHOICE BASED CREDIT SYSTEM

B.TECH – INDUSTRIAL BIO TECHNOLOGY I – VIII SEMESTERS

			SEMESTER I								
SL NO	SUB.CO DE	CATEGORY	COURSE TITLE	L	Т	Р	С				
		L	THEORY	•	1						
1.	BEN101	HS	English – I	3	1	0	3				
2.	BMA101	BS	Mathematics - I	3	1	0	3				
3.	BPH101	BS	Engineering Physics - I	3	0	0	3				
4.	BCH101	BS	Engineering Chemistry - I	3	0	0	3				
5.	BBT101	ES	Cell Biology	2	1	0	3				
6.	BCS101	ES	Fundamentals of Computing and Programming	3	0	0	3				
7.	BSS101	HS	Personality Development	1	1	0	2				
8.	BCE101	ES	Basic Civil Engineering	2	0	0	2				
9.	BME103	ES	Basic Mechanical Engineering	2	0	0	2				
	1		PRACTICAL			1					
10.	BCM1L1	ES	Basic Civil and Mechanical Engineering Practices Laboratory	0	0	3	1				
<mark>11.</mark>	BCS2L2	<mark>ES</mark>	Computer Practices Lab	<mark>0</mark>	<mark>0</mark>	<mark>3</mark>	1				
12	BPC1L1	BS	Physics and Chemistry Laboratory#	0	0	3/3	0				
13	13 BSS1L4/ BSS1L5/ BSS1L6 NCC/ NSS/ NSO (to be conducted during weekends) 1										
Total Instruction Periods per week=35Total No. of Credits = 27											
# Lab be he	oratory Clas ld only in th	sses on alternate e second semes	e weeks for Physics and Chemistry. The Lab ter (including the first semester experiments	exan also)	ninati	ions w	vill				

			SEMESTER II							
SL. NO	SUB. CODE	CATEGORY	COURSE TITLE	L	Т	Р	С			
	1	I	THEORY	I		1	1			
1.	BEN201	HS	English – II	3	1	0	3			
2.	BMA201	BS	3S Mathematics - II		1	0	3			
3.	BPH201	BS	Engineering Physics - II	3	0	0	3			
4.	BCH201	BS	Engineering Chemistry – II	3	0	0	3			
5.	BCS201	ES	Internet Programming	2	0	0	2			
6.	BFR201*	HS	Foreign / Indian Language		0	0	3			
7.	BBT201	ES	Principles of Genetics		0	0	2			
8.	BEE201	ES	Basic Electrical and Electronics Engineering	2	0	0	2			
	I	I	PRACTICAL		<u> </u>	1				
9.	BCS2L1	ES	Internet Practices Lab	0	0	3	1			
10.	BEE2L1	ES	Basic Electrical and Electronics Engineering Practices Laboratory	0	0	3	1			
11.	BPC2L1	BS	Physics and Chemistry Laboratory#	0	0	3/3	1			
12	BSS1L7	0	0	2	1					
Total Instruction Periods per week=34Total No. of Credits = 25										
*An BKF	y one of the R201 – Korea	following courses an, BCN201 – Ch	:: BFR201 – French, BGM201-German, B inese, BTM201 – Tamil.	JP201	– Ja	panes	e,			

Laboratory Classes on alternate weeks for Physics and Chemistry. The Lab examinations will be held only in the second semester (including the first semester experiments also)

SEMESTER III												
SUB. CODE	CATEGORY	COURSE TITLE	L	Т	Р	С						
		THEORY		•								
BBT304	PC	Waste Management Technology	3	0	0	3						
BBT306	PC	Principles of Chemical	4	0	0	4						
BBT307	PC	General Biochemistry	3	0	0	3						
BBT308	PC	General Microbiology	3	0	0	3						
BBT309	PC	Instrumentation for Biotechnology	3	0	0	3						
BBT310	PC	Immunology	3	0	0	3						
		PRACTICAL										
BBT3L3	PC	Biochemistry Lab	0	0	3	2						
BBT3L2	PC	Instrumental Methods of Analysis	0	0	3	2						
BBT3L1	PC	Cell Biology Lab	0	0	3	2						
TOTAL H	OTAL HOURS : 28 CREDITS : 25											

	SEMESTER IV											
SUB. CODE	CATEGORY	COURSE TITLE	L	Т	Р	С						
	•	THEORY										
BBT401	PC	Bioorganic chemistry	3	0	0	3						
BBT403	PC	Introduction to Industrial	3	0	0	3						
		Biotechnology				3						
BBT404	PC	Principles of Chemical	4	0	0	4						
BBT405	PC	Unit Operations	4	0	0	4						
BBT406	PC	Introduction to Molecular biology	3	0	0	3						
BCE406	HS	Environmental studies	3	0	0	3						
		PRACTICAL										
BBT4L1	PC	Microbiology Lab	0	0	3	2						
BBT4L2	PC	Bioorganic chemistry Lab	0	0	3	2						
BBT4L3	PC	Molecular Biology Lab	0	0	3	2						
BBT4S1	PR	Technical Seminar I	0	0	2	1						
TOTAL	HOURS: 31		C	REDIT	S: 27							

		SEMESTER V				
SUB. CODE	CATEGORY	COURSE TITLE	L	Т	Р	C
		THEORY				
BMA501	BS	Biostatistics	4	0	0	4
BBT501	PC	Genetic Engineering	3	0	0	3
BBT502	PC	Principles of Bioprocess	3	0	0	3
BBT503	PC	Chemical Reaction Engineering	4	0	0	4
BBT505	PC	Plant Biotechnology	3	0	0	3
	CE	Core Elective -I	3	0	0	3
		PRACTICAL				
BBT5L1	PC	Genetic Engineering Lab	0	0	3	2
BBT5L2	PC	Chemical Engineering lab	0	0	3	2
BBT5L3	PC	Plant & Animal Biotechnology Lab	0	0	3	2
BBT5C1	PR	Comprehension - I	0	0	0	1
TOTAL	HOURS : 29C	REDITS: 27	•	•		_ .

		SEMESTER VI				
SUB. CODE	CATEGORY	COURSE TITLE	L	Т	Р	С
		THEORY				
BBT601	PC	Animal Biotechnology	3	0	0	3
BBT602	PC	Enzyme Engineering and Technology	3	0	0	3
BBT603	PC	Environmental Biotechnology	3	0	0	3
BSS601	HS	Value Education and Professional ethics	3	0	0	3
	CE	Core Elective-II	3	0	0	3
	NE	Non Major Elective I	3	0	0	3
		PRACTICAL				
BBT6L1	PC	Bioprocess Engineering Lab I	0	0	3	2
BBT6L2	PC	Environmental Biotechnology Lab	0	0	3	2
BBT6L3	PC	Immuno technology Lab	0	0	3	2
BBT6P1	PR	Mini Project	0	0	4	2

TOTAL	HOURS:31	CREDITS	5:26			
		SEMESTER VII				
SUB. CODE	CATEGORY	COURSE TITLE	L	Т	Р	C
		THEORY				
BBT701	PC	Research Methodology and	3	0	0	3
		Instrumentation				
BBT703	PC	Down Stream processing	3	0	0	3
BBT705	PC	Bioprocess Engineering	3	0	0	3
	CE	Core Elective III	3	0	0	3
	NE	Non Major Elective II	3	0	0	3
	OE	Open Elective I	3	0	0	3
	1	PRACTICAL				
BBT7L1	PC	Bioprocess Engineering Lab II	0	0	3	2
BBT 7L2	PC	Downstream processing Lab	0	0	3	2
BBT7P1	PR	Term Paper	0	0	4	2
BBT7V1	PR	In-plant Training	0	0	0	1
		Note: Students to get trained in an				
		industry for a period of two				
		weeks at the end of VI semester)				
TOTAL	HOURS:28		CRED	ITS: 2	25	

	SEMESTER VIII											
SUB. CODE	CATEGORY	COURSE TITLE	L	Т	Р	C						
		THEORY										
	OE	Open Elective –II	3	0	0	3						
	NE	Non Major Elective III	3	0	0	3						
		PRACTICAL										
BBT8C1	PR	Comprehension – II	0	0	0	1						
BBT8P1	PR	Project work	0	0	18	9						
TOTAL	FOTAL HOURS:24 CREDITS: 16											

OVERALL CREDITS = 198

SUMMARY OF CURRICULUM STRUCTURE AND CREDIT & CONTACT HOUR DISTRIBUTION

S.No	Sub Area			Cre	No. of	% of					
		Ι	II	III	IV	V	VI	VII	VIII	Credit	credit
1	Humanities & Social Sciences (HS)	6	7	-	3	-	3	-	-	19	9.60
2	Basic Sciences (BS)	9	10	-	-	4	-	-	-	23	11.62
3	Engineering Sciences (ES)	12	8	-	-	-	-	-	-	20	10.10
4	Professional Core (PC)	-	-	25	23	19	15	13	-	95	47.98
5	Core Electives (CE)	-	-	-	-	3	3	3	-	9	4.55
6	Non major Electives (NE)	-	-	-	-	-	3	3	3	9	4.55
7	Open Electives (OE)	-	-	-	-	-	-	3	3	6	3.03
8	Project Work, Seminar, Internship, Term Paper, etc. (PR)	-	-	-	1	1	2	3	10	17	8.59
	Total Credit	27	25	25	27	27	26	25	16	198	100
	Total Contact Hour	35	34	28	31	29	31	28	24	240	

LIST OF ELECTIVES

	CORE ELECTIVE(CE) I	[
BBTE01	Food Process Technology	3	0	0	3
BBTE02	Cancer biology	3	0	0	3
BBTE03	Bioreactor design	3	0	0	3
	CORE ELECTIVE(CE) I	I			
BBTE04	Dairy Technology	3	0	0	3
BBTE05	Medical biotechnology	3	0	0	3
BBTE06	Bioprocess Economics& Plant Design	3	0	0	3
	CORE ELECTIVE(CE) II	I			
BBTE07	Food safety and quality control	3	0	0	3
BBTE08	Stem cell and Tissue Engineering	3	0	0	3
BBTE09	Biosensor Technology	3	0	0	3
	NON MAJOR ELECTIVE(N	E) I			<u></u>
BBTE10	Proteogenomics and Bioinformatics	3	0	0	3
BBTE11	Alternate energy	3	0	0	3
BBTE12	Developmental Biology	3	0	0	3
	NON MAJOR ELECTIVE(N	E) II			<u>l</u>
BBTE13 Biopharmaceutical Technology		3	0	0	3
BBTE14	Biofuel Technology	3	0	0	3
BGE006	Biomedical Engineering	3	0	0	3
	NON MAJOR ELECTIVE(NI	E) III			
BBTE15	Metabolic Engineering	3	0	0	3
BBA005	Energy Engineering Management	3	0	0	3
BBTE16	Nanobiotechnology	3	0	0	3
	OPEN ELECTIVE(OE) I	[
BCE057	Industrial Waste Treatment and Disposal	3	0	0	3
BBTE17	Engineering Optimization	3	0	0	3
BBA008	Total Quality Management	3	0	0	3
	NSS Paper I	2	0	2	3
	OPEN ELECTIVE(OE) I	Ι			
BBA009	Intellectual Property Rights	3	0	0	3
BCE059	Environmental Health Engineering	3	0	0	3
BBTE18	Industrial Safety Engineering	3	0	0	3
BBTE19	Bio entrepreneurship Development	3	0	0	3
	NSS Paper II	2	0	2	3
	Massive Open Online Course	3	0	0	3

BE	N101]	ENGI	LISH -	I						L	Τ	Р	С
			,	Total	Contac	t Hou	rs – 60					3	1	0	3
]	Prereq	uisite -	-+2 I	Level E	nglish							
				Cours	e Desig	med h	$\overline{v} - D\epsilon$	ept of E	nglish						
0.0	TROP					,			8						
	JECTI	the) studor	ta laa	m tha	hari	a mad	on of (nightion fo	r fluor	an an	1 otto	inma	nt of
10 con	fidence	ine i	neech	readi	ng and	writi	no no		commu	incation ic	n nuen	cy and		umme	int of
CO	URSE	OU'	FCON	MES ($\frac{11}{COs}$	vv 11t1	<u>115</u> .								
CO	1	Uno	lersta	nd the	import	ance	of bein	g respo	onsible,	logical, an	d thoro	ugh.			
CO	2	Res	pond	to the	situatio	ons w	here sh	ort rep	orts and	d instructio	ns are r	equired	1.		
CO	3	Exp	- olain "	how t	hings v	ork"	, and w	hat to s	suggest	when "thir	ngs don	't work	2		
CO	4	Dev	elop (our co	nfidenc	e and	l autho	rity in t	the prac	ctical use of	f langua	.ge.			
CO	5	Uno	lersta	nd the	import	ance	of bein	g respo	onsible,	logical, an	d thoro	ugh.			
CO	6	Able to Face interviews and competitive examinations													
			Ν	Aappi	ng of C	ourse	Outco	mes wi	th Prog	gram outco	omes (P	Os)			
			(H/M	/L ind	icates s	treng	th of co	orrelati	on) H	-High, M-N	Aedium	, L-Lo	W		
1	COs/F	Pos	а	b	с	d	e	f	g	h	i	j	k		L
2	CO1		Н	Н	Н	Η	Н	М	L	L	Н	Η	Η	Η	
	CO2								L						
	CO3		H						H		H			H	
	CO4		Н	M				M	L	H	Н			H	
	C05		TT		TT	TT	TT	TT	L		II	TT	М	TT	
2	C06	0.001	Н		Н	н	Н	Н			Н	н	IVI	Н	
Humanitie s & Social				Studies (HS)	Basic Sciences	(BS)	Sciences (ES)	Profession al Core	(PC)	Profession al Elective (PE)	Non- Major	Elective Open	Elective (OF)	Project/ Term	Paper/ Seminar/
			\checkmark												
4	Appro	oval	37 th	Meet	ing of A	Acade	emic C	ouncil,	May 2	015		1	I		

UNIT I STRUCTURES

12

Parts of speech - Active and passive voices - Subject verb agreement. - Writing about School life, Hobbies, Family and friends – Word formation with prefixes and suffixes - Tenses - Concord - Summarizing - Note-making

UNIT II TRANSCODING

28

Cause and effect relations – Punctuations –Differences between verbal and nonverbal communication -E - mail communication – Homophones - Etiquettes of E mail communication. Interpreting graphic representation - Flow chart and Bar chart.

UNIT III REPORTING

Degrees of comparison – Positive, Comparative, Superlative - questions- SI units -Lab reports - Physics chemistry, workshop and Survey report for introducing new product in the market.

UNIT IV FORMAL DOCUMENTATION

Writing project proposals - Presentation skills - Prefixes and suffixes - If conditions - Writing a review-Preparing minutes of the meeting, Agenda, official circulars.

UNIT V METHODOLOGY

Accident reports (due to flood and fire) - Hints development - Imperatives - Marking the stress Connectives , prepositional relatives.

TEXT BOOK

1. Department Of Humanities and Social Sciences Division, Anna University, Oxford University Press, 2013.

REFERENCES:

- 1. S.P.Danavel, English and Communication for Students of Science and Engineering, Orient Blackswan, Chennai, 2011.
- 2. Rizvi, M.Asharaf, Effective Technical Communication, New Delhi, Tata McGraw Hill Publishibg Company, 2007.
- 3. Murali Krishna and Sunitha Moishra, Communication Skills for Engineers . Pearson, New Delhi, 2011.

BMA10	1 MATHEMATICS I	L	Т	Р	С					
	Total Contact Hours - 60	3	1	0	3					
	Prerequisite – + 2 Level Mathematics		1	1	1					
	Course Designed by – Dept of Mathematics									
OBJEC	CTIVES									
To make	the students learn Mathematics in order to formulate and solve pr	obler	ns							
effective	ly in their respective fields of engineering.									
COURS	SE OUTCOMES (COs)									
CO1	Study the fundamentals of mathematics									
CO2	Students learn multiple integral techniques									
CO3	Students gain knowledge in application of variables									
CO4	Find area and volume based on a function with one or more variables.									
CO5	Apply matrix operations to solve relevant real life problems in engineering.									
CO6	Formulate a mathematical model for three dimensional objects ar	ıd sol	ve							

12

12

	Mapping of Course Outcomes with Program outcomes (POs)														
	(H	/M/L	indi	cates	stren	gth of	correla	tion)	Н	l-High	, N	A-Med	ium, I	_Lov	N
1	COs/Pos	a	b	с	D	e	f	g		h	i		j	k	1
2	CO1	Η													
	CO2			Μ		Н									
	CO3		Η				Μ								
	CO4									L					
	CO5							Η					L		
	CO6													L	
3	Category	Humanities & Social	Studies (HS)	Basic Sciences &Maths (BS) Engg Sciences (ES)		Professional Core (PC)	, ,	Core Elective (CE)			Non-Major Elective (NE)	Open Elective (OE)		Project/ Term Paper Seminar/ Internship (PR)	
				\checkmark											
4	Approval	37 th	ⁿ M	eeting	of A	cadem	ic Cou	ncil,	Ma	y 201	5				

UNIT 1 MATRICES

Characteristic equations- Eigen values and eigen vectors of the real matrix- Properties- Cayley-Hamilton theorem(Excluding proof)- Orthogonal transformation of a symmetric matrix to diagonal form- Quadratic form- Reduction of quadratic form to canonical form by orthogonal transformation.

UNIT II THREE DIMENSIONAL ANALYTICAL GEOMETRY

Equation of a Sphere- Plane section of a sphere- Tangent plane- Equation of cone- Right circular cone- Equation of a cylinder- Right circular cylinder.

UNIT III DIFFERENTIAL CALCULUS

Curvature in Cartesian coordinates- Centre and radius of curvature- Circle of curvature- Evolutes-Envelopes- Applications of Evolutes and Envelopes.

UNIT 1V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives- Euler's theorem for homogeneous functions- Total derivatives- Differentiation of implicit functions- Jacobians- Taylor's expansion- Maxima and Minima- Method of Lagrangian multipliers.

UNIT V MULTIPLE INTEGRALS

Double integration- Cartesian and Polar coordinates- Change of order of integration- Change of variables between Cartesian and Polar coordinates- Triple integration in Cartesian coordinates-Area as double integral- Volume as triple integral.

TEXT BOOK:

12

12

12

12

- 1. Ravish R.Singh and Mukkul Bhatt, "Engineering Mathematics-I" First Reprint, Tata McGraw Hill Pub Co., New Delhi. 2011.
- 2. Grewal.B.S, "Higher Engineering Mathematics", 40th Edition, Khanna Publications, Delhi. 2007.

REFERENCES:

- 1. Ramana.B.V. "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Glyn James, "Advanced Engineering Mathematics", 7th Edition, Pearson Education, 2007.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons, New York, 2003.
- 4. Murray R.Spiegel, "Advanced Calculus", Schaum's Outline Series, First Edn, McGraw Hill Intl Book Co., New Delhi, 1981.

PF	H101	ENG	INEE	RING	PHY	SICS I						L	Т	P	С
		Total	Conta	ct Hou	ırs - 4	5						3	0	0	3
		Prere	quisite	-+21	evel I	Physics									
		Cours	se Desi	gned l	9y – L	Departm	ent of F	'ny	sics						
0	BJECTIV	ES:													
Τc	To enhance the fundamental knowledge in Physics and its applications relevant to various stream														
En	gineering	and T	echnol	ogy											
C	COURSE OUTCOMES (COs)														
C	CO Understand the Principles and Laws of Physics														
C	CO: To understand the impact of Crystal Physics														
C	CO: Learn the Properties of Elasticity and Heat transfer.														
C	CO4 Acquire Knowledge on Quantum Physics.														
C	CO: Understand the concepts on Laser & Ultrasonic's and its Applications														
CO	CO Understand the Principle of Laser and its Applications in Engineering and Medicine.														
	Mapping of Course Outcomes with Program outcomes (POs)														
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs/Pos	A	b	с	d	e	f		g	h	i	j		k	1
2	CO1	Η						Μ	[Н			
	CO2		L	Н		М					Μ		Ι		Н
	CO3														
	CO4	Н		Μ	L							L			М
	CO5		L	L									L		L
	CO6														
3	Category	Humanities &	Social Studies (HS)	Basic Sciences	(60)	Engg Sciences (ES)	Professional Core (PC)		Professional Elective (PE)	Non-Major	Non-Major Elective (NE)		· ·	Project/ Term	Paper/ Seminar/ Internship (PR)
4	Approva	1 3	7 th Me	eting of	of Aca	ademic	Council	, M	lay 2015	5					

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)-Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity-Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders Modes of heat transfer- thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion –Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homo junction & hetero junction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House, 2014.
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai Publishers, 2009.
- 4. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.

9

9

9

9

9

- 4. <u>http://ocw.mit.edu/courses/find-by-topic</u>
 5. <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 6. https://en.wikipedia.org/wiki/Engineering_physics

BCI	H101	ENG	GINE	ERIN	IG C	HEN	IISTRY	- I]	L	Т	P	C
		Tota	l Cont	act H	Iours	- 45							,	3	0	0	3
		Prer	equisit	e – •	+2 Le	vel C	Chemistry	у							1		
		Cou	rse De	signe	ed by	– De	partment	t of Ch	nemi	stry							
OB J To i	OBJECTIVES To impart a sound knowledge on the principles of chemistry involving the different																
appl	application oriented topics required for all engineering branches.																
CO	COURSE OUTCOMES (COs)																
COI	CO1 Understand the principles of water characterization and treatment for portable and industrial purposes.																
CO2	D2 To impart knowledge on the essential aspects of Principles of polymer chemistry and																
	engineering applications of polymers																
CO3	Having a sound knowledge in the Field of the Conventional and non-Conventional energy																
CO4	CO4 To impart knowledge on the essential aspects of electrochemical cells, emf and																
0.07	applications of EMF measurements											1					
COS		o mak	e the si	tuder	its un	derst	and the H	rincip	oles	of corr	'OS1(on and	1 co	rrosi	on	contro	1.
COé	5 T	o impa	urt kno	wled	ge ab	out tl	ne Conve	ention	al an	d non-	-cor	iventi	ona	l ene	ergy	sourc	es and
	er	nergy s	storage	dev	ices												
				ping	of Co	ourse	Outcom	es wit	h Pro	ogram	ou	tcome	es (F	POs)	Tar		
1	COs	(H/ /Pos	M/L 11	haica	ites st	rengt	n of corr	f	n) I	a-Higi	n, N	1-Mec	unun	n, L-	LOV	v v	T
2	CO ₃	/1 05	H	0	C	u	C	1	Н	g		11	1		,	K	
-	CO2)		L	Н		М										
	CO3	5		Μ		Η											
	CO4	-	Н		Μ	L			Η								
	CO5	í		L	L												
	CO6)	Н						Η	1							
3	Category		Humanities & Social Studies	(SH)	Basic Sciences	(S3)	Engg Sciences (ES)	Professional Core (PC) Professional		Professional Flective (PF)		Non-Major Elective (NE)		Open Elective	(OE)	Project/ Term Paper/	Seminar/ Internship (PR)
1	1	1	27 th	Mar	tina	$\frac{}{\mathbf{f} \mathbf{A}}$	adamia (;1 N/	[ov 20]	15						
4	App	roval	3/	Mee	eting (of Ac	ademic (ounc	11, N	ay 20	12						

UNIT I WATER TECHNOLOGY

Introduction-Characteristics : Hardness of water – types - temporary and permanent hardness - estimation by EDTA method Alkalinity – types of alkalinity - Phenolphthalein and Methyl orange alkalinity - determination –Domestic water treatment – disinfection methods (Chlorination, Ozonation , UV treatment) Boiler feed water – requirements – disadvantages of using hard water in boilers Internal conditioning (Calgon Conditioning method) – External conditioning – Demineralization process – Desalination and Reverse osmosis.

UNIT II POLYMERS

Introduction-Polymers- definition – polymerization – degree of polymerization - types of polymerization– Addition polymerization and Condensation polymerization – Mechanism of Polymerization - free radical polymerization mechanism only, Plastics: Classification – thermoplastics and thermosetting plastics – difference between thermoplastics and thermosetting plastics - preparation, properties and uses of PVC, Teflon, nylon-6,6, PET, Rubber :Types – drawbacks of natural rubber -vulcanization of rubber - properties and uses of vulcanized rubber Synthetic rubbers – butyl rubber and SBR

UNIT III ELECTRO CHEMISTRY

Introduction CELLS: types of Electrochemical cells , Electrolytic cells – Reversible and irreversible cells EMF – measurement of EMF– Single electrode potential – Nernst equation Reference electrodes : Standard Hydrogen electrode -Calomel electrode Ion selective electrode :Glass electrode and measurement of pH using Glass electrode Electrochemical series – significance Titrations :Potentiometer titrations (redox - $Fe^{2^+}vs$ dichromate titrations) Conduct metric titrations (acid-base – HCI vs, NaOH titrations)

UNIT IV CORROSION AND CORROSION CONTROL

Introduction: Chemical corrosion Definition - Chemical Corrosion - Electrochemical corrosion – different types – galvanic corrosion – differential aeration corrosion – mechanism of Chemical and Electrochemical corrosion factors influencing corrosion control – sacrificial anode and impressed cathodic current methods – Protective coatings :Paints– constituents of the paint and their functions Metallic coatings – electroplating of Gold and electro less plating of Nickel.

UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9

Introduction : Nuclear fission and nuclear fusion reactions – differences between nuclear fission and nuclear fusion reactions – nuclear chain Reactions – nuclear energy critical mass - super critical mass - sub - critical mass Light water nuclear reactor for power generation (block diagram only) – breeder reactor Solar energy conversion – solar cells – wind energy Fuel cells – hydrogen – oxygen fuel cell Batteries :Primary and secondary Batteries – differences between Primary and secondary Batteries Secondary batteries :Lead–acid storage battery –working –uses Nickel–cadmium battery - working – uses Solid – state battery : Lithium battery

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

REFERENCES:

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).

9

9

- 3. <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. https://en.wikipedia.org/wiki/Electrochemistry

BI	BT 101					CELL		L	Т	P	С				
		Tot	al Cor	ntact]	Hours	- 45					2	1	0	3	
		ТО. Р				0	1 1		1 1 9			11 .	1.	5	
		Pre	requisi	ite – .	Highe	r Secor	idary I	level bio	blogy, basi	ic concept	ts in (cell sig	gnaling		
		Co	urse D	esign	ed by	– Dept	of In	dustrial	Biotechno	ology					
0	OBJECTIVES To provide a basic understanding of call, its structure, function, types and about its culture														
To	o provid	e a t	basic u	nders	tandin	ig of ce	ell, its	structur	e, functior	n, types ar	nd ab	out its	culture		
C	COURSE OUTCOMES (COs)														
	CO1 To understand the fundamentals of the structure of cells														
	CO2	D2 To study the types and functions of cell organelles													
	CO3	33 To comprehend the methods involved in the cellular transport													
	CO4	O4 To know the cause, and methods of cell signaling													
	CO5 To give a basic knowledge of cell culture and its applications														
	CO6 To understand about signal transduction														
	Mapping of Course Outcomes with Program outcomes (POs)														
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs/P	Os	а	b	с	d	e	f	g	h	i	j	k	1	
2	CO1		п												
2	C01		11			М									
	CO3		М			111									
	CO4								Н				М		
	CO5		Н												
	CO6		Η						_						
3	Catego	ory	es I	\mathbf{S}				ial (lal	Dr			er/	d	
			niti	H)	ic		SS	ion (PC	sion ive	Aajo Live E)	en	ive E	ect/ ape	shi	
			mai So	lies	Bas	a Be) suce	fess ore (fess lect	n-N lect (NJ	Ope	(OI	roje m H	(PF	
		Prof Co						Pro	Ro E	_	Ц	P Ter	Int Int		
Δ	Annro	val	37 th	Meet	ting of	F Acade	mic (ouncil	May 2015	5					
т	7 1 PP10	vui	51	10100	1115 01	1 waa		Jourieri,	101ay 2012	,					

UNIT I: CELL STRUCTURE

Cells-definition, Eukaryotic cell and prokaryotic cell – differences and key organelles, Relationship and evolution of Eukaryotic cell and prokaryotic cell, plant cells and animal cells–differences and general structure- Cellular environment, tissues, various types of cell, Extra cellular matrix, cytoskeletal proteins, Cell cycle-Mitosis and meiosis

UNIT II: CELL ORGANELLES

Cell Organelles and function – Nucleus, Cytoplasm, Endoplasmic reticulum, Golgi complex, lysosomes, cell membranes, chloroplast, mitochondria – structure, importance and function

UNIT III: CELLULAR TRANSPORT

Transport across cell membranes – importance, classification – Active and passive, passive transport – movement of water, small lipid across membrane. Active – Na+ K+ ATPase Pump, Lysosomal and Vacuolar pumps. Cotransport – Symport, antiport – examples, Endocytosis and Exocytosis transport across prokaryotic membrance, entry of viruses and toxins

UNIT IV: CELL SIGNALING AND SIGNAL TRANSDUCTION

Cell signaling – process importance, various kinds of Receptors and ligands – Examples, Different modes of action of ligands, Qualification and characterization of receptors, different modes of signal transduction and amplification with examples, signaling through G-Proteins (Monomeric and trimeric), signaling for growth factors, second messengers, protein kinases, Ca ions and cAMP molecule in signaling.

UNIT V: CELL CULTURE

Definition, Media preparation, Propagation of eukaryotic and prokaryotic cell, cell lines, primary cultures, stock cell cultures, maintenance of cell lines in cell culture, explants cultures, differentiation and contamination

TEXT BOOKS:

- 1. P.K. Gupta, "Cell and Molecular Biology", Rastogi Publication, 2003
- 2. Molecular Biology of the Cell, Bruce Albert et al., Taylor and Francis, 2002

REFERENCE BOOKS:

- 1. Molecular Biology of the Cell, Baltimore, Damell J., Lodish, H. Baltimore, D., Freeman Publications, 2003
- 2. The Cell, T. Coopper, John Wiley and Sons, 2005
- 3. Cytology, Vermaand Aggarval, S. Chand Publications, 2003

BCS1	01 FUNDAMENTALS OF COMPUTING AND	L	Т	Р	С							
	PROGRAMMING											
	Total Contact Hours - 45	3	0	0	3							
	Prerequisite – +2 level Physics											
	Course Designed by – Department of Physics											
OBJECTIVES												
Studen	Students will understand the basics of computers and solve computer oriented problems using											
variou	s computing tools.											
COUR	RSE OUTCOMES (COs)											
CO1	Learn the fundamental principles in computing.											
CO2	Learn to write simple programs using computer language											
CO3	To enable the student to learn the major components of a computer system.											
CO4	Computing problems											
COUE CO1 CO2 CO3 CO4	EXE OUTCOMES (COs) Learn the fundamental principles in computing. Learn to write simple programs using computer language To enable the student to learn the major components of a computer sy Computing problems	ysten	1.									

9

9

С	0	5 To le	earn	to use	e offi	ce auto	matio	n tools	5.						
С	0	6 To in	nter	pret ar	nd rel	ate prog	grams	5							
		Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
1	Ĺ	COs/Po	s	а	b	С	d	e	f	g	h	i	J	k	L
		CO1		Η					Н						
2	2	CO2			L	Н		М							
	CO3				L		S								
		CO4		М		М	W		М						
		CO5			L	L									
		CO6		Н					Н						
	3 Category		у	Humanities & Social Studies	(HS)	Basic Sciences (BS)	Hnaa Coiencee	(ES)	Professional Core (PC)	Professional Elective (PE)	Non-Major	Elecuve (NE)	Open Elective (OE)	Project/ Term Paper/ Seminar/ Internship (PR)	
							\checkmark								
2	ł	Approv	al	37 th	Meet	ing of A	Acade	emic C	Council, M	lay 2015					

UNIT I INTRODUCTION TO COMPUTER

Introduction- Characteristics of computer-Evolution of Computers-Computer Generations -Classification of Computers- Basic Computer Organization-Number system. Computer Software: Types of Software—System software-Application software-Software Development Steps

UNIT II PROBLEM SOLVING AND OFFICE AUTOMATION

Planning the Computer Program – Purpose – Algorithm – Flowcharts– Pseudo code Introduction to Office Packages: MS Word, Spread Sheet, Power Point, MS Access, Outlook.

UNIT III INTRODUCTION TO C

Overview of C-Constants-Variables-Keywords-Data types-Operators and Expressions. Managing Input and Output statements-Decision making-Branching and Looping statements.

UNIT IV ARRAYS AND STRUCTURES

Overview of C-Constants, Variables and Data types-Operators and Expressions -Managing Input and Output operators-Decision making-Branching and Looping.

UNIT V INTRODUCTION TO C++

Overview of C++ - Applications of C++-Classes and objects-OOPS concepts -Constructor and Destructor- A simple C++ program –Friend classes and Friend Function.

9

9

9

9
TEXT BOOKS:

- 1. Ashok, N.Kamthane,"Computer Programming", Pearson Education (2012).
- 2. Anita Goel and Ajay Mittal,"Computer Fundamentals and Programming in C", Dorling V Kindersley (India Pvt Ltd).,Pearson Education in South Asia,(2011).
- 3. Yashavant P. Kanetkar, "Let us C",13th Edition,BPB Publications(2013).
- 4. Yashavant P. Kanetkar,"Let us C++"10th Edition, BPB Publications (2013).

REFERENCES:

- 1. Pradeep K.Sinha, Priti Sinha "Foundations of Computing", BPB Publications (2013).
- 2. Byron Gottfried, "Programming with C", 2nd edition, (Indian Adapted Edition), TMH Publication.
- 3. Pradip Dey, Manas Ghosh, Fundamentals of Computing and Programming in 'C' First Edition, Oxford University Press(2009).
- 4. The C++ Programming Language , 4th Edition, Bjarne Stroustrop, Addison-Wesley Publishing Company (2013).

BS	SS101		PER	SONA	LITY	DEV	ELOI	PMENT	Г]	L	Т	P	C
		-	Total	Cont	act Hou	rs - 3	0					1	1	0	2
		-	Prere	quisit	e – +2 I	Level	Know	ledge						1	
			Cours	se Des	signed b	by – D)eparti	ment of	Managen	nent Studio	es				
0	BJECT	TVE	S												
To	o make	stude	ents gr	room t	their pe	rsonal	lity an	d prove	themselv	es as good	Sama	ritar	is of	f the	society.
C	OURSI	E OU	JTCO	MES	(COs)										
CO	D1	Indi	ividua	lor	in-grou	p cla	ss pre	esentatio	ons perta	ining to 1	the ap	plica	atio	ns (of conce
		theo	ories o	r issu	es in hu	man o	levelo	pment.	-	-	-	-			
C	D2	Sco	res ob	tained	l from e	essay	and or	· objecti	ve tests.						
CO	D3	Atte	endanc	ce, cla	ssroom	parti	cipatio	on, smal	l group ir	iteractions					
C	D4	Res	earch	and w	vrite abo	out rel	evant	topics.							
CO	05	Des	ign an	id con	nplete a	resea	rch pr	oject th	at can tak	e the form	of a d	evel	opn	nent	al intervi
		an c	observ	ation	or asses	smen	t throu	ugh serv	vice learni	ng.					
CO	D6	Dev	elop a	and m	aintain	a Ref	lectior	1							
	•		М	appin	g of Co	urse (Dutcor	mes wit	h Progran	n outcome	es (POs	5)			
		(H/M/I	L indi	cates sti	rength	of co	rrelatio	n) H-Hig	gh, M-Meo	lium, I	L-Lo	W		
1	COs/I	Pos	а	b	с	d	e	f	g	h	i	J		k	L
2	CO1		L		Η				М						
	CO2			Η	Н				М						
	CO3								М	Н					
	CO4										Η	Η			
	CO5								Μ			Η	H	ł	
	CO6								Μ						L

3	Category	 Humanities & Social Studies (HS) 	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Professional Elective (PE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term Paper/ Seminar/ Internship (PR)
4	Approval	37 th Meet	ing of Ac	ademic C	council, May	2015			

UNIT I INTRODUCTION TO PERSONALITY DEVELOPMENT

The concept personality- Dimensions of theories of Freud & Erickson- personality – significant of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles - Factors responsible for success – What is failure - Causes of failure. SWOT analyses.

UNIT II ATTITUDE & MOTIVATION

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages - Negative attitude - Disadvantages - Ways to develop positive attitude - Difference between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self-motivation- Factors leading to de-motivation

UNIT III SELF-ESTEEM

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive self-esteem – Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self-esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

UNIT IV OTHER ASPECTS OF PERSONALITY DEVELOPMENT

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader - Character-building -Team-work - Time management -Work ethics –Good manners and etiquette.

UNIT V EMPLOYABILITY QUOTIENT

Resume building- The art of participating in Group Discussion – Acing the Personal (HR & Technical) Interview -Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

TEXT BOOKS:

- 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill.
- 2. Stephen P. Robbins and Timothy A. Judge (2014), Organizational Behavior 16th Edition, Prentice Hall.

REFERENCE BOOKS:

- 1. Andrews, Sudhir. How to Succeed at Interviews. 21st (rep.) New Delhi.Tata McGraw-Hill 1988.
- 2. Heller, Robert. Effective leadership. Essential Manager series. Dk Publishing, 2002

9

6

9

9

- 3. Hindle, Tim. Reducing Stress. Essential Manager series. Dk Publishing, 2003
- 4. Lucas, Stephen. Art of Public Speaking. New Delhi. Tata Mc-Graw Hill. 2001
- 5. Mile, D.J Power of positive thinking. Delhi. Rohan Book Company, (2004).
- 6. Pravesh Kumar. All about Self- Motivation. New Delhi. Goodwill Publishing House. 2005.
- 7. Smith, B. Body Language. Delhi: Rohan Book Company. 2004

		B	ASIC	CIVI	L ENG	INE	ERIN	G					L	T]	2	С
BO	CE 101	To	otal Co	ontact	Hours	- 30							2	0	()	2
		Pr	erequi	site –	+2 Lev	el Ma	aths &	Physica	al Sci	ence	e						
		Co	ourse I	Desig	ned by	– Dep	artme	nt of Ci	vil Er	ngine	eering						
0	BJECTI	[VE	S: Un	dersta	and the	basic	conce	pts of ci	vil er	ngin	eering.						
C	OLIDCE	ΟΙ		MES				1		0	0						
	DUKSE D1 Wi	00 11 g	ain kn	owled	(COS) lge in E	Design	. conc	ept prer	arati	on							
C	$\frac{1}{2}$ Lo	adir	ng calc	ulatio	n		, ••••••	• • • • • • •		011							
C	D3 Str	ucti	ral co	mpon	ent des	ign											
C	D4 Dra	awii	ng and	chart	prepar	ation											
C	05 Wi	ll u	nderst	and th	e comp	onen	ts of b	uildings									
CO	06 W	ill l	earn th	ne eng	ineerin	g asp	ects to	dams ,	wateı	r sup	ply and	sev	wage d	lispo	sal.		
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High M-Medium L-Low																
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																
1	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low 1 COs/POs a b c d e f g h i i k L																
	COs/P0	Js	а	b	С	d	e	f	g	5	h		1	J	K		L
2	CO1		Н	Н			Н		L								
	CO2						Η	Н									
	CO3								Η		L		Ŧ				
	CO4												L	п	T	_	
	CO5													11	L	+	
3	Catego	ry	Π		_				1	e							
	C	•	ocia		BS	E S H		ore		ctiv		tive		OE)		nper	- 2
			k Sc HS		es ([] se		IC		Ele		Jer T		/e (($_{1}P_{\tilde{c}}$	ur/ (PF
			es d		enc	Jure		ona PC)		lal	(E)	ort	NE)	ctiv		ern	nin hip
			niti	T P n	Sci			essi ()		sion	D	Mai	(J)	Ele		t/T	Sen
			uma St	5	asic	δ	â	rofe		ofes		-uo	1-110	pen		ojec	Inte
			Ηı		B	Ц		4		Pro		Z		0		$\mathbf{P}_{\mathbf{T}}$	
4	Approv	al	37 th	Meet	ing of .	Acade	emic C	Council,	May	201	5						

UNIT I CIVIL ENGINEERING MATERIALS

Introduction – Civil Engineering – Materials – Stones – Bricks – Sand – Cement – Plain Concrete – Reinforced Cement Concrete – Steel Sections – Timber – Plywood – Paints – Varnishes (simple examples only)

UNIT II SURVEYING

Surveying – objectives – classification – principles of survey-Measurement of distances – Chain survey – Determination of areas – Use of compass – Use of leveling Instrument – (simple examples only)

UNIT III FOUNDATION FOR BUILDING

Bearing Capacity of Soil – Foundation – Functions – Requirement of good foundations – Types of foundations – Merits & Demerits.

UNIT IV SUPERSTRUCTURE

Stone Masonry – Brick Masonry – Columns – Lintels – Beams – Roofing – Flooring – Plastering– White Washing (Simple examples only)

UNIT V MISCELLANEOUS TOPICS

Types of Bridges –Dam- purpose – selection of site - Types of Dams – Water Treatment & Supply sources – standards of drinking- distribution system. – Sewage Treatment (simple examples only)

TEXT BOOKS:

- 1. Raju.K.V.B, Ravichandran .P.T, "Basics of Civil Engineering", Ayyappa Publications, Chennai, 2012.
- 2. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, (1st ed. 2005).
- 3. Dr.M.S.Palanisamy, "Basic Civil Engineering" (3rded. 2000), TUG Publishers, New Delhi/Tata McGrawHill Publication Co., New Delhi

REFERENCE BOOKS:

- 1. Rangwala.S.C, "Engineering Materials", Charotar Publishing House, Anand, 41st Edition: 2014.
- 2. National Building Code of India, Part V, "Building Materials", 2005
- 3. Ramesh Babu"A Textbook on Basic Civil Engineering" (1998). Anuradha Agencies, Kumbakonam.
- 4. RamamruthamS., "Basic Civil Engineering", DhanpatRai Publishing Co. (P) Ltd. (1999).

BME101	BASIC MECHANICAL ENGINEERING	L	Т	Р	С
	Total Contact Hours – 30	2	0	0	2
	Prerequisite – +2 Level Maths & Physical Science				
	Course Designed by – Dept of Mechanical Engineering				
OBJECTIV	'ES				
• The	program educational objectives (PEOs) for the mechanical-engi	neeri	ng nr	ooran	1 are

• The program educational objectives (PEOs) for the mechanical-engineering program are to educate graduates who will be ethical, productive, and contributing members of

5

5

7

8

society.

- The broad education necessary to understand the impact of engineering solutions in a • global, economic, environmental, and societal context
- The ability to apply principles of engineering, basic science, and mathematics to design and realize physical systems, components, or processes

		anze p	nysica	u syste	ins, co	mponei	115, 01	processo	28							
CC)URSE OU	JTCO	MES	(COs)												
CC	D1 an abi	lity to	apply	know	ledge o	of math	ematic	s								
CC	D2 an abi	lity to	apply	know	ledge o	of scien	ce, and	d engine	eering							
CC	03 Ability	y to de	esign a	and co	nduct e	experim	ents, a	is well a	as to anal	yze and	interpr	et da	ta.			
CC	D4 an abi	lity to	funct	ion on	multi-	discipli	nary to	eams								
CC	05 Topro	videba	sicKn	owled	geofba	sicman	ufactur	ingproc	ess.							
CC	D6 ability	to ide	ntify,	formu	late, an	d solve	engine	eering p	roblems							
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low COs/POs a b c d e f g h i j k 1															
1	COs/POs	COS/POS a b c d e f g h i j k l														
		COS/POS a b c d e f g h 1 j k l CO1 M M H M M M L L M														
2	CO1 M M H M M L L M												М			
	CO2	Н	Μ	М	Н	Н		М			L	L	М			
	CO3	Η	Μ		Н	Н		М			L	L	М			
	CO4	Η	Μ		Η	Η		М			L	L	М			
	CO5	Η	Μ	М	Н	Η		М			L	L	М			
	CO6	Η			Η	Η		М			L	L	М			
CO6 3 Category		Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Professional Elective (PE)	Non-Major Elective (NE)	Open Elective (OE)		Project/Term Paper/ Seminar/ Internshin (PR)			
4	Approval	37 th	Meet	ing of	Acade	mic Co	uncil, I	May 201	15							

UNIT I ENERGY RESOURCESANDPOWER GENERATION

RenewableandNon-renewableresources-solar, wind, geothermal, steam, nuclear and hidepowerplants-Layout,

majorcomponents and working. Importance of Energy storage, Environmental constraints of power generatio n usingfossil fuelsandnuclearenergy.

UNIT II IC ENGINES

Classification, working principles of anddiesel engines-twostroke andfourstroke petrol cycles, functions of main components of I. Cengine. Alternate fuels and emission control.

6

UNIT III REFRIGERATION AND AIR-CONDITIONINGSYSTEM

TerminologyofRefrigerationandAir-Conditioning,PrincipleofVaporCompression&Absorptionsystem-Layoutoftypicaldomesticrefrigerator-window&Splittyperoomairconditioner.

UNITIV MANUFACTURING PROCESSES

BriefdescriptionofMouldmakesandcastingprocess,Metalforming,Classification typesofforging, forging operations, Briefdescription ofextrusion,rolling,sheetforging,anddrawing.Briefdescription ofwelding,brazing andsoldering.Principalmetalcuttingprocessesandcuttingtools,Brief descriptionofCentrelatheandradial drillingmachine.

UNITV MECHANICALDESIGN

Mechanicalpropertiesofmaterial-Yieldstrength,ultimatestrength,endurancelimitetc.,Stress-Strain curvesof materials.Stresses inducedinsimpleelements.Factorofsafety-Design ofShaftsandbelts. Typesofbearingsand itsapplications.Introductionto CAD/CAM/CIM&Mechatronics.

TEXTBOOKS:

1. T.J.Prabhuetal, "BasicMechanicalEngineering", SciTechPublications(p)Ltd,2000

REFERENCES:

- 1. NAGPAL, G.R, "PowerplantEngineering", KhannaPublishers, 2004.
- 2. RAO.P.N, "ManufacturingTechnology", TataMcGraw-HillEducation, 2000.
- 3. Kalpakjian, "ManufacturingEngineeringandTechnology", AdissoWesleypublishers, 1995.
- 4. Ganesan.V,"Internalcombustionengines", TataMcGraw-HillEducation, 2000.
- 5. C.P.Arora, "RefrigerationandAir Conditioning", TataMcGraw-HillEducation, 2001.
- 6. V.B.Bhandari,"DesignofMachineelements", TataMcGraw-HillEducation, 2010.

BCM	BASIC CIVIL & MECHANICALENGINEERINGIL1PRACTICESLABORATORY	L	Τ	Р	С										
	Total Contact Hours - 30	0	0	2	1										
	Prerequisite – Basic Civil and Mechanical Engineering														
	Course Designed by – Department of Mechanical Engineering&	& Ci	vil Er	iginee	ring										
OBJE	CTIVES														
To pro	exposure to the students with hands on experience on various basic Civil & Engineering practices														
Mecha	Mechanical Engineering practices.														
COUH	COURSE OUTCOMES (COs)														
CO1	Learn Basic concepts														
CO2	Students will get exposure regarding pipe connection for pumps & tu used in roofs, doors, windows and furniture's.	rbine	es and	l to st	udy the joint										
CO3	Students will get exposure regarding smithy, foundry operations operations such as TIG, MIG, CO2, spot welding etc.,	s and	d in	latest	welding										
CO4	Students will get hands on experience on basic welding techniques, works.	mac	hinin	g and	sheet metal										
CO5	Students will get hands on experience on basic machining techniques	S													
CO6	Students will get hands on experience on basic sheet metal technique	es													

6

6

6

		Ma	pping	of Cou	rse O	utcom	es with I	Program	outcom	es (PC	Ds)			
	()	H/M/L	indica	ates stre	ngth	of corr	elation)	H-High	, M-Me	edium,	L-Lov	V		
1	COs/POs	a	b	с	d	e	f	g	h	i	J]	k	1
2	CO1	Н	L											
	CO2				Η									
	CO3					Η	L	L						
	CO4		Н				М		L			Η		
	CO5		Н				М		L			Η		
	CO6		Н				М		L			Η		
3	Category	Humanities & Social	Studies (HS)	Basic Sciences	(BS) Enoo	Sciences (ES)	Professiona 1 Core (PC)	Professiona 1 Elective (DF)	Non-Major	Elective (NE)	Open Elective	(OE)	Project/Ter	ILL F aper/ Seminar/ Internship (PR)
4	Approval	37 th	Meet	ing of A	Acade	emic Co	ouncil, N	1ay 2015						

LIST OF EXPERIMENTS

I. CIVILENGINEERINGPRACTICE Buildings:

a) Studyofplumbingandcarpentrycomponentsofresidentialandindustrialbuildings.Safetyaspe cts.

PlumbingWorks:

a)

Studyofpipelinejoints, its location and functions: valves, taps, couplings, unions, reducers, elbo wsin household fittings.

- b) Studyofpipeconnectionsrequirementsforpumpsandturbines.
- c) Preparationofplumbinglinesketchesforwatersupplyandsewageworks.
- d) Hands-on-exercise:Basicpipeconnection of PVCpipes&G.I.Pipes– Mixedpipematerial connection–Pipe connections with different joining components.
- e) Demonstrationofplumbingrequirementsofhigh-risebuildings.

CarpentryusingHandtoolsandPowertools:

- a) Studyofthejointsinroofs,doors,windowsandfurniture.
- b) Hands-on-exercise:Woodwork,jointsbysawing,planningandcutting.
- c) Preparationofhalfjoints, Mortiseand Tenonjoints.

II MECHANICALENGINEERINGPRACTICE

Welding:

a) Preparationofbuttjoints, lapjoints and teejoints by arcwelding

BasicMachining:

- a) Simple Turning and Taper turning
- **b**) Drilling Practice

SheetMetalWork:

- a) Forming&Bending:
- b) Modelmaking–Trays, funnels, etc.

- c) Differenttypeofjoints
- d) Preparationofair-conditioningducts
- e) Preparationofbuttjoints, lapjoints and teejoints by arcwelding

Machineassemblypractice:

- a) Assembling, dismantling and Study of centrifugal pump
- b) Assembling, dismantling and Studyofair conditioner
- c) Assembling, dismantling and Study of lathe

Moulding:

a) Mouldingoperationslikemouldpreparation for gearandstep conepulleyetc

Fitting:

a) Fitting Exercises–Preparationofsquarefittingandvee–fittingmodels.

Demonstration:

- a) Smithyoperations, upsetting, swaging, setting down and bending. Example-Exercise-Production of hexagonal headed bolt.
- b) Gaswelding.

REFERENCES:

- 1. K. Jeyachandran, S. Nararajan& S, Balasubramanian, "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. T.Jeyapoovan, M. Saravanapandian& S. Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd. (2006)
- 3. H. S. Bawa, "Workshop Practice", Tata McGraw-Hill Publishing Company Limited, (2007).
- 4. A. Rajendra Prasad & P. M. M. S Sarma, "Workshop Practice", SreeSai Publication, (2002).
- 5. P. Kannaiah& K.L. Narayana, "Manual on Workshop Practice", Scitech Publication, (1999).

			PHYS	SICS	AND	CHE	MIS	FRY L	ABO	RATOR	Y		L	Т	Р	C
			Total	Conta	act Ho	urs – 4	45						0	0	3	1
BP	C		Prerec	quisite	e – Phy	ysics a	and C	Chemist	ry							1
1L	1/2L1		Cours	e Des	igned	by – I	Depa	rtment	of Ph	ysics & (Chem	istry				
OB	BJECT	ΓIVE	S: To	impar	t knov	vledge	e to tl	he stud	ents i	n practica	al phy	ysics	and	cher	nistr	у
CC	OURS	E OU	TCO	MES	(COs))										
CO1 Students will understand the concept of hall effect																
CC	02	Stude	nts wi	ll und	erstan	d the o	conce	ept of s	emico	onductors	5					
CC	03 S	Studer	nt wil	l und	erstand	d the v	vorki	ing of s	pectr	ometer.						
CC	04	Stude	nt will	able	praction	cally u	ınder	stand t	he ch	emical re	actio	ns.				
CC	05 S	Studer	nts wil	l Stud	ly the	magne	etic h	ysteres	is and	d energy	produ	ıct				
CC	06 S	Studer	nts unc	lersta	nd the	Deter	mina	tion of	Banc	l gap of a	semi	icond	lucto	r		
		/11/2	Mapp	oing o	f Cou	se Ou	tcom	nes with	n Prog	gram out	come	es (PC	\overline{Os}			
		(H/N	VI/L in	dicate	es strei	ngth o	t cor	relatior	<u>ı)</u> H	-H1gh, M	-Mec	lıum,	L-L	ωW		
1	COs/	POs	а	b	c	d	e	f	g	h	i	j		k		1
2	C01		Μ	Η	Μ			L		L	L	М		Η	Ν	1

	CO2		Н	Μ			L		L		L		Η	
	CO3		Н	Μ			L		L				Η	
	CO4	Μ	Н	Μ			L		L		L	М	Η	М
	CO6		Н				L		L		Η		Н	
3	Category	Humanities	& Social Studies (HS)	Basic	Enge	Sciences	Professional Core (PC)	Core	Elective	Non-Major Elective	(NE)	Open Elective	Project/Ter m Paper/	Seminar/ Internship (PR)
				\checkmark										
4	Approval	37 th	Meet	ting of	Acad	emic	c Counc	il, M	ay i	2015		••		

I-LIST OF EXPERIMENTS – PHYSICS

- 1. Determination of Wavelength, and particle size using Laser
- 2. Determination of acceptance angle in an optical fiber.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of thermal conductivity of a bad conductor Lee"s Disc method.
- 6. Determination of Young"s modulus by Non uniform bending method
- 7. Determination of specific resistance of a given coil of wire Carey Foster"s Bridge
- 8. Determination of Young's modulus by uniform bending method
- 9. Determination of band gap of a semiconductor
- 10. Determination of Coefficient of viscosity of a liquid -Poiseuille"s method
- 11. Determination of Dispersive power of a prism Spectrometer
- 12. Determination of thickness of a thin wire Air wedge method
- 13. Determination of Rigidity modulus Torsion pendulum

II-LIST OF EXPERIMENTS – CHEMISTRY

- 1. EstimationofhardnessofWaterbyEDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Determination of DOin water (Winkler'smethod)
- 4. Estimation of Chloride in Watersample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determinationofmolecularweight
- 7. Conduct metric titration (Simple acid base)
- 8. Conduct metric titration (Mixture of weak and strong acids)
- 9. Conduct metric titration using BaCl₂vs Na ₂ SO₄ 10 Potentiometric Titration (Fe ²⁺ / KMnO₄ or K₂ Cr ₂ O ₇)
- 11. pH titration (acid & base)
- 12. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 13. Estimation of Ferric iron by spectrophotometer.

BSS 1L5 /2L5 NSS PRACTICAL

LTPC 0 1 2 1

OBJECTIVES

- 1. Understand the community in which they work and their relation
- 2. Identify the needs and problems of the community and involve them in problem-solving

- 3. Develop capacity to meet emergencies and natural disasters
- 4. Practice national integration and social harmony and
- 5. Utilize their knowledge in finding practical solutions to individual and community problems.

1. Regular Activities Programme

- 1) Traffic regulation
- 2) Working with Police Commissioner's Office
- 3) Working with Corporation of Chennai
- 4) Working with Health Department
- 5) Blind assistance
- 6) Garments collection
- 7) Non-formal education
- 8) Environmental Education, Awareness and Training (EEAT)
- 9) Blood donation

2.Special camp Programme

- A) Legal awareness
- B) Health awareness
- C) First-aid
- D) Career guidance
- E) Leadership training cum Cultural Programme
- F) Globalization and its Economic Social Political and Cultural impacts.

REFERENCE BOOKS:

- 1. National Service Scheme Manual, Government of India.
- 2. Training Programme on National Programme scheme, TISS.
- 3. Orientation Courses for N.S.S. Programme officers, TISS.
- 4. Case material as Training Aid for field workers, Gurmeet Hans.
- 5. Social service opportunities in Hospitals, Kapil K.Krishan, TISS.
- 6. Social Problems in India, Ram Ahuja.

	ENGLISH II	L	Т	Р	C
BEN ²	Total Contact Hours – 60	3	1	0	3
DLI	Prerequisite – English I				
	Course Designed by – Department of English				
OBJE	CTIVES				
Stude	nts will be able to actively participate in group discussions. Students	will	have		
Telepl	nonic Skills, Giving Directions and Information Transfer				
COU	RSE OUTCOMES (COs)				
CO1	To make the students aware to different kinds of Learner-friendly mod	es of			
	language to a variety of self- instructional learning (Computer based)				
CO2	To make students comprehend the habit of intelligent Reading as well	as C	omput	ter-	
	based competitive exams glob				
CO3	To achieve a reasonably good level of competency in Report Writing.				
CO4	To make the students aware to different kinds of Learner-friendly mod	es of			
	language to a variety of self- instructional learning (Computer based)				

C	D5 To ach	ieve a	reaso	nably g	good	level of	f compet	ency in g	group di	scussion	s				
C	O6 To ach	ieve a	reaso	nably g	good	level of	f compet	ency in p	public s	peaking					
]	Mapp	ing of (Cour	se Outc	comes w	ith Progr	am out	comes (P	Os)				
		(H/M	/L 110	dicates	strer	igth of	correlati	on) H-H	High, M	-Medium	i, L-L	OW			
1	COs/POs	а	b	с	d	e	f	g	h	i	J	k	1		
2	CO1	М	L	Н	L	М			Н		Μ	L			
	CO2	CO2HLHMLCO3HIMHI													
	CO3 H L M H H L C03 H L M H H L														
	CO4			Η	L	Μ			Η		Μ	L			
	CO5			Η	L	Μ			Н		Μ	L			
	CO6			Н	L	Μ			Н		М	L			
3	Category	CO6 Category Social Studies & (HS)		Basic Sciences	(BS)	Engg Sciences (ES)	Professional Core (PC)	Professional Elective (PE)		Non-Major Elective (NE)	Open Elective	(OE)	Project/Term Paper/ Seminar/		
		N													
4	Approval			37 th	Me	eting of	Acaden	nic Coun	cil, Ma	y 2015					

UNIT I **ORIENTATION**

Numerical adjectives - Meanings in context - Same words used as different parts of speech -Paragraph writing - Non- verbal communication - Regular and Irregular verbs.

UNIT II **ORAL SKILL**

Listening to audio cassettes - C.Ds , News bulletin - Special Lectures, Discourse - Note taking -Sentence patterns - SV, SVO, SVC, SVOC, SVOCA - and Giving Instructions - Reading Comprehension answering questions. Inferring meaning.

UNIT III THINKING SKILL

Self- introduction describing –Group Discussion – Debate –Role play- Telephone- Things- etiquette-Recommendation and Sequencing jumbled sentences to make a suggestions-paragraph-advertisement and notice, Designing or drafting posters, writing formal and informal invitations and replies.

WRITING SKILL UNIT IV

Definitions - Compound nouns - Abbreviations and acronyms - (a) business or official letters(for making enquiries, registering complaints, asking for and giving information, placing orders and sending replies): (b) Letters to the editor (giving suggestions on an issue).

UNIT V FORMAL INFORMATION

Editing – Prepositions - Articles - Permission letter for undergoing practical training, Essay writing -Application for a job, letter to the principal authorities regarding admissions, other issues, requirement or suitability of course etc.

12

12

12

12

TEXT BOOK:

1. Meenakshi Raman, Sangeetha Sharma , Technical English for Communication: Principle and Practice, OUP, 2009.

REFERENCE BOOKS:

- 1. Sumanth, English for Engineers, Vijay Nicole, Imprints pvt ltd.2013.
- 2. Meenakshi Raman and Sangeetha Sharma, Technical Communication Principles and Practice, Oxford University Press, 2009.
- 3. Sangeetha Sharma, Binodmishra , Communication skills for engineers and scientists , PHI Learning Pvt Ltd, New Delhi, 2010.

		MA	ATHE	MAT	TICS –	II							L	Т	P	•	С
		Tot	al Co	ntact I	Hours -	60							3	1	0		3
BI	MA 201	Pre	requis	ite – I	Mathem	natics	Ι										
		Co	urse D	esign	ed by –	Depa	rtmen	t of Mat	hem	atics							
0	BJECT	IVE	S														
Ał	oility to	app	ly thes	se prin	nciples of	of ma	thema	tics in p	rojec	ts an	d resear	rch wor	ks.				
C	OURSI	E OL	JTCO	MES	(COs)												
CO	D1 Stu	dent	shall	be at	ole to S	olve	differe	ential eq	uatic	ons, s	simultar	neous li	nea	r equ	uatio	ons, a	and so
	spe	cial	types	of line	ear equa	ations	relate	d to eng	ineeı	ring.							
CO	D2 Rel	ate 1	the us	e of r	nathem	atics	in app	olication	s of	vari	ous fiel	ds nam	ely	fluic	d flo	ow, h	eat fl
	sol	id m	echani	$\frac{1}{1}$	ectrosta	tics, e	etc.										
CO	J3 Ab	ility	to test	hypo	thesis												
CO	CO4 Find intensity of degree of relationship between two variables and also bring out regress equations.																
~	equations.																
C	$\frac{05}{0}$ Un	derst	tand to	solve	e matrix	<u>rob</u>	olems 1	related to	o rea	l life	problei	ns.					
C	J6 F01	mula	ate ma	thema	atical m	lodels											
		(М н/м/I	appin	g of Co	ourse (Outcon	nes with	n Pro	gran	n outco mb M-N	mes (Po Jedium	Os)	OW			
1	COs/F	Pos	a	b	c c	d	e	f	1) 11	, 111 <u>8</u>	h	i	, L 1	<u>i</u>	k		L
-	000/1	0.5		Ũ	•		•	-	2	>		-		J			_
					_												
2	CO1		Н		L			**			-						
	CO2			H				Н			L	L			M		
	CO3			Н				Н			L	L			M		
	CO4						M						-	Л	M		
	C05													/1	IVI		
3	Categ	orv	T								<u>ہے</u>			/1	.		
5	Category Huma wities &			social Social	Basic Scien	Ces Επσσ	Scien	Profe ssion:	1 Core	Profe	ssiona 1 Flecti	Non- Majoi	Electi	Upen Electi	Ve	Proje	
						,					-	. ,					

4	Approval	37 th Meeting of Academic Council, May 2015

UNIT I **ORDINARY DIFFERENTIAL EQUATION**

Higher order linear differential equations with constant coefficients - Method of variation of parameters - Cauchy's and Legendre's linear equations - simultaneous first order linear equations with constant coefficients.

UNIT II VECTOR CALCULUS

Gradient, divergence and curl -Directional derivatives -Irrotational and solenoidal vector fields vector integration- Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (without proofs) – simple applications involving cubes and rectangular parallelepipeds.

UNIT III ANALYTIC FUNCTIONS

Functions of a complex variable - Analytic functions - Necessary conditions, Cauchy-Riemann equation and sufficient conditions (without proofs) - Harmonic and orthogonal properties of analytic functions – Harmonic conjugate – construction of analytic functions – conformal mapping: W= Z+C, CZ, 1/Z and bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Complex integration - Statement and application of Cauchy's integral theorem and Cauchy's integral formula – Taylor and Laurent expansions – Singular points – Residues – Residue theorem – Application of Residue theorem to evaluate real integrals – Unit circle and semi-circular contour (excluding poles on boundaries).

STATISTICS UNIT V

Mean, Median, Mode - Moments - Skewness and Kurtosis - Correlation - Rank Correlation -Regression – Chi square test for contingency tables.

TEXT BOOK:

- R.M.Kannan and B.Vijayakumar" Engineering Mathematics-II "2ndEdition, SRB Publication, 1. Chennai 2007.
- Bali.N.P and Manish Goyal, "Engineering Mathematics", 3rdEdition, Laxmi Publications (P) 2. Lltd. 2008.
- Grewal .B/S "Higher Engineering Mathematics", 40thEditon, Khanna Publications, Delhi, 2007 3.

REFERENCES:

- Ramana.B.V, "Higher Engineering Mathematic", Tata McGraw Hill Publishing Company, New 1. Delhi, 2007.
- Gupta SC, and VK.Kapoor, "Fundamentals Mathematical Statistics", 11th edition, Sultan Chand 2. Sons, New Delhi, 2014.

	ENGINEERING PHYSICS -II	L	Т	Р	С
BPH201	Total Contact Hours - 45	3	0	0	3
	Prerequisite – ENGINEERING PHYSICS -I				

12

12

12

12

12

	Course Designed by – Department of Physics OBJECTIVES														
O	 OBJECTIVES To expose the students to multiple areas of science of engineering materials which have direct relevance to different Engineering applications 														
	• To	expos	e the	studen	ts to	multip	ole areas	s of s	cience c	of engin	eering	mat	erials	,	
	whi	ch ha	ve dire	ect relev	vance	e to diff	erent Er	nginee	ring app	lication	S	_			
	• To	under	stand	the co	ncept	ts and	applicat	ions (of condu	icting,	Semico	ondu	cting,		
	mag	gnetic		$\frac{ }{ }$	mater	Tals as	well as	their c	ptical pi	operties	8.				
				(008)	•	1 1			1		• 1				
C	JI Unders	stand a	about	propert	ies ar	nd adva	incemen	ts of c	conduction	ng mate	rials.				
C	D2 Unders	stand	the pri	inciple	and p	roperti	es semic	condu	cting ma	terials.					
CO	D3 Acquir	e Kno	owledg	ge on M	lagne	etic and	dielectr	ic Ma	terials.						
CO	D4 To Kn	ow ab	out th	e creati	on of	new m	naterials	with	novel pro	operties					
CO	CO5 To Understand the impact of modern materials in technical uses.														
C	CO6 Learn new engineering materials and its characteristics														
	Mapping of Course Outcomes with Program outcomes (POs)														
1	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
2	CO1	Н													
	CO2		L	Н		М									
	CO3		M		H										
	CO4 CO5	Н	т	M	L										
	<u>CO5</u>	н	L												
3	Category	11													
5	cutegory	ties	HS)	es .			onal C)		CE	ijor 'e	,e		ern/	ur/ nip	
		ani) sə	asic enco	3S)	ces	ssic e (P		ole ve (-Ma ctiv	pen ctiv)E)	ct/T per	ninê rnsk	
		o. s	udio	B: Scie	I)	gg ien(S)	Core	ζ	ر ecti	[on- Ele	Ele	\subseteq	ojeć Pa	Sen	
		H	St		4 1	E SC E	Pr		Ele	Z			Pr		
4	Approval	37 th	Mee	ting of .	Acad	emic C	ouncil, 1	May 2	015	I					
	11			C		_	,	2							

UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type

9

semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications.

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics II. Global Publishing House, 2014.
- 2. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011.
- 3. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

REFERENCES:

- 1. Arumugam M., Materials Science. Anuradha publishers, 2010
- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
- 4 <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 5 <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 6 <u>https://en.wikipedia.org/wiki/Engineering_physics</u>

	ENGINEERING CHEMISTRY-II	L	Т	P	0
всн	Total Contact Hours - 45	3	0	0	3
	Prerequisite – ENGINEERING CHEMISTRY –I				
	Course Designed by – Department of Chemistry				
OBJI	CTIVES				
	To impart a sound knowledge on the principles of chemistry involving a	pplic	ation		
	oriented topics required for all engineering branches.				
COU	SE OUTCOMES (COs)				
CO1	Students will understand the concepts and further industrial applications	of su	face of	chemis	stry
CO2	Fo impart knowledge about the Industrial importance of Phase rule and	alloys	5		

9

9

C	CO3 To make the students to be conversant with Analytical techniques of chemistry and their importance														
	their in	mporta	ince												
C	J4To hav	e an ic	lea an	d know	ledge	about	the Che	emist	ry of	Fuels ar	ıd				
C	O5 Unders	tandin	ig of e	enginee	ring n	nateria	ıls								
C	D6 All abc	out bor	iding a	and mo!	lecula	r struc	tures								
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	I COs/Pos a b c d e f g h i j k l 2 CO1 H H L H H M M														
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	2 CO1 n n L n n M CO2 H H H H H I I														
	CO3	Н		L		Н		Η					Μ		
	CO4			L		Н		Н							
	CO5			L		Н		Η							
	CO6			L		Н		Η			Н		Μ		
3	Category	Huma	Runo K Snrigl	Basic Scienc	es Engg	Scienc	Profes sional	Core (PC)	Core	Electiv e (CE)	Non- Major Flectiv	Open	Electiv e (OF)	Project /Term	Paper/ Semin
4	Approval	37 th	Meet	ing of A	Acade	mic C	ouncil,	May	2015	5			·		

UNIT I SURFACE CHEMISTRY

9

9

Introduction : Adsorption , absorption , desorption , adsorbent , adsorbate and sorption – (definition only) Differences between adsorption and absorption Adsorption of gases on solids – factors affecting adsorption of gases on solids – Adsorption isotherms –Frendlich adsorption isotherm and Langmuir adsorption isotherm Role of adsorbents in catalysis, Ion-exchange adsorption and pollution abatement.

UNIT II PHASE RULE AND ALLOYS

Introduction :Statement of Phase Rule and explanation of terms involved – one component system – water system – Construction of phase diagram by thermal analysis - Condensed phase rule [Definition only] Two Component System : Simple eutectic systems (lead-silver system only) – eutectic temperature – eutectic composition – Pattinsons Process of desilverisation of Lead Alloys: Importance, ferrous alloys –nichrome and stainless steel – 18/8 stainless steel – heat treatment of steel – annealing – hardening – tempering normalizing – carburizing - nit riding . Non- ferrous alloys: Brass and Bronze

UNIT III ANALYTICAL TECHNIQUES

Introduction: Type of Spectroscopy - Atomic spectroscopy – molecular spectroscopy -Explanation IR spectroscopy – principles – instrumentation (block diagram only) – applications finger print region UV-visible spectroscopy — principle – instrumentation (block diagram only) – Beer-Lambert's law- – estimation of iron by colorimetry– Atomic absorption spectroscopy- principle - instrumentation (block diagram only) - estimation of Nickel by Atomic absorption spectroscopy Flame photometry– principles – instrumentation (block diagram only) - estimation of sodium ion by Flame photometry

UNIT IV FUELS

Introduction : Calorific value – types of Calorific value - gross calorific value – net calorific value Analysis of Coal – Proximate and ultimate analysis – hydrogenation of coal - Metallurgical coke – manufacture by Otto-Hoffmann method Petroleum processing and fractions – cracking – catalytic cracking – types – fixed bed catalytic cracking method- Octane number and Cetane number (definition only) Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG (definition and composition only) Flue gas analysis – importance - Orsat apparatus

UNIT V ENGINEERING MATERIALS

Introduction: Refractory's – classification – acidic, basic and neutral refractory's – properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling) Manufacture of Refractory's: alumina bricks and Magnesite bricks, Abrasives – natural and synthetic abrasives Natural type : Siliceous - quartz ; Non –siliceous – diamond Synthetic Abrasives : silicon carbide and boron carbide. Lubricants: Liquid lubricants - Properties – viscosity index, flash and fire points, cloud and pour points, oiliness) Solid lubricants – graphite and molybdenum sulphide

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S.Dara "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

REFERENCES:

- 1. B.Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub. Co.Ltd, New Delhi,(2008)
- 2. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 5. https://en.wikipedia.org/wiki/Spectroscopy

BCS 2	02 INTERNET PROGRAMMING	L	Т	Р	С									
	Total Contact Hours - 30	2	0	0	2									
	Prerequisite – Fundamentals of Computer			1										
	Course Designed by – Dept of Information Technology													
OBJE	TIVES													
•	To impart a sound knowledge on the principles of computers involvin oriented topics required for all engineering branches.	ng th	e diffe	erent app	olication									
•	Graduates will demonstrate the ability to apply knowledge of mathem	Graduates will demonstrate the ability to apply knowledge of mathematics to develop and												
	analyze computing systems.													
•	Graduates will have a solid understanding of the theory and concepts	unde	erlyin	g compu	ter									
	science.													
COUR	SE OUTCOMES (COs)													
CO1	To enable the student to learn the major components of a computer	syste	em.											
CO2	To know the correct way of solving problem.													
CO3	To identify efficient way of solving problem.													
CO4	To learn to use office automation tools.													

	705 To implement office automation tools													
C	O5 To impler	nent of	ffice a	utomati	on to	ols								
C	O6 To learn a	nd wri	te pro	gram in	ч"С".									
		Ma	apping	g of Cou	rse O	utcom	es with	Program	outcomes	(POs)				
	(.	H/M/L	indic	ates stre	ength	of cor	relation) H-Higl	n, M-Medi	um, L-I	Low			
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k	1	
2	CO1	Μ	Μ	Μ	Н	Μ		М			L	L	М	
	CO2	Н	Μ	Μ	Η	Η		Μ			L	L	Μ	
	CO3	Η	Μ		Н	Н		М			L	L	М	
	CO4	Η	Μ		Η	Η		М			L	L	М	
	CO5	Η	Μ	Μ	Η	Н		М			L	L	М	
	CO6	Н			Η	Η		М			L	L	М	
3	Category	H ·	, д ²	a ic	u c	പറ	r of	s o o	ct	Z 🗄 .	0	л e	r in t F	
		I -		E.B.	S H	N 00	Ро	O ^{S. e}	е ш э	- 0 .	\cup	d 1	Н О Э́	
4	Approval	37 th	Meet	ting of A	Acade	mic C	ouncil,	May 201:	5		1	I		

UNIT I BASIC INTERNETCONCEPTS

Internet principles-IPaddressing-Internet Service Provider (ISP)-URL-Basic web concepts-World WideWeb (WWW)-Intranet and Extranet-Internet Protocols: HTTP, TCP, UDP, FTP, Telnet-Domain Name System(DNS)-E mail-Next generation internet.

UNIT II WEBDESIGNBASICS

Introduction to HTML–Structureof HTMLDocument– Tags-Headings–Links–Images–Lists– Tables –Forms–Frames-Style sheets andits types.

UNITIII DYNAMIC HTML

Introduction to DynamicHTML-Object modeland collections-Event model-Filters and transition-Data binding-Data control-Activexcontrol.

UNIT IV CLIENT ANDSERVERSIDEPROGRAMMING

VBScript&JavaScript:Introduction-Operators–Data type-Control structures-Looping–Classes andObjects–Arrays-Functions-Events-Exampleprograms.

UNITV INTERNETAPPLICATIONS

Onlinedatabase-functions of onlinedatabase-Merits and Demerits-InternetInformationSystems (IIS)-EDI applications in business and its types-Internet commerce-Types and Applications

TEXT BOOKS:

- 1. Deitel, Deitel and Nieto, ''Internet and World Wide Web- How to program'', Pearson Education Publishers, 5th edition, 2008.
- 2. Elliotte Rusty Harold, ''Java Network Programming'', O'Reilly Publishers, 2010
- 3. Java Script: A Beginners Guide John Pollock 4thEdition, TMH Edition (2013)
- 4. VB Script Beginners Guide, Jyoti B. Giramkar, Create Space Independent Publishing (2014)

6

6

6

6

REFERENCES:

- 1... Krishnamoorthy & S.Prabhu, ''Internet and Java Programming'', New Age International Publishers, 2010.
- 2. Thomno A.Powell, ''The Complete Reference HTML and XHTML'', fourth edition, Tata McGraw Hill, 2001
- 3. E Commerce Kamlesh K.Bajaj, Debjani Nag, Tata McGraw Hill, Second edition, 2010

BF	FR 20	1 F	RENC	CH											L]	Г	Р	С
		То	otal Co	ont	act Hou	ars - 43	5								3	()	0	3
		Pr	erequ	isit	e – +2]	Level I	Engli	sh											
		C	ourse	De	signed	by – D	epart	tment o	f Englis	h									
OI La de:	BJEC nguag fine tl	TIVE ge giv hemse	E S es acc lves tl	ess hro	and insugh lan	sights i Iguages	nto a 5.	another	culture	. It	is a fi	unda	ment	al truth	h that	t cul	lture	es	
CO	OURS	SE OU	UTCC	M	ES (CC	Ds)													
CC	D1]	Introd	uce th	e b	asics of	f the la	ngua	ge to be	eginners	5									
CC	D2 1	Under	stand	a d	ialogue	and di	ialog	ue pres	entatior	1									
CC	03	Fo dev respor	velop t id in s	the imj	ir know ple evei	vledge ryday c	as we onte	ell as th xts.	eir com	m	unicat	ive s	kills	so as to	o be	able	e to		
CC	D4 5	 Synchronies I includes documents which initiate the learners to another world, another culture and which acclimatize them to the authentic use of the French language through the exploitation of written and iconographic documents. The Indian context has been used. Grammatical and lexical notions as well as activities required for communication are learnt. 																	
CC	05 (Gramı by the	natica stude	l ai ents	nd lexic 8.	cal noti	ons a	as well	as activ	iti	es requ	uirec	l for o	commu	nica	tion	are	learr	nt
CC	D6]	Interp	reting	ski	ills and	confid	ence	in the l	anguag	e.									
CC	06 1	Interp	reting	ski	ills and	confid	ence	in the l	anguag	e.									
			(H/N	M M/I	apping L indica	of Cou	irse (ength	Outcom	es with relation	Pı)	rogran H-Hig	n ou gh, N	tcom 1-Me	es (PO dium,	s) L-Lo)W			
1	COs	/Pos	а		b	с	d	e	f		g		h	i	j		k		1
2	COI		Η		L														
	CO2	2				Н	L					ŀ	I	Н	М]	Ĺ	L	
	CO3	3				Н	L					ŀ	I	Н	Μ]	Ĺ	L	
	CO4	ŀ				Н						ŀ	ł	Н	Μ]	L	L	
	COS	5				Н	L					H	I	Н	Μ			L	
	CO)				Н						H	1	Н	Μ			L	
3	Cate y	egor	H,	⊐ £	an iti	Ba sic	Sc	En Sg	Pr of	es	Co Te	E	Z	uo	0	pe	Pr	oj	PT P
			\checkmark																

4	Approva	37 th Meeting of Academic Council, May 2015
	1	

UNIT I **INTRODUCTION**

At the airport: Savoir- faire: exchanging greetings, self introduction, introducing another, welcoming someone, identifying someone - Grammar: verbs 'to be', 'to call oneself', subject pronouns, interrogation

UNIT II GRAMMAR

At the University: Savoir-faire: enquiring after one's welfare, taking leave, expressing appreciation -Grammar: definite & indefinite articles, gender of nouns, adjectives, present tense of regular 'er' verbs, 'to have', 'to learn', negation, irregular verbs

UNIT III CONVERSATION

At the café: Savoir -faire: speaking about one's likes, giving information, expressing admiration, asking information about someone - Grammar: Interrogative adjectives, irregular verbs, possessive and interrogative adjectives

UNIT IV **PROPOSAL WRITING**

At the beach: Savoir faire: proposing an outing, accepting/ refusing the proposal - Grammar: singular & plural, indefinite pronoun, demonstrative adjectives, negation, irregular verbs

UNIT V FORMAL LETTERS

A concert: Savoir -faire: inviting, accepting, expressing one's inability to accept an invitation

UNIT VI **REGULAR & IRREGULAR VERBS**

Grammar: Present tense of more irregular verbs, contracted articles, future tense, interrogative adverbs, At Nalli's Savoir- faire: asking the price of an article, protesting against the price, Grammar: possessive adjectives, Exclamative adjectives, imperative tense

REFERENCES:

- 1. Course Material: Synchronie I Méthode de Français
- Madanagobalane -Samita Publications, Chennai, 2007 2.

DOM	GERMAN	L	Т	Р	C
BGM	Total Contact Hours – 45	3	0	0	3
	Prerequisite +2 Level English				
	Course Designed by – Department of English				
OBJE	CTIVES				
At th	e end of this course, students shall be able to obtain good knowledge	ge of	the la	inguag	e, to r
write	and speak German, whereby the emphasis is laid on speech.				
COU	RSE OUTCOMES (COs)				
CO1	Will have a basic knowledge of the language				
CO2	Will acquire reading and writing skills.				

7

8

8

7

56

C	2O3 Will develop basic conversational skills. 2O4 Will understand German lifestyle															
CO	O4 Will un	dersta	nd Ge	erman li	ifesty	le										
CO	O5 Will ga	in con	fidenc	e to su	rvive	e in a gl	obal en	viron	men	t						
CO	O6 Will ha	ve atta	ined	to survi	ve a	nd adop	t chang	e in a	a for	eign cul	ture .					
	(M H/M/I	appin 2 indi	g of Co cates st	ourse	Outcouth of co	mes with	n Pro 1) H	ogran I-Hij	n outco gh, M-N	mes (POs Iedium, I	s) L-Lov	V			
1	COs/Pos a b c d e f g h i j k 1 CO1 H L L L L L L L L L															
2	CO1	XO1 H L .														
	CO2	II L H L H H L H														
	CO3			Η	L					Н	Н	Μ	L	L		
	CO4			Н						Н	Η	Μ	L	L		
	CO5			Н	L					Н	Н	Μ		L		
	CO6			Н					1	Н	H	Μ		L		
3	Category	Humanities & Social Studies	(HS)	Basic Sciences	(BS)	Engg Sciences (ES)	Professional Core (PC)		Core	Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/Term Paper/ Seminar/		
		N														
4	Approval	37 th	Meet	ing of	Acad	lemic C	council,	May	201	5						

Course structure:

- A. German Language (speaking, reading, writing, grammar and test)
- B. Life in Germany (shopping, restaurant, doctor, government, bank, post)
- C. The German Way (introduction, doing business, conversation, meetings, dining)
- D. Germany (Culture, Climate)

UNIT I PRONOUNCIATION

Welcome: Introduction to the Language, Spelling and Pronunciation (The alphabets and numbers) Greetings, ordering, requesting, saying thank you - Grammar – **the article "the", conjugation** of verbs

UNIT II SELF INTRODUCTION

Shopping - Grammar - adjectives, endings before nouns, practice. Self introduction

UNIT III TRAINING

Addresses, Occupations, Studies - Grammar - **'to be', the definite/indefinite** articles, individual Training

UNIT IV ORAL

Leisure Time, Sports, Hobbies - Grammar - position of a verb in a main clause , oral practice

9

9

9

UNIT V NARRATION

At a Restaurant, Food and Drink - Grammar – the personal pronoun in the Nominative and Accusative, Narrating an event

RESOURCES:

1. Sprachkurs Deutsch 1 (Verlag Diesterweg), New Delhi Learning Centre

		JAI	PANES	SE									L	Т	F)	С
B.	IP 201	Tota	al Con	tact H	lours - 4	45							3	0	0)	3
		Prei	requisi	te – +	2 Leve	l Eng	glish							•			
		Cou	irse De	esigne	ed by –	Depa	rtment	of Engl	ish								
0	BJECT	ΓΙΥΕ	S														
	To	have	a basic	c knov	wledge	of Ja	panese	languag	ge, Ja	apan	ese culti	are and	l her	ritage	e		
	10 To	impa:	rt knov	vledg	e Japan	to de	ifestyle	e. Angia ag	nuor	ontio	nol akili	ام					
C	OURS	E OU	JTCO	MES	(COs)	10 46	evelop		IIVEI	satio	niai skii	15.					
C	D1 Wi	ll hav	ve a ba	sic kı	nowled	ge of	the lan	guage									
C	D2 Wi	ll acc	quire re	eading	g and w	riting	g skills	<u> </u>									
CO	D3 Wi	ll dev	develop basic conversational skills.														
C	D4 Wi	ll uno	understand Japanese lifestyle														
CO	D5 Wi	ll gai	gain confidence to survive in a global environment														
C	D6 Wi	ll hav	have attained to survive and adopt change in a foreign culture .														
		Manning of Course Outcomes with Program, outcomes (POs)															
		Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High M-Medium L-Low															
1	COs/I	(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowPosabcdefghijkl															
														5			
2	CO1		Н	L													
	CO2				Н	L					Н	Н		Μ	L	L	,
	CO3				Н	L					Н	Η		Μ	L	L	
	CO4				Н						Η	Η		Μ	L	L	
	CO5				Н	L					H	H		M			,
2	CO6	0.471			Н						Η			Μ			,
5	Calleg	JULY	cial		BS)	ć		ore		CE)		ive)E))er/	
			SO SO	Ì) s			ŭ		e ((lect		e ((Pal	r' (PR
			s & S (F		nce		ance	nal C)		ctiv		n E	ì	ctiv		urm.	ina ip
			nitie Idie		Scie		SCIE	ssio (P		Ele		1ajc		Ele		t/Te	sem rnsł
		man Stur Stur Stur Stur Stur Stur Stur Stur															
			Ηuı		Bat	F	Eng	Pr		Col		No		Op		Prc	Ι
												1					

4	Approval	37 th Meeting of Academic Council, May 2015	

UNIT I CULTURAL HERITAGE

Introduction-history and origin of Japanese language-Japan and its cultural heritage-Self introductioncounting numbers (1-100)-time-conversation with the use of audio devices, grammar– usage of particles wa, no, mo and ka

UNIT II USAGE

Greetings, seasons, days of the week and months of the year-numbers (up to 99,999)-grammar– usage of kore, sore, are, kono, sono, ano, koko and kochira, arimasu and imasu-i-ending and na-ending adjectives-use of audio and drills for practice

UNIT III ORAL

Asking the price-associated vocabulary-usage of particles ni, ga and ne- use of audio and drills for practice-Introduction to basic Kanji characters- use of audio and drills for practice

UNIT IV ART AND CULTURE

Family relationships- colours-Kanji (numbers) and festivals of Japan-religion-Japanese art and culture-ikebana, origami-introduction to hiragana- use of audio and drills for practice

UNIT V DRILLS AND PRACTICE

Vocobulary associated with directions-asking way-particles – e, de, mo, koko, soko, asoko, doko, nani, mae, ushiro, ue, shita- use of audio and drills for practice-introduction to katakana

TEXT BOOKS

- 1. Japanese Hiragana and Katakana for beginners, Timothy G. Stout, 2011
- 2. Genki I: An integrated course in elementary Japanese, Eri Banno and Yuko Ikeda, 2011

REFERENCE BOOKS

- 1. Japanese Reader collection Volume I, Yumi Boutwell and Clay Boutwell, Kotoba books, 2013
- 2. Living Language Japanese Complete Edition beginners through advanced course, Living Language, 2012

BKR 20	1 KOREAN	L	Т	Р	C						
	Total Contact Hours - 45	3	1	0	3						
	Prerequisite – +2 Level English										
	Course Designed by – Department of English										
OBJEC	ΓΙVES										
To hay To imj	e a basic knowledge of Korean language, Korean culture and heritage art knowledge on Korean lifestyle and heritage.	e									
COURS	E OUTCOMES (COs)										
CO1 W	ill have a basic knowledge of the language										
CO2 W	ill acquire reading and writing skills.										
CO3 W	ill develop basic conversational skills.										

9

9

9

9

C	CO4 Will understand Korean lifestyle															
C	O5 Will ga	in con	fiden	ce to su	rvive	in a g	lobal en	viron	ment							
C	CO6 Will have attained to survive and adopt change in a foreign culture .															
	Mapping of Course Outcomes with Program outcomes (POs)															
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	COs/Pos a b c d e f g h i j k l															
2	CO1 H L CO2 H L															
	CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	CO3	H L H H L L														
	CO4			Η					Η	Η	Μ	L	L			
	CO5			Н	L				Н	Н	Μ		L			
	CO6			Η					Η	Н	М		L			
Humanities & Humanities & Humanities & Social Studies Social Studies (HS) (HS) (HS) Basic Sciences H Professional Core (PC) Core (PC) Core (PC) Non-Major H Project/Term Paper/ Project/Term Paper/ Project/Term Paper/													Paper/ Seminar/ Internship (PR)			
4	V Approval 37 th Meeting of Academic Council, May 2015															

UNIT I PLANNING

Asking/giving reasons for studying Korean, making plans for the holiday, writing letters, describing past travel experiences and future travel plans, shopping in a grocery store, shopping in electronics store, storytelling Grammar: would like to (do), want to (do), construct future tense.

UNIT II MODIFIERS

Asking about feelings, asking about problems and giving advice, brief introductions - Grammar: Noun modifier, please try doing (something), irregular adjective/verb

UNIT III PLACING ORDERS

Asking about hobbies, asking about abilities (sports), job requirements, Ordering things for delivery, ordering a meal at a restaurant - Grammar: Sentence ending for the honorific form, please do something for me, have tried (something),

UNIT IV DESCRIPTIONS

Asking about evening plans, making plans with others, making preparations - Asking about rooms, describing your room to your classmates, describing your house. Grammar: to know/not know how to do something, must (do), have to (do), should,

UNIT V GRAMMAR

Describing your plans and giving reasons, cancelling appointments. Grammar: Shall we~? / Should we~?, with, and, irregular verbs/adjective, so, because, cannot, intend to, plan to, or hope to, (more) than, the most, tag question/is n't it? ,will (do)

9

9

9

9

COURSE MATERIAL:

Korean for Non-Native Speakers (Student Book 1B) Korean Language Education Center, Sogang University

B	CN 201		CHIN	ESE								L	Τ	P	С	
			Total C	Conta	ct Hour	s - 6	50					3	0	0	3	
			Prereq	uisite	-+2 L	evel	English					1		II		
		-	Course	e Desi	gned by	y – I	Departm	ent of E	nglish							
0	BJECTI	VES														
	To ha	ave a	basic ki	nowle	edge of	Chi	nese lang	guage, C	Chinese cu	lture ar	nd he	eritag	ge			
	To in	npart	knowle	dge o	n Chine	ese l	lifestyle	and heri	tage.							
	OURSE	Will	COMI hove o	<u>18 (C</u>	US) knowk	daa	of the l	nguaga								
		W III		Dasic	KIIOWIG	uge	$\frac{1}{100}$									
	02	w 111	acquire	read	ing and	wri	ung skil	15.								
C	03	Will	develop	p basi	c conve	ersat	tional ski	tlls.								
	04	W111		tand (ninese	me	style	-lahal ar		. t						
	03	Will have attained to survive and adopt change in a foreign culture														
C	COb Will have attained to survive and adopt change in a foreign culture Mapping of Course Outcomes with Program, outcomes (POs)															
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High M-Medium L-Low															
1	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	0.05/10	5	a	U	C	u	C	1	5	11	1		J	К	1	
2	CO1		Н	L												
	CO2				Н	L				H	H	M		L	L	
	CO3				H	L				<u>H</u>	H	M		L		
	CO4				H U	T				<u>н</u> и	H U	M		L		
	CO5				н Н	L				<u>н</u> Н	H H	M				
3	Categor	v			11						111	141				
5	2	J	ities	Se	es c			ona PC)	e ve	ajor		_	o ve	Ter Pr/	hip	
			ani	udie	asid	BS	lces	e (F	Core Scti	Cti	Ë	per	scti ^y OE	ect/	nin rns PR	
			Hum &	St	B Sci		ngg cier ES)	rofe Cor	E	Von Ele		0	Ē	roj	Ser Ser (
			<u> </u>				E S E	d O		~				Ц		
			\checkmark													
4	Approva	al	37 th	Mee	ting of A	Acad	demic C	ouncil, I	May 2015			1		1		
					-				-							

UNIT 1 RISE OF DIALECTS

History, Origins, Old and middle Chinese, Rise of northern dialects

UNIT II VARIETIES

Influences 3 Varieties of Chinese. 1. Classification 2. Standard Chinese and 3. Nomenclature

UNIT III CHARACTERS

9

9

Chinese characters, Homophones, Phonology

UNIT IV TRANSCRIPTIONS

Tones, Phonetic transcriptions, Romanization, Other phonetic transcriptions

UNIT V GRAMMAR

Grammar and morphology, Vocabulary, Loanwords, Modern borrowings and loanwords

REFERENCES:

- Hannas, William C. (1997), Asia's Orthographic Dilemma, University of Hawaii Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-1892-0" 978-0-8248-1892-0.
- Qiu, Xigui (2000), Chinese Writing, trans. Gilbert Louis Mattos and Jerry Norman, Society for the Study of Early China and Institute of East Asian Studies, University of California, Berkeley, ISBN HYPERLINK

http://en.wikipedia.org/wiki/Special:BookSources/978-1-55729-071-7,978-1-55729-071-7.

- **3.** Ramsey, S. Robert (1987), The Languages of China, Princeton University Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-691-01468-5" 978-0-691-01468-5.
- **4.** Schuessler, Axel (2007), ABC Etymological Dictionary of Old Chinese, Honolulu: University of Hawaii Press, ISBNHYPERLINK

"http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-2975-9"978-0-8248-2975-9.

5. R. L. G. " Language borrowing Why so little Chinese in English?" The Economist. June 6, 2013.

BBT 20	PRINCIPLES OF GENETICS	L	Т	Р	C									
	Total Contact Hours – 30	2	0	0	2									
	Prerequisite – Basic biology, concepts in genetics			1										
	Course Designed by – Dept. of Industrial Biotechnology													
OBJE	CTIVES													
To prov	vide a fundamental knowledge on genetics, its laws, genes and	chro	mosor	mes, ii	nherita									
heredity	neredity, causes of genetic disorders and the methods of gene transfer													
COUR	SE OUTCOMES (COs)													
CO1	To understand the fundamentals of genetics and the Mendelian la	WS												
CO2	To understand about the structure and organization of ch	romos	somes	in p	rokary									
	eukaryotes													
CO3	To understand about the structure and organization of chromoson	nes in	eukar	yotes										
CO4	To understand the concept of alleles in blood grouping and sex de	etermi	natior	l										
CO5	To know the concept of linkage and crossing over of genes													
CO6	To get a basic knowledge of the methods of gene transfer													

UNIT I BASICS OF GENETICS

Classical genetics, Mendelian Laws- Mendel's experiment-monohybrid cross-phenotype, genotype, Dihybrid inheritance, Interaction of genes, Fine structure of Genes

6

9

UNIT II **CHROMOSOMES**

Chromosome structure and organization in prokaryotes and eukaryotes, unusual chromosomeschromosome banding, chromosome abnormalities- genetic disorders

UNIT III ALLELES

Classical concepts of Pleomorphism, Multiple alleles, ABO blood groups, Rh factor, sex linkage in Drosophila, linkage in human beings, mechanism of sex determination, XX-XY mechanisms of sex determination, sex determination in Drosophila, environmental factors and sex determination, sex differentiation.

UNIT IV CROSSING OVER

Coupling and Repulsion-Hypothesis, Test cross in maize and crossing over, theory of crossing over, molecular mechanism of crossing over, sex chromosomes and sex linked inherited disorders, colour blindness, hemophilia, Muscular dystrophy.

GENE TRANSFER UNIT V

Transformation, Tansduction, Conjugation, Plasmids and Episomes

TEXT BOOKS:

- 1. Principles of Genetics, Gardner, Simmons and Snustad, John Wiley and Sons (Asia), 2002
- 2. Genes VIII, Lewin, International Edition, Prentice Hall, 2004

REFERENCE BOOKS:

- 1. Instant Notes in Genetics, P.C. Winter, G.I. Hickey and H.L. Fletcher, Viva Books Private Limited, 2003
- 2. Weblink: nptel

	BAS ELI	SIC ELECTRICAL AND ECTRONICS ENGINEERING	L	Τ	Р	C								
BEE	201 Tota	l Contact Hours - 30	2	0	0	2								
	Prer	equisite – Engineering Mathematics, Engineering Physics-I &	II											
	Cou	ourse Designed by – Department of Electrical & Electronics Engineering												
OBJI	CTIVES	VES: To understand the laws of electrical engineering.												
COU	RSE OUTCOMES (COs)													
CO1	Students with ele	will gain knowledge regarding the various laws and principl strical systems.	es as	socia	ted									
CO2	Students	will gain knowledge regarding electrical machines and app	ly th	em fo	r									
	practica	problems.												
CO3	Students	will gain knowledge regarding various types semiconductors.												
CO4	Student	will gain knowledge digital electronics.												
CO5	Student v	vill gain knowledge on electronic systems.												
CO6	Students projects	Students will acquire knowledge in using the concepts in the field of electrical engg. projects and research.												

6

6

6

	Mapping of Course Outcomes with Program outcomes (POs)												
		(H/M/	L indi	icates st	rengtl	n of co	orrelatio	n) H-H	igh, M-	Med	lium, L-	Low	
1	COs/Pos	a	b	с	d	e	f	g	h	i	j	k	1
2	CO1	Μ	Η	М			L		L	L			
	CO2		Н	Μ			L		L	L			
	CO3		Η	Μ			L		L				
	CO4	Μ	Η	Μ			L		L	L			
	CO5	Μ	Η	М			L		L				
	CO6		Н				L		L	Η			
3	Category	Humanities & Social	Studies (HS)	Basic Sciences	(BS) Engg	Sciences (F.S)	Professional Core (PC)	Core Elective	Non-Major Elective	(NE)	Open Elective	(OE) Project/Ter m Paper/	Seminar/ Internship (PR)
					\checkmark								
4	Approval	37 th	Mee	ting of A	Acade	mic C	Council,	May 201	5				

UNIT I ELECTRIC CIRCUITS

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C – Current and voltage source transformation – mesh current & node voltage method –superposition theorem –Thevenin's and Norton's Theorem -Problems.

UNIT II ELECTRICAL MACHINES

Construction, principle of operation, Basic Equations and applications - D.C.Generators and D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

UNIT III BASIC MEASUREMENT SYSTEMS

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method – and Energy meter.

UNIT IV SEMICONDUCTOR DEVICES

Basic Concepts of semiconductor devices – PN Junction Diode Characteristics and its Applications – HWR, FWR –Zener Diode – BJT (CB, CE, CC) configuration & i Characteristics.

UNIT V DIGITAL ELECTRONICS

Number system – Logic Gates – Boolean Algebra– De-**Morgan's Theorem** – Half Adder & Full Adder – Flip Flops.

TEXT BOOKS:

- 1. N.Mittal "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- 2. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004.

6

6

6

6

3. Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", Tata McGraw Hill

REFERENCE BOOKS:

- 1. Edminister J.A. "Theory and Problems of Electric Circuits" Schaum's Outline Series. McGrawHill Book Compay, 2nd Edition, 1983.
- Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill Internatinal Editions, 1993.
- 3. D. P. Kothari and I. J. Nagrath" Electric Machines" Tata McGraw-Hill Education, 2004
- 4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

	BC	S2L1	I	NTE	RNET	PRAC	TICES	LAI	BORA	TORY	']	L′	Г	P	С	
			Tota	l Co	ntact Ho	urs - 4	5				3	C)	0	3	
			Prer	equis	site – Int	ernet I	Program	ming	5							_
			Cou	rse D	Designed	by – I	Dept of 1	Infor	matior	n Techn	ology					-
O	BJECTI	VES														_
	• To i	mpa	rt a sou	nd ki	nowledge	e on th	le princi	ples	of con	nputers	involvi	ng the	e di	iffere	nt	
	app	licati	on orie	nted	topics re	quired	for all	engir	neering	g brancl	nes.					
	 Graduates will demonstrate the ability to apply knowledge of mathematics to develop and analyze computing systems. 															
	 analyze computing systems. Graduates will have a solid understanding of the theory and concepts underlying computer solutions. 															
	• Graduates will have a solid understanding of the theory and concepts underlying computer so COURSE OUTCOMES (COs)															
CO	JURSE	OUI	COM	ES (O	COs)											
	CO1	То	enable	the s	tudent to	learn	the maj	or co	mpon	ents of a	a comp	uter sy	yste	em.		
	CO2	To	o know	the c	correct ar	nd effi	cient wa	ıy of	solvin	g probl	em.					
	CO3 To identify and implement the correct and efficient way of solving problem.															
	CO4 To learn to use office automation tools.															
	CO5 To infer from use office automation tools.															
	CO6	To	learn ai	nd wi	rite prog	ram in	"С".									
			Map	ping	of Cours	se Out	comes v	vith I	Progra	m outc	omes (l	POs)				
		(H	[/M/L i	ndica	tes stren	gth of	correlat	tion)	H-H	igh, M-	Mediur	n, L-I	LOW	V	<u> </u>	
1	COs/PC	Ds	а	b	с	d	e	f	g	h	i	j		k	1	
2	CO1		М	М	Μ	Н	М		Μ			L		L	M	
	CO2		Η	Μ	М	Н	Η		Μ			L		L	М	
	CO3		Η	Μ		Н	Н		Μ			L		L	М	
	CO4		Η	Μ		Н	Η		Μ			L		L	М	
	CO5		Η	Μ	М	Н	Н		Μ			L		L	М	
CO6 H H H M L L M											Μ					
3	Categor	ry	ties al	ş	SS			ona	(b)	e 'e	ijor 'e	<u>c</u>	p	Ter 'r'	ur/ uip	
			anil oci	Idie IS)	asic		Ices	ssic	C Ou	ore ctiv	Ma	pen		ct/	nin£ msł	
			um & S	Stu	Scie B.	(Γ]00	sien S)	ofe	1 C	Ū Ū	on- Ele			oje n P	Sen Diter (P	
			Η		•1	Ц Ц	N E	Pr			z		,	P1 r	li I	

				\checkmark				
4	Approval	37 th Meet	ing of Acad	emic Coun	cil, May 2	015		

LIST OF EXPERIMENTS

1. HTML (Hypertext Mark-up Language):

Basics of HTML.

How to create HTML Document

Steps for creating a simple HTML Program.

- a) Favorite Personality
 - b) Resume Preparation

2. ADVANCED HTML: Advanced Topics of HTML

- a) Time Table
- b) Table Creation

3. JAVASCRIPT:

Script Basics.

Incorporating JavaScript into Web page.

- a) Star Triangle
- b) Temperature Converters
- Script Basics.

Incorporating JavaScript into Web page.

- a) Star Triangle
- b) Temperature Converters

4. VBSCRIPT:

VBScript Basics.

Incorporating VBScript into HTML.

- a) Changing Background Color
- b) Simple Calculator
- 5. WEB DESIGN:

Inserting External Media in the Web Page.

- a) Forms and Links
- b) Frames with Links and Lists

To export a Dream weaver Document as XML File, checking entries, working in frames, windows control, the java script URL.

	COMPUTER PRACTICE LABORATORY	L	Τ	P	C					
DCS 1	Total Contact Hours - 45	0	1							
DC5 21										
	Course Designed by – Department of Computer Science &	zEng	ineer	ing						
OBJE	CTIVES: To impart basic computer knowledge									
COUR	SE OUTCOMES (COs)									
CO1	Demonstrate major algorithms and data									
CO2	Implementation of array operations									

C	D3	Imple	menta	ation of	of bina	ary tr	ree.								
C	D4	Imple	menta	ation of	of link	ed li	st								
CO	D5	Stude	nts wi	ill at	le to	do ai	nalyse da	ata using	g spread	sheet					
CO	D6	Stude	nt w	ill abl	e to u	nders	stand the	basics of	of C pro	gramn	nin	g.			
			Map	ping o	of Cou	irse (Dutcome	s with P	rogram	outco	me	s (POs)			
	-	(H/N	M/L ii	ndicat	es stre	ength	of corre	elation)	H-Higl	n, M-N	led	ium, L-l	Low		
1	COs	s/POs	а	b	с	d	e	f	g	h	i	j	k		L
2	CO	1	Η	Η	L	Η		Η		L		Н	Н		Η
	CO	2	II II II II II II II I I II II II II II												
	CO	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
	CO4							Н	Н	L		Μ			
	CO4 CO5							Н	Н	L		М			
	CO	5						Η	Н	L		М			
3	Cate	egory	Humanities &	social suuries (HS)	Basic Sciences	(cd)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/Term Paper/	Seminar/	Internship (PR)
4	App	oroval	37 th	7 th Meeting of Academic Council, May 2015											

A) WORD PROCESSING

Document creation, Text manipulation with Scientific Notations. Table creation Table formatting and Conversion. Mail merge and Letter Preparation. Drawing-Flow Chart

B) SPREAD SHEET

Chart-Line Xy Bar and Pie - Formula-Formula Editor-Spread sheet-Inclusion of Object, Picture and Graphics Protecting the document and sheet-Sorting and Import/Export features.

C) SIMPLE C PROGRAMMING*

Data types, Expression Evaluation, Condition Statement. Arrays structures and Unions -Functions

D) SIMPLE C++PROGRAMMING

-Classes and Objects -Constructor and Destructor

*For Programming exercises Flow chart and Pseudo code are essential.

	BASIC ELECTRICAL AND ELECTRONIC ENGINEERING PRACTICES LABORATORY	L	Τ	Р	C
BEE2L	Total Contact Hours – 45	0	0	3	1

9

6

15

	Prere	Prerequisite – Basic Electrical and Electronics Engineering													
	Course Designed by – Department of Electrical & Electronics Engineering														
OBJECTIVES: To enhance the student with knowledge on electrical and electronic equipments.															
COURSE OUTCOMES (COs)															
CO	CO1 Students will able to handle basic electrical equipments.														
CO	2 Students will able to do staircase wiring.														
CO	3 Students will able to understand domestic wiring procedures practically.														
CO	4 Student will able to assemble electronic systems.														
CO	Students will understand all the fundamental concepts involving electrical engineering														
CO	CO6 Students will understand all the fundamental concepts involving electronics engineering														
Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High. M-Medium. L-Low															
1	COs/POs	a	b	c d		e	f	/	g h		i	j	k		1
2	CO1	Μ	Н	М			L			L	L	Μ	Н		
	CO2		Н	Μ			L			L	L		Н		
	<u>CO3</u>		H	M			L			L		H			
	<u>CO4</u>	M	H	M			L			L		M H			
	<u>CO5</u>	M	H	M			L		L		M		<u>H</u>		
2	Cotocorre		Н				L								
3	Category	Humanities	& Social Studies (HS)	Basic Sciences	Sciences		Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/Term Paper/ Seminar/ Internship		Internship (PR)
4	Approval	37	th Mee	ting of	$\frac{1}{2}$	lemic	Council	N	<u>/av 201</u>	5					
Ŧ	rippional 57 incening of readenine Council, may 2015														

I LIST OF EXPERIMENTS FOR ELECTRICAL ENGINEERING LAB

- 1. Fluorescent lamp wiring
- 2. Stair case wiring
- 3. Measurement of electrical quantities-voltage current, power & power factor in RLC circuit
- 4. Residential house wiring using fuse, switch, indicator, lamp and energy meter
- 5. Measurement of energy using single phase energy meter
- 6. Measurement of resistance to earth of electrical equipment

II LIST OF EXPERIMENTS FOR ELECTRONICS ENGINEERING LAB

- 1. Study of electronic components and equipments.
 - a. Resistor colour coding using digital multi-meter.
 - b. Assembling electronic components on bread board.

- 2. Measurement of ac signal parameters using cathode ray oscilloscope and function generator.
- 3. Soldering and desoldering practice.
- 4. Verification of logic gates (OR, AND, OR, NOT, NAND, EX-OR).
- 5. Implementation of half adder circuit using logic gates.

			PHYSICS AND CHEMISTRY LABORATORY										I		Τ	Р	C
BPC 1L1/2L1		Total Contact Hours – 45									0)	0	3	1		
			Prerequisite – Physics and Chemistry													1	
		Course Designed by – Department of Physics & Chemistry															
OBJECTIVE			S: To	5: To impart knowledge to the students in practical physics and chemistry													
COURSE OUTCOMES (COs)																	
CO1 Stude			its will understand the concept of hall effect														
CO2 Stud		nts will understand the concept of semiconductors															
CO3 Stude			nt wil	it will understand the working of spectrometer.													
CO4 Stude			ent will	nt will able practically understand the chemical reactions.													
CC)5	Stude	nts wil	ts will Study the magnetic hysteresis and energy product													
CC	CO6 Students understand the Determination of Band gap of a semiconductor																
Mapping of Course Outcomes with Program outcomes (POs)																	
1 COs/POs				b		d	e e	f	σ	-111	$\frac{gn, m}{h}$	-ivied	i i		k		1
2	CO	1	M	н	M			T	0	T		T	M		н		M
2	CO	2		H	M			L				L	141		H		
	CO	3		Н	М			L		L					Η		
	CO	4	М	Η	Μ			L		L		L	М		Η		М
	CO	6		Η				L		L		Η			Η		
3	Cat	egory	Humanities	Studies (HS)	Basic	Enge	Sciences	Professional Core (PC)	Core	Elective	Non-Major Elective	(NE)	Open Elective		Project/Ter	m Paper/ Seminar/	Internship (PR)
					\checkmark												
4	Ap	proval	37 th Meeting of Academic Council, May 2015														

I -LIST OF EXPERIMENTS – PHYSICS

- 14. Determination of Wavelength, and particle size using Laser
- 15. Determination of acceptance angle in an optical fiber.
- 16. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 17. Determination of wavelength of mercury spectrum spectrometer grating

- 18. Determination of thermal conductivity of a bad conductor Lee"s Disc method.
- 19. Determination of Young"s modulus by Non uniform bending method
- 20. Determination of specific resistance of a given coil of wire Carey Foster's Bridge
- 21. Determination of Young"s modulus by uniform bending method
- 22. Determination of band gap of a semiconductor
- 23. Determination of Coefficient of viscosity of a liquid -Poiseuille"s method
- 24. Determination of Dispersive power of a prism Spectrometer
- 25. Determination of thickness of a thin wire Air wedge method
- 26. Determination of Rigidity modulus Torsion pendulum

II-LIST OF EXPERIMENTS – CHEMISTRY

- 1. EstimationofhardnessofWaterbyEDTA
- 2. EstimationofCopper in brass byEDTA
- 3. Determination of DOin water (Winkler'smethod)
- 4. Estimation of Chloride in Watersample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determinationofmolecularweight
- 7. Conduct metric titration (Simple acid base)
- 8. Conduct metric titration (Mixture of weak and strong acids)
- 9. Conduct metric titration using BaCl₂vs Na ₂ SO₄
 10. Potentiometric Titration (Fe²⁺ / KMnO₄ or K₂ Cr ₂O₇)
- 11. pH titration (acid & base)
- 12. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 13. Estimation of Ferric iron by spectrophotometer.

BSS1L7/BSS2L7 YOGA FOREMPOWERMENT

L T P C 0 12 1

6

OBJECTIVE:

Providing Value Education to improve the Students' character - understanding yogic life and physical health - maintaining youthfulness - Measure and method in five aspects of life

UNIT I PHYSICAL HEALTH

Manavalakalai (SKY) Yoga: Introduction - Education as a means for youth empowerment - Greatness of Education - Yoga for youth Empowerment.

Simplified Physical Exercises: Hand, Leg, Breathing, Eye exercises - Kapalabathi, Makarasana Part I, Makarasana Part II, Body Massage, Acu pressure, Relaxation exercises - Benefits.

Yogasanas 1: Pranamasana - Hastha Uttanasana - Pada Hasthasana - Aswa Sanjalana Asana - Thuvipatha asva Sanjalana asana - Astanga Namaskara - Bhujangasana - Atha Muktha Savasana - Aswa Sanjalana Asana - Pada Hasthasana - Hastha Uttanasana -Pranamasana.

Pranayama: Naddi suddi - Clearance Practice - Benefits.

Simplified Physical Exercise - Kayakalpa Practices - Meditation Practices.

UNIT II LIFE FORCE

Reasons for Diseases: Natural reasons (Genetic / imprints, Planetary Position, Natural calamities and climatic changes) - Unnatural reasons (Food habits, Thoughts, Deeds) **Philosophy of Kaya kalpa:** Physical body - Sexual vital fluid - Life force - Bio-

Magnetism - Mind.

Maintaining youthfulness: Postponing old age - Transformation of food into seven components - Importance of sexual vital fluid - Measure and method in five aspects of life - Controlling undue Passion.

Kayakalpa practice: Aswini Mudra - Ojas breath - Benefits of Kaya Kalpa.

UNIT III MENTAL HEALTH

Mental Frequencies: Beta, Apha, Theta and Delta wave-Agna Meditation explanationbenefits.

Shanti meditation: Shanthi Meditation explanation-benefits

Thuriya Meditation: Thuriya Meditation explanation-benefits

Benefits of Blessing: Self blessing(Auto suggestion) - Familyblessing-Blessing the others-World blessing-Divineprotection

UNIT IV VALUES

Human Values: Self control-Self confidence - Honesty Contentment - Humility-

6

6

6

Modesty Tolerance – Adjustment - Sacrifice-Forgiveness Purity(Body,Dress,Environment)-Physicalpurity-Mentalpurity - Spiritual purity

Social Values :

Non violence-Service Patriotism-Equality Respectforparentsandelders-careandprotection-Respectforteacher Punctuality-TimeManagement

UNIT V MORALITY (virtues)

Importance of Introspection: I-Mine (Ego, Possessiveness) SixEvilTemperaments-Greed-Anger-Miserliness-Immoralsexualpassion-InferiorityandsuperiorityComplex-Vengeance Maneuvering of Six Temperaments:Contentment-Tolerance-Charity-Chastity – Equality-Pardon (Forgiveness) FiveessentialQualitiesacquiredthroughMeditation:Perspicacity – Magnanimity – Receptivity-Adaptability-Creativity(ImprovedMemoryPower)

REFERENCE BOOKS:

- 1. Yoga for modern age ThathuvagnaniVethathiri Maharishi
- 2. Simplified Physical Exercises ThathuvagnaniVethathiri Maharishi
- 3. Kayakalpam Thathuvagnani VethathiriMaharishi
- 4. Thirukkural -Rev.Dr.G.U.pope
- 5. Mind-ThathuvagnaniVethathiriMaharishi
- 6. SoundHealththroughyoga-Dr.Chandrasekaran
- 7. Light on yoga -BKS.lyenger

8. உணவுமுறை – தத்துவஞானிவேதாத்திரிமகரிஷி

BBT304		WASTE MANAGEMENT TECHNOLOGY	L	Т	Р	С					
		Total Contact Hours - 45	3	0	0	3					
		Prerequisite – Basic of waste and its disposal									
		Course Designed by – Dept. of Industrial Biotechnology									
OBJECTIVES											
To give a basic knowledge of waste handling and utilization											
COURSE OUTCOMES (COs)											
CO1 to uno		inderstand the various types of waste									
CO2 to know		o know the various technologies to handle the waste material									
CO3 To kr		o know the remedial measures for waste disposal									
CO4 To ge		Γo get idea about industrial waste management									
CO5 To kr		To know about bioremediation of waste									
CO6 To un		o understand about waste handling									

6

Total periods: 30
		Ma	pping o	f Course	e Out	tcomes	s with F	rogr	am	outc	omes (POs)		
	(H	H/M/L	indicate	es streng	gth of	corre	lation)	H-H	Higl	h, M-1	Mediu	m, L-Lov	N	
1	COs/POs	а	b	c	d	e	f	g		h	i	j	k	1
2	CO1	Η	Μ	Μ	Η	Μ		Μ				L	L	Μ
	CO2	Н	Μ	Μ	Η	Η		Μ				L	L	Μ
	CO3	Н	Μ		Η	Н		Μ				L	L	Μ
	CO4	Н	Μ		Η	Н		Μ				L	L	Μ
	CO5	Н	Μ	Μ	Η	Н		Μ				L	L	Μ
	CO6	Н			Η	Н		Μ				L	L	Μ
3	Category	Humanities & Social Studies	(HS)	Basic Sciences (BS)	Fnoo	Sciences (ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term paper	Seminar/ Internship (PR)
								\checkmark						
4	Approval	37 th Meeting of Academic Council, May 2015												

UNIT I INTRODUCTION

Introduction: Definition and Classification- Disposal methods: Land fill and Incineration – Recycling methods: biological reprocessing and Energy recovery-. Avoidance and Reduction Methods- Waste handling and Transport – Waste management Concepts

UNIT II AGRICULTURAL WASTE

Introduction- Waste Consistency- Waste Management Function: Production ,Collection, Storage, Treatment , Transfer, Utilization- Waste Management system Design – Waste Management System: Dairy Waste, Beef Waste, Swine Waste, Poultry Waste, Other animal – Municipal and Industrial Sludge- Food Processing – Agri-Chemical Waste Management- Handling.

UNIT III BIOMEDICAL WASTE

Introduction- Overview – Characterization of Medical Waste- Waste Generation Methodology – Sterilization- Chemical Disinfection – Thermal Inactivation- Irradiation- Microwave Treatment – Grinding and Shredding – Compaction- Current Practice – Standards .

UNIT IV INDUSTRIAL WASTE MANAGEMENT

Paper and Pulp Industry – Leather Industry – Cement Industry – Chemical Industry – fertilizer Industry – Pharmaceutical Industry – Textile industry – Iron and Steel industry – Mining Industry – Lignite industry – Petroleum Industry – Nuclear Industry.

UNIT V REMEDIAL MEASURES

Bioremediation – Phyto-remediation- Recycling of Plastic and Paper

TEXT BOOK:

1. Wang, Shannmas Hung, 2008, "Advanced hazardous industrial waste treatment" CRC Press.

REFERENCE BOOKS

73

9

9

9

- 1. Agricultural Waste Management Hand Book by USDA, III Ed,2005
- 2. Industrial Biotechnology Problems and Remedies by InduShekhar Thakur, VI Ed, 2006

B	BT3	06											L	Т	F		С
			PRIN	CIPI	LES C)F CI	HEMIC	CAL E	NGI	NEF	ERIN(<u> </u>					
			Total	Conta	act Ho	ours -	60						4	0	0		4
		F	Preree	quisite	e – En	igg M	athemat	tics-I, I	Engg	g Ma	thema	atics -II,	basi	cs ab	out u	nit	
			opera	tions		•-			-								
			Cours	se Des	igned	by –	Dept of	Indust	trial	Biot	techno	ology					
0	BJE	CTIVE	S														
T	o pro	vide a t	oasic k	nowle	edge o	of Pro	cess eng	gineeri	ng								
C	OUF	RSE OU	JTCO	MES	(COs	;)										_	
С	201	to und	erstan	d the	variou	ıs unit	t operati	ions in	volv	ed ir	n indu	stry					
C	202	to kno	w the	mater	ial bal	lance	for a pr	ocess.									
C	203	to kno	w the	energ	y bala	nce fo	or a pro	cess.									
С	CO4	to get	an ide	a abou	it flui	d mec	hanics.										
C	205	to kno	w abo	ut agi	tation	and t	he types	s of agi	tato	rs							
C	CO6 to know about working principles of fermenter																
							1										
		/	Ma	pping	of Co	ourse	Outcom	nes with	n Pro	ogra	m ou	tcomes ((POs))			
1	0	(<u>h</u>	I/M/L	indica	ates st	rengt	h of cor	relation	n) I	H-H	igh, M	I-Mediu	m, L	-Low	V 1_	<u> </u>	1
1	CO	S/PUS	a	D	с	a	e	I	g	5	n	1	J		K		1
2	CO	1	Н	M	Μ	Н	М		Μ				L	L		M	
	CO	2	Н	М	М	Н											
	CO	3	Н				Η		Μ							Μ	
	CO	4	Н	Μ		Η	Η										
	CO	5	H	Μ	Μ		Н		Μ								
	CO	5	H			H			Μ				L	L		Μ	
3	Cate	egory	& .	les	ces		S)			ve		E)	ve		E		0
			ties	ma (S	ien	2	Ē	PC		ecti	(T)	1ajc e (N	ect	(T)	Te	cı nar/	shij V)
			iani	(HX	Sc		Ices	fess bre (EI	(CF	n-N tive	υEl	Ð	ect/	pap emi:	ern (PF
				OCI	asic	6	ngg cier	Pro		Core		No Elec	Deal		roj	Š	Int
			μ, c	\mathbf{v}	В	Ľ	Ū Ň	· ·	,	0		E	0		Ц		
									\checkmark								
4	App	oroval	37 th	¹ Mee	ting o	of Aca	demic (Counci	l, M	ay 2	015						

UNITIOVERVIEWOF PROCESS INDUSTRY

12

12

Unit operations & Process - Conservation of mass & Energy -Stoichiometry- SI units & Conversion

UNIT II MATERIAL BALANCES

Overall and component material balances - Conversion -Yield - Selectivity - Material balances without chemical reactions and with chemical reactions

UNIT III ENERGY BALANCES

Energy - Forms of energy- Energy balances - Entropy - Latent heat -Hess's law- Standard heat of Reactions.

UNIT IV MOMENTUM TRANSPORT

Fluids-Types- Nature of flow-Momentum balance - Mechanical energy balance - Differential balances - Pressure losses in flow systems.

UNITVAGITATION AND TRANSPORTATION OF FLUIDS 12

Mixing and Agitation - Power consumption - Scale up - Pumps and gas moving machinery - Work of consumption.

TEXT BOOK

1. K.A.Gavhane, 2009, "Introduction to process calculations Stoichiometry" NiraliPrakasham Publications 22nd.

REFERENCE BOOKS

- 1. K.A. Gavhane, 2009, "Fundamentals of chemical engineering" NiraliPrakasham Publications 22nd.
- 2. McCabe and Smith,2002, "Unit operations in Chemical Enginering", Tata McHraw Hill Pblications, 6th Ed.
- 3. K.A. Gavhane, 2009, "Unit operations I Fluid flow & Mechanical operations" NiraliPrakasham Publications, 17th.
- 4. Bhat& Vora,2001, 'Stoichiometry'', Tata McGraw Hill Ltd, III Ed
- 5. Weblink: nptel

BRT30	7		L	Т	Р	С								
DD150	,	GENERAL BIOCHEMISTRY	Ľ	-	•	C								
		Total Contact Hours - 45	3	0	0	3								
		Prerequisite – Basic Chemistry and Biology												
	Course Designed by – Dept. of Industrial Biotechnology													
COUR	COURSE OUTCOMES (COs)													
CO1	to understand the fundamentals of biomolecules, their classification, structure													
CO2	to app in me	bly the basic concept of carbohydrates, proteins ,lipids, nucl etabolism.	eicac	ids aı	nd enz	ymes								
CO3	to kno	ow the application of biomolecules in functioning of biolog	ical s	ystem										
CO4	to get	a basic knowledge of macromolecules in living organism and	nd its	energ	etic									
CO5	To kn	ow basic concepts of enzymes												

12

C	206	to uno	derstan	d the	funda	menta	ıls fun	ction	of b	iom	olec	ules	5			
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	COs	POs	a	b	с	d	e	f	g	r >	h		i	j	k	1
2	COI		Н	Μ				Н								L
	CO2	2									Η				Н	
	CO3	3	Н		Η		Η						Н	Η		Η
	CO4	ŀ	Н	Μ				Η	Η							
	CO5	5	H H H													
	COe	5	Η		Η						Η			Η		М
3	Cate	egory	Humanities & Social	Studies (HS)	Basic	Enge	Sciences (FS)	Professional	Core (PC)	Core Elective	(CE)	Non-Major	Elective (NE)	Open Elective	Project/ Term paper	Seminar/ Internship (PR)
4	App	roval	37 th	Meeti	ng of	Acad	emic	Coun	cil, N	May	201	5				

UNIT I CARBOHYDRATES

Significance and functions of carbohydrates structure and properties of monosaccharides: Glucose, Fructose, Galactose- Oligosaccharides: Sucrose, Lactose, Maltose, Raffinose-Polysaccharides: storage, structural, Homo, Hetero polysaccharides-Metabolism- Glycolysis, TCA cycle and Hexose Mono Phosphate pathway.

UNIT II LIPIDS

Structure and properties of Fatty acids - classification - Lipids - structure and properties of phospholipids- spingolipids, glucolipids and steroids-Biosynthesis and β oxidation of fatty acid.

UNIT III PROTEINS

Structure and properties of aminoacids - classification- peptides: chemistry and its propertiesproteins: structures - properties - classification based on structure, function and nature. Biosynthesis of amino acid and catabolism-Urea cycle

UNIT IV NUCLEIC ACIDS

Structure and properties of purine and pyrimidine bases-Nucleosides- Nucleotides - Structure of DNA - various levels of organization of DNA - superhelical DNA - structure and properties of mRNA and rRNA-Biosynthesis and degradation of purine and pyrimidine

UNIT V **ENZYMES**

Classification and Nomenclature of enzymes- Properties of enzymes - active site -Factors affecting enzyme activity- Enzyme specificity- Mechanism of enzyme action- Enzyme kinetics related to Michaelis-Menten equation.

Text Book

9

9

9

9

- 'Gaw A, 2008, "Clinical biochemistry" Elsevier Health Sciences, 4th.Ed.
 J.L. Jain, 2008, "Fundamentals of biochemistry" S. Chand.8th Ed

Reference Books

- J.L. Jain , 2007 , "Text Book Of Biochemistry" ,14th Ed
 Zubey 2004 "Biochemistry" III Ed,
- 3. Voet&Voet 2006, "Biochemistry" V ed,.
- 4. Lehninger Nelson & Cox, , 2005 "Principles of Biochemistry",4th Ed
- 5. Weblink: nptel

BI	BT308	3	GEN					A1 7				L	Т	P	C
		-	GEN	ERA		CRO	BIOLOG	GY				2	0	0	2
			Total	Con	tact Ho	ours -	45					3	0	0	3
			Prere	quisi	te – Ba	asic co	oncepts i	n biol	ogy						
		-	Cours	se De	esignec	l by –	Dept. of	f Indu	strial Bi	otechno	ology				
O	BJEC '	TIVE	S												
To en	o provi gineer	ide a b	asic u	nder	standin	g of r	nicrobes	and t	heir app	olicatior	ns from	the pe	erspec	tive of	f
CO	CO1 to understand the source of microbes and their role in biotechnology														
C	01 1	to und	erstan	d the	sourc	e of m	nicrobes	and th	eir role	in biot	echnolo	gу			
С	O2 1	to get the knowledge of microbial diversity classification and morphology													
С	O3 1	D3 to know the visualization of microbes by different microscopes													
С	O4 1	to know the cause, symptoms, diagnosis and treatment of diseases causing pathogens													
C	O5 1	to get a	a basio	e kno	owledg	e of tl	he micro	bial n	utrition	and gro	owth				
С	O6 ′	To get	know	ledg	e abou	t path	ogens								
		(1	Ma	appir	ng of C	ourse	Outcom	les wi	th Prog	am ou	tcomes ((POs))		
1	00	1) ////////////////////////////////////	I/M/L	/ 1nd1	cates s	trengt	th of cor	relatio	on) H-	High, M	I-Mediu	$\frac{m, L}{\cdot}$	-Low		1
1	COs/	POs	а	b	С	d	e	Ť	g	h	1	J		κ.	I
2	CO1		Н			М			Н	Н	Н	Н			H
	CO2		Н		М										
	CO3		Н						Η		Н				H
	<u>CO</u> 4		Η		Μ	Μ			Η						
	CO5		Η				Н	Н							
	CO6		Н		Μ	Μ					Н				H

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term paper Seminar/ Internship (PR)
					\checkmark				
4	Approval	37 th Me	eting of Aca	demic C	ouncil, M	lay 2015			

UNIT I **INTRODUCTION TO MICROBIOLOGY**

Definition-Scope and history of microbiology-prokaryotic and eukaryotic cell- different types of classification-Nomenclature-fermentation-pasteurization-role of microorganisms in pharmaceutical, food, agro and cosmetic industries-bioremedial applications-illustrations of genetically engineered strains

UNIT II GENERAL FEATURES OF MICROORGANISMS

diversity-classification-morphology-life diversity-classification-Bacteria: cycle-Fungi: morphology-life cycle-Algae: diversity-classification-morphology-life cycle-virus: diversityclassification-morphology-life cycle

UNIT III MICROSCOPY

Introduction- numerical aperture, resolving power-magnification- fixation, dyes and simple staining, differential staining- gram staining, acid-fast staining, Staining specific structuresnegative staining, endospore staining, flagella staining-simple-compound-dark field-phase contrast-polarizing-fluorescent-laser optics-electron microscopy-scanning electron microscopetransmission electron microscope, specimen preparation-inverted microscope

UNIT IV MICROBIAL NUTRITION AND GROWTH

Common nutrient requirements-nutritional types of microorganisms, growth factors-uptake of nutrients by cells- culture media: synthetic or defined media-commonly used media-Types of media-selective-differential-enrichment media-aseptic techniques: disinfection-sterilizationcultivation of microbes: bacteria-fungi-viruses-pure culture: concept of pure culture-methods of pure culture of microorganisms-spread plate, streak plate and pour plate-microbial growth curve-factors affecting growth of microorganisms-measurement of growth

UNIT V MICROBIAL PATHOGENS AND DISEASES

Bacterial pathogens: Staphylococcus aureus-Enterobacteriaceae-Shigellosis-Fungal pathogens: superficial mycosis: Pityriasisversicolor-candidiasis-deep mycosis: Mycetoma-subcutaneous phycomycosis: Cryptococcosis-opportunistic systemic mycosis: aspergillosis, penicilliosismycotic poisons-Viral pathogens: Herpes, pox virus, AIDS virus, influenza virus

TEXT BOOKS

- 1. Michael J. Pelezar, J.R.E.C.S Chan, Noel R. Erieg, 2005, "Microbiology" TATA McGraw Hill, 5thed
- 2. Anantha Narayan, C.K. JayaramPaniker, 2009, "Text Book of Microbiology" Orient Blackswan, 7thed

9

9

9

9

REFERENCE BOOKS

- Presscott and Dunn, 2006, "Industrial Microbiology" CBS Publishers& Distributors.
 Daniel V.Lim, "Microbiology", Kendall Hunt, 2002 ed
 Weblink: nptel

BI	BT30	9	INST	RUN	IENT A	ATI	ON FOR	R BIO	DTE	CHNOLO	OGY	Ι	L	Т	Р	C
		-	Total	Cont	act Ho	urs	- 45					3		0	0	3
			Prerec	luisit	e – bas	sic p	orinciples	s in i	nstru	mentation	1		I			1
		-	Cours	e De	signed	by-	– Dept o	f Ind	lustri	al Biotech	nology					
0	BJEC	TIVE	S													
To	prov	ide a b	asic kn	owle	edge of	the	working	g prii	ncipl	e of instru	ments a	and tl	heir	appl	ication	iS
fro	$\frac{1}{1}$	e persp	ective (of en	gineer	S										
	JUN	SE UU	ICON	ILS	(COS)											
C	01	to und	erstanc	l the	fundar	nen	tals of in	istrui	nent	s and their	r differe	nt m	ode	of a	pplicat	ions
С	O2	to kno	w the p	orinc	iple, w	orki	ing conc	ept a	nd it	s applicat	ions					
C	O3	to find	l the va	riou	s labo	rato	ry work	base	d on	instrumer	nts					
С	O4	4 to know the different types of instruments based on various parameters														
C	CO5 to get a basic knowledge of equipments and their role in biological systems in relevant industries															
С	06	To un	derstan	d ab	out wo	rkin	ng princij	ples	abou	t instrume	ents					
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High M-Medium L-Low															
1	(H/M/L indicates strength of correlation)H-High, M-Medium, L-Low1COs/POsabcdefghijkl															
									0			5				
2	C01	-	H	TT	H	тт			Н		II		TT			
	CO_2	<u>;</u> }	н Н	н	н	н			Н		п		н			
	CO4	<u>-</u> -	H						H			М				
	COS	5	Н						Η							
2	CO	<u>)</u>	Н			Η			Η					I	ł	
3	Cate	egory	Humanities & Social	Studies (HS)	Basic Sciences	(BS)	Engg Sciences (FS)	Professional	Core (PC)	Core Elective (CE)	Non-Major Elective	Open	Elective	Project/	Term paper Seminar/	Internship (PR)
4	App	roval	37 th	Mee	ting of	Aca	ademic C	Coun	cil, N	May 2015						

UNIT I RADIATION TECHNIQUES

Sources of radiation- absorptivity-Lambert Beers law, deviations, detectors, photometric accuracy, Rayleigh scattering, Fourier transform, calibration and standardization, atomisation, flame atomisation, turbidimetric and nephlometric titrations -scattering in gases.

UNIT II ELECTROCHEMICAL TECHNIQUES

Principles: redox potential-pH electrode-ion selective and gas sensing electrodes-Clarke oxygen electrode and its application-biosensors.

UNIT III SPECTROSCOPIC TECHNIQUES

Colorimetry-UV-visible spectrophotometry-ORD-CD-X-ray spectroscopy-IR spectroscopy-ESR spectroscopy-NMR spectroscopy-Mass spectroscopy

UNIT IV SEDIMENTATION TECHNIQUES

Centrifugation principles-centrifuges and its types-differential and density gradient centrifugation-analysis of subcellular fractions-assessment of purity and determination of relative molecular mass

UNITV RADIOISOTOPE TECHNIQUES

Nature of radioactivity-Detection and measurement of radioactivity-GM counter-Scintillation counting-photographic emulsions-radiotracer techniques-autoradiography

TEXT BOOK

- 1. Willard and Merrit, "Instrumental Methods of Analysis", VI Edition, CBS Publishers and Distributors.
- 2. Asokan, Practical Biochemistry, IV edition

REFERENCES

- 1. Ewing GW, "Instrumental Methods of Chemical Analysis", McGraw Hill Book Company, 1989.
- 2 Braun H., "Introduction to Chemical Analysis", McGraw Hill, 1987.
- 3. Keith Wilson and Walker, Practical Biochemistry, V edition, Cambridge editions.

BBT310	IMMUNOLOGY	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – basics of immune system				
	Course Designed by – Dept. of Industrial Biotechnology				
OBJECTIVE	S				
To provide a b	basic understanding of biological defense mechanisms and the	eir aj	oplicat	tions fr	om
the perspectiv	e of engineers				
COURSE OU	JTCOMES (COs)				

CO1	to understand the fundamentals of immune system

9

9

9

9

C	O2	to appl	ly the	techn	iques	for	· anti	igen a	and ar	ntibo	ody	react	ior	1				
C	O3	to give	the the	mecha	anism	of	imm	nune i	respor	nse a	ıgai	inst a	nti	gens				
C	O4	to knov	w the	natura	al bar	rier	aga '	inst p	oathog	gens								
C	O5	to get a	a basi	c knov	wledg	e o	of the	e appl	licatio	ons c	of ir	nmur	nole	ogy in	transj	plan	tation	
C	O6	To unc	lersta	nd abo	out tee	chn	ique	es in i	mmui	nolo	gу							
		(H	Ma I/M/L	apping 2 indic	g of C cates s	lour strei	rse (ngth	Dutco	omes v orrelat	vith tion)	Pro) H	ogran I-Hig	ı o gh,	utcom M-Me	es (Po dium	Os) , L-l	Low	
1	COs	Ds/POs a b c					d	e	f	g		h		i	j		k	1
2	CO1	l	Н							Η				Н				
	CO2	2	Н		Н					Η				Η				
	CO3	3	Н		Η					Η				Η				
	CO4	1	Η		Η	Μ	[Η				Η				
	CO5	5			Η			Η	Η	Η		Η						Н
	CO	5	Η					Η		Η								
3	Cate	egory	Humanities &	social suucies (HS)	Basic	Sciences (BS)	Engg	Sciences (ES)	Professional		Core Elective	(CE)	Non-Maior	Elective (NE)	Open Elective	(OE)	Project/ Term paper	Jemmar Internship (PR)
4	App	proval 37^{th} Meeting of Academic Council, May 2015																

UNIT I THE IMMUNE SYSTEM

Introduction, Immunity, antigens & their classification, complement and their biological functions, types of immune responses, anatomy of immune response.

UNIT II HUMORAL IMMUNITY

B-lymphocytes and their maturation, activation & differentiation, structure and function of immunoglobulin, immunoglobulin classes, antibody production, mono-clonal antibodies and diagnosis major histocompatibility complex

UNIT III CELLULLAR IMMUNOLOGY

T -Lymphocytes their classification, maturation, activation & differentiation, antigen presenting, cells (APC), macrophages, langerhans cells, their origin and function, mechanisms of phagocytosis, Cytokines and their role in immune response, immunosuppression, immune tolerence

UNIT IV ANTIGEN - ANTIBODY INTERACTION AND HYPERSENSITIVITY9

9

9

Principle and application: Precipitation- immuno diffusion & widal test, Agglutination reactions, radio immuno assay, ELISA, Complement fixation test, Immuno fluorescence technique, Immunoelectrophoresis-Hypersensitivity reactions

UNITV TRANSPLANTATION AND AUTO IMMUNITY

9

Graft rejection, evidence and mechanisms of graft rejection, prevention of graft rejectionimmunosuppressive drugs, mechanisms of immunity to tumour antigens. Auto antibodies in humans, pathogenic mechanisms -autoimmune diseases- treatment of auto immune disorders

TEXT BOOKS:

- 1. Janis Kuby,2007, "Immunology" W.H. Freeman & Co. 6th ed.
- 2. Roitt I, 2001, "Essential Immunology". Blackwell Scientific Publications, Oxford,

REFERENCES:

- 1. Tizard, 1992, "Introduction to Immunology" Saunders collage publication, 3rded.
- 2. Abbas,2009, "Basic Immunology" W.B. Saunders Company, 2nded.

BB	BT3L	3	BIO	CHI	EMI	STRY	Y LA	B					L	Т	Р	C
			Tota	l Cor	ntact	Hour	s - 45	5					0	0	3	2
			Prere	equis	ite –	Basic	c con	cepts i	in cher	nistry a	nd biolo	gy				
			Cour	se D	esig	ned by	y – D	ept. o	f Indus	trial Bi	otechnol	ogy				
OF	BJEC	TIVE	S													
То	prov	vide a	ı basi	ic kı	10W	ledge	of 1	bioche	emical	compo	onents a	ind its	s fur	octions	s and	their
Ap	COURSE OUTCOMES (COs)															
C	JUKS	SE OU	ICO	MES) (C)	Us)										
C	01	to un	dersta	and t	he	funda	ment	als o	f bion	nolecule	es, their	class	ificat	ion,st	ructure	and
		functions to apply the basic concept of carbohydrates, proteins lipids, nucleicacids, and, enzymes														
C	to apply the basic concept of carbohydrates, proteins, lipids, nucleicacids and enzymes in metabolism															
~	CO3 to know the application of biomolecules in functioning of biological system															
C	CO3 to know the application of biomolecules in functioning of biological system															
C	CO4 to get a basic knowledge of macromolecules in living organism and its energetics															
C	05	To kn	ow ba	sic c	once	epts of	fenzy	ymes								
C	06	To un	dersta	ind al	oout	comp	ound	ident	ificatio	on						
				Ma	appi	ng of	Cour	se Ou	tcomes	with P	rogram	outcor	nes (l	POs)		
		(I	H/M/L	_ indi	cate	s strei	ngth o	of cor	relation	n) H-H	ligh, M-l	Mediu	m, L-	Low	- 1	
1	COs	/POs		а	b	С	d	e	f	g	h	i	j	k		1
2	COI	1		тт	TT	TT	тт			II			TT	тт		
2	CO1)		H	H	H	H			H			H	H		
	CO^2	2		п	п Ц	п Ц	п Ц			п Ц			п Ц	п		
	CO^{\prime}	,		н Ц	н	н	н Ц			н Ц			н Н	н		
	C04	r K		н	11	н	11			Н			H	H		
	COF	, 5		H	Н	11			М	M	М		11	11		

3	Category	n H	B as	E ng	Pr of es	or C	N	0 n	Pr oj t⁄
4	Approval	37 th M	eeting c	of Acader	nic Counci	l, May 20	015		

- 1. Preparation of normal, molar and percent solutions.
- 2. Preparation of different buffer solution and measure pH.
- 3. Qualitative analysis of Unknown sugar-Monosaccharides, disaccharides and polysaccharides.
- 4. Estimation of sugar- Benedicts method.
- 5. Qualitative of unknown protein-Albumin,casein and gelatin.

- 6. Quantitative test for aminoacids-Ninhydrin method.
- 7. Quantitative test for protein Biuret method.
- 8. Quantitative test for protein –Lowry method.
- 9. Quantitative test for protein Bradford method
- 10. Spectrophotometric analysis of DNA.

Bł	BT3L2		INST	RUM	ENTAI	L ME	тно	DS OF	' ANAI	LYSIS I	LAB	L	T	Р	C
			Total	Conta	ct Hour	s - 45	5					0	0	3	2
			Prereq	luisite	– Basic	che	mistry	and pl	nysics						
			Cours	e Desi	gned by	y – D	ept. o	f Indus	trial Bi	otechno	logy				
OI To	BJECT	FIVE S	S asic kr	owled	lge of ti	ne wo	orkino	princi	nle of i	nstrume	nts an	d thei	r annli	rations	from
the	e persp	ective	of eng	gineer	s		JIKIIIZ	, princi		instrume.	into dil		i uppin	cations	nom
CO	DURSI	E OU	TCON	AES (COs)										
C	01 T	To understand the fundamentals of instruments and their different mode of applications													
C	O2 to	to know the principle, working concept and its applications													
С	O3 to	o find	the va	rious	laborat	ory v	vork t	based o	n instru	ments					
C	O4 to	o knov	w the o	liffere	ent types	s of i	nstrun	nents b	ased on	various	s para	meters	5		
C	O5 to	o get a ndusti	a basic ries	know	ledge o	of equ	ipme	nt and t	their rol	le in bio	logica	al syste	ems in	releva	nt
С	O6 1	Fo unc	lerstan	d abo	ut basic	wor	king p	rincipl	es of eq	luipmen	t				
	·	(H	Ma ł/M/L	pping indica	of Counters stre	rse C ngth	of con	nes wit relatio	h Progr n) H-H	am outo High, M	comes -Medi	s (POs ium, L) L-Low		
1 COs/POs a b c d e f g h i j k l											1				
2	CO1		Н	Н					Н				М		

	CO2	Н		Η	L			Η		L			L			Н
	CO3	Н	Η			L		Η				L		Μ		
	CO4	Н	Н				L	Η						Μ		L
	CO5	Н	Н					Μ						Η		
	CO6	Н	Μ			Μ						Μ				
3	Category	Humanities & Social Studies	(HS)	Basic Sciences (BS)	Enaa Sciences	(ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major	Elective (NE)	Open Elective	(01)	Project/ Term	Paped Seminar/ Internship (PR)
4	Approval	37 th Meeting of Academic Council, May 2015														

- 1.Working principle of colorimeter and spectrophotometer
- 2. Difference between the spectrophotometer and colorimeter.
- 3. Validating beer lamberts law using colorimeter-potassium permanganate
- 4. Validating beer lamberts law using colorimeter-copper sulphate
- 5. Validating beer lamberts law using
- colorimeter-potassium dichromate

- 6. Determination of λ max.
- 7. Estimation of SO^{2-4} by nephlometry
- 8. Measurement of turbidity in water by nephlometry
- 9. Measurement of hydrogen ion in water samples
- 10. Preparation of buffer
- 11. Determination of moisture content
- 12. Precipitation of protein using ammonium sulphate.

BBT3I	L1	CELL BIOLOGY LAB	L	Τ	Р	C						
		Total Contact Hours - 45	0	0	3	2						
		Prerequisite – basic cell biology										
		Course Designed by – Dept. of Industrial Biotechnology										
OBJE	BJECTIVES: To provide a basic knowledge about cell biology											
COUR	COURSE OUTCOMES (COs)											
CO1	to unc	lerstand the fundamentals of instruments and their different n	node	of app	licatio	ns						
CO2	to get	idea about slide preparation										
CO3	to kno	ow about blood grouping										
CO4	to get	knowledge about mitosis										
CO5	to get a basic knowledge of extraction of plant pigments											
CO6	To un	derstand about preservation technique										

				Ma	ppin	g of	Course	e Outco	omes	wit	h Prog	gram outc	omes	(POs))		
			(H/	M/L	indi	cates	streng	th of c	orrel	atio	n) H-	-High, M-	Medi	ım, L	-Low		
1	COs/	'POs	a	b	с	d	e	f	g	5	h	i	j	k		1	
2	CO1		Η		Η	Η			Η								
	CO2		Η	Η					Η		Μ						
	CO3		Η			Η	Η	Η	Η								
	CO4		Η						Η								
	CO5		Н						Η								
	CO6		Н			Η			Η								
3	Cate	gory	Humanities & Social Studies	(HS)	Basic	Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	1	Core Elective	(CE)	Non-Major Elective (NE)	Open Elective	(0E)	Project/ Term	Seminar/	Internship (PR)
			4l-						•								
4	Appr	oval	37 th	Mee	ting	of A	cadem	ic Cou	ncil,	May	y 2015	5					

1. Study of Microscope

Permanent Slide preparation
 Killing and Fixing

5. Mitosis on onion root tip

6. Cryopreservation

2. Spotters

- 7. Preparation of Blood smear
 - 8. Separation of plasma and serum from blood sample
 - 9. Total RBC and WBC Count
 - 10. Osmosis
 - 11. Extraction of pigments

BBT401	BIOORGANIC CHEMISTRY	L	Т	Р	C
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Basics of biochemistry				
	Course Designed by – Dept. of Industrial Biotechnology				
OBJECT	IVES				
To provid	e a basic understanding of biochemical reactions, mechanisms a	nd th	eir ap	plicatio	ons
from the p	perspective of engineers				
COURSE	COUTCOMES (COs)				
CO1 to	o understand the fundamentals of biochemical reactions in living	orgai	nism		
CO2 to	apply the concept of structural relationship between chemical a	nd bi	ochen	nical	
re	eactions				
CO3 to	create the drug formulation and its structural analogs in living	system	ms co	mprehe	end
g	enetics and the immune system				
CO4 to	how the role of metal ions in biological components and the	ir im	portar	nce in 1	living
S	ystems				

C	O5 to get	a basio	c knov	vledg	ge of	memb	rane t	ranspo	ort and t	heir perme	eability	,			
C	O6 To ur	derstar	nd bas	ic co	oncep	ots of d	rug								
	Mappi (ng of C H/M/L	Course indic	Out ates s	com stren	es with gth of o	Prog correl	ram o ation)	utcomes H-Hig	h, M-Med	ium, L	-Low			
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k	1		
2	CO1	CO1 H H H H I													
CO2 H H H H H CO2 H H H H H											Н				
	CO3	Η		Η	Η	Η	Η	Η				М			
	CO4	Η						М							
	CO5	Η						Η							
	CO6	Η		Η						Η		Н			
3	Category	Humanities & Social Studies	(HS)	Basic	Sciences (BS)	Engg Sciences (ES)	Professional	Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OF)	Project/ Term	Seminar/ Internship (PR)		
								N							
4	Approval	37 th	Meet	ing o	of Ac	cademio	c Cou	ncil, N	1ay 201	5		·			

UNITI INTRODUCTION TO BIOORGANIC CHEMISTRY

9

9

9

9

Basic considerations, Proximity effect, Molecular adaptation, Molecular recognition, supramolecular chemistry, Chemistry of living cells, Analogy between biochemical transformations and bioorganic reactions.

UNIT II BIOORGANIC CHEMISTRY OF AMINO ACIDS AND PEPTIDES 9

Chemistry of Peptide bond synthesis- Asymmetric synthesis of amino acids - different models, Transition state analogous, chemical mutations, site specific mutagenesis, Molecular recognition and drug design, Catalytic antibodies.

UNIT III ENZYME CHEMISTRY

Introduction to enzymes, Types of enzymes- Immobilized enzyme- Semi synthetic enzymes-Mechanism of enzyme action- Allosteric regulatory enzymes.

UNIT IVMETAL IONS IN BIOLOGICAL SYSTEMS

Metal ions in proteins -Role on Zinc in carboxy peptidase- Iron and oxygen transport in Haemoglobin- Metal ion act as co-enzymes & Co factors in a biological reaction & Respiratory chain

UNIT V MEMBRANE CHEMISTRY

Structure- Active & Passive transport- ATP driven pumps – Ligand gated channels – Voltage gated channels.

TEXT BOOK

1. Dugas. H, Bio-Organic Chemistry - A chemical approach to enzyme action, Springer Verlag,

2002, revised edition.

REFERENECE BOOKS

- 1. Faber. K, Biotransformations in Organic Chemistry- A text book, 4th Edition, Springer
- 2. Zubay .G. Bio chemistry, Max well Macmillan Publications, 2003 edition.
- 3. Weblink: nptel

BE	BT40 3	3	INTR BIOT	ODU ECH	CTIC NOLO	DN T DGY	O IN	IDUS	TRI	AL					L	Τ	P		С
		-	Total	Conta	ict Ho	urs -	45								3	0	0		3
		ŀ	Prerec	luisite	e – Ba	sic c	ell bi	ology	, gen	etic	s an	d bio	ology						
		-	Cours	e Des	igned	by -	Dep	t. of I	ndus	tria	Bio	otech	nolog	gy					
CC	DURS	SE OU	TCOM	AES (COs)														
C	01	to und	lerstand	the d	object	ive a	nd sc	cope c	of bio	tech	nnol	ogy							
C	02	to kno	w the	conce	pt of c	cell c	ultur	e tech	niqu	es									
C	03	to con	nprehei	nd DN	JA ar	nd its	role	in fui	nctio	ning	g of	a cel	1						
C	04	to kno	w the	micro	bial p	rodu	ictior	ı											
C	05	to get	an idea	a abou	it the	appli	catio	ns of	biote	echn	olog	gy							
C	06	To get	t know	ledge	about	vac	cinati	on											
]	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low COs/POs a b c d e f g h i i k																	
1	COs	(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowOs/POsabcdefghijk1																	
	<u> </u>	Ds/POs a b c d e f g h i j k l																	
2	CO	l	H				TT		H		Н				TT			Н	
		2	п	н	н		п		п						п				
	CO_{2}	, 1	H	11	H				H				Н		Н			м	
	CO	5	H										H	Н	M			H	
	CO	5	Н						Η										
3	Cate	egory	es & Idies			(cd)	(ES)	onal	5	tive		ijor	NE)	ctive	•	erm		ur/ ·	du
			naniti al Stu	(HS)	Basic		s nces (fessic	Je (L	e Elec	(CE)	n-Ma	tive (n Eleo	(OE)	ect/ T	paper	emina	ernst (PR)
			Hun Soci			Doce	Scie	Pro	ر د	Core		No	Elec	Opei		Proi		Ň,	In
4	App	oroval	37 th	Meet	ing of	Aca	demi	ic Cou	uncil,	, Ma	ny 20	015				·			

UNIT I INTRODUCTION

9

Introduction to Industrial Biotechnology - Objectives and Scope: Characteristics and comparison of bioprocessing with chemical processing – Strain improvement.

UNIT II CELL CULTURE

Basics of Cell Culture, Cell culture techniques in microorganisms. Preservation and improvement of industrial microorganisms

UNIT III BIOPROCESS

Process Technology, Development of inocula for industrial fermentation and some primary metabolites e.g. ethanol, acetone - butanol and citric acid

UNIT IV INDUTRIAL BYPRODUCTS

Microbial Production- Microbial production of industrial enzymes - glucose isomerase, proteases, Streptokinases Production of Vit B_{12} and secondary metabolites- penicillin, Streptomycin

UNITV APPLICATIONS OF BIOTECHNOLOGY

Application of Biotechnology in Human Welfare- Human health care -insulin, interferon, monoclonal antibodies etc- Development of vaccines for immunity - Bacterial and viral vaccines, Crop improvement- Disease, pest, herbicide resistance

TEXT BOOK:

S.N. Joganand, 2003, "Environmental Biotechnology"Himalaya publishing House, IV ed.

REFERENCE BOOKS:

- 1. Saha BC,2003, "Fermentation biotechnology" Americal Chemical Society.
- 2. Vyas SP,2002, "Methods in biotechnology and bioengineering" CBS Publishers & Distributors.
- 3. Acharya R, 1999, "The emergence and growth of biotechnology" E.Elgar.
- 4. Jain PC, 2004, "Microbiology and biotechnology for sustainable development" CBS Publishers & Distributors.
- 5. Stanbury Whittaker, 2002, "Principles of fermentation technology" II Edn.
- 6. Weblink: nptel

BBT40	4 PRINCIPLES OF CHEMICAL THERMODYNAMICS	L	Т	Р	С								
		<u> </u>		-									
	Total Contact Hours - 60	4	0	0	4								
	Prerequisite – Basic concepts in chemical engineering												
	Course Designed by – Dept. of Industrial Biotechnology												
OBJE	OBJECTIVES: To provide a basic knowledge of thermodynamics												
COUR	SE OUTCOMES (COs)												
CO1	to understand the basic concepts in thermodynamics												
CO2	to know the properties of fluid												
CO3	to know to get an idea about application of thermodynamics in va	rious	field										
CO4	to get knowledge about reaction equilibrium												
CO5	to know about applications of thermodynamics law												

9

9

C	06 To u	nderstan	id abo	ut pr	operti	es of pure	e liqu	ids								
	·	Ma (H/M/L	apping indic	g of C ates s	Course strengt	Outcome th of corre	es wi elatio	th Pro on) H	gram -High	ou , N	tcomes (I-Mediu	(POs m, I	s) L-Lov	w		
1	COs/POs	а	b	c	d	e	f	g	h		i	j		k		1
2	CO1	Η		Η				Н	Μ						Μ	
	CO2	Η				L		Н				Η				
	CO3	Η			L			Н	Н		Н	Η	Η			
	CO4						L								L	
	CO4 L L L L L CO5 H H H H II III III III III IIII IIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII															
	CO6	Η				L		Н	L			Η			Μ	
3	Category	Humanities & Social	Studies (HS)	Basic	Sciences (BS)	Engg Sciences (FS)	Professional	Core (PC) Core	Elective (CE)	Mon Maion	Elective (NE)	Open	Elective	Project/ Term naner	Seminar/	Internship (PR)
								-								
4	Approval	37 th	Meet	ing c	of Aca	demic Co	ounci	l, May	2015	-						

UNITI BASIC CONCEPTS IN THERMODYNAMICS

Scope and limitations- Definitions and Fundamental concepts - Calculation of force, pressure and energy - Phase rule -Zeroth law- Heat reservoirs & Heat engine -First law- First law for non-flow process- enthalpy- First law for flow process.

UNIT II PVT BEHAVIOUR AND FIRST LAWOF THERMODYNAMICS 12

PVT behavior of pure liquids - Equations of state- Constant volume process , constant pressure process and constant temperature process- Vander Waals equation- Virial equation. Second law- Mathematical statement of second law- Kelvin and Clausius statement- Clausius inequality

UNIT III THERMODYNAMIC PROPERTIES OF PURE LIQUIDS

Classification of properties- Helmholtz free energy - Gibb's free energy-Fundamental property relations- Maxwell equations - Clapeyron equation -Relationship between Cp and Cv- Fugacity and fugacity coefficient- Effect of temperature and pressure on fugacity- Activity and Activity coefficient-Effect of temperature and pressure on Activity.

UNIT IV CHEMICAL REACTION EQUILIBRIUM

Reaction stoichiometry -Equilibrium constant and standard free energy change - Effect of temperature on equilibrium constant- Evaluation of equilibrium constant - Effect of pressure on equilibrium - Other factors affecting equilibrium conversion.

UNITV APPLICATIONS OF THE LAWS OF THERMODNAMICS

Energy equation - Ejectors - Throttling process - Compressors - Adiabatic and Isothermal compression - Refrigeration - Choice of refrigerant -Absorption refrigeration- COP- Carnot cycle- Heat pumps.

12

12

12

TEXT BOOK

1. K.V.Narayanan, 2004, "Chemical Engineering Thermo Dynamics" Prentice Hall of India Pvt Ltd.

REFERENCCE BOOKS

- 1. K.A.Gavhane, 2009, "Chemical Engineering Thermodynamics" NiraliPrakasham Publications, 20th.
- 2. T.M.Letcher, 2004, "Chemical thermodynamics for industry" R.S.C Publication 3rd.
- 3. Weblink: nptel

BB	ST405		UNI	Г OP	ERAT	ION	S					L	Τ	Р	C	
		Ī	Total	Cont	act Ho	urs -	60					4	0	0	4	
		Ī	Prere	quisit	e – En	gg N	Iathe	matics	-I& 1	III, Princ	iples of C	Chemica	l Engi	neering	5	
			Cour	se De	signed	by –	Dep	t. of Ir	ndust	rial Biote	echnology	у				
OF	BJECT	TIVE	S: To	give a	a know	ledg	e of l	neat an	d ma	uss transf	er					
						1048	• • • •	iout ui		iss trailsr	•					
	JUKSI	EOU	TCO		$\frac{(COs)}{1}$			1 /		6						
C	JI t	to und	lerstan	d the	basic c	once	epts 1	n heat	trans	ster						
CO	O2 t	o kno	w bas	ic cor	ncepts of	of ev	apor	ation								
CO	O3 1	to kno	ow ab	out m	ass trai	nsfer	oper	ations								
C	04 t	o kno	w abo	ut lea	ching a	and e	extra	ction								
C	CO5to know about various dryingCO6To understand about the size reduction equipment															
CO	D6]	To understand about the size reduction equipment														
	06 To understand about the size reduction equipment Mapping of Course Outcomes with Program outcomes (POs) (H/M/L in director attempth of correlation) H High M Madiana															
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low COs/POs a b c d e f g h i j k l															
2	CO1		Н				Н		Н		L	L		L		
	CO2		Н	Н					Η							
	CO3		Н	Н					Η		М			М		
	CO4			Η	Н	Η						Н	М			
	CO5		H			Η			H							
2	CO6		H		H				Η				M			
3	Categ	gory	Humanities &	Studies (HS)	Basic Sciences (BS)	Enge	Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term	paper Seminar/	(PR)	
									\checkmark							
4	Appr	oval	37 th	Mee	ting of	Aca	demi	c Cou	ncil,	May 201	5		•			

UNIT IHEAT TRANSFER

Modes of heat transfer- Heat transfer through compound wall- Heat flow through cylinder-Definition of Boiling, condensation and its types.

UNIT IIHEAT EXCHANGERS

Heat exchanger- Theory of Shell and Tube heat exchanger and double pipe heat exchanger-Derivation of Overall heat transfer coefficient - LMTD.

Evaporator- Types: falling film- Climbing film. Forced circulation and Agitated film evaporator-Methods of feeding

UNIT IIIMASS TRANSFER

Outline of Mass transfer operations- Diffusion in Gases, Liquids & Solids. Distillation- Theory of Simple, Flash, Steam and Azeotropic distillation-McCabeThiele method

UNIT IVLEACHING

Leaching- Theory of Moving bed leaching and Dispersed solid leaching. Liquid extraction-Mixer settler- Spray and packed extraction tower-Agitated extraction tower.

UNITVDRYING

Drying- Drying equipment: Tray, Screen-conveyor, Rotary and Spray dryer-Selection of drying equipment- Time of drying.

Size reduction -Laws- Work index-Size reduction equipment: Jaw crusher. Smooth roll crusher-Tumbling mill - Fluid energy mill - Knife cutters-open and Closed circuit operation

TEXT BOOKS

1. Gavahnee, 2009,"Heat & Mass Transfer" NiraliPrakasham Publications, 20th Ed

REFERENCE BOOKS

- 1. K.A. Gavhane, 2009, "Unit operations II Heat & Mass Transfer" NiraliPrakashamPyblications, 23rd Ed
- 2. G.S. Sawhney, 2008,"Heat & Mass Transfer" I.K. International Publishing House
- 3. McCabe W. L & Smith J. C., "Unit operations in chemical Engineering". V.Ed..McGrawHillInt Ed.,
- 4. Robert e.Treybal,2000, "Mass Transfer Operations", McGraw Hill International III edition.
- 5. Christie J. Geankoplis,2000 " Transport Processes and Unit Operations", Prentice Hall India PvtLtd, III Editon,
- 6. Weblink: nptel

BBT406	INTRODUCTION TOMOLECULAR BIOLOGY	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Basic concepts in Biology, Microbiology				
	Course Designed by - Dept. of Industrial Biotechnology				
OBJECTIVE	S				
To provide a b	asic understanding of molecular level of DNA and their app	licati	ons fr	om the	

12

12

12

12

pe	rspec	tive of	engine	ers													
C	OUR	SE OU	TCON	AES (COs)												
С	01	to un	derstan	d the	funda	mental	s of	central	do	gma	a of l	oio	logical	system	S		
C	O2	to kn	ow the	conce	pt of	cell re	plicat	tion,tra	nsc	ript	tion a	and	l transla	tion			
C	03	to con	nprehe	nd Dl	NA ai	nd its r	ole i	n funct	ion	ing	of a	ce	11				
С	04	to kno activi	ow the ty	functi	oning	of reg	gulato	ory fact	tors	an	d its	apj	plication	n in ma	aintai	nir	ng cell
С	05	to get	a basi	c knov	wledg	e of th	e DN	IA and	RN	ΝA							
С	06	to get	a basi	c knov	wledg	e of th	e pro	teins									
			Ma	pping	; of Co	ourse (Dutco	omes w	vith	Pro	ogran	n o	outcome	es (POs	5)		
	(H/M/L indicates strength of correlation)H-High, M-Medium, L-Low1COs/POsabcdefghijk1																
1	COs	COS/POs a b c d e f g h i j k l															
2	CO	I H															
	CO2	2	Н			Н		Н									
	CO	3	Н	Μ			Η		Η		Η			М			
	CO	1	Н	М											Η		
	CO	5	Н					Н					Н				
	CO	5	Н	Μ			Η					1			Η		Μ
3	Cate	egory	Humanities & Social Studies	(HS)	Basic Sciences	Engo Sciences	(ES)	Professional Core (PC)		Core Elective	(CE)	Mon Maine	Elective (NE)	Open Elective (OE)		Droioot / Tours	rroject/ term paper Seminar/ Internship (PR)
4	App	roval	37 th	Meeti	ing of	Acade	emic	Counc	il, I	May	201	5					

UNIT I DNA STRUCTURE

DNA as the vehicle of inheritance-structure of DNA-forms of DNA-nucleic acid biosynthesisexperimental evidence: Griffith, McLeod, McCarty and Avery, Hershey–Chase experiments-Definition of gene-organization of genes and non coding DNA in prokaryotes- Eukaryotes– unique, moderately repetitive and highly repetitive DNA sequence-satellite DNA- Cot value-DNA binding proteins

UNIT II DNA REPLICATION

DNA replication in prokaryotes and eukaryotes- modes of replication-semi continuous and semi discontinuous replication- Okazaki fragments- RNA primers – enzymes of replication – DNA polymerases I, II, III, -DNA modifying enzymes: topoisomerases-helicases- binding proteins and ligases- replication in E.coli–replisomes-events at OriC (initiation), events on the replication fork (elongation) and termination- Fidelity of replication-Sigma or rolling circle mode of replication in Φx 174-Inhibitors of replication.

92

9 ntl

Repair of DNA-types of damages- repair by direct reversal of damage- excision repairrecombination repair- SOS repair-Mutation: definition-type of mutations (spontaneous and induced) point mutation-Gene mutation and chromosomal aberrations- Cause of mutationschemical and physical agent

UNIT IV TRANSCRIPTION

Transcription in prokaryotes and eukaryotes: RNA polymerases–enzyme structure- role of sigma factor- promoter-closed and open promoter complexes-Initiation-elongation and termination of RNA synthesis-Post transcriptional modification in prokaryotes and eukaryotes-transcription factors

UNIT V GENETIC CODE

Genetic code–Basic features of genetic code-Deciphering of genetic code-Wobble hypothesis-Protein biosynthesis-activation of amino acids- initiation-elongation and termination of translation in prokaryotes and eukaryotes-Post translational modifications-Inhibitors of translation.-Regulation of gene expression in prokaryotes and eukaryotes- operon concept

TEXT BOOKS

- 1. Biochemistry by Jeremy M. Berg, John L. Tymoczko and LubertStryer, 2006
- 2. Lehninger, Principles of Biochemistry, David L. Nelson and Michael M. Cox, 2008
- 3. James D. Watson, Tania A. Baker, Stephen P. Bell, and Alexander Gann, Molecular Biology of the Gene (6th ed), 2007

REFERENCE BOOKS

- 1. R.L. Adams, J.T. Knowler, and D.P. Leader, The Biochemistry of the Nucleic Acids, 1992
- 2. Stephen Neidle, Principles of Nucleic Acid Structure, 2007
- 3. Robert Weaver, Molecular Biology, 2007
- 4. Weblink: nptel

BCE406	ENVIRONMENTAL STUDIES	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Physical Sciences				
	Course Designed by – Dept of Civil Engineerin	ng			

OBJECTIVES

- 1. To study the nature and facts about environment.
- 2. To find and implement scientific, technological, economic and political solutions to environmental problems.
- 3. To study the interrelationship between living organism and environment.
- 4. To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- 5. To study the dynamic processes and understand the features of the earth's interior and surface.
- 6. To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

COURSE OUTCOMES (COs)

CO1	Play an important role in transferring a healthy environment for future generations
CO2	Analyze the impact of engineering solutions in a global and societal context

9

(CO3	Disc	uss co	ntemp	orary	issues	that resu	ults in e	environi	nental	degr	adation	and wou	ld
		atter	npt to	provid	e solu	tions t	to overco	ome the	ose prob	lems	_			
(CO4	Abil	ity to	consid	ler is	sues o	of envir	onment	and su	ustaina	able o	levelop	ment in	his
		pers	onal ar	nd prof	ession	nal un	dertaking	gs				1		
(CO5	High	nlight t	he imr	ortan	ce of e	ecosyste	m and l	oiodiver	sitv				
		0	<u> </u>	· r		0					(T			
		(11)	Mapp	oing of	Cour	se Ou	tcomes v	with Pr	ogram (outcor	nes (F	OS		
1	CO /	(H/.	M/L 11	dicate	s strei	ngth of	f correla	tion)	H-High,	M-M	ediun	1, L-Lov	W	
	COs/I	POs	a	b	с	d	e	t	g	h	1	J	K	I
-	001		24	14					14			т	т	14
2	COI		M	M	M	H	M		M			L	L	M
	CO ₂		H	Μ	M	H	H		Μ			L	L	Μ
	CO3		Н	Μ		Н	Н		M			L	L	M
	CO4		Η	Μ		Н	Н		М			L	L	Μ
	CO5		Н	М	Μ	Н	Н		М			L	L	М
	CO6		Н			Н	Η		М			L	L	М
3	Categ	ory	Humanities & Social	Humanities & Social & Studies (HS) Basic Basic Basic Basic (BS) Basic (BS) Professional Core (PC) Core Elective (ES) Professional Core Elective (CE) Non-Major Elective (NE) Project/ Term Project/ Term Project/ Term Project/ Term Project/ Term Project/ Term Project/ Term Project/ Term Paper Seminar/ Internship (PR)										
4	Appro	oval	37 th	Meeti	ng of	Acade	emic Cou	uncil, N	fay 201	5				

UNIT I THE MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES 9

Definition, scope and importance, Need for public awareness.

Natural Resources : Renewable And Non – Renewable Resources

Natural resources and associated problems

- a) Forest resources : Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effect on forests and tribal people.
- b) Water resources : Use and over-utilization of surface and ground water, flood, drought conflicts over water, dams-benefits and problems.
- c) Mineral resources : Uses and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources : World food problems, changes caused by agriculture and overgrazing , effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources : Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, case studies.
- f) Land resources : Land as a resource, Land degradation, man induced landslides, soil erosion and desertification

Role of an individual in conversation of natural resources, Equitable use of resources for sustainable lifestyles.

UNIT II ECOSYSTEMS

Concepts of an ecosystem. Structure and function of an ecosystem, producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem :- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)-

Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation - Ethics : Issues and possible Solutions, Climate change, global warming, acid rain, ozone layer depletion.

UNIT III BIODIVERSITY AND ITS CONSERVATION

Introduction and Definition - genetic, species and ecosystems diversity, Biogeographical classification of India - Value biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels. India as a megadiversity nation, Hot-spots of biodiversity -Threats to biodiversity, habitat, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation biodiversity - Insitu and Ex-situ conservation of biodiversity.

Environmental Pollution

Definition, Causes, effects and control measures of ;- Air Pollution, Water pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solid waste Management : Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution - Pollution case studies - Disaster Management : floods earthquake, cyclone and landslides.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable development, Urban problems related to energy, nuclear accident and holocaust, case studies, wasteland reclamation, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife protection Act, Forest Conservation Act, Issues involved in enforcement of environmental Legislation, public awareness –

Fireworks and its impact on the Environment – Chemicals used in Fireworks – (Fuel –oxidizing Agent – Reducing Agent –Toxic Materials – Fuel –Binder- Regulator) – Harmful nature of ingredients – chemical effects on health due to inhaling fumes – Noise produced by fire crackers – Noise pollution – Noise level standards for fire crackers – Intensity of sound – Impact on hearing – Safety measures.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations, population explosion-Family Welfare programs, Environment and human health, Human Rights, Value Education, HIV and AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human health - Case Studies.

TEXTBOOKS:

- 1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.
- 2. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 3. BharuchaErach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, 1989.

7

7

8

4. Benny Joseph, "Environmental Studies"., TATA McGraw Hill, 2010

REFERENCES

- 1. Trivedi R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol.I and II, EnviroMedia 2009
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Wager K.D. "Environmental Management", W.B. Saunders Co., Philadelphia, USA, 1998.
- 4. Trivedi R.K. and P.K. Goel, "Introduction to Air Pollution", Techno Science Publications 2013
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB),2001.
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- 7. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- 8. Jadhav, H &Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- 9. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 11. Rao M N. &Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publish Co. Pvt. Ltd. 345p.
- 12. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut.
- 13. http://eng.mft.info/uploadedfiles/gfiles/c8e31c9e52d84c3.pdf

BE	BT4L	1	Micro	biolog	gy Lał)						0	0	3	2
			Total	Conta	ct Ho	urs - 4	15								
			Prereq	uisite	- Mic	robiol	ogy,	Mole	cular bi	ology					
			Course	e Desi	gned	by – l	Dept	. of In	dustrial	Biotech	nology				
OI	BJEC	TIVE	S-												
То	prov	ide a b	asic un	dersta	anding	g of m	icroł	oes an	d their	applicati	ons froi	n the p	berspec	tive of	
eng	gineer	rs													
CO	OURS	SE OU	TCON	AES (COs)										
C	01	to understand the source of microbes and their role in biotechnology													
C	02	to get	the kn	owled	lge of	micro	obial	diver	sity clas	ssificatio	n and n	norpho	logy		
C	03	to kno	w the v	visuali	zatio	n of m	icrol	bes by	v differe	ent micro	scopes				
C	04	to kno	w the c	cause,	symp	toms,	diag	gnosis	and tre	atment o	f diseas	ses cau	sing pa	thogen	S
C	05	to get a	a basic	know	ledge	of th	e mi	crobia	l nutriti	on and g	growth				
C	06	To uno	lerstan	d abo	ut var	ious i	denti	ficatio	on meth	ods of n	nicroorg	ganism	s		
			Maj	oping	of Co	urse (Dutco	omes	with Pr	ogram o	utcome	s (POs)		
		(H	I/M/L	indica	tes stu	ength	n of c	correla	tion)	H-High,	M-Med	lium, L	L-Low		
1	COs	Ds/POs a b c d e f g h i j k l													

2	CO1													Н		
	CO2	Н						Η								
	CO3	Н	Н													
	CO4											L				
	CO5						L									L
	CO6	Н														
3	Category	Humanities & Social Studies	(HS)	Basic Sciences	Enge Sciences	(ES)	Professional		Core Elective	(CE)	Non Maior	Elective (NE)	Open Elective	(OE)	Project/ Term	paper Seminar/ Internship (PR)
4	Approval	37 th	Meet	ing of	Acad	lemio	c Coui	ncil,	Ma	y 201	5					

- Laboratory rules and regulations
 Isolation of Bacteria Soil
- 3. Motility of Bacteria
- 4. Staining techniques
 5. Streak Plate techniques

- Antibiotic sensitivity test
 Isolation of Fungi
 Water analysis by MPN
- 9. Milk Analysis
 10. Biochemical Analysis

BBT4I	L2 BIOORGANIC CHEMISTRY LAB	L	Т	Р	C								
	Total Contact Hours - 45	0	0	3	2								
	Prerequisite – Biochemistry, Bioorganic chemistry			1									
	Course Designed by – Dept. of Industrial Biotechnology												
OBJE	CTIVES												
To prov	vide a basic understanding of biochemical reactions, mechanisms	and th	eir ap	plicatio	ons								
from th	e perspective of engineers												
COUR	SE OUTCOMES (COs)												
CO1	to understand the fundamentals of biochemical reactions in living organism												
CO2	to apply the concept of structural relationship between chemical and biochemical												
	reactions			1	1								
CO3	to create the drug formulation and its structural analogs in living genetics and the immune system	syste	mscon	nprehe	nd								
CO4	to know the role of metal ions in biological components and the	ir im	portan	ce in	living								
	systems												
CO5	to get a basic knowledge of membrane transport and their permea	bility											
CO6	To understand about extraction of various compounds												
	Mapping of Course Outcomes with Program outcomes	(POs)										
	(H/M/L indicates strength of correlation) H-High, M-Medi	um, L	-Low										

1	COs/POs	а	b	с	d	e	f		g		h	i	j		k]	l
2	CO1	Н	М	Н	Н	Н		Н	[Η						Н	
	CO2		Н	Н			М							Μ			
	CO3	Η		Μ	Μ	Η							Μ				
	CO4		L	L				L		L		L				L	
	CO5			Η	Η		М					Η		Μ		Μ	
	CO6	Μ	Μ	Μ						Μ	1		Μ	Μ			
3	Category	Humanities &	ouchan outries (HS)	Basic	(cd) solieice	Engg Sciences (ES)	Professional Core (PC)	,	Core Elective		Non-Major Elective (ME)		Open Elective	(OE)	Project/ Term paper	Seminar/ Internship	(PR)
							×										
4	Approval	37 th	Mee	ting o	of Aca	demic C	ouncil, N	May	y 201	5							

- 1. Preparation of casein from milk.
- 2. Separation of starch from potato.
- 3. Extraction of chlorophyll in plant tissue.
- 4. Extraction of lactose from milk.
- 5. Estimation of glucose from grapes.
- 6. Extraction of fructose from honey.

- 7. Extraction of lycopene from tomato.
- 8. Acetylation of D-glucose.
- 9. Preparation of methyl salicylate from aspirin.
- 10. Preparation of aspirin from salicylic acid.

BBT4I	L3 MOLECULAR BIOLOGY LAB	L	Т	Р	C								
	Total Contact Hours - 45	0	0	3	2								
	Prerequisite – Basic concepts in biotechnology, microbiolo biology	gy an	d mol	ecular									
	Course Designed by – Dept. of Industrial Biotechnology												
OBJE	TIVES												
To prov	de a basic understanding of molecular level of DNA and their applications from the												
perspec	ctive of engineers												
COUR	SE OUTCOMES (COs)												
CO1	to understand the fundamentals of central dogma of biological sys	tems											
CO2	to know the concept of cell replication, transcription and translation	n											
CO3	to comprehend DNA and its role in functioning of a cell												
CO4	to know the functioning of regulatory factors and its application i activity	n mai	ntaini	ng cell									
CO5	to get a basic knowledge of the DNA and RNA												
CO6	to get a basic knowledge of the proteins												

		Map	ping	g of Cou	rse O	utco	mes w	ith l	Pro	gram	outcom	es (PC	s)	
	(1	H/M/L i	ndic	cates stre	ngth	of co	orrelati	ion)	H	l-High	, M-Me	dium,	L-Lo	W
1	COs/POs	a	b	с	d	e	f	g		h	i	j	k	1
2	CO1	Н				Η				Н	Μ		Μ	
	CO2			Η	Μ		Μ							L
	CO3	Η				Η								Н
	CO4	Н		Μ	Η		Н			Н	Μ			
	CO5			Н			Н					Н		Н
	CO6	Н		Н		Η				Н			Μ	
3	Category	Humanities & Social Studies	(HS)	Basic Sciences (BS)	Engg Sciences	(ES)	Professional Core (PC)		Core Flective	(CE)	Non-Major Elective (NE)	Open Elective (OF)		Project/ Term paper Seminar/ Internship (PR)
4	Approval	37 th]	Mee	ting of A	cade	mic	Counc	il, N	⁄lay	/ 2015				

- 1. Extraction of plant genomic DNA.
- 2. Extraction of Bacterial genomic DNA
- 3. Extraction of Animal DNA
- 4. Agarose gel electrophoresis.
- 5. Restriction Digestion of DNA.
- 6. Ligation of E-CoR1 digest of λ DNA
- 7. Isolation of plasmid DNA by alkaline lysis
- 8. Effect of UV radiation on bacterial survival (induced mutagenesis.
- 9. Transformation.
- 10. Poly acrylamide –SDS slab gel electrophoresis of proteins

Total Contact Hours - 30002	I	U
	2	1
Prerequisite – General Biochemistry, General Microbiology, Cell Biolog	зy	
Course Designed by- Dept. of Industrial Biotechnology		

OBJECTIVES

To enable students to create the habit of exploring new avenues of biotechnology and to improve their presentation skills

COURSE OUTCOMES (COs)

- It is a one credit course offered in the IV Semester
- Each student will be allocated topics for presentation
- There are 2 hours allocated per week for the students give their presentation. This will be considered for the award of internal marks.
- The final topic will be presented on the day of the external examination in the presence of the internal examiner. The student will be judged based on the presentation and how he or she defends the selected topic.

BN	MA501		BIOS	ТАТ	ISTIC	S									L	Τ	I)	С
		Ī	Total	Cont	act Hou	irs - (60								4	0	0		4
		ľ	Prerec	luisit	e – Eng	g Ma	athen	nat	ics-I &	¢П									
		-	Cours	e Des	signed l	by –	Dept	. of	f Math	nem	atic	cs							
0	BJECT	IVE	S																
То	provide	e a b	asic kr	owle	edge of	prob	abilit	ty a	and sta	atist	tics								
C	DURSE	OU	TCON	AES	(COs)														
C	O1 to	und	lerstand	the	basic co	once	pts va	ario	ous the	eore	em	in pr	oba	bility					
C	O2 to	kno	w basi	c con	cepts r	ando	om va	ria	bles										
C	O3 to	kno	w abou	ıt sar	npling	conc	epts												
С	O4 to	kno	w abou	it des	sign of	expe	erime	nts	using	var	riou	s tes	t.						
С	O5 to	kno	w abou	ıt var	rious te	sting	g meth	hod	ls										
С	06 To	o kn	ow abo	out va	rious p	roces	ss for	r sta	atistic	s									
-			Ma	ppin	g of Co	urse	Outc	con	nes wi	th F	Prog	gram	ou	tcomes	(POs)			
		(H/M/L	indic	cates sti	rengt	th of	cor	relatio	on)	H	-Hig	h, N	I-Medi	ium, L	Low	/		
1	COs/P	Os	a	b	с	d	1	e	f	Ę	2	h		i	j		k		1
_	G A 1														-		-		
2	CO1		H	M	M	H	1	M				Н		Н	L		L	H	
	CO_2		H U	M	M	п	1	П	п	H U					т		T	N	r
	CO_4		H	м		11	1	H	11	11		н			L		L H	M	1 [
	CO5		H	M	М	Н	1	H		М	-	11			Ľ		11	111	<u> </u>
	CO6		Н			Η			М	Μ				Н	М		L	Μ	[
3	Catego	ory	Humanities & Social	Studies (HS)	Basic Sciences	(BS)	Engg Sciences	(ES)	Professional		Core Elective	(CE)	Non-Maior	Elective (NE)	Open Flective (OF)		Project/ Term	paper Seminar/	Internship (PR)
					\checkmark														
4	Appro	val	37 th	Meet	ing of A	Acad	lemic	c Co	ouncil	, M	ay i	2015			L				

UNITI RANDOM VARIABLES

Probability and Random Variables - Probability concepts, Baye's Theorem, Random Variables, Discrete and continuous Function of random variables- Moment generating function of binomial, Poisson, Geometric. Uniform, Exponential Distributions, Normal Distribution (Problems)

UNIT II DISTRIBUTION AND EXPECTATION

Two Dimensional Random Variables - Marginal and conditional Distributions, Expectation and conditional Expectations, Transformation of Two dimensional Random Variables, Central Limit Theorem (Statement and Problems)

UNIT III SAMPLING

Sampling Concepts - Methods of sampling. Simple random sampling, Stratified random sampling, Systematic sampling, Point and Interval estimators. Properties of Estimators, Sample size determination, testing of hypothesis, Small samples (t test). Large samples (Z test), Confidence limits

UNIT IV RANDOM PROCESSES

Random Processes - Classification stationary and Markov Process, Poisson Processes, Markovian chains, Markovian Quenching models, infinite and finite with single server

UNITV **DESIGN OF EXPERIMENTS**

Design of Experiment and Non Parametric Test - Completely randomised design, Randomised block design, Latin Square design- Sign Test, KolmogrovSmirovTest, Mann Whitney U test, KniskalWallisTest

Text Book

1. Kapur J. N and Saxena H. C, "Mathematical Statistics", S. Chand and Co., New Delhi

Reference Books

- 1. Veerarajan T, "Probability Statistics and Random Process" Tata McGrawHill, New Delhi
- 2. S.C. Gupta and V.K. Kapoor, "Applied Statistics", S. Chand and Sons, New Delhi
- 3. W. W. Daniel, "Biostatistics- A foundation for analysis of health sciences", John Wiley and Sons, New Delhi
- 4. P.N. Arora and S. Arora, "Statistics for Management", S. Chand and Sons, New Delhi

BBT50	GENETIC ENGINEERING	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Molecular biology, Cell biology, Microbiol	ogy			
	Course Designed by – Dept. of Industrial Biotechnology				
OBJEC	TIVES				
To prov	ide a basic understanding of recombinant mechanisms and their a	pplica	ations	from th	ne
perspec	tive of engineers				
COUR	SE OUTCOMES (COs)				
CO1	to understand the fundamentals of genetic engineering				
CO2	to apply the concept of recombinant DNA IN plant, animal and	nicro	bial sy	stems	and
	growth in real life situations				

12

12

12

C	03	to get	the k	knowl	edge o	f mo	lecular s	cisso	rs a	nd its ro	le ir	n creat	ing transge	enic pro	oducts	
С	04	Toknow the techniques related to screen the recombinant products														
C	05	to get biolog	a ba gical	sic kn produ	owledg cts in 1	ge of relev	the appl ant indus	ications stries	ons	of transg	gene	es in a	griculture, I	health	care and	
С	06	to kno	ow at	oout g	ene tra	nsfei	r method	S								
		Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs	POs a b c d e f g h i j k l														
2	CO	H M M H M M H H H H														
	CO2	2	Η	Μ	Μ	Η	Н	Μ	Μ	Н			L			
	CO	3	Н	Μ		Η						Η	М	L	Н	
	CO ²	1	Η	Μ			Н	Η	Μ	Μ			М	Μ	М	
	CO	5	Η	Μ	Μ		Н		Μ			Μ		L	Н	
	CO	5	Η			Η	Н			L					М	
3 Category Rasic Sciences Basic Sciences				Basic Sciences (BS)		Engg Sciences (ES)	Professional	Core (PC)	Core Elective (CE)	Non-Maior	Elective (NE)	Open Elective (OE)	Project/ Term	Seminar/ Internship (PR)		
								\checkmark								
4	App	oroval	37 th	Mee	ting of	Aca	demic C	ounc	il, N	/lay 201	5					

BASICS OF GENETIC ENGINEERING UNIT I

Introduction to Genetic engineering; Role of genes within cells- method of creating recombinant DNA molecules.-Role of vectors plasmid, cosmid, BAC, YAC etc.-Restriction enzymes and mapping of DNA-Role of Transposons in genetic engineering-Safety guidelines of creating recombinant DNA research.

CONSTRUCTION OF cDNA LIBRARIES UNIT II

Characterization of recombinant clones by Southern, Northern, Western and PCR analysis. Construction of genomic and cDNA libraries, methods of nucleic acid sequencing, factors involved in expression of cloned genes.

UNIT III **APPLICATION OF rDNA TECHNOLOGY IN PLANTS**

Method of gene transfer to plants- agrobacterium mediated / chemical mediated, Biolistics. Transgenic plants- Ri and Ti plasmids, Screening of recombinants, Biopharmaceuticals, Single cell proteins.

APPLICATION OF rDNA TECHNOLOGY IN ANIMALS UNIT IV

Animal cloning, Ethical aspects of animal cloning,-Transgenic animals- sheep, goat, cattle, fish etc-Methods of gene transfer to animals-embryo transfer.

9

9

9

UNITV APPLICATIONS OF rDNA TECHNOLOGY ININDUSTRY

Health care: Vaccines, hormones, antibiotics & pharmaceuticals- Industrial enzymes and agriculture.

TEXT BOOK

1. Brown TA, 2000, "Gene cloning-and introduction" VNR (U.K) Co Ltd.

REFERENCE BOOKS

- 1. Setlow JK,2004, "Genetic engineering: principles and methods" Springer.
- 2. Fridal R,2006, "Genetic engineering" Lerner publications.
- 3. LeVine H,2006, "Genetic engineering-A reference handbook" ABC-CLIO.
- 4. Levine AD,2009, "Cloning" The Rosen publishing group, 1st.
- 5. Weblink: nptel

BBT502		2	PRIN	CIPI	LES O	F BI	OPRO	CESS T	ECHN	OLOGY	7	L	Т	I		С		
			Total (Conta	act Ho	urs -	45					3	0	0		3		
			Prereq	uisit	e – Eng	gg M	athema	tics-I &I	I, Princi	iples of (Chem	ical	Engin	eeri	ng.			
		-	Course Designed by – Dept of Industrial Biotechnology															
OBJECTIVES: To provide a basic knowledge of Biological processes.										es.								
COURSE OUTCOMES (COs)																		
C	CO1 to understand the development of bioprocess techniques.																	
С	CO2 to know about the instrumentation and control for bioprocess opera											rations						
CO3 to get idea about media formulation																		
С	O4	to kno	w abou	it sto	ichiom	etry	of biop	rocess.										
C	05	to kno	w abou	ıt var	ious b	iorea	ctors											
C	06	to kno	ow about the importance of sterilization.															
			Ma	pping	g of Co	ourse	Outcor	nes with	Program	n outco	mes ((POs))					
		(]	H/M/L	indic	ates st	reng	th of co	rrelation) H-Hi	gh, M-M	lediu	m, L	-Low					
1	CO	s/POs	а	b	с	d	e	f	g	h	i	j]	ĸ		1		
2	CO	1	Н	Μ	М	Η		Н	Н	Н	Η	Μ	L		М			
CO2		2	Н	Μ	М	Η							L		Μ			
CO3		3	Η				Η			Н	L							
CO4		4	Η	Μ				Μ	Μ				L					
CO5			Η	Μ	Μ		Η				Μ	L						
CO6			Η				Н		L	Μ		L	L		Μ			

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term paper Seminar/ Internship (PR)
					\checkmark				
4	Approval	37 th Meet	ing of A	cademic C	Council, M	lay 2015			

UNIT I INTRODUCTION TO BIOPROCESSES

Historical development of bioprocess technology, an overview of traditional and modern applications of biotechnological processes, Biotechnology & Bioprocess engineering- outline of Unit Operations involved in Upstream and Downstream processing, generalized process flow sheets.

UNIT IIOPERATION AND CONTROL OF BIOREACTOR

Overview of reactor- -General requirements of fermentation processes, Basic design and construction of fermentor and ancillaries. Main parameters to be monitored and controlled in fermentation processes- solid-substrate fermentation and its applications

UNIT III GROWTH MEDIA AND STERILIZATION

Medium requirements for fermentation, Carbon, Nitrogen, Minerals, Vitamins, and other complex nutrients, Oxygen requirements, medium formulation - Simple and complex media-Batch and continuous heat sterilization of liquid media, filter sterilization of liquid media.

UNIT IV STOICHIOMETRY OF MICROBIAL GROWTH

Stoichiometry of Cell growth and product formation- elemental balances- degrees of reduction of substrate and biomass-available electron balances-yield coefficients of biomass and product formation

UNITV BIOREACTOR DESIGN

Reactor engineering in perspective- Cost determining factor in design- Bioreactor configuration-Practical consideration for bioreactor construction- inoculation and sampling from fermentormaterials of construction- Steps involved in fermentor design.

Text Book

1. Shuler and Kargi, 2005 "Bioprocess Engineering", Prentice Hall

Reference books

- 1. Bailey and Ollis, 2000, "Biochemical Engineering Fundamentals", McGraw Hill 3rded.
- 2. Stanbury PF,1984, "Principles of fermentation technology" SS Hall, 2nd.
- 3. Mansi El Mansi.2003 "Fermentation Microbiology & Biotechnology". IVEd.
- 4. P.T. Kalaichelvan and I. Arul Pandi. 2007 "Bioprocess technology" MJP Pub, 1sted.

9

9

9

9

BBT503			CHEN	IIC	AL REA	CTIC)N F	ENGINE	ERING	ſ		L	Т	P	C	
		-	Total C	Conta	act Hour	s - 60						4	0	0	4	
			Prerequ	aisit	e – Engg	g Math	ema	tics-I &I	I, Unit c	peration	S				I	
		-	Course	Des	signed by	y – De	pt. c	of Industr	ial Biot	echnolog	gy					
O	BJEC	CTIVE	S: To p	rovi	de a basi	c knov	wled	ge of Re	action e	ngineeri	ng					
C	DUR	SE OI	TCOM	ES	(COs)											
	000000000000000000000000000000000000	to und	erstand	rstand basic concepts in homogenous reactions												
			1	ousi		ogenous	redetion	15								
C	CO2 to know about various order reaction															
C	03	to kno	w abou	t the	plug flo	w and	m1X	ted flow	reactor							
C	04	to kno	w abou	t mu	ltiple rea	actors										
C	05	to kno	w about design of bioreactors													
C	06	to kno	w abou	t rate	e of a real	action		·.1 T	<u> </u>							
		(H	Mapı M/L in/	/M/L indicates strength of correlation) H-High, M-Medium, L-Low												
1	COs	s/POs	a	b	c	d	e	f	g	h	i	j		k	1	
2	CO	1	II	М	М	II	м		м	TT	T	II		М	М	
2		2	Н	IVI	M	M	H	М	IVI	п	Γ.	п		M	IVI	
	CO	3	H	Μ			H			М	Ν	М			Н	
	CO	1	Н			Μ	Μ	М		М				L	М	
	COS	5	H	M	M	Μ	L		L	L	L	Μ		Μ	L	
3	COt) agory	H	L	M				L						L	
5	Cat	gory	nities cial	(HS)	iic Ices		ò	sional (PC)	ective 3)	dajor ive	(T)	en ive	PCt/	oaper nar/	ship (\$	
			Humaı & So	tudies	Bas Scier	1gg ience	S)	rofes: Core (ore El (CI	Von-N Elect	Z	Op6 Elect	Proi	erm J Semi	Intern (PF	
				\mathbf{S}		Ε	К Ш	d J	Ŭ	4				L		
								\checkmark								
4	App	oroval	37 th 1	Neet	ing of A	cadem	nic C	Council, I	May 201	5						

UNITI KINETICS OF HOMOGENEOUS REACTIONS

Single and multiple reaction- Elementary and Non elementary reaction-Order & Molecularityrate constant - Kinetics models for non-elementary reaction- searching mechanism for Irreversible and Enzyme catalyzed reaction- Theories of chemical reaction.

UNIT II INTERPRETATION OF BATCH REACTOR DATA

Methods: Integral and Differential – Constant Volume Batch reactor – Analysis of total pressure data in constant volume system- Rate Equation: Irreversible Unimolecular I and II order and irreversible bimolecular II order – half-life period – variable volume batch reactor.

12

UNIT III DESIGN OF SINGLE IDEAL REACTORS

Constant Density & Changing Density Batch and Flow system – Design of ideal batch reactor – Space time and Space velocity – Design of MFR & PFR

UNIT IV MULTIPLE REACTION AND NON IDEAL FLOW REACTOR 12

Comparison of MFR with PFR I order & II order – Reactor in series: CSTR in series –Unequal size CSTR in series, Equal size CSTR in series – PFR in series.

UNITV BIOREACTOR

12

Biochemical reaction: Bioprocess &Bio reaction- Cell multiplication kinetics- types of bioreactors- Some industrial application of bioprocess: Aerobic and anaerobic bioprocess.

TEXT BOOK:

1. K.A.Gavhane, 2009, "Chemical Reaction Engineering I" NiraliPrakasham Publications, 19th.

REFERENCE BOOKS:

- 1. K.A.Gavhane, 2009, "Chemical Reaction Engineering II" 21sted.
- 2. Octave Levenspiel, 2006, "Chemical Reaction Engineering" Wiley-India, 3rd Edition
- 3. Weblink: nptel

BBT505		5	PLA	NT B	IOTE	CHNO	OLO	GY				L	Т	P	C		
			Total	Conta	act Ho	urs - 4	15					3	0	0	3		
			Preree	quisit	e – Gei	neral	biolog	gy, Ce	ll biolo	gy, Micro	biolog	у					
			Cours	se Des	signed	by – l	Dept o	of Ind	ustrial E	Biotechno	logy						
OBJECTIVES: To provide a basic knowledge about plant tissue culture a											and it	s app	licatior	ıs			
C	COURSE OUTCOMES (COs)																
CO1 to understand basic concepts in organization of plant genome																	
С	CO2 to know about the genetic engineering concepts involved in plan										ıt						
C	O3	to kno	ow abo	ut pla	nt tissı	ie cul	ture										
CO4 Toknow about bioremediation																	
С	O5	to unc	lerstan	d the	variou	s appl	icatio	ns of	plant tis	ssue cultu	re						
С	06	to kno	w about gene transfer methods														
			Mapping of Course Outcomes with Program outcomes (
		(H	H/M/L	indica	ates str	ength	of co	rrelati	ion) H	-High, M	-Mediu	ım, L-	Low				
1	COs	s/PO	а	b	С	d	e	f	g	h	i	j	k	5	1		
s 2 CO1		1	Н	М	М	Н	М		М	Н	Μ	L	L	F	ł		
2 CO1		2	Н	М	М	Н	Н	Н	М	Н	H	Μ	Н	I	ł		
CO3		Н			Н	Н	Η	Μ	М	Μ	L	L	Ν	Λ			
CO4		Н	М	Η	Н	Н	Μ	Μ	L	Μ	L	Μ	H	I			
CO5		5	Н	М	М	Н	Н	Μ	Μ	М	Μ	Н	L	Ν	Λ		
	CO	5	Η			Н	Н		Μ			L	L	H	Ł		

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term paper Seminar/ Internship (PR)				
					\checkmark								
4	Approva 1	37 th Meeti	37 th Meeting of Academic Council, May 2015										

UNIT I PLANT MOLECULAR BIOLOGY

Plant genome organization – mitochondrial genome – cytoplasmic male sterility – chloroplast genome – post transcriptional modifications – transcription factors – gene silencing – regulation of gene expression – transposable elements

UNIT II PLANT GENETIC ENGINEERING

Plant viral vectors – Ri& Ti plasmid vectors – promoters used in plant vectors – methods of gene transfer- Agrobacterium mediated gene transfer –biolistics – latest methods of gene transfer in plants – Transposon tagging – selection of transformants/recombinants – RFLP, RAPD – plant pathogen interactions.

UNIT III PLANT TISSUE CULTURE

Basic terminologies – requirements of a plant tissue culture laboratory – Types of culture – selection of explants – sterilization techniques – Types of media – direct and indirect regeneration – micropropagation – haploid culture – protoplast culture – somatic hybridization and cybridization – embryo rescue – artificial seeds.

UNIT IV BIOCONTROL, BIOREMEDIATION AND BIOFERTILIZERS

Biochemistry and molecular biology of nitrogen fixation – transfer of nif genes – biocontrol of insect pests – genetic engineering of biocontrol agents – microbial pesticides – biofertilizers; types and applications – effluent treatment and using plant materials – phyto remediation.

UNIT V APPLICATIONS

Transgenic plants for insect, disease, stress & herbicide resistance – edible vaccines and antibodies – methods of crop improvement through genetic engineering - DNA finger printing – production of secondary plant metabolites through suspension cultures.

TEXT BOOKS

- 1. Adrian Slater, 2006, "Plant biotechnology", 3rd Ed,
- 2. Fr. S. Ignacimuthu, 2000 Plant biotechnology IV ed.

REFERENCE BOOKS

- 1. C. B. Nirmala, G. Rajalakshmi, Chandra Karthick. 2009," Plant Biotechnology"
- 2. Veereshem C, 2006, "Medicinal plant biotechnology" CBS Publishers & Distributors.
- 3. Weblink: nptel

9

9

9

9

BBT5L1		GEN	ETIC	ENG	INEE	RIN	G LAB				L	Т	Р	C		
			Total	Conta	ct Ho	urs - 4	5					0	0	3	2	
			Prere	quisite	- Mo	olecula	r bic	ology,rDN	ATechi	nology,N	Micro	obiolog	gy.			
Course Designed by – Dept. of Industrial Biotechnology																
OBJECTIVES																
To provide a basic understanding of recombinant mechanisms and their applications from perspective of engineers														rom th	e	
perspective of engineers COURSE OUTCOMES (COs)																
COURSE OUTCOMES (COs)																
C	CO1 to understand the fundamentals of genetic engineering															
C	O2	to app	apply the concept of recombinant DNA IN plant, animal and microbial systems an rowth in real life situations													
С	03	to get	growth in real life situations to get the knowledge of molecular scissors and its role in creating transgenic product													
C	04	to kno	know the techniques related to screen the recombinant products													
C	05	to know the techniques related to screen the recombinant products.													and	
biological products in relevant industries													, and			
С	06	To ge	t know	ledge	about	PCR										
				Mapp	ing of	f Cours	se O	utcomes v	vith Pro	gram o	utco	mes (P	Os)			
			(H/I	M/L in	dicate	es stren	gth	of correlat	tion) H	I-High,	M-M	ledium	, L-L	OW		
1	COs	/POs	а	b	с	d	e	f	g	h	i	j	k	1		
2	COI		н	М	м	н		н	М	н	Н	T	T	M		
4	CO^2)	H	M	111	11		L	141	H	M	L		101		
	CO3	3	H	M	Н	Н	Н	H	М	H	H	L				
	CO4	ļ	Н			H	Η	Н	M	M	Μ		L	М		
	CO5	5	Н	М	Μ	Н					L	L	L			
	CO6	5	Н			Η	Η	Н	М			L		Μ		
3	Cate	egory	Humanities & B Social Studies (HS)		Basic Sciences (BS) Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NF)		Open Elective (OE)	Project/ Term	paper Seminar/	Internship (PR)		
4 Approval 37 th Meeting of Academic Council, May 2015																

- 1. Extraction of DNA
- 2. Agarose gel electrophoresis
- 3. Restriction digestion of DNA
- 4. Ligation of digested DNA
- 5. Preparation of competent cell

- 6. Transformation
- 7. Southern hybridization
- 8. AFLP
- 9. GFP cloning
- 10. Polymerase Chain reaction
| BI | BT5L | 2 | CHE | MIC | AL ENG | INE | ERI | NGL | AB | | | | L | T | '] | 2 | С |
|---|--|--------|---|--------|------------------------|---------------|--------|--------------|--------------|-----------------------|-----------|---------------|-----------------------|-----|---------------|----------|--------------------|
| | | - | Total | Cont | act Hour | s - 45 | | | | | | | 0 | 0 | 3 | | 2 |
| | | | Prerec | quisit | e – princ | iples | of cl | nemica | al en | gg,cher | nical r | eacti | on | 1 | | | |
| | | _ | engg,1 | nech | anicalop | eratio | ns, N | Aass& | zHea | t Trans | fer | | | | | | |
| | | | Cours | e De | signed by | y – De | ept. o | of Ind | ustria | al Biote | chnol | ogy | | | | | |
| 0 | BJEC | TIVE | S :To p | rovic | le a knov | vledg | e abo | out he | at, m | ass trar | nsfer a | nd re | action | kin | etics | | |
| C | OUR | SE OU | TCON | AES | (COs) | | | | | | | | | | | | |
| С | 01 | to get | knowl | edge | about rea | actor | kinet | ics | | | | | | | | | |
| С | 02 | to kno | w abou | ıt dry | ing equi | pmen | t | | | | | | | | | | |
| С | 03 | to get | idea al | out l | neat trans | sfer | | | | | | | | | | | |
| С | O4 | to kno | w abou | ıt ma | iss transf | er ope | eratio | ons | | | | | | | | | |
| С | O5 | to und | erstand | 1 abo | ut mecha | nical | oper | ration | s | | | | | | | | |
| С | 06 | To kn | ow abo | out th | e basic T | echni | ical a | analys | is me | ethods | | | | | | | |
| M | Mapping of Course Outcomes with Program outcomes (POs) | | | | | | | | | | | | | | | | |
| (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low | | | | | | | | | | | | OW | | | | - | |
| 1 | COs | /POs | а | b | с | d | e | f | | g | h | i | j | | k | | 1 |
| 2 | CO | | Н | | | | | | Н | | L | | Н | | | L | |
| | CO2 | 2 | | | L | | Μ | | | | | L | | L | | | |
| | CO3 | 3 | Η | L | | Μ | | Н | Η | | | | Н | | | L | |
| | CO | ł | | | | | | | | | Μ | L | | | | | |
| | COS | 5 | Η | | М | | | | | | | | Н | | | | |
| | COe | 5 | Η | L | | | | | Η | | | | | L | | | |
| 3 | Cate | egory | Humanities &
Social Studies | (HS) | Basic Sciences
(BS) | Engg Sciences | | Professional | COTE (PC) | Core Elective
(CE) | Non-Major | Elective (NE) | Open Elective
(OE) | | Project/ Term | Seminar/ | Internship
(PR) |
| | | | | | | | | | \checkmark | | | | | | | | |
| 4 | App | roval | oval 37 th Meeting of Academic Council, May 2015 | | | | | | | | | | | | | | |

- 1. Batch Reactor I
- 2. Batch Reactor II
- 3. Drying studies in Tray dryer
- 4. Simple Leaching
- 5. Adsorption
- 6. Heat transfer through Natural convection
- 7. Heat transfer through Forced convection
- 8. Heat transfer through composite wall
- 9. Sieve Shaker Analysis
- 10. Magnetic Separator
- 11. Analysis of chloride content in Cement
- 12. Analysis of chlorine content in Bleaching Powder

BI	BT5L	.3	PLANT	ANI) AN	IM	IAL BI	OTEO	CHNC)L(DGY	LAB	L	Τ	Р	C
		-	Total C	ontact	Hou	ırs -	- 45						0	0	3	2
			Prerequ	isite –	Plar	nt b	iotechn	ology,	Anim	nall	biotec	hnology	, Gen	etic ei	ngineer	ing
			Course	Desig	ned l	oy -	- Dept.	of Ind	ustrial	Bi	otech	nology				
O	BJEC	CTIVE	S: To pr	ovide	a bas	sic	underst	anding	g of pla	ant	and a	nimal ce	ell cult	ture te	chniqu	es
C	OUR	SE OU	TCOM	ES (C	Os)											
С	01	to und	lerstand t	he fur	ndam	nent	tals of p	olant bi	iotech	nol	ogy					
С	O2	to kno	w about	sterili	zatic	on te	echniqu	ies								
С	O3	to kno	w about	plant	tissu	e ci	ulture									
С	O4	to kno	w about	anima	al cel	l cı	ulture									
С	O5	to get	a basic k	nowle	edge	of	the app	lication	ns usir	ng p	plant ł	oiotechn	ology			
С	06	to get	a basic k	nowle	edge	of	the app	licatio	ns usir	ng a	anima	l biotech	nolog	sу		
		Mappi	ng of Co	urse C)utco	me	s with I	Progra	m out	tcoi	mes (I	POs)				
_	~~	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
1	COs	s/POs	a	b	1	j	k									
2	CO	1	Н	М	Μ	М										
	CO2	2	Н	Μ	Μ	Η	H		Μ				L	L	М	
	CO	3	Н	Μ		Μ	L		М							
	CO	1	Н	Μ		Η	H		Μ				L	L		
	CO:	5	H	Μ	Μ	H	H	Η	H			М	L	L	Μ	
	CO	5	H			H	H		Μ		M			L		
3	Cate	egory	Humanities & Social Studies	(HS)	Basic Sciences	(BS)	Engg Sciences (ES)	Professional Core		Core Flective	(CE)	Non-Major Elective (NE)	Open Elective	(70)	Project/ Term paper	Seminar/ Internship (PR)
									\checkmark							
4	App	oroval	37 th	Meeti	ng of	f Ao	cademi	c Cour	ncil, M	lay	2015					

- 1. Sterilization techniques.
- 2. Plant tissue culture techniques.
- 3. Preparation of culture medium
- 4. Callus induction in *Daucuscarota*.
- 5. Nodal bud culture.
- 6. Micropropagation of rose.
- 7. Rooting and hardening of regenerated shoots.
- 8. Isolation and purification of protoplast from *Aloe vera*leaf mesophyll cells.
- 9. Determination of protoplast viability using Evan's blue staining.
- 10. Protoplast fusion using PEG.
- 11. Preparation of synthetic seeds.
- 12. Isolation of Rhizobium from ground nut nodules.
- 13. Preparation of Rhizobialbiofertilizer.

- 14. Aseptic techniques for animal cell culture.
- 16. Resuscitation of frozen cell lines.
- 17. Subculture of adherent cell lines.
- 15. Establishment of a primary culture.

BI	BT602	ANIMA	AL B	BIOT	ECH	NOL	OGY					L	Τ	P	0	
		Total C	onta	ct Ho	urs - 2	45						3	0	0	3	
		Prerequ	isite	- Mo	lecula	ar bio	ology,	Genetic en	gineering	, Microb	oiolo	gy, Imm	unolog	gy	Τ	
		Course	Desi	gned	by – I	Dept.	of Ind	dustrial Bio	otechnolog	ду					-	
O	BJECTIV	ES													-	
То	provide a	basic ur	nders	tandi	ng of	biolo	gical	mechanism	is and thei	r applic	ation	s from t	he			
pe	rspective	of engine	ers													
CO	OURSE C	UTCON	AES	(CO	s)											
C	O1 to u	nderstand	the	funda	ament	als of	f anim	al cells and	d culture							
C	O2 to ap	oply the t	echn	iques	for a	nima	l cell (culture and	its types							
C	O3 to co	omprehei	nd ge	enetic	s syst	em										
C	O4 to k	now the l	large	scale	of ce	ell cul	tures	in a biorea	ctor							
C	O5 To k	now abc	out th	e imr	nune	syste	m									
C	O6 to g	6 to get a basic knowledge of the applications of animal cell in biological systems and in relevant industries														
М	relev	relevant industries ving of Course Outcomes with Program outcomes (POs)														
Ma (H	/M/L indi	course c	ngth	of co	orrelat	tion)	ani ot H-H	igh. M-Me	dium. L-L	.OW						
1	COs/POs	s a	b	c	(d	e	f	g	h	i	j	k	1		
-	001						24					T	T	_	_	
2	C01	H H	M	M	н н		M H		H M		М	L		M	_	
	CO2	H	111	141	H		H	М	H	Н	141		L	M	-	
	CO4	Н	Μ		Н				М			L				
	CO5	Н	Μ	Μ	Η		Η		М	М	Μ	L		Μ		
-	CO6	Н			Η	1	Η		М				L		_	
3	Category	Humanities & Social Studies	(HS)	Basic Sciences	(BS)	Engg Sciences	(ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/ Term	المعامرة الم Internshin (PR)	1> Junnersanse	
								\checkmark								
4	Approva	1 37 th	Mee	ting o	of Aca	demi	c Cou	incil, May	2015							

History of animal cell and organ culture-requirements for animal cell and organ culturecharacteristics of animal growth in culture-substrates for cell culture and its treatment-culture media-natural and synthetic media- sterilization of glassware, equipment and culture media.

UNIT II ANIMAL CELL CULTURE

Equipment required for animal cell culture-isolation of animal material- disaggregation of tissue by physical and enzymatic methods- establishment of cell culture-evolution of cell lines-primary and secondary cell culture-types of cell lines-factors affecting subculture in vitro.

SUSPENSION CULTURE UNIT III

Cultivation of animal cells in bioreactor-Suspension cultures-methods of scaling up of cell culture-roller bottle-spinner culture-immobilized cell culture-insect cell culture-somatic and organ cell culture- organ culture on plasma clots, agar and liquid medium-whole embryo cultureproduction of commercially valuable products obtained from animal and insect cell culturehybridoma technology.

UNIT IV MANIPULATION OF REPRODUCTION

Manipulation of reproduction in animals-artificial insemination-semen collection and storageovulation control-embryo transfer-multiple ovulation and embryo transfer-embryo splitting and sexing-in vitro fertilization-nuclear transplantation-problems related to test tube babies-infertility in humans.

UNIT V **TRANGENICS**

Techniques of gene transfer in animals-transgenic animals- transgenic sheep and fish-knockout mice-animal bioreactor and molecular farming-diagnosis, elimination and breeding strategies of genetic diseases-PCR based markers-xenotransplantation-mapping of human genome-bioethics in animal genetic engineering.

TEXT BOOK

1. R.C. Dubey, 2005, "A textbook of Biotechnology", 3rded.

REFERENCE BOOK

- 1. Stewart Sell, 2004, "Stem Cells Hand Book" Humana Press.
- 2. John R.W. Masters, 2000, "Animal Cell culture a practical approach" Oxford University Press. 3rded.
- 3. YoshitoIkada, 2006, "Tissue engineering fundamentals and applications" Academic Press, 3rded.
- 4. John P. Fisher et al, 2007, "Tissue engineering" CRC Press.
- 5. Nigel Jenkins, 2007, "Animal Cell Biotechnology" Hamana press, 2nded.
- 6. P. Ramadass. 2008 "Animal Biotechnology", MJP Pub.
- 7. Weblink: nptel

BBT605	ENZYME ENGINEERING AND TECHNOLOGY	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Biochemistry, Unit operation, Chemical reac	tion e	engg.		
	Course Designed by – Dept. of Industrial Biotechnology				

112

9

9

9

OF	3JEC	TIVES	5	_	_												
То	prov	ide a ki	nowle	dge a	bout er	nzymes	and it	ts kir	neti	CS							
CC	JUR	SE OU	TCO	MES	(COs)	1											
C	01	to und	erstar	nd the	applic	ations of	of enzy	ymes	s in	vario	ous fie	elds					
C	02	to kno	w abo	out en	zyme i	nhibitic	on										
C	03	to kno	w abc	out kir	netics c	of enzyr	ne										
C	04	to kno	w abc	out im	mobili	zation a	and its	app	lica	ation	s						
C	O5	to get	know	ledge	about	transpo	rt in c	ell									
C	06	to get	ideas	about	variou	is biore	actors	and	its	uses	•						
	J	Mappin	ig of (Course	e Outco	omes w	ith Pr	ogra	m	outco	omes (POs)					
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
1	COs	s/POs	a	b	c	d	e	f		g	h	i	j		k		1
2	CO	1	H M H M M L M L M														
	CO2	2	H M H M M L M L M H M M H M L M L M H M M H H I I I M														
	CO3	3	Η	Μ		Н	Η		M	1	Η	Η	L				
	CO	1	Η	L		Н			M	1			L	L		Μ	
	CO:	5	Η	Μ	М	Н	Η						L			Μ	
	CO	5	Η			H	Η	L	M	1	Μ	L		L			
3	3 Category		Humanities	& Suctar Studies (HS)	Basic Sciences	(BS) Engg	Sciences (ES)	Professional	Core (PC)	Core	Elective (CE)	Non-Major Elective	Open	Elective (OE)	Project/ Term paper	Seminar/	Internship (PR)
4	App	oroval	37 th	Mee	ting of	Àcade	mic C	ounc	cil,	May	2015			I			

UNITI INTRODUCTION AND INDUSTRIAL APPLICATIONS

Definition and scope of biochemical processes - application of biochemical process in Pharma, food and other industries - comparison of chemical and biochemical processes - development and scope of biochemical engineering.

UNITII ENZYME KINETICS

Nature and function of Enzymes - Co - Enzymes and cofactor - classification of Enzyme - Practical application of Enzyme in biochemical processes of industrial importance - mechanism of enzymatic reaction –Michaelis-Menten Kinetics - Enzyme inhibition – kinetics of competitive and non-competitive inhibition-factors affecting the reaction rates - Immobilization Of Enzymes - Characteristics and applications.

UNIT-III MICROBIAL KINECTICS AND IMMOBILIZATION

Typical growth characteristics of microbial cells: Phase of growth curve, factors affecting growth- Monod Model - Immobilization of cells and characteristics - applications.

UNIT-IV TRANSPORT IN MICROBIAL SYSTEMS

113

9

Transport mechanism- gas liquid mass transfer in cellular system- design parameters affecting O_2 transfer- Measurement of K_La- factors affecting K_La- - Correlation of mass transfer co-efficient-Agitation and Aeration in fermentor- heat transfer- Power consumption using π theorem-sterilization: batch & Continuous.

UNIT-V BIOREACTORS

9

Classification- Stirred tank reactor, Bubble column- Air lift rector- Packed bed- fluidized bed-Trickle bed reactor- Industrially important reactor: Photo bio reactor, membrane bio reactor. Comparison of industrially important bioreactor

TEXT BOOKS

1. Manjula, 2006, "Bio and Enzyme Engineering", III Ed.

REFERENCE BOOK

- 1. J.B.Bailey and D.F. Ollis, 2005, "Biochemical Engineering Fundamentals" McGraw Hill, New York.
- 2. Dr.Mansi El Mans, 2006 "Fermentation microbiology and biotechnology" IV Ed,
- 3. Weblink: nptel

Bl	BBT607		ENV	IRO	NMEN	TAL F	BIO	ГЕСН	NOLO	GY		L	Т	P	C
			Tota	l Con	tact Ho	ours - 45	5					3	0	0	3
			Prere	equisi	te – Bi	ochemi	stry,	Micro	biology,	, Enviro	onment	al Stud	ies		
			Cour	se De	signed	l by – D	ept.	of Ind	ustrial B	iotechr	ology				
O To me	BJEC proveasure	CTIVE ide bas es	S sic kno	owled	ge abo	ut envii	ronm	nental	issues re	lated to	biopro	ocess a	nd its	remed	ial
C	OUR	SE OU	TCO	MES	(COs)										
C	201	to uno	lerstai	nd the	micro	biologi	cal c	oncep	ts in air						
CO2 to know about various bioremediation techniques															
CO3 to know about biosafety															
C	204	to kno	ow abo	out m	icrobio	ology of	wat	er							
C	205	to get	idea a	about	microł	oiology	of so	oil							
C	206	to kno	ow abo	out IP	R										
		(H	Maj /M/I	pping	of Cou	urse Ou ength o	tcon	nes wi relatio	th Progra	am out ligh M	comes Mediu	(POs)	OW		
1	COs	/POs	a	b	C	d	e	f	g	h	i	j	k		1
2	CO		Н	Μ	Μ	Н	Μ	Н	Н		L	L	L	N	1
	CO2	2	Η	Μ	Μ	Н	Η	Н	М	Н				Ν	1
	COS	\$	Η	Μ		Н		Н	Н			L	L		
	CO	-	Н	Μ		Н	Η	H	Μ			L		N	1
	COS	5	Н	Μ	Μ	Н	Η	Н	Μ	Μ	Μ	L	L		
	CO	5	Η			Н	Η	Η	Μ				L	N	1

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term paper Seminar/ Internship (PR)
4	Approval	37 th Meet	ting of Ac	cademic (Council, M	ay 2015			

UNIT I MICROBIOLOGY OF AIR AND WATER

Microbial Contamination of air-Enumeration of bacteria in air-Air Sampling devices-Air Sanitation and purification methods-Determination of Water quality-Bacteriological examination of water-indicator organisms-Water borne pathogens

UNIT II MICROBIOLOGY OF SOIL

Microbial flora of soil, Growth, Ecological adaptation, Interaction among soil microorganisms-Microorganisms involved in nitrogen fixation, Positive and negative role of microbes.

UNIT III DETOXIFICATION

Detoxification of Hazardous chemicals-Biocatalyst for pesticide Detoxification- Bioremediation: Bioremediation of Persistent chemicals-Improving catabolic processes, Biosorption of Heavy metals-Bioremediation of oil spills, Bio deterioration of paper, Textile, sugar distilleries, diary industries.

UNIT IV BIOWASTE UTILIZATION

Biotechnology for biowaste conversion in to bioresources-Single cell protein, Mushroom, Algal growth for fisheries, and Aqua culture- Industrial waste recycling -Waste fueled furnaces.

UNIT V **BIOSAFETY AND IPR**

Intellectual Property, Rights in bioremediation, Biosafety-Microbiology. Medical Laboratory-Medical waste- Bioharzardous waste-Sharps-Pathological waste-Rules and Regulations-Biosafety protocol

TEXT BOOK

- 1. Bruce. E.Rittaman and Perry. L. Mc Carty, 2004, "Environmental Biotechnology-Principles and applications" McGraw Hill.
- 2. N. Ahmed, F.M. Quershi and D. Y.Khan, 2001, "Industrial Environmental Biotechnology" Horizon press.

REFERENCE BOOKS

- 1. W.D. Grand, P.E. Long Blakies, "Environmental Microbiology", Glasgow London.
- 2. T. Meenambal, 2009, "Environmental Science and Engineering".
- 3. Weblink: nptel

BSS601	VALUE EDUCATION AND PROFESSIONAL	L	Т	Р	С
	ETHICS				

9

9

9

9

			Total	Cont	act H	ours	- 45							3	0	0	3	
			Prere	quisit	e – E	Inglis	sh & Profes	sio	onal Co	ours	es					1		
			Cours	se Des	signed	d by -	– Dept. of N	Лa	nagem	ent	St	udie	es					
OI	BJE(CTIVES	5															
-	То	teach	the ph	ilosop	phy of	f Life	e, personal v	val	lue, soo	cial	va	lue,	mind o	cultu	al val	le ai	nd	
	per	rsonal h	ealth		.1 •	1	1 1	c				• •		c	, · ·		1	
-	10 rol	teach p	bal is	sional	ethic	al va	lues, codes	of	ethics	, res	spo	onsi	bilities,	, safe	ty, rig	nts a	nd	
	101	aleu git	JUAI 15	sues.														
CC	DUR	SE OU	TCO	MES	(COs	5)												
C	D1	To lear	rn abc	out ph	ilosop	phy o	f Life and I	nd	lividua	l qu	ali	ities						
C	D2	 10 learn about philosophy of Life and individual qualities 10 learn and practice social values and responsibilities 11 To learn and practice mind culture, forces acting on the body and causes of diseases and their curing 12 To learn more of Engineer as Responsible Experimenter. 13 To learn more of Risk and Safety assessment with case studies. 14 To learn more of Responsibilities and Rights as Professional and facing Global Challenges 																
C	D3	To learn and practice mind culture, forces acting on the body and causes of diseases and their curing To learn more of Engineer as Responsible Experimenter. To learn more of Risk and Safety assessment with case studies.																
	<u> </u>	their cu	uring		<u> </u>		D											
C	04	To lea	rn mo	re of I	Engin	leer a	s Responsi	ble	e Expei	ime	ent	er.						
C	05	To lea	rn mo	re of l	Risk a	and S	afety assess	sm	ent wi	th c	ase	e stu	idies.					
C	D6	To lea	arn n	nore	of Re	espor	nsibilities a	anc	l Righ	nts	as	Pro	ofessio	nal a	and fa	cing	g Gl	obal
		Challe	nges		6.6		0		11 D					(DO	<u> </u>			
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																	
1	CO	(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowDs/POsabcdefghijkl																
-	COs/POs a b c d e f g h i j k l																	
2	CO1 M H M H M L L M CO2 M H M H M L L M																	
	CO1MHMHMLLMCO2MHMHMLLMCO3MHMHMLLM																	
	CO	3			Μ		Н		Μ	Η		Μ		L	L		M	
	CO	4			H		H		M	H		M		L	L		M	
	CO	5			H		H		M	H		M					M M	
3	Cot	O			п		П		IVI			IVI			L		IVI	
5	Cat	egory	S S	2	es		s	-	_		ē		. m		/e	я		R
			ies .	, nai	enc	_	nce		ona C)	· ·	ctiv	_	NE aj.	,	ctiv	Len	r ar/	E.
			uniti 1 s+	HS)	Sci	EX N	ciel	•	e (F	1	Ele	CE	Ve -M		Ele OE)	ct/]	ape	hip
			me	CIA CIA	sic	<u> </u>	S S	ر	Cor		ore	J	Von ecti))	oje	D D	eme
		Hui Hui Soc Soc Soc Coi											Z E		OF	\mathbf{Pr}		Inte
			N															
4	An	nroval	37 th	Мее	ting c	of Ac	ademic Cor	1n/	cil Ma	v 2	$\frac{01}{01}$	5						

UNIT I PHILOSOPHY OF LIFE AND INDIVIDUAL QUALITIES

9

Human Life on Earth - Purpose of Life, Meaning and Philosophy of Life. The Law of Nature – Protecting Nature /Universe- Basic Culture - Thought Analysis - Regulating desire - Guarding against anger - To get rid of Anxiety – The Rewards of Blessing - Benevolence of Friendship - Love and Charity - Self – tranquility/Peace

UNIT II SOCIAL VALUES (INDIVIDUAL AND SOCIAL WELFARE

Family - Peace in Family, Society, The Law of Life Brotherhood - The Pride of Womanhood – Five responsibilities/duties of Man : - a) to himself, b) to his family, c) to his environment, d) to his society, e) to the Universe in his lives, Thriftness (Thrift)/Economics. Health - Education - Governance - People's Responsibility / duties of the community, World peace.

UNIT IIIMIND CULTURE & TENDING PERSONAL HEALTH9

Mind Culture - Life and Mind - Bio - magnetism, Universal Magnetism (God –Realization and Self Realization) - Genetic Centre – Thought Action – Short term Memory – Expansiveness – Thought – Waves, Channelizing the Mind, Stages - Meditation, Spiritual Value. Structure of the body - the three forces of the body- life body relation, natural causes and unnatural causes for diseases, Methods in Curing diseases

UNIT IV: ENGINEERING AS SOCIAL EXPERIMENTATION AND ENGINEERS'SRESPONSIBILITIES FOR SAFETY

9

9

Engineering as Experimentation – Engineer as Responsible Experimenters – Codes of Ethics – The Challenger, case study-Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk – The Three Mile Island and Chernobyl case studies

UNIT V: ENGINEERS'S RESPONSIBILITIES FOR RIGHTS AND GLOBAL ISSUES 9

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Whistle Blowing – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

 $\begin{array}{l} Multinational \ Corporations-Environmental \ Ethics-Computer \ Ethics-Weapons \ Development \\ -Engineers \ as \ Managers-Consulting \ Engineers-Engineers \ as \ Expert \ Eye \ Witnesses \ and \ Advisors-Moral \ Leadership \end{array}$

TEXT BOOKS

- 1. Value Education for Health, Happiness and Harmony, the World Community Service, Centre Vethathiri Publications (Unit 1 III).
- 2. Mike W Martin and Roland Schinzinger, Ethics In Engineering, Tata Mcgraw Hill, Newyork 2005 (Units IV & V)

REFERENCE

- 1. Philosophy of Universal Magnetism (Bio magnetism, Universal Magnetism) The World Community Service Centre Vethathiri Publications (for Unit III)
- 2. Thirukkural with English Translation of Rev. Dr. G.U. Pope, Uma Publication, 156, Serfoji Nagar, Medical College Road, Thanjavur 613 004 (for Units I III)
- 3. R S Nagaarazan, Textbook On Professional Ethics And Human Values, New Age International Publishers, 2006 (for Units IV-V)
- 4. Charles D Fledderman, Engineering Ethics, Prentice Hall, New Mexico, 2004 (Units IV-V)

BBT6L1	BIOPROCESS ENGINEERING LAB 1	L	Τ	Р	С
	Total Contact Hours - 45	0	0	3	2

			Prerequ	uisite	– Biopro	cess	Engg.	, Unit C	Operatio	n							
			Course	Desi	gned by	– Dej	pt. of l	Industri	al Biote	chnolog	у						
0	BJEC	CTIVE	S: To p	rovide	e basic k	nowle	edge a	bout bi	oproces	sing							
CO	DUR	SE OU	TCOM	ES (COs)												
С	01	to get	knowlee	dge o	n biomas	SS											
C	02	to kno	w about	t enzy	me kine	tics											
С	03	to und	erstand	about	immobi	lizati	on of	enzyme	2								
C	O4	to get	idea abo	out m	ass trans	fer											
С	05	to kno	w about	t deat	h kinetic	S											
С	06	to kno	w about	t prod	uct optir	nizati	ion										
			Map	ping	of Cours	e Ou	tcome	s with I	Program	outcon	nes (F	POs)					
		(H	H/M/L i	ndica	tes stren	gth of	f corre	lation)	H-Hig	h, M-M	ediun	n, L-Lov	N				
1	COs	s/POs	а	b	c	d	e	f	g	h	i	j	k	1			
2	CO	1	Н	M H H M M H L M													
	CO	2	Η	Μ	М	Н	Н			М			L				
	CO2	3	Η	Μ	М	Η			Μ			L	L	М			
	CO	4	Η	M H H H H M L M M M H L M L													
	CO	5	H	M H H H H H L M M M H L M L L													
	CO	5	H		H	Н	Η		M			L		M			
3 Category		Humanities & Social Studies	(HS)	Basic Sciences (BS)	Engg Sciences	(ES)	- Professional Core (PC)	Core Elective	Non-Major	FICCUVE (INF.)	Open Elective (OE)	Project/ Term	paper Seminar/ Internship (PR)				
	٨٣٣	moval	27 th	Magt	ing of A	 and cr	mia C.	√	May 20	15							
4	App	noval	51	wieet	ing of A	cauei		Juncil,	way 20	13							

- 1. Culturing of different types of microorganism
- 2. Estimation of biomass production.
- 3. Enzyme kinetics.
- 4. Effect of temperature on enzyme activity.
- 5. Effect of pH on enzyme activity.

- 6. Effect of substrate concentration on growth of *E.coli*.
- 7. Immobilization of enzyme.
- 8. Estimation of $k_L a$ by sulphite oxidation method.
- 9. Thermal death kinetics of yeast.
- 10. Thermal death kinetics of bacteria.

BBT6L2	ENVIRONMENTAL BIOTECHNOLOGY LAB	L	Т	Р	C
--------	---------------------------------	---	---	---	---

			Total	Conta	act Ho	ours -	45								0	0	3		2
			Prerec	quisite	e – Bi	oche	mist	ry, M	icrobio	log	y, Ei	nvi	ronm	ental	Biot	echr	nolog	gy	
			Cours	e Des	igned	by –	- De	pt. of	Industr	ial	Biot	ech	nolo	gy					
O	BJEC	TIVE	S: To p	provid	le kno	wled	ge a	about (environ	me	ntal	sci	ence	and t	echn	olog	y		
C	OURS	SE OU	TCON	IES (COs)														
C	01	to kno	ow abo	ut ana	lysis	of wa	ater												
С	02	to und	lerstan	d abo	ut mic	robia	al ex	kamina	ation of	fef	fluer	nt							
С	03	to get	basic i	dea a	bout a	dsor	ptio	n of d	ye										
С	04	to kno	ow abo	ut mio	crobia	l rem	nedia	ation											
С	05	to get	basic i	dea a	bout b	oiorei	ned	iation											
C	06	to kno	ow abo	ut ana	lysis	of so	il												
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low COs/POs a b c d e f g h i j k 1																		
1	Mapping of Course Outcomes with Program outcomes (POs)(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowCOs/POsabcdefghijk1																		
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low COs/POs a b c d e f g h i j k l																		
2	CO1		Н	М	М	Н		М	М			Μ	-	Н			L		
	CO2	2	Н	Μ	Μ	Η		Н		М	[L		L		
	CO3		Н	Μ		Η			М	М								Μ	
	CO4	-	Н	Μ		Η		Η				L		Μ			L	Μ	
	CO5	; -	H	Μ	Μ	H		H	Μ	Μ					L	_	.	Μ	
2	COE)	Н			Η		Η						L	L				
3	Cate	gory	& ies		ces		ces) al		ve		чÍ	Э	Ve		E		PR)
			ties tud		ien	2	iene		PC		ecti	()	1ajc	Z	ecti	(i)	Tei	er	nar/ p (J
			iani al S	SH)	Sc	n n	Sc		fess tre (E	(CE	N-n	tive	ΠΞ	Ö	ect/	pap.	inni
			Hum		asic		រឧទ	$\tilde{\mathbf{S}}$	Co Co		Core		No -	llec	Der		roje	,	Set
			F S		В		Е	(E)		ŀ		0				In
										\checkmark									
4	App	roval	37 th	Meeti	ng of	Acad	dem	ic Co	uncil, N	/lay	201	5			•		•		

- 1. Estimation of pH
- 2. Analysis of Alkalinity
- 3. Estimation of Hardness
- 4. Analysis of Chloride
- 5. Analysis of Total Dissolved Solids
- 6. Estimation of Fluoride
- 7. Analysis of Iron
- 8. And alysis of Nitrite
- 9. Analysis of Nitrate

- 10. Analysis of Phosphate
- 11. Analysis of Residual Chlorine
- 12. Microbiological Examination using Leather Effluents
- 13. Adsorption of Dye using Charcoal
- 14. Microbial Degradation of Dye
- 15. Reduction of Sulphate by biological method16. Bioremediation of Hexavalentchromium reduction

BI	BT6L3	3	IMM	UNO	rech	INO	LOG	Y LA	B			L	Т	I		С
		_	Total	Conta	ct Ho	urs -	45					0	0	3		2
		_	Prereq	uisite	– Im	munc	ology						1			
		_	Cours	e Desi	igned	by –	Dept.	of In	Idustria	l Biotech	nology					
Ol To the	BJECT provide persp	FIVE de a b ective	S asic ur e of eng	dersta	anding s	g of b	iolog	ical d	efense	mechanis	sms and t	heir a	pplic	cation	s fro	m
C	OURS	E OU	TCON	AES (- COs)											
C	01 t	to und	erstand	the f	undar	nenta	ls of	immu	ine syst	tem						
C	O2 t	to app	ly the t	echni	ques f	for an	tigen	and a	antibod	v reaction	1					
С	O3 t	o give	e the m	echan	ism o	f imr	nune	respo	nse aga	ainst antig	gens					
C	04 t	o kno	w the i	natura	l barr	ier ag	ainst	patho	ogens		-					
С	O5 t	o get	a basic	know	ledge	e of th	ne app	olicati	ions of	immunol	ogy in tra	anspla	ntati	on		
С	06 t	o kno	w abou	ıt imn	nune e	electr	ophoi	retic t	echniq	ues						
			Ma	pping	of Co	ourse	Outc	omes	with P	rogram o	outcomes	(POs))			
	1	(]	H/M/L	indica	ates st	rengt	h of c	orrel	ation)	H-High,	M-Medi	um, L	-Lov	V		
1	COs/.	POs	a	b	с	d	e	f	g	h	i	j		k		1
2	CO1		н	М	М	н	М		М	Н	М	М			L	
-	CO_1		H	M	M	11	H		H	11	111	111	L		Ľ	
	CO3		H		1.1	Н			H	М	Н				М	
	CO4		Н	М					М				L			
	CO5		Н	Μ	Μ	Η	Н	Η	Н	L		L			Μ	
	CO6		Н			Η	Η		М		Н	L	L		Μ	
3	Categ	gory	Humanities & Social	Studies (HS)	Basic	Sciences (BS)	Engg	Professional	Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Flective (OF)		Project/ Term paper	Seminar/	Internship (PR)
	•	1	arth	N/ ·		<u> </u>	 1 ·		۷ 	0017						
4	Appr	oval	5/-	Meet	ing of	Aca	aemic	e Cou	nc11, M	ay 2015						

- 1. SDS- Slab gel electrophoresis of immunoglobulins
- 2. Western blotting
- 3. Immunoelectrophoresis
- 4. Countercurrent Electrophoresis
- 5. Rocket Immunoelectrophoresis
- 6. Single radial immunodiffusion

- 7. Double immunodiffusion
- 8. Dot-ELISA
- 9. DEAE cellulose chromatography for IgG.
- 10. Affinity chromatography for antiserum purification.

BBT6P1	MINI PROJECT	L	Т	Р	C
	Total Contact Hours -60	0	0	4	2
	Prerequisite – Biochemistry, Microbiology, Bioprocess, Pla Biotechnology	nt an	d Anir	nal	
	Course Designed by- Dept. of Industrial Biotechnology				
OBJECTIVE	ES: To enable students to do independent research				
COURSE OU	UTCOMES (COs)				
• It is a two	credit course offered in the VI Semester				

- Each student will be allocated a guide and a research topic at the end of the V semester. This will help them to collect sufficient literature during their vacation. A guide will have a maximum of four students
- There are 4 hours allocated per week for the students to do research. This will be considered for the award of internal marks.
- There will be three reviews to assess the progress of their research
- The final review will be on the day of the external examination in the presence of the an external and internal examiner. The student will be judged based on the presentation and how he or she defends the selected topic.

BI	BT70	1	RESE INST	CARC RUM	H M ENI	ETH(ATIO	DDOI N	LOG	Y AN	D]	L	Т	Р	C
		-	Total	Conta	ct Ho	ours - 4	45					3	5	0	0	3
			Prereq proces	uisite sing	– Bi	ochem	nistry,	Inst	rument	al met	hod of ana	lysis	, Do	owns	stream	1
			Course	e Desi	ignec	1 by – 1	Dept.	of Ir	Idustria	al Biot	echnology					
OI To	BJEC prov	CTIVE: ride bas	S sic kno	wledg	ge ab	out var	ious i	nstru	imenta	tion te	chniques a	nd d	ata	docu	imentat	ion
C	OUR	SE OU	TCON	AES (COs	5)										
C	01	to und	erstand	the t	oioch	emical	analy	ysis								
CO2 to know about spectroscopic and microscopic techniques										lues						
С	03	to kno	w abou	it the	sepa	ration	techni	ques								
C	O4	to get i	ideas a	bout e	ethica	al issue	es rela	nted t	o resea	arch						
С	05	to kno	w abou	ıt data	a doc	ument	ation									
C	06	To pre	pare re	esearc	h art	icles										
			Ma	pping	of C	Course	Outco	omes	with F	rogran	n outcome	es (P	Os)			
	~~	<u>I)</u>	H/M/L	indica	ates s	strengt	h of c	orrel	ation)	H-Hi	gh, M-Meo	lium	, L-	Low		
1	COs	s/POs	a	b	с	d	e	t	g	h	1	J	k	C C	I	
2	CO1 H M M H M H H H										Н	Μ	Μ		М	
	CO2	2	Н	Μ	Μ	Н	Η		Н			L	L			
	CO3	3	Н	Μ	Η	Η	Н		Μ	Н		Μ			Μ	
	CO	1	Н	Μ	Η	Η	Н	Η	Н		M		M		Η	

	CO5	Η	Μ	Μ	Η	Η		М	Н		L	L	М
	CO6	Н	Η	Η	Η	Η		Н		М	L		
3	Category	Humanities & Social	Studies (HS)	Basic	Sciences	Engg Sciences	Professional	Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open	Elective (OE)	Project/ Term paper Seminar/ Internship (PR)
4	Approval	37 th	Meet	ing c	of Aca	ademic	Cou	ncil, N	lay 20	15	•	·	

UNIT I BASIC PRINCIPLES FOR BIOCHEMICAL ANALYSIS

Introduction – preparation of organ and tissue samples for analysis – cell disruption methods – physiological solutions: buffers and growth media for plants, animals and microbes – Medium standardization - cell sorting, isolation and enumeration techniques – cryopreservation – elucidating metabolic pathways by tracer studies.

UNIT II SPECTROSCOPIC AND MICROSCOPY TECHNIQUES

Introduction – UV – visible spectroscopy – NMR spectroscopy – IR and Raman spectroscopy – atomic spectroscopy - Introduction to microscopy – Election microscopy –ultramicrotome- phase contrast microscopy – Fluorescent and confocal microscopy.

UNIT III SEPARATION TECHNIQUES

Introduction to chromatography and electrophoresis – gel filtration – ion exchange – affinity – GC - HPLC - partition chromatography – electrophoresis of proteins and nucleic acids – immune precipitation techniques – ELISA.

UNIT IV ETHICAL ISSUES IN BIOTECHNOLOGY

Legal and socio economic impacts of biotech research – bio safety regulation – r-DNA guidelines- issues involved in experimenting with animals – Experimental protocol approvals – contaminant levels and environmental effects- impact of GM organisms and GM foods – IPR and patents.

UNIT V DATA ANALYSIS AND DOCUMENTATION

Sampling concepts for statistical analysis – Mean, median, standard deviation, standard error – ANNOVA – Guidelines for thesis writing: literature collection methods – writing of abstract, introduction and review of literature – results, discussion and summary – guidelines to publish articles in journals.

TEXT BOOKS

- 1. Keith Wilson and John Walker,2004, Practical biochemistry, Principles and techniques Cambridge publication
- 2. N. Gurumani, 2006, Research methodology for biological sciences, MJP publishers.

REFERENCE BOOKS

1. P. Ramadass, 2009, Research and writing: Across the disciplines, MJP publishers.

122

9

9

9

9

BB	BBT703		DOWN	ISTE	REAN	I PR	OCESS	SING				L	Τ]	C
		Ī	Total C	onta	ct Hou	ırs -	45					3	0	0	3
		Ī	Prerequ	isite	– Uni	t Op	eration,	Bioproc	ess eng	gineering	g				
		ŀ	Course	Desi	gned	by –	Dept. of	f Industr	ial Bio	technolo	ogy				
OF	BJEC	TIVE	S												
To	prov	ide bas	ic know	ledg	e abou	it va	rious sep	paration	technic	jues in b	iopro	ocesse	S		
CC	JURS	SE OU	TCOM	ES (COs)										
C	01	to und	erstand	the u	nit op	erati	ons invo	olved in	downst	ream					
C	02	to kno	w about	vari	ous se	para	tion pro	cesses							
C	03	to kno	w about	the	produc	ct ree	covery a	nd purif	ication	techniq	ues				
C	04	to get	basic ide	ea ab	out fr	actic	onation								
C	05	to kno	w about	proc	luct po	olish	ing tech	nique							
C	06	to kno	w the va	riou	s indu	stria	l produc	t purific	ation						
	Magning of Course Outcomes with Dragon state														
		(F	Mapı I/M/L in	oing dica	of Cou tes str	arse	Outcom	es with elation	Prograr H_Hi	n outco ah M-N	mes (Iediu	(POs) m I -	Low		
1	COs	s/POs	a	b	c	d	e	f	g	h h	i	<u>i i</u>		k	1
									U			5			
2	COI	1	Η	Μ	Μ	Η	Μ		М			_		L	М
	CO^2	2	H	M	Μ	H	H		TT	Н	Μ	L		L	N
	CO_{2}	5 1	н н	M		н н	н		H M	T		T			M
	CO	5	H	M	М	H	Н		H		Μ	L		L L	111
	CO	5	Н			Н	Н	L	М			L			М
3	Cate	egory	Humanities & Social Studies	(HS)	Basic Sciences	(64)	Engg Sciences (ES)	Professional Core (PC)	Core Elective	(CE) Non-Major Flective (NF)		Open Elective (OE)	Droioot/Torm	riujecu ieim paper	Seminar/ Internship (PR)
									N						
4	Арр	oroval	37 th N	/leeti	ng of	Aca	demic C	ouncil, l	May 20	15					

UNIT I ROLE OF DOWNSTREAM PROCESSING IN BIOTECHNOLOGY 9

Role and Importance of downstream processing in biotechnological processes- Problems and requirements of bioproduct purification-Economics of downstream processing in Biotechnology, cost - cutting strategies, characteristics of biological mixtures, process design criteria for various classes of bioproducts (high volume, low value products and lowvolume, high value products), physico- chemical basis of bioseparation processes

UNIT II PRIMARY SEPARATION AND RECOVERY PROCESSES

Cell distribution methods for intracellular products, removal of insolubles, biomass (and particulate debris) separation techniques, flocculation and sedimentation, centrifugation and filtration methods

UNIT III ENRICHMENT OPERATIONS

Membrane separations (micro and ultrafiltration theory, and configuration of membrane separation equipment) applications, precipitation methods - extractive separations, aqueous two phase extraction, supercritical extraction- *insitu* product removal, integrated bioprocessing.

UNIT IV PRODUCT RESOLUTION/FRACTIONATION

Adsorptive chromatographic separation processes, electrophoretic techniques.

UNIT V PRODUCT POLISHING

Gel Permeation Chromatography, dialysis, Crystallization

TEXT BOOK

1. SivaShankar, 2004, "BioSeparation" III Ed,

REFERENCES

- 1. Wankat P.C, 2003, "Rare Controlled Separations", Elsevier,.
- 2. Better PA and Cussier E, 2002, "Bioseparations", Volley,
- 3. Weblink: nptel

BI	BT70:	5	BIOP	RO	CESS	ENG	INEER	ING				L	Т	Р	C
			Total	Cont	act H	ours -	45					3	0	0	3
			Prerec	quisi	te - C	hemica	al reacti	on e	ngg.,	Unit ope	eration, Ani	imal	biote	chnolog	,
			Plant	biote	chnol	ogy									
			Cours	e De	signed	d by –	Dept. o	f Ind	lustria	al Biotec	hnology				
0	BJEC	TIVE	S:												
To	o prov	ide a k	nowle	dge a	about	variou	s biopro	ocess	es an	d the dea	signing of r	reacto	or		
C	OUR	SE OU	TCO	MES	(COs	5)									
C	01	to know basic concepts in bioprocess engineering to know different types of plant and animal cell bioreactors													
С	02	to know different types of plant and animal cell bioreactors													
C	03	to und	erstan	d bas	sic cor	ncepts	in trans	port	pheno	omena ii	n bioproces	sing			
C	04	to get	knowl	edge	about	t biore	actor de	esign							
C	05	to kno	w abo	ut m	odern	biotec	hnologi	cal p	proces	sses					
C	06	to kno	w abo	ut m	odelin	g and	simulat	ion c	of biop	process	echnology				
			Ma	ppin	g of C	Course	Outcon	nes v	vith P	rogram	outcomes (POs)		
		(H	H/M/L	indi	cates s	strengt	h of con	rrelat	tion)	H-High	, M-Mediu	m, L	-Low	1	
1	COs	s/POs	а	b	с	d	e	f	g	h	i	j	k	1	
2	CO	[Н	Μ	Μ	Н	Μ		Н	Н		L	L		
	CO2	2	Н	Μ	Μ	Н	Н		Μ		М	L	L		
	CO3	3	Н	Μ		Н	Η		М				L	М	

9

9

	CO4	Н	Μ		Η		L				Μ	L	Μ	
	CO5	Н	Μ	М	Н	Η		Μ	Μ		L			
	CO6	Н			Η	Η	Μ	М		L	L	L	Μ	
3	Category	Humanities & Social Studies	(HS)	Basic Sciences		Engg Sciences (ES)	Professional	Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/ Term	paper Seminar/ Internship (PR)
								γ						
4	Approval	37 th	Mee	eting o	of Aca	demic (Coun	cil, M	lay 2015					

UNIT I **DESIGN AND ANALYSIS OF BIOPROCESSES**

On-line data analysis for measurement of important physico-chemical and biochemical parameters; Methods of on-line and off-line biomass estimation; microbial calorimetre; Flow injection analysis for measurement of substrates- Product and other metabolites: State and parameter estimation techniques for biochemical processes-Biosensor

UNIT II **RANSPORT PHENOMENA IN BIOPROCESS SYSTEM**

Role of diffusion in bioprocess- Film theory- Oxygen uptake in cell culture, factors affecting cellular Oxygen demand, Oxygen transfer from gas bubble to cell, Measuring DO concentration, measurement of KLa.

UNIT III **BIOREACTOR**

Basic design consideration for a bioreactor- Batch Bioreactor- Fluidized bed reactor- Air lift bioreactor- Trickle bed bioreactor- Hollow fibre reactor- and wave bioreactor (Disposable bioreactor)

UNIT IV MODERN BIOTECHNOLOGICAL PROCESSES

Recombinant cell culture processes, guidelines for choosing host-vector systems, plasmid stability in recombinant cell culture, limits to over expression, Modelling of recombinant bacterial cultures; Bioreactor strategies for maximizing product formation; Bioprocess design considerations for plant and animal cell cultures.

UNITV MODELLING AND SIMULATION OF BIOPROCESSES

Study of Structured models for analysis of various bioprocess; Computer based data acquisition, Monitoring and control- Lab view software, MATLAB-SIMULINK

TEXT BOOK

1. Shuler and Kargi, 2004, "Bioprocess Engineering Fundamentals", McGraw Hill 2nd Ed.

REFERENCES

- 1. Sameer A. Zodgkar, 2008, "Bioprocess" ICFAI University Press, 1st.
- 2. P.T. Kalaichelvan and I. Arul Pandi. 2007 "Bioprocess technology". MJP Pub.
- 3. FunshangYabgJuming Tang, 2002, "Advances in Bioprocess Engineering" World scientific publishing company 2^{nd} .

9

9

9

9

- 4. Syed Tanveer Ahmed Inamdar, 2007, "Biochemical Engg principles & concepts" Prentice Hall of India,2ndEdition.
- 5. Weblink: nptel

BI	BT7L1	BIO	PROC	ESS	ENC	GINE	ERIN	G LA	B II			Ι		Т	P	,	С
		Total	Conta	act H	ours	- 45						0		0	3		2
		Prere	quisite	e – M	licrot	oiology	y, Bio	proce	ss Engi	neei	ring, Bi	ocher	nis	try	1		
		Cour	se Des	signed	d by -	– Dept	. of Ir	ndustr	ial Biot	ech	nology						
O	BJECTIV	ES: To	provi	de kn	owle	dge ab	out p	roduc	tion of	biop	oroducts	s					
C	OURSE O	UTCO	MES	(COs	5)												
С	O1 to kn	ow abo	out me	dia fo	ormu	lation											
С	O2 to kn	ow abo	out me	dia st	eriliz	zation											
C	O3 to un	derstar	nd abo	ut So	lid St	tate Fe	rment	tation									
C	O4 to ge	t basic	idea a	bout	produ	uction	of na	tural v	wine an	d bi	ofuel						
С	O5 to ge	t basic	idea a	bout	produ	uction	of soa	ap									
C	O6 to ge	t basic	idea a	bout	produ	uction	of fer	tilizei	ſ								
		М	apping	g of C	Cours	e Outc	omes	with	Program	n o	utcome	es (PC)s)				
		(H/M/I	_ indic	ates s	streng	gth of o	correl	ation) H-Hi	gh,	M-Med	lium,	L-l	LOW			
1	COs/POs	a	b	с	d	e	f	g	h		i	j		k			1
2	CO1	н	M	M		M				м			T			М	
2	CO^2	H	M	M	н	H		М		101		L				101	
	CO3	H	M	101	H			M	М	L		Ľ	L			М	
	CO4	Н	M			Н	М	111				L				M	
	CO5	H	M	Μ	Н	Н		М		L		L	L				
	CO6	Н			Η	Н	Μ	М	L			L				Μ	
3	Category	Humanities &	Social Studies (HS)	Basic	Sciences (BS)	Engg Sciences (ES)	Professional	Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open	Elective (UE)	E / T	Project/ 1 erm paper	Seminar/	Internship (PR)
4	Approval	37	th Me	eting	of A	cadem	ic Co	uncil,	May 20)15							

- 1. Plate assay
- 2. Media optimization by Plackett-Burmann method
- 3. Solid state fermentation.
- 4. Production of wine

- 5. Estimation of alcohol concentration in wine.
- 6. Estimation of acid concentration in wine.
- 7. Production of soap and analyze its properties.

- 8. Production of biodiesel and analyze its properties.
- 9. Activity of Various Natural Substances on the Growth of *Malassezia furfur*
- 10. Production of biofertilizer.

BI	BT7L2	2	DOW	VNST	REAM	PR	OCE	SSIN	G LA	B		L	Т		P	С
			Total	Conta	act Hou	rs - 4	45					0	0	3		2
			Prerec	quisite	e – Dow	vnstr	eam	Proces	ssing,	Microbi	ology, Unit	Opera	tion	1	1	
			Cours	e Des	signed b	y —	Dept	. of Ind	dustri	al Biotec	hnology					
O	BJEC	TIVE	S: To p	orovic	le know	ledg	e ab	out pui	rifica	tion of bio	oproducts					
C	OURS	E OU	TCON	AES ((COs)											
C	01	to kno	ow abo	ut pre	cipitatio	on te	chni	que								
С	O2	to unc	lerstan	d abo	ut floce	ulati	on a	nd sett	ling							
С	O3	to get	basic i	dea a	bout ch	rom	atogr	aphic	techn	iques						
С	O4															
С	O5	to kno														
C	06	to kno														
			М	appin	g of Co	urse	Out	comes	with	Program	outcomes ((POs)				
1	COs	/POs	a	b		d	e	f	g	h h	i, wi-wiediu	<u>in, r-</u> i		5		1
									0			5				
2	CO1		Н	Μ	Μ					Н			L		Μ	
	CO2		H	M	M	Н	H		Μ		М	L				
	CO3		H	M		Н	Н		Μ			L	•		Μ	
	CO4		H	M	м	тт	TT		М	M	L		L		М	
	CO5		п Н	IVI	IVI	п Н	п Н		M			L	T		IVI	
3	Cate	gory	11	l		11	11		141							
	Curo	5°1J	s & lies		Ices	ces		lal (ive	JE J	ive		rm		PR)
			ities	$\hat{\mathbf{S}}$	cien S)	ien		sion PC		ect E	Aajo e (N	lect	ì	, Te	er nar	ip (
			nani al S	(H	(B; Sc	Sc		fes: ore		G E	n-N tive	- Щ О	5	ect/	pap	idsu
			Hum		asic	188	(\mathbf{S})	Pro		Core	No Elec	Dpei		Proj	Ű	iteri
			IS		щ	Eı	Ē		,	`	Ľ1	<u> </u>		H		Ir
									\checkmark							
4	Appi	roval	37 th	Meeti	ing of A	cad	emic	Cound	cil, M	lay 2015						

- 1. Isoelectric precipitation
- 2. Settling characteristics
- 3. Flocculation (Jar Test)
- 4. Solids Recovery by Centrifugation
- 5. Paper chromatography

- 6. Thin Layer Chromatography
- 7. Ion Exchange Chromatography
- 8. Affinity Chromatography
- 9. Gel Filtration

- 10. Desalting of Protein Sample by Gelfiltration
- 11. Sonication
- 12. Crystallization

- 13. Aqueous Two Phase Extraction Of Proteins
- 14. Enzyme Purification by Salt precipitation Method.

BBT7P1	TERM PAPER	L	Т	Р	С
	Total Contact Hours -60	0	0	4	2
	Prerequisite – Biochemistry, Microbiology, Bioprocess, Pla	nt an	d Anir	nal	
	Biotechnology				
	Course Designed by- Dept. of Industrial Biotechnology				
OBJECTIVI	S				
To enable stu	lents to do independent research				
COURSE O	JTCOMES (COs)				
• It is a two	credit course offered in the VII Semester				
• Each stud	ent should register for the course				
• Each stud	ent will be allocated a guide and a research topic at the end of	f the	VI ser	nester.	This
will help	them to collect sufficient literature during their vacation.	Аg	uide v	vill ha	ve a
maximum	of four students		• • • •		
• There are	4 hours allocated per week for the students to do research. T	his v	vill be	consic	lered
There will	be three reviews to access the progress of their research				
• There will	be three reviews to assess the progress of their research	raca	nce of	on ovt	ornal
and interr	al examiner. The student will be judged based on the prese	ntatio	on and	how 1	he or
she defen	is the selected topic. The student also should publish a pap	er in	a iou	rnal or	in a
conferenc	e proceeding		. je		
BBT8P1	PROJECT WORK	L	Т	P	С
	Total Contact Hours -18 per week	0	0	18	9
	Prerequisite – Biochemistry, Microbiology, Bioprocess, Pla	nt an	d Anir	nal	
	Biotechnology, Downstream process				
	Course Designed by– Dept. of Industrial Biotechnology				
OBJECTIVI	S: To enable students to do independent research				
COURSE O	JTCOMES (COs)				
• It is a nir					
	e credit course offered in the VIII Semester				
• Each stu	e credit course offered in the VIII Semester lent will be allocated a guide and a research topic at the en	d of	the V	II seme	ester.
• Each stu This will	e credit course offered in the VIII Semester lent will be allocated a guide and a research topic at the en help them to collect sufficient literature during their vacatio	d of n. A	the V guide	II seme will ha	ester. ave a
• Each stu This will maximum	e credit course offered in the VIII Semester lent will be allocated a guide and a research topic at the en help them to collect sufficient literature during their vacation of four students	d of n. A	the V guide	II seme will ha	ester. ave a
 Each stu This will maximut There at 	e credit course offered in the VIII Semester lent will be allocated a guide and a research topic at the en help them to collect sufficient literature during their vacatio n of four students e 18 hours allocated per week for the students to do re	d of n. A esear	the V guide ch. Tl	II seme will ha	ester. ave a ll be
 Each stu This will maximut There at considered 	e credit course offered in the VIII Semester lent will be allocated a guide and a research topic at the en help them to collect sufficient literature during their vacation of four students e 18 hours allocated per week for the students to do re d for the award of internal marks.	d of n. A esear	the V guide ch. Tl	II seme will ha	ester. ave a ll be

• The final review will be on the day of the external examination in the presence of an external and internal examiner. The student will be judged based on the presentation and how he or she defends the selected topic.

BE	BTE01	l	FOOI) PR(OCES	SS TI	ECHNOI	10	GY				L	Τ	P		C
			Total	Conta	ct Ho	urs -	45						3	0	0	3	
			Prereq	uisite	– Bio	oproc	ess techn	olo	gy, H	leat a	and m	nass transf	er			1	
			Course	e Desi	igned	by –	Dept. of	Ind	lustria	ıl Bi	otech	nology					
OI	BJEC	TIVE	S: To p	orovid	le bas	ic tec	hnologies	s in	volve	ed in	food	processin	g				
	MIRS	FOI	TCON	AES ((COs)		_					-					
	$\frac{1}{01}$	To kn	ow abo	ut pre	serva	tion t	echnique	S									
	$\frac{01}{02}$ t		lerstand	l basic	$\frac{1}{2}$ conc	rents	in steriliz	ati	on of	food	1 prod	hiets					
	$\frac{02}{03}$	to kno	w ahor	it vari		ruere		an		1000	1 proc	lucis					
			w abou	11 Vali	ous u		viermont f		corios		adua	-					
	$\frac{04}{05}$		W abou			ig equ		01		is pr	Cuuci	lS					
	05 1	to kne	w adou	it van	ous p	reser	vation lec	nn	iques	IOL	roou j	products					
C	CO6 to understand the microbiological aspects in food process Mapping of Course Outcomes with Program outc																
	Mapping of Course Outcomes with Program outcor (U/M/L indicates strength of somelation). U High, M.M.												(POs				
1	COs/	/POs		b		d	e e	f		11-1	h h	i	ш, с і	-LOw	ζ.		
_				-	-		-	-	0			_	J		-		
2	CO1		М	М	М	ц	N		N			т	т	т		М	
	C01		H	M	M	н Н	H		M							M	
	CO3		H	M	171	H	H		M		L	M	L	L		M	
	CO4		H	M		H	Н		M				L	L		M	
	CO5		Н	Μ	Μ	Н	Н		Μ		Μ	Н	L	L		М	
	CO6		Н			Н	Н		Μ				L	L		Μ	
3	Categ	gory	Humanities & Social	Studies (HS)	Basic	octences (BS)	Engg Sciences (FS)	Professional	Core (PC)	Core Elective	(CE)	Non-Major Elective (NE)	Open	Elective (OE)	Project/ Term paper	seminar/	Internship
										-	\checkmark						
4	Appr	oval	37 th	Meet	ing of	i Aca	demic Co	oun	cil, M	lay 2	2015		•	I			

UNIT I PHYSICAL TREATMETN OF FOOD

Thermal, electrical and rheological properties- Heat processing- Methods of applying heat to food - sterilization - Thermo bacteriology- dehydration and drying - free moisture - equilibrium moisture content- water activity- classification of dryers- tray, and freeze dryers, osmotic dehydration - foam mat drying- extrusion coking.

UNIT II BLENDING METHODS

Mixing of solids, Pastes and liquids - Characteristics of mixtures-Blending -emulsificationequipments - liquid, pastes, and plastic masses - dry powders - criteria of mixer effectivenessmixing index

9

UNIT III PRESERVATION OF FOOD

Concentration - freeze concentration - freezing and storage of frozen products - low temperature preservation - irradiation of food products - microwave heating - dielectric heating of foods.

UNIT IV DAIRY FOODS

Physics and chemical properties of milk and their effect on design - heaters - coolers -heat exchange equipments - storage tanks - can washers - pasteurization - principles and methods - equipments - LTLT - HTST - UHT pasteurization - CIP unit -Homogenization - Theory and working of homogenizers - bottle fillers and cappers -cream separation - principles - types of separator - classifiers - butter churns - cheese plant equipments - ice cream freezers - drying equipments - drum drier and spray drier -membrane concentration equipments.

UNIT V FOOD MICROBIOLOGY

Food microbiology: food spoilage, food borne diseases, infections, intoxifications, utilization of microorganisms in food industries, Nutraceuticals. Quality control, Case studies on biotechnology in the evaluation of food quality.

TEXT BOOKS

- 1. Lehninger and Beverlov, 2002, "Food Process Engineering". Reidal Publishing Co. Holland
- 2. Yin H.Hui, 2006, "Handbook of food science, technology and engineering" Wiley, New York, 2nded

REFERENCE BOOKS

- 1. Tucker & Woods, 1995, "Enzymes in food processing" Springer, 5thed.
- 2. Hamm & Hammilton, 2000, "Edible oil processing" Academic Press 5thed
- 3. Fellows, 2009, "Food processing technology" 21thed
- 4. Heldman, 2007,"Hand book of food engineering" CRC Press 2nded
- 5. P.G. Smith, 2003, "Food Process Engineering" Academic Plenum Pub, New York 1sted
- 6. Srilakshmi,2005, "Food Science" MJP Publiashers, 3rded
- 7. Weblink: nptel

BBTE	02 CANCER BIOLOGY	L	Т	Р	С									
	Total Contact Hours - 45	3	0	0	3									
	Prerequisite – Basic Biotechnology, Molecular biology, Ge	eneti	c engi	neering	b									
	Course Designed by – Dept of Industrial Biotechnology													
OBJE	CTIVES													
To prov	vide a basic understanding of biological mechanisms and their appl	licati	ons fr	om the	;									
perspec	spective of engineers													
COUR	RSE OUTCOMES (COs)													
CO1	to understand the fundamentals of cancer cells and its constituent	S												
CO2	to find the environmental factors related to cancer													
CO3	to know the concept of carcinogenesis and carcinogenic agents													
CO4	to know the cause, symptoms, diagnosis and treatment of cancer													
CO5	to give a basic knowledge of the different types of cancer													
CO6	To understand about basics of cancer therapy													

9 2e

9

9

	Mappir	ng of C	Course	Outco	ome	es w	ith P	rogram o	outcom	es (POs))			
	(1	H/M/L	indic	ates st	ren	gth o	of co	rrelation) H-Hi	gh,	M-N	Medi	um, L-Lo	W	
1	COs/Pos	а	b	с		d	e	f	G		h	Ι	j	k	1
2	CO1	Н	Μ	Μ	Η		Μ		Μ			Η	L	L	М
	CO2	Н	Μ	Μ	Η		Η		Μ	Η					L
	CO3	Н	Μ		Η		Η		Μ	Μ		Μ	L	L	
	CO4	Н	Μ		Η		Η	L	Μ					L	Н
	CO5	Н	Μ	Μ	Η		Η		Μ	L		L	L		
	CO6	Н		H H				L	Μ					L	
3	Category	Humanities & H Social Studies & H (HS) (HS) Basic Sciences (BS) (BS) (BS) Engg Sciences				(ES)	Professional Core (PC)	Core Elective (CE)		Non-Major	Elective (NE)	Open Elective (OE)	Project/ Term	paper Seminar/ Internship (PR)	
4	Approval	37 th Meeting of Academic Council, May 2015													

UNIT I INTRODUCTION

Fundamentals of Cancer Biology- Cell Cycle- regulation of cell cycle, modulation in cell cycle in cancer, Changes in signaling molecules- Effects on receptors, signal switches, Classification of stages of cancer- metasis, Metastatic cascade, common features of cancer cells, Tumor suppressor genes, Cancer genetics.

UNIT II CARCINOGENESIS

Principles of Carcinogenesis- Carcinogens- Targets of carcinogens, Chemical carcinogenesis, Physical carcinogenesis- X-ray radiation and radiation carcinogenesis, Viruses and Cancer, Diet and cancer

UNIT III MOLECULAR BIOLOGY OF CANCER

Molecular biology of cancer- Oncogenes, Identification of oncogenes, Retroviruses and oncogenes, growth factors and Growth factor receptors as oncogenes.

UNIT IV TYPES OF CANCER

Different sites and forms of cancer, Lung, Liver, Breast, Cervical, Blood, Prostrate, Ovarian cancers- Epidemology, causes, mutations, and features

UNIT V CANCER THERAPY

Cancer therapy- Cancer Immunology, Different forms of cancer therapy- Chemotherapy, radiation, Detection of cancers, advances in cancer detection and therapy, Gene therapy.

TEXT BOOKS:

1. Lewis J.Kleismith, 2006, "Principles of Cancer Biology" Pearson Benjamin Cummings.

2. Raymond W. Ruddon, 2007, "Cancer Biology" Oxford University Press, 4th.

9

9

9

9

9

REFERENCE BOOKS:

- 1. G.M. Cooper,2008, "Oncogenes" Jones & barlett Publisher, 1st.
- 2. 'Molecular Cell Biology' Darnell, Lodish& Baltimore, IV Ed,2004
- 3. An Introduction to cellular and Molecular Oncology- Oxford University Press, 2003
- 4. Genes VII and VIII Benjamin Lewin, 2004
- 5. Weblink: nptel

BI	BTEO	3	BIOR	EAC'	TOR	DES	IGN						L	Т	Р	С
		-	Total (Conta	ct Ho	urs -	45						3	0	0	3
		F	Prereq	uisite	– Ba	sic Bi	iotechno	logy, F	Fern	nenta	ation '	Techniqu	ies, C	Chemi	cal rea	ction
			engine	ering	, Biop	proces	ss engine	ering				-				
			Course	e Desi	igned	by –	Dept of	Industi	rial	Biot	echno	ology				
O	BJEC	TIVE	S													
To	prov	ide kn	owledg	e abo	ut the	desig	gning of	reactor	ſ							
C		<u>SE OU</u>	TCON	<u>1ES (</u>	$\frac{COs}{c}$		1 .	. 1								
C	01	To un	derstan	d the	funda	ment	als trans	port ph	ienc	mer	ia					
C	O2	To kn	ow abo	ut var	rious t	ypes	of reacto	ors								
C	O3	To kn	ow abo	ut ins	trume	entatio	on and co	ontrol	of re	eacto	ors					
С	O4	To lea	rn the p	proces	ss of r	nodu	lation an	d simu	lati	on o	f fern	nentation	proc	ess		
С	05	To un	derstan	d plar	nt and	anim	nal cell re	eactors								
C	06	To get	t the kn	owled	lge of	bior	eactors a	nd its l	Indu	istria	al					
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H High M Medium L Low															
	(H/M/L indicates strength of correlation) H-High, M-Medium, L												-Low			
1	COs	/Pos	а	b	с	d	e	t		g	h	1	J	k		I
2	CO		М	М	Μ	Η	М		Μ			М	L	L		
	CO2	2	Н	Μ	Μ	Η	Η		Μ		Η				Μ	
	CO	3	H	М			H						L	L		
	CO ²	<u> </u>	H	M	24	H	H		M		Н		L		M	
	CO)	H	M	M	H	H	T	M			H			M	
3	Cote) Mory	н			н	П	L	IVI					L		
5	3 Category Social Studies & (HS)				Basic Sciences (BS) (BS) (ES) (ES) (ES) Professional Core (PC) (CE) (CE) (CE) Non-Major Elective (NE)					Non-Major Elective (NE)	Open Elective	(OE)	Project/ Term	Seminar/ Internship (PR)		
									\checkmark							
4	App	roval	37 th	Meet	ing of	Aca	demic C	ouncil,	Ma	ıy 20)15		•		·	

Batch reactors; Continuous Stirred Tank Bioreactors (Chemostat); Enzyme Catalysis in Chemostat; Age Distribution Models; Fed Batch Reactors; Recycle Systems, Design of airlift bioreactors

UNIT II TRANSPORT PHENOMENA & GROWTH MODELS

Rheology; Gas-Liquid Mass Transfer- Measurement of transfer coefficients; Design of bubble columns; Three-phase flow, mixing, oxygen transfer: isobaric method, non-isobaric model, oxygen transfer in a three-phase flow-Phases of batch growth cycle; Monod Model; Models of Product Formation and Inhibition; Introduction to structured models

UNIT III BIOREACTOR INSTRUMENTATION AND CONTROL

Introduction, bioreactor sensor characteristics, temperature measurement and control, principles of dissolved oxygen measurement and control, principles of pH/redox measurement and control, detection and prevention of foam, determination of biomass, ion specific electrodes, biosensors.

UNIT IV FERMENTATION CONTROL

Introduction to control: control loop, analogue and digital control, control algorithm-PID control, time-proportional control. Physical control of fermentation

MODELING AND SIMULATION OF FERMENTATION PROCESSES

Modeling, digital simulation, digital simulation programming languages, ISIM(interactive simulation language)

UNIT V PLANT AND ANIMAL CELL BIOREACTORS

Introduction, plant cells: plant cell bioreactors, characteristics of plant cell suspensions, plant cell bioreactor requirements, plant cell bioreactor design, plant cell bioreactor operation, alternative cultures for plant cells. Animal cells: Animal cell bioreactors, animal cell bioreactor operation, animal cell bioreactor design

TEXT BOOKS

- 1. Scragg A.H.,2002, "Bioreactors in Biotechnology", Edited by, Ellis Horwood Limited, England
- 2. Bailey and Ollis, 2000, "Biochemical Engineering Fundamentals", McGraw Hill 3rded.

REFERENCE BOOKS

- 1. Stanbury PF,1984, "Principles of fermentation technology" SS Hall, 2nd.
- 2. Mansi El Mansi.2003 "Fermentation Microbiology & Biotechnology". IVEd.
- 3. Weblink: nptel

BBTE04	DIARY TECHNOLOGY	L	Т	Р	С							
	Total Contact Hours - 45	3	0	0	3							
	Prerequisite – Bioprocess, Food process engineering											
	Course Designed by – Dept of Industrial Biotechnology											
OBJECTIVE	CS											
To explore the	To explore the different techniques involved in diary science											
COURSE OUTCOMES (COs)												

9

9

С	01	To stud	y the	proce	ss inv	olve	d in the	mai	keting	of mil	k					
С	O2	To lear	n abou	ut the	proce	ssing	g of butt	er a	nd ski	m milk	t po	wder				
С	O3	To und	erstan	d the	steps	invo	lved in o	chee	ese ma	king						
С	O4	To lear	n to p	repare	e milk	swe	ets									
С	05	To exp	lore th	ne qua	lity co	ontro	l metho	ds i	nvolve	ed						
С	06	To und	erstan	d abo	ut pre	serva	ation tec	chni	ques							
		(11	Ma	pping	of Co	ourse	Outcor	nes	with P	rogran	1 01	utcom	es (I	POs)		
		(H	/M/L	Indica	ates st	reng	th of co	rrela	ation)	H-H1g	gh, I	vi-Me	diun	n, L-Lo	OW	
1	CO	s/POs	а	b	c	d	e	f	g	h		i	j		k	1
2	CO	1	H M M H M H H L L M													
	CO	2	Н	М	М	Η	Н		М				L	L		М
	CO	3	Н	Μ		Η	Н		М	Η			L	L		М
	CO	4	Н	Μ		Η	Н		М			Μ	L	L		М
	CO	5	Н	Μ	Μ	Η	Н		М	Μ			L	L		М
	CO	6	Н			Η	Н		М			L	L	L		М
3	Cat	egory	Humanities	& Social Studies (HS)	Basic	sciences (BS)	Engg Sciences	Professional	Core (PC)	Elective (CF)	Non-Maior	Elective (NF)	Open	Elective (OE)	Project/ Term paper	Seminar/ Internship (PR)
4	Арр	proval	37 th	Mee	eting c	of Ac	ademic	Coi	incil, I	May 20)15					

UNIT I INTRODUCTION

Market milk – market milk industry in India – Collection, Transportation of milk- milk reception – Clarification- Chilling – Homogenization – Sterilization- Pasteurization – UHT processing of fluid milk – aseptic packaging – Special milk – Clean Milk Production – Grading of Milk.

UNIT II DAIRY PRODUCTS

Fat rich Dairy products – Cream, preparation, types, defects – Butter preparation, types, defects – Butter Spreads- Preparation of Ghee , defects in ghee- AGMARG standards- Frozen dairy products – Manufacture of Ice Cream: Ingredients and their role, types and defects, Judging and grading of Cream, Butter and Ice Cream. Concentrated and dried milk Products- Condensed milk – Evaporated milk – BIS standards –defects- Manufacture of milk powder- whole milk, skim milk powder- spray drying – whey powder- whey protein concentrates- biodiesel from whey.

UNIT III CHEESE AND FERMENTED PRODUCTS

Cheese and fermented products- Classification- preparation of cheddar, cottage, mozzarella and processed cheese- cheese spreads- ripening – accelerated ripening- action of rennet – microbial rennet – milk coagulating enzymes – defects in cheese, causes and control measures- fermented milk products – Manufacture of Dahi- yogurt- shrikhand- therapeutic effects of fermented milk products- functional foods- probiotics - prebiotic -symbiotic.

9

9

UNIT IV INDIGENOUS MILK PRODUCTS

Indigenous milk products and by products – Channa – Chana based products – preparation of Khoa and Khoa based products – peda- Gulabjamun – Rasagolla – preparation of paneer – kulfi – utilization of skim milk – butter milk – whey.

UNIT V QUALITY CONTROL AND QUALITY ASSURANCE

Introduction- Cleaning and Sanitation – Sterilization agent- Can Washing- Manual & Mechanical washing – Washing treatments – Cleaning in Place Programmes (CIP) – Packaging of milk & Milk Products – Function- Packaging Material – Filling system – Aseptic Packaging

TEXT BOOK:

- 1. Sukumar de, 2000, "Outlines of Dairy Technology" Oxford Univ press
- 2. Bhattacharya A and Rajan R P, 2002 "An over view on Yogurt, beverage and food world".

REFERENCE BOOKS:

- 1. Andrews,2004, "Biochemistry of Milk Products" Black rabbit books, 2nded.
- 2. Ananthakrishnan C P., and Padmanabhan " The technology of milk processing" Shrilakshmi publications

BI	BTE05	5	MED	ICAI	L BIO'	ГЕСН	NOL	OGY	ł			L	Т	Р	C
			Total	Conta	act Ho	urs - 4	5					3	0	0	3
			Prere	quisit	e – Imi	nunolo	ogy, p	hysio	ology, an	imal b	iotechnol	ogy			·
			Cours	se Des	signed	by – D	ept of	f Ind	ustrial B	iotechr	nology				
O	BJECT	FIVE	5												
To	provid	de a ba	asic u	nderst	anding	g of bic	ologic	al sy	stems an	d their	applicati	ons fr	om th	e	
pe	rspecti	ve of e	engine	eers											
CO	DURS	E OU'	TCO	MES	(COs)										
С	01 t	o unde	erstan	d the	fundan	nentals	of ge	enetic	es and the	eir rela	tionship	to her	editar	y disor	ders
C	O2 t	o appl	y the	conce	pt of p	lant, a	nimal	and	microbia	al syste	ms in dis	cover	y of n	nedicir	ie
С	CO3 to comprehend genetics and the immune system														
С	04 t	o knov	w the	cause	, symp	toms, o	diagno	osis a	and treat	ment o	f commo	n dise	ases		
С	05 t	o knov	w the	cause	, symp	toms, o	diagno	osis a	and treat	ment o	f commo	n dise	ases		
C	06 t	o appl	y the	conce	pt of p	lant, a	nimal	and	microbia	al syste	ms in dis	cover	y of n	nedicir	ie
			Ma	apping	g of Co	ourse C)utcor	nes v	vith Prog	gram o	utcomes	(POs)			
		(H	I/M/L	<i>indic</i>	ates st	rength	of co	rrelat	tion) H	-High,	M-Mediu	ım, L-	Low		
1	COs/I	Pos	а	b	С	d	e	f	g	h	i	j	k		1
2	CO1		М	М	М	Н	М		М			L	L	1	M
	CO2		Н	Μ	М	Н	Н		М			L	L	1	N
	CO3		Н	Μ		Н	Η		М		L	L	L	1	N
	CO4		Η	М		Η	Η		М	L		L	L	1	N
	CO5		Н	Μ	М	Н	Η	L	М			L	L	1	M
	CO6		Η			Н	Η		Μ			L	L	1	N

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term paper Seminar/ Internship (PR)				
4	Approval	37 th Meeting of Academic Council, May 2015											

UNIT I HUMAN GENETICS

Genes and Chromosome- structure, function and inheritance- Repetitive DNA in human genome-Alu, LINE and SINE repeats- Congenital abnormalities, Clinical aspects of autosomal and sex chromosomal disorders. Gene therapy and its types

UNIT II HUMAN PHYSIOLOGY

Structure, types and functions of tissues and muscles-Biological functions and abnormalities of digestive system, circulatory system, excretory system and central nervous system

UNIT III HORMONES

Hormones- structure, classification, biosynthesis and circulation in blood- Synthesis transport and biological functions of pituitary hormones, thyroid hormones and pancreatic hormones

UNIT IV CLINICAL BIOCHEMISTRY

Blood sugar level in diabetes mellitus- Blood pressure and cholesterol level in heart attack-Clinical significance of diagnostic enzymology- Evaluation of renal, pancreatic, liver and intestinal function

UNIT V GERM LINE ENGINEERING

Characteristics and diagnostic applications of stem cell culture, organ culture, embryo culture – Artificial blood- Genetic counseling-Artificial insemination, IVF and embryo transfer in humans- Egg and sperm Preservation banks

TEXT BOOKS

- 1. Lehninger Nelson &Cox., 2009 "Principles of Biochemistry",5th edition
- 2. Chatterjee and Raneshinde2009 "Clinical Biochemistry"7th edition.

REFERENCES

- 1. Guyton,2010 "Medical physiology", 12th edition
- 2. Devlin, 2005 "Biochemistry with clinical correlation", 10th edition
- 3. Weblink: nptel

BBTE06	BIOPROCESS ECONOMICS AND PLANT DESIGN	L	Τ	Р	С
	Total Contact Hours -45	3	0	0	3

9

9

9

9

			Prere	quisit	e - Ba	asic	Biotech	nolog	gy, C	hem	ical F	Rea	ction l	Enginee	erin	g, Bio	reac	tors
			Cours	se Des	signed	d by	– Dept o	of Ind	dustri	ial E	Biotec	hn	ology					
0	BJEC	TIVE	S: To	provi	de kn	owle	edge abo	out pr	roces	s ec	onom	ics	and p	lant des	ign			
C	OURS	SE OU	TCO	MES	(COs	5)												
С	01	To unc	lersta	nd bas	sic pri	incip	oles of pr	roces	s des	ign								
C	O2	To kno	ow ab	out m	arketi	ng o	of produc	cts										
С	03	To kno	ow ab	out ca	pital	and t	fixed co	st										
С	O4	To stu	dy the	e cost	invol	ved i	in huma	n res	ource	es								
С	O5	To und	lersta	nd abo	out th	e adı	ministra	tion	of a p	olant	t							
С	06	To un	dersta	und ab	out th	ne ec	onomics	s of a	ı plan	it de	esign							
			Ma	apping	g of C	ours	e Outco	mes	with	Prog	gram	ou	tcome	s (POs)	_			
1	<u> </u>	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low $COs/POs a b c d e F G h i K 1$																
1	COs	/POs	s a b c d e F G h 1 J K I															
2	CO1		Н	М	М	Н	M		М					L				
_	CO2)	Н	M	M	H	H		M				М	2	L		Μ	
	CO3	3	Н	Μ		Η	Н		Μ		М			L				
	CO4	ŀ	Η	Μ		Η	Η	L	Μ					L	L		Μ	
	CO5	5	Н	Μ	Μ	Η	Η		Μ						L		Μ	
	CO6	5	Н			Η	Η		Μ		L		Μ	L				
3	Cate	Humanities &	Social Studies (HS)	Basic	Sciences (BS)	Engg Sciences (ES)	Professional	Core (PC)	Core Elective	(CE)	Mon Maion	Elective (NE)	Open Elective (OE)		Project/ Term	paper Seminar/	Internship (PR)	
4	App	roval	voval 37 th Meeting of Academic Council, May 2015															

UNIT I PROCESS DESIGN DEVELOPMENT

Technical feasibility survey, process development, flow diagrams, equipment design and specifications

UNIT II GENERAL DESIGN CONSIDERATION

Marketability of the product, availability of technology, raw materials, equipment, human resources, land and utilities, site characteristics, waste disposal, government, regulations and other legal restrictions, community factors and other factors affecting investment and production cost.

UNIT III COST ESTIMATION

Capital investment-fixed capital investments including land, building, equipment and utilities, installation cost(including equipment, instrumentation, piping, electrical installation and other utilities), working capital investment.

9 hi

9

UNIT IV COST ESTIMATION

Manufacturing costs-Direct Production cost(including raw materials, human resources, maintenance and repair, operating supplies, power and other utilities, royalties etc) fixed charges (including depreciation, taxes insurance, rental cost etc).,

UNIT V LIABILITIES

Plant overheads-Administration, safety and auxiliary services, payroll overheads, ware house and storage facilities etc. Profitability Analysis-return on original investment, interest rate of return, accounting for uncertainty and variations and future developments- Optimization techniques-Linear and Dynamic programming, Optimization strategies

TEXT BOOK:

1. Peters and Timmerhaus, "Plant design and Economics for Chemical Engineers ",McGraw Hill 4th Edition, 2002.

REFERENCES:

1. Rudd and Watson, "Strategy of Process Engineering ", Wiley, 2003.

BBTE	07	FOOD SAFETY AND QUALITY CONTROL	L	Т	Р	С						
		Total Contact Hours - 45	3	0	0	3						
		Prerequisite – Food process engineering, Microbiology, Bio	proce	ess Eng	gineeri	ng,						
		Biochemistry										
		Course Designed by – Dept. of Industrial Biotechnology										
OBJE	OBJECTIVES: To know about the safety regulations of food industries											
COUR	SE OU	JTCOMES (COs)										
CO1	To stu	ndy the history of food safety regulations										
CO2	to kno	ow about food adulteration										
CO3	to und	lerstand about food management practices										
CO4	to get basic idea about food hygiene											
CO5	to get	basic idea about microbial quality control										
CO6	to get basic idea about food safety standards											

UNIT I FOOD SAFETY REGULATIONS

History of food regulations in India- Legislations- Prevention of Food Adulteration act 1954, Food product order (1955), Solvent Extracted Oil, De-oiled Meal and Edible Flour (Control) Order, 1967, Meat Food Products Order (1973), Edible Oils Packaging, 1998, Edible Oils Packaging, 1998, Vegetable Oil Products Order, 1998, Milk & Milk Product Amendment Regulations – 2009.

UNIT II FOOD SAFETY MANAGEMENT

Introduction to concepts of food quality, food safety, food quality assurance and food quality management; objectives, importance and functions of quality control, Current challenges to food safety Food adulteration, nature of adulterants, methods of evaluation of food adulterants and toxic constituents.

9

9

9

UNIT III FOOD QUALITY MANAGEMENT

Principles of food quality assurance, total quality management (TQM)–good manufacturing/management practices, good hygienic practices, good lab practices, general awareness and role of management practices in quality control Food safety management, applications of HACCP in food safety, concept of food traceability for food safety,

UNIT IV MICROBIAL CONTAMINATION

Microbial quality control: determination of microorganisms in foods by cultural, microscopic, physical, chemical methods. Statistical quality control in food industry Food safety and Standards Act 2006: salient provision and prospects

UNIT V FOOD SAFETY STANDARDS

Role of national and international regulatory agencies, Bureau of Indian Standards (BIS), AGMARK, Food Safety and Standards Authority of India (FSSAI), Introduction to WTO agreements: SPS and TBT agreements, Codex alimentarious commission, USFDA, International organization for standards (ISO) and its standards for food quality and safety (ISO 9000 series, ISO 22000, ISO 15161, ISO 14000)

TEXT BOOKS:

- 1. V. K. Kaushik (1999), Nutrition And Food Safety, Neha Publishers
- 2. Early. R. (1995): Guide to Quality Management Systems for the Food Industry, Blackie, Academic and professional, London.

REFERENCE BOOKS:

- 1. Andre, Gordan (2015), Food Safety and Quality Systems in Developing Countries, Elsevier
- 2. YasmineMotarjemi(2013), Food Safety Management, 1st Edition, Elsevier

BBTE (08	STEM CELLS AND TISSUE ENGINEERING	L	Т	Р	С							
		Total Contact Hours - 45	3	0	0	3							
		Prerequisite – Animal Biotechnology, G3enetic Engineerin	g, Mo	olecul	ar Biol	ogy							
		Course Designed by – Dept of Industrial Biotechnology											
OBJE	CTIVE	S: To provide a basic understanding of stem cells and their a	pplic	ations	from	the							
perspec	perspective of engineers												
COUR	COURSE OUTCOMES (COs)												
CO1	to unc	lerstand the fundamentals of stem cells and its types											
CO2	to app	ly the techniques for preservation of stem cells											
CO3	to giv	e the information about embryonic stem cell research											
CO4	to kno	ow the role of stem cells in medicine											
CO5	to get a basic knowledge of the applications of stem cells in gene therapy												
CO6	to kno	ow about formation of new organs from stem cells											
	Mappin (H	ng of Course Outcomes with Program outcomes (POs) /M/L indicates strength of correlation) H-High M-Medium	L-I	OW									
1	(11)	The maleates strength of contention, in them, we week	, L L	/0 W									

9

9

1	COs/POs	a	b	с	d	e	f	1	g	h	i	j		k	1
2	CO1	Н	Μ	Μ	Η	Μ		Μ		L		L			М
	CO2	Н	Μ	Μ	Η	Η		Μ			Н	L	L		М
	CO3	Н	М		Η	Η		Μ					L		М
	CO4	Н	М		Η	Η				Η		L	L		
	CO5	Н	Μ	Μ	Η	Η		Μ			М		L		М
	CO6	Η			Η	Н		Μ				L			
3	Category	Humanities &	SUCIAL DIULIES (HS)	Basic Sciences	(S3)	Engg Sciences (ES)	Professional	COTE (PC)	Core Elective	(CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/ Term	paper Seminar/ Internship (PR)
4	Approval	37 th	Mee	ting o	of Aca	demic (Counc	il, M	lay 2	015					

UNIT I ORIGIN AND CHARACTERISTICS OF HUMAN STEM CELLS

Origin and characteristics of human stem cell, plasticity of human somatic stem cells research, Novel stem cell based therapies, Scientific and technical obstacles to overcome before realizing the potential clinical uses of novel human stem cell based therapy, Cord blood,-Stem cell marker.

UNIT II HUMAN EMBRYONIC STEM CELL RESEARCH

Possible sources for human embryonic stem cell, growing human ESC in laboratory, Current advantages and limitations of hESC and human somatic cells-Examining the need for new hES cell lines, Developments regarding establishment of human stem cell banks and registries.

UNIT III ISOLATION AND IDENTIFICATION OF STEM CELLS

Preparation of complete human neuroculture, Culturing and subculturing human neurospheres, Differentiation of cells from human, neurospheres into neurons, astrocytes and oligodendrocytes; Immunolabelling procedures

UNIT IV GENE THERAPY

Possibilities to overcome immuno-rejection responses in stem cell therapy, Haematopoietic stem cell transplantation - A new therapy for autoimmune disease, Prenatal diagnosis of genetic abnormalities using fetal CD34+ stem cells, Stem cells in treatment for major diseases and reparative medicine, ESC a promising tool for cell replacement therapy, germ line therapy.

UNIT V TISSUE ENGINEERING

Basic principles and consideration - Cell type and source, Metabolic requirements of cells, Reconstruction of connective tissues, Reconstruction of epithelial or endothelial surfaces - cells embedded in extracellular matrix material, Culture on a single surface and sandwich configuration, Bioreactor design on tissue engineering - Hollow fiber systems, Microcarrier based systems-Tissue engineering of the liver.

9

9

9

TEXT BOOK:

1. R.C.Dubey, 2004, "Text book of Biotechnology" 3rd Ed.

REFERENCE BOOK:

- SudhaGangal , 2002, "Principles and Practice of Animal tissue culture", IV Ed
 P. Ramadass , 2008, "Animal Biotechnology" MJP pub.
- 3. Weblink: nptel

BBTE09			BIOSENSOR TECHNOLOGY												I		С
			Tota	l Con	tact H	Iours	s - 4	5					3	0	0		3
			Prerequisite – Biochemistry, Basic biotechnology, Bioprocess Engineering														
			Cour	Course Designed by – Dept of Industrial Biotechnology													
O	OBJECTIVES: To provide basic knowledge about the biosensors																
CO	OURS	SE OU	TCO	MES	(COs	s)											
CO1 to understand basic principles of biosensor																	
C	02	to kno	ow ab	out va	rious	tvne	es of	f bios	sensor	r							
	02	to kno	w about applications of biosensors in various fields														
	05		by about applications of biosensors in various fields														
C	04	to get	some	knov	viedge		out i	transc	lucers	s 1n b	iosensors						
C	05	to lea	rn abc	out the	e appl	icati	ons	of tra	ansdu	cers	in biosens	sors					
C	06	To ge	t knov	vledg	e abo	$\frac{ut}{C}$		0		: 41-	D		(DO-	<u> </u>			
Mapping of Course Outcomes with Program outcomes (POs)																	
1	COs	/POs	a 11/10/1/1	h		d d	igu	e	f	σ	h	i i	ium, L	$\frac{-L0}{k}$	v	1	
1	005	,105	u	U	Ŭ	u		U	1	B		1	J	ĸ			
2	CO1	-	Н	Μ	Μ	Η		Μ		Μ			L	L			
	CO2	2	Η	Μ	Μ	Η					Н	Н		L	Μ		
	CO3	\$	Н	Μ		Η		Н		Μ		Н	L		Μ		
	CO4		Н	Μ				Н		Μ			L	L			
	CO5	5	Η	Μ	Μ	Η		Η		Μ	H	М	L	_			
-	CO	5	Н			H		Н						L	Μ		
3 Category		manities Social	manities Social lies (HS) asic asic		tiences (BS)	e nces		essional re (PC)		Core lective (CE)	n-Major lective	Open	lecuve (OE)	roject/	m paper eminar/	ernship (PR)	
			Hur 8.	Stuc		ž	Eng	Scie (FS)	Prof	5	Ш Д	E. O.		ц́	P	Ter Se	Int
											Ň						
4	App	roval	oval 37 th Meeting of Academic Council, May 2015														

UNIT I **INTRODUCTION**

9

9

Biosensor - principle, construction, components, Advantages and limitations; ISFET, ENFET, ISE

UNIT II **TYPES**

Various biological materials used for biosensor construction - Microbial biosensors, Enzyme biosensor, Tissue based biosensor, Affinity biosensor

UNITIII **TRANSDUCERS IN BIOSENSOR-I**

Potentiometric, Amperometric biosensors - Principle, constructions, and applications-Generations of biosensor Technology

UNIT IV **TRANSDUCERS IN BIOSENSOR-II**

Calorimetric, Optical, Piezo - electric biosensors - Principle, constructions, and applications

UNIT V **APPLICATIONS**

Online/Offline monitoring in bioprocess; Applications in clinical chemistry, medicine, health care, veterinary, agriculture, food and environmental monitoring.

TEXT BOOK

- 1. Alice Cunningham, 2000, "Introduction to BioanalyticalSensors", John Wiley& Sons,.
- 2. Jiri Janata, 2002, "Principles of Chemical Sensors" Plenum Press.

REFERENCE BOOKS

- 1. F. Schellr, F. Schubert, J. Fedrowitz, BirkhauserVerlag, 1995 "Frontiers in Biosensors"
- 2. F. Ligler, C. Rowe Taitt, 2002 "Optical Biosensors. Present & Future" Elsevier,
- 3. Brian Eggins, 2002 "Chemical Sensors and Biosensors" John Wiley & Sons,
- 4. Graham Ramsay, 1998, 'Commercial Biosensors'-, John Wiley& Sons.
- 5. Weblink: nptel

BBTE10			PRC)TEC	GEN	OMIC	CS AND	BIOI	NFORM	AATICS	5	L	Т	Р	С
			Total Contact Hours - 45									3	0	0	3
			Prerequisite – Bioorganic chemistry, Basic Biotechnology												
			Course Designed by – Dept. of Industrial Biotechnology												
OF	OBJECTIVES														
To provide a basic understanding of genomics and proteomics using software and their															
applications from the perspective of engineers															
CC	COURSE OUTCOMES (COs)														
CO	D1 to	to understand the classification of biological databases and its role in research													
CO	D2 to si	to apply the concept of genomics of different organism, gene expression and mapping situations										pping			
CO	D3 to	o knov	w the	e tools	s for g	ene id	entificati	ion and	l predict	tion					
CO	D4 to	o kno	w the	e struc	ctural	elucida	ation and	l predio	ction of	proteins	5				
CO	D5 to	to get a basic knowledge of techniques related to proteomics													
CO	CO6 To know about bioinformatics tools														
Mapping of Course Outcomes with Program outcomes (POs)															
(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1 COs/POs			a	b	с	d	е	f	g	h	i	j	k		1

9

9

2	CO1	Η	Μ	Μ	Η	Μ		Μ			L	L	L	Μ
	CO2	Η	Μ	Μ	Н	Η		Μ				L	L	М
	CO3	Η	Μ		Н	Η		Μ		Μ		L	L	Μ
	CO4	Η	Μ		Н	Н		Μ			Μ	L	L	М
	CO5	Η	Μ	Μ	Η	Η		Μ		L		L	L	М
	CO6	Η			Н	Η		Μ				L	L	М
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/ Term paper Seminar/ Internship (PR)
										N				
4	Approval	37	th Me	eting	of Aca	ademic C	ouncil	, Ma	y 20	015				

UNIT I **BIO INFORMATICS**

Introduction to bioinformatics - Databases, Classification - Biological Databases, and application - Data mining and Applications - Sequence Database search - FASTA - BLAST.

UNIT II **GENOMICS**

Genome - Organization of Eukaryotic genome - Mitochondrion and chloroplast genome Mapping strategies – Genetic mapping and physical mapping – Genome mapping – Human genome project – Gene expression – Microarrays

UNIT III SEQUENCE TECHNOLOGIES

Alignment of multiple sequences – Methods and applications – Phylogenetic analysis – Tools for sequence alignment. Gene identification Methods and applications – Tools for gene prediction – Methods and applications

UNIT IV **PROTEOMICS**

Lifecycle of protein - Classification and structure visualization techniques - Protein databases -Prediction of primary and secondary structure - Prediction of 2D and 3D structure

UNIT V **TOOLS OF PROTEOMICS**

Protein extraction - Separation and digestion techniques - Mass spectrometry -MALDITOF -Peptide mass finger printing – Peptide sequence analysis – SALSA and TMS

TEXT BOOK

1. S.C. Rastogi, 2007, "Bioinformatics methods and applications ", Prentice - Hall of India Publication

REFERENCE BOOK

- 1. Lesk AM, 2007, "Introduction to Genomics", Oxford University Press, IV Ed.
- 2. Brownstein M.J, 2003, "Functional genomics methods and protocols", Humana Press, III ed.
- 3. Weblink: nptel

9

9

9

9

BBTE11		ALTERNATE ENERGY	L	Т	Р	С								
		Total Contact Hours - 45	3	0	0	3								
		Prerequisite – Microbiology, Bioprocess Engineering, Chemical engineering												
		Course Designed by – Dept. of Industrial Biotechnology												
OBJE	CTIVE	S: To make students familiar with importance of alternative fuels												
COUR	RSE OU	JTCOMES (COs)												
CO1	Learn	limitations of fossil fuels and need for alternative fuels												
CO2 Learn		sources of various alternative flues												
CO3 Learn		storage, distribution and safety aspects of alternative fuels												
CO4 To ha		ave an understanding of engine requirements and combustion characteristics fuels												
CO5 To t		o teach engine requirements and adaptability of engines to alternative fuels												
CO6 To te alterr		teach combustion and emission characteristics of various gaseous and liquid ernative fuels												

UNIT I FOSSIL FUELS

Fossil fuels and their availability - Potential alternative liquid and gaseous fuels - Merits and demerits of various alternative fuels - Engine requirements

UNIT II PRODUCTION OF FUELS

Methods of production - Properties - Blends of gasoline and alcohol - Performance in SI engines – Adaptability - Combustion and emission characteristics - Performance in CI engines -Emission characteristics - Properties of alcohol esters

UNIT III NATURAL GAS

Production and properties of CNG, LPG, biogas and producer gas - Performance and emission in SI/CI engines - Storage, distribution and safety aspects

UNIT IV HYDROGEN FUELS

Sources of Hydrogen - Properties - Production of hydrogen - Transportation, storage and safety aspects - Performance and emission characteristics – Adaptability - Fuel cell - Hybrid vehicles

UNIT V BIOFUEL

Various vegetables oils - Properties - Esterification - Performance and emission characteristics -Bio-diesel: Feed stock, characteristics, preparation (lab and commercial), storage, applications, environmental impacts, economics, policy

TEXT BOOK

1. Osamu Hirao and Richard Pefley (1988), Present and Future Automotive Fuels, WileyInterscience Publication, New York.

REFERENCE BOOKS

1. R.L. Bechtold (1997), Alternative Fuels Guidebook, SAE

2. Nick Wagoner and Sheryl Wagoner (2006), Alternate Fuels: An Overview, ThomsonDelmar Learning.

9 9

9

9

9

9
3. Reda Mohamed Bata (1994), Alternate Fuels: A Decade of Success and Promise(Progress in Technology), SAE International

BE	BTE12]	DEVE	CLOP	MENT	AL B	BIOLO	OGY						L		Т	Р	C
		,	Total (Conta	ct Hour	s - 45	i							3	()	0	3
]	Prereq	uisite	– Basic	e Biot	techno	ology,	Mo	olecu	ılar bi	olo	gy					
		(Course	e Desi	igned by	y - D	ept of	Indus	tria	al Bi	otech	nol	ogy					
OI	BJECTIV	ES	5															
To	provide b	asi	ic knov	wledg	e about	biolo	ogy of	huma	n s	yste	m							
То	provide k	no	wledg	e abo	ut the d	esign	ing of	reacto	or									
CC	OURSE O	U	ГСОМ	IES (COs)													
C	O1 to u	nde	erstand	l the h	istory a	ind sc	cope of	f deve	lop	men	tal bi	olo	gу					
C	O2 to ki	lov	v abou	ıt ferti	lization	1												
C	O3 to ki	lov	v basic	c conc	cepts on	cleav	vage											
C	O4 to ki	lov	v abou	it rege	eneratio	n												
C	O5 to st	udy	y the v	ariou	s proces	sses ii	nvolve	ed in r	ege	enera	ation							
C	06 To s	5 To study about human physiology Mapping of Course Outcomes with Program, outcomes (POs)																
	Mapping of Course Outcomes with Program outcomes (POs)																	
1	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																	
1	COs/Pos		a	b	С	d	e	t		G	h		1	J		k		1
2	CO1		Н	М	М	Н	М	Н						L			М	
	CO2		Н	М	Μ	Η	Η		Ν	[М	L	L			
	CO3		Н	М		Η	Η	Η			Η				L		Μ	
	CO4		Н	Μ		Η	Η		M	[Μ	L			Μ	
	<u>CO5</u>		H	Μ	Μ	H	H	M	M		H			Ŧ	L		M	
2	Cotogory		H			Н	Η				H		M	L	L			
3	Category		s & lies		3S)	ć	$\hat{\mathbf{S}}$	hal	()	ive		or	(E)	ive				, d
			itie	S)	sic ss (J	Ę	s (F	sion	ודר	lect	Ê	Maj	e C	lect	a	/ T	er nar	nshi R)
			nan ial (H)	Ba	50	nce	ofes	alc	еE	Ũ	l-no	ctiv	пE	2		par	(P]
			Soc		Scie	igng.	cle	Pro	5	Cor		ž	Elec	Ope		Dru		u In
		ŀ				Ц							_				-	
											V							
4	Approva		37 th	Meet	ing of A	Acade	mic C	ounci	1, N	/lay 2	2015							

UNIT I INTRODUCTION

9

Developmental biology: its scope, history and special fields-Germ cells: origin of germ cells, its migration and fate-Spermatogenesis: cells in seminiferous tubes, spermiotelosis, nuclear control of spermiotelosis, ultramicroscopic structure of mammalian sperm, types of sperm.

UNIT II OOGENESIS

Oogenesis: growth of oocyte, maturation of ovum, formation of yolk, accessory cells, egg cortex and its importance, egg membrane-Fertilization: significance of sperm-egg interaction, acrosome reaction, sperm penetration, behaviour of pronuclei, syngamy, polyspermy, activation of egg-Parthenogenesis: natural and artificial.

UNIT III CLEAVAGE

Cleavage: definition, early history and concept, geometry of cleavage, types of cleavage, cleavage patterns and factors governing them, laws of cleavage, theories of cytokinesis-Gastrulation: morphogenetic movements, selective affinity and adhesiveness of cells, mechanism of the change of shape of cell during morphogenesis-Embryonic induction: Spemann's primary organizer, nature of induction mechanism of action of inducing substances.

UNIT IV EMBRYO DEVELOPMENT

Organization of the early embryo: polarity, symmetry, regulative development and physiological gradients, mosaic development- Differentiation: equivalence of nuclei, cytoplasmic control of nuclear activity, genetic control of differentiation, isozymes, mass effects-Metamorphosis: insect metamorphosis, amphibian metamorphosis, metamorphosis and evolution.

UNIT V REGENERATION OF TISSUES AND ORGANS

Regeneration: regeneration in amphibians and planarian, stimulation and suppression of regeneration, histological processes concerned in regeneration, gradient concept, neural and endocrine influences- Developmental aspects of immunology- Teratology: factors inducing abnormal development of tissues and organs.

TEXT BOOK

1. B. Balinsky 2004, "An introduction to embryology", 5th ed.

REFERENCES

- 1. J. Brachet, 2003, "Introduction to molecular embryology".
- 2. N.J. Berrill, 2005, "Developmental biology".
- 3. Gene activity in early development, (2005), H. Davidson.
- 4. Weblink: nptel

BBTE1	BIOPHARMACEUTICAL TECHNOLOGY	L	Т	Р	С									
	Total Contact Hours - 45	3	0	0	3									
	Prerequisite – Biochemistry, Bioorganic chemistry, Basic	biote	chnole	ogy										
	Course Designed by – Dept of Industrial Biotechnology	Course Designed by – Dept of Industrial Biotechnology												
OBJEC	CTIVES:													
To prov	ide a basic understanding of pharmaceutics and their applications	from	the pe	erspect	ive of									
engineer	`S													
COURS	SE OUTCOMES (COs)													
CO1	to understand the fundamentals of drugs and its absorption													
CO2	to know the manufacturing process of drugs and its bioavailability													
CO3	to comprehend drugs and its binding mechanism													

9

9 510

9

C	04	to kno	ow th	e dru	g met	abolism	and bi	otran	sforma	tion						
С	05	to get	a ba	sic kn	owled	dge of t	he appl	icatio	ns of p	prodrugs	s in biol	ogical	syst	tems		
C	06	To un	derst	tand a	bout t	the drug	g formu	lation	1							
			Ν	Iappir	ng of	Course	Outcon	nes w	ith Pro	ogram o	outcome	s (POs	s)			
		(]	H/M/	L indi	icates	strengt	h of coi	relati	on) I	I-High,	M-Med	lium, I	L-Lo	W		
1	COs	/POs	а	b	с	d	e	f	g	h	i	j	k		1	
2	CO		Η	Μ	Μ	Η	Μ		Μ	Н	Н	L	L			
	CO2	2	Η	Μ	Μ	Η	Н					Н	L	Μ		
	CO3	3	H M H H M M M M M													
	CO	1	H M H H M L													
	COS	5	H M H H M L L													
	CO	5	Η			Η	Н		Μ			L	L			
3	Cate	egory	Humanities &	Social Studies (HS)	Basic Sciences	(63)	Engg Sciences (ES)	Professional	Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective		Project/ Term	paper Seminar/	Internship (PR)
				1						, v						
4	Арр	roval	37 ^t	ⁿ Mee	eting	of Acad	lemic C	ounc	il, Ma <u>y</u>	y 2015						

Introduction to bio pharmaceutics - Various route of drug administration- drug absorption, factors influencing drug absorption from the gastrointestinal tract.

UNIT II FORMULATION OF DRUGS

Manufacturing Principles - Compressed tablets - wet granulation - Dry granulation or slugging -Direct compression - Tablet presses formulation - Coating - Pills - Capsules - Parental solutions injections

UNIT III PHARMACODYNAMICS

Binding of drugs to blood components - tissue binding of drugs - factors affecting protein drug binding - significance of protein/tissue binding of drugs - kinetics of protein-drug binding

UNIT IV BIOTRANSFORMATION

Biotransformation - drug metabolizing enzymes - phase I reactions - phase II reactions - first pass effect - factors affecting biotransformation of drugs - bio activation and tissue toxicity.

PRODRUGS UNITV

Bio precursor prodrugs - carrier prodrugs - application of prodrug design: - enhancement of bioavailability - site specific drug delivery - limitations of prodrug design.

TEXT BOOK

1. Brahmankar, D.M. "Biopharmaceutical and pharmacokinetics: А Treatise", VallabhPrakashan, 1995.

9

9

9

REFERENCE BOOK

- 1. Remington's Pharmaceutical Sciences, Mack Publishing and Co.,
- 2. Weblink: nptel

BE	BTE14	ļ	BIO	FUEL	TEC	HNOI	.OGY	7				L	Т	P	C	
			Tota	l Conta	act Ho	ours - 4	5					3	0	0	3	
			Prere	quisite	e – Ba	asic Bio	techn	ology, B	ioproce	ss						
			Cour	se Des	signed	l bv – T	Dept o	f Industri	al Biote	echnolo	σv					
OI	BJEC	FIVE	S:		-8						67					
То	provi	de a b	asic u	ndersta	anding	g of fue	l and	biofuel c	oncepts	and its	proc	luctio	on tec	hniqu	es	
CC	DURS	E OU	TCO	MES ((COs)											
C	01	to unc	lerstar	nd the	funda	mental	s of bi	iofuel								
C	O2	to kno	ow the	vario	is sou	rce for	biofu	el								
C	03	to app	oly the	techn	ique i	n large	scale									
C	O4	to stu	dy abo	out lipi	d deri	ived bio	ofuel									
С	05	to giv	e a ba	sic kno	owled	ge of th	ne app	lications	biofuel							
С	06	to get	idea a	about v	variou	s sourc	es of	biodiesel								
			Ma	apping	of Co	ourse O	utcon	nes with I	Progran	n outco	mes	(POs)			
		(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low Os/POs a b c d e f g h i i k 1														
1	COs/POs a b c d e f g h i j k l															
2	CO1		Н	М	М	Н		М		Н		L		М	М	
	CO2		Н	М	Μ	Н	Н		М		Η					
	CO3		Н	М		Н	Н		Μ	Μ		Μ		L	М	
	CO4		Н	М		Н		М	М		Η					
	CO5		Н	М	Μ	Η	Η			Μ				Μ	Н	
	CO6		Н			Η	Η	L	Μ		Η	L			Н	
3	Categ	gory	Humanities & Social Studies	(HS)	Basic Sciences	(cd) Engg Sciences	(ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Flective (NF)		Open Elective	(OE)	Project/ Term	paper Seminar/ Internship (PR)	
			o a th						V	_						
4	Appr	oval	37 ^{ur}	Meeti	ing of	Acade	mic C	council, N	1ay 201	5						

UNIT I INTRODUCTION

9

Introduction – Potential of biomass – biofuel policies: Policy in EU – Biofuel standardization – International Trade of biofuel-Biofuel Life Cycle – Energy balance -& Efficiency of biofuel –

Biofuel emission: Greenhouse gas emission – Vehicle emission standards – other environmental Impacts of Biofuel – economy of biofuel – Consideration of Co-Products.

UNIT II BIOETHANOL

BioEthanol – Feed stock production: sugar Crops, Starch crops, Cellulosic feed stock – Bioethanol Production : Sugar to ethanol Process, Starch to ethanol process, Cellulose to Ethanol Process – Distillation & Dehydration process – Properties – Application –standardization – Energy balance – Bioethanol Emission : Greenhouse gas emission, toxic exhaust emission – Other environmental impacts: water issues, land use & biodiversity, human Health.

UNIT III LIPID BIOFUELS

Lipid derived Biofuel – Feed stock production -: Oil seed crops, Micro algae, Animal fats, waste oils – Fuel production : Oil Extraction, Oil Refining, Transesterification – Properties & Use : Properties of Pure Plant Oil (PPO), Properties of Biodiesel – Application – Energy balance – Emissions of lipid biofuel – Other Environmental Impacts – Economy.

UNITIV BtL FUELS

BtL Fuel: Feed Stock production – BtL production – Gasification, Gas Cleaning – Synthesis process-Biohydrogen: Processing – Use – The Future of Biofuel.

UNIT V BIOMETHANE

Biomethane – Feed stock Production- BioMethane Production : Digestion Process- Digester types- biogas Purification – Properties & Use – Application – Standardization – BioMethane Emission – Other Environmental Effects – Economy.

TEXT BOOK

1. Dominik Rutz& Rainer Janssen, 2007, "Hand Book on BioFuel Technology", II ED.

REFERENCE BOOKS

- 1. SoetaertErlckI. Vandamme, 2009, "Biofuels" John Wiley & Sons, 1st.ed.
- 2. Hand Book on "BioFuel Technology" by Dominik Rutz& Rainer Janssen, 2007
- 3. "Bioprocess technology" P.T. Kalaichelvan and I. Arul Pandi. 2007. MJP Pub.
- 4. CayeDrapcho, John Nghiem, Terry Warker, 2007, "Biofuel Engg& Process Technology" Mc-Graw Hill, 1sted.

BGE00)6	BIOMEDICAL ENGINEERING	L	Т	Р	С								
		Total Contact Hours - 45	3	0	0	3								
		Prerequisite – Basic Biotechnology, Fermentation Techniq engineering, Bioprocess engineering	ues, (Chemi	cal rea	ction								
	Course Designed by – Dept of Biomedical Engineering													
OBJE	CTIVE	S: To understand the working principle of various equipment	nt											
COUR	SE OU	JTCOMES (COs)												
CO1	To understand the differences in the application of different microscopic methods													
CO2	Enabl	es the student to develop their skills in the medical devices												

9

9

9

C	03	It also	gives l	know	ledge	on r	ehabilit	atior	n biom	echanics						
С	O4	It deal	ls with	bio si	gnal a	analy	zer									
C	05	It imp	arts det	ermir	nation	of ι	ıltrasou	nd ir	n diagn	osis						
С	06	To an	alyze tł	ne res	ults o	f dif	ferent s	pect	rophoto	ometer an	d identify	the cher	nica	al n	ature	e of
		the sa	mples													
			Ma	pping	of C	ours	e Outco	omes	with P	rogram o	outcomes	(POs)				
	1	(.	H/M/L	indica	ates s	treng	gth of c	orrel	ation)	H-High,	M-Mediu	ım, L-Lo	w			
1	COs	s/Pos	а	b	с	d	e	f	G	h	Ι	j]	K		1
2	COI	1	М	М	м	TT	м		м			т	т		м	
2	CO		M	M	M	H	M		M	T					M	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	CO:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	CO	H M H H M M L L M														
	CO	H M H H M M L L M H M H H M M L L M														
	CO	M M M H H M M L L M 5 H H H M L L M														
3	Cate	egory	Humanities & Social Studies	(HS)	Basic Sciences	(BS)	Engg Sciences (ES)	Professional	Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)		Project/ Term	paper	Seminar/ Internship (PR)
4	App	$$.pproval 37^{th} Meeting of Academic Council, May 2015														

Anatomy of human-various bones-functions-muscles-types-function- Medical devices- Medical imaging- Implants- Bionics- The improvement of diagnosis and therapy; biomedical information storage and retrieval

UNIT II MUSCLE STRUCTURE AND ITS FUNCTIONS

Muscle structure and its attachment with skeleton-rate of contraction and force generation-Activation contraction-locomotion-stability-forces on ground-forces on muscles-energy requirement-mechanisms of walking, running and trotting-sports.

UNIT III BIOMECHANICS

Mechanical analysis of performance-rehabilitation biomechanics-mechanics of prosthetics and orthotics biomechanics of human injury and orthopaedics fixation-mechanics of bones and joint-dynamics of man machine interaction

UNIT IV BIOSYSTEM MODELING

Electrical impedance cephalography-biotelemetry-biosignalanalyzer-biosystem modelling

UNIT V ULTRASOUND IN DIAGNOSIS

Ultrasound in diagnosis-limb prosthetics and orthotics-sensory aids for the blinds-assisting the heart and kidney- ECG-EEB-Physiological equipment

9

9

9

9

TEXT BOOKS

- 1. AtillaHincal A., Suheylakas, H, BiomedicalScience&Technology, Plenum Press NewYork.
- 2. Albert D.Helfrick and William D. Cooper. Modern Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 2007

REFERENCES BOOKS

- 1. Ernest o Doebelinand Dhanesh N Manik, Measurement systems, Application and design,5th edition,McGraw-Hill, 2007.
- 2. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 2003
- 3. Standard Handbook of Biomedical Engineering & Design Myer Kutz, McGraw-Hill Publisher, 2003.

BB	TE1	5	MET	ABO	OLIC	EN	GINE	ERIN	IG]	L	Т	P	C
			Total	Cont	act F	Iours	-45					3	()	0	3
			Prere	quisit	e – F	Bioch	emistr	y, M	etabolic	concept	sand bioe	nerge	etics			
			Cour	se De	signe	ed by	– Dep	ot of]	Industria	al Biotec	hnology					
OF	BJEC	TIVE	S													
То	have	e a det	ailed	know	ledge	e abo	out the	met	abolic p	athway	of carboh	ydrat	tes, j	prot	eins	and fat
and	d to ei	nginee	r then	1 base	ed on	indu	strial	requi	rement							
CC	OURS	SE OU	TCO	MES	(CO	s)										
C	D1	To lea	rn the	basic	pro	cess	of met	aboli	sm							
CO	D2	To stu	dy the	e ener	getic	of n	netabo	lism								
C	D3	To lea	rn abo	out m	etabo	olic st	toichic	metr	у							
C	D4	To exp	plore t	he ki	netic	s of 1	netabo	olism								
C	D5	To stu	dy the	e vario	ous s	ignal	transc	luction	on pathv	vays						
CO	D6	To lea	rn the	conc	epts	of m	etaboli	ism a	nd its ki	netics						
	Mapping of Course Outcomes with Program outcomes (POs)															
		(H/M/1	L indi	cates	s stre	ngth o	f cor	elation)	H-Hig	h, M-Meo	lium,	L-L	ow		
1	COs	/Pos	а	b	с	d	e	f	g	h	1		j		k	1
2	<u>CO1</u>		М	М	М	н	М		М		н	T			T	М
~	$\frac{CO1}{CO2}$		H	M	M	H	H		M	L	11	L			L L	M
F	CO3		H	M	171	H	H		M	Ľ		L			Ľ	M
Ī	CO4 H M H H M										L			L	М	
	CO5 H M M H H M M								М	L			L	М		
Ī	CO6		Η			Η	Η		М	Н		L			L	М
3	Cate	gory	x	S	es		es	1	1	e	. (1	/e			я	
			es e		enc		enc	ona	Ĵ)	ctiv	ajor (NE	ctiv	_		r r	ar/ nip
			niti		Scie	3S)	Sci	ssi(е Т)	Ele CE)	-Má ve (Ele	Ē		it/ˈ] apei	nin: Tusl
			ima	CIAI (]	iic ;		80	ofe	<u>10</u>	ore] ((lon- ecti	en	Ľ	.	<u>jeć</u> pi	Sen ntei (F
	Hur					Op		ĥ	Pre	-1 -1						

							\checkmark	
4	Approval	37 th Mee	eting of A	Academ	nic Council, N	/lay 201:	5	

UNIT I METABOLISM

Metabolism- glycolsis, gluconeogenesis-glycogen-HMP shunt-TCA cycle-fatty acid metabolismurea cycle and metabolism of purine and pyrimidine

UNIT II ENERGETICS

Energetics of metabolism, Energy coupling (ATP and NADH), Stoichiometry of cell growth and product formation, Elemental Balances, Degree of reduction, fundamental concepts, yield coefficients, oxygen consumption and heat evolution in aerobic cultures.

UNIT III STOICHIOMETRY

Metabolic stoichiometry, Energy of batch and continuous process, Stoichiometry of cell growth and product formation, available electron balances, yield coefficients of biomass and product formation, Maintenance coefficients, Energetic analysis of microbial growth and product formation, Heat evolution in anaerobic culture

UNIT IV THERMODYNAMICS

Thermodynamic efficiency of growth, Thermodynamics and kinetics of cell metabolism, metabolic path ways, modeling of EM pathway, Thermal Energetic studies, Activation Energies of reaction and heat of reaction, formation and combustion of biochemical reactions.

UNIT V SIGNAL TRANSDUCTION

Signal transduction- Receptors and Methods of action- Signal amplification and different models, G proteins- Phosphatidyl Inositol – cAMP – Calcium ions – Protein kinase- defects in signaling pathways.

TEXT BOOKS

1. Biochemical Engineering Fundamentals- Bailey and Olis, 2013

REFERENCE BOOKS

- 1. Roles JA Kinetics and Energetics in Biotechnology –Elsevier 1983
- 2. Chemical Reaction Engineering- Octave Levenspiel
- 3. Chemical process Principles vol III Bioprocess Engineering Coulson and Richardson Wiley International 1986.
- 4. Weblink: nptel

BBA005	ENERGY ENGINEERING AND MANAGEMENT	L	Т	Р	C
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Principles of chemical engineering, Thermoo	lynan	nics,		
	Environmental studies, basic concepts in energy				
	Course Designed by – Dept of Mechanical Engineering				

9

9

9

9 bo

9

	BJE(CTIVE	ES be stu	dent i	n the	field	of	energy e	nginee	ring cor	ocern	wit	h en	erav effi	ciency	, energy
sei	rvice	and fac	cility r	nanag	gemen	t	01 0	chergy e	inginee	ing coi		wit		cigy cill	cicicy	, energy
C	OUR	SE OU	JTCC	OMES	6 (CO	s)										
C	01	Unde	rstand	diffe	rent ei	nerg	y re	sources	and the	ir uses						
С	O2	Unde	rstand	diffe	rent ei	nerg	y co	onservati	on tech	niques						
С	O3	Under	rstand	the in	npact	ener	rgy	on envir	onmen	t						
С	O4	Know	v abou	t man	agem	ent c	of er	nergy								
С	05	Calcu	late e	conon	nics of	f ene	ergy									
С	06	Unde	rstand	l diffe	rent t	ypes	s of	energy								
				Ma	pping	of C	Cou	rse Outc	omes	with Pro	ogran	n o	utco	mes (PC)s)	
	~~		(H	/M/L	indica	ates	stre	ngth of	correla	tion) I	I-Hig	gh, i	M-N	Iedium,	L-Lov	N -
1	COS	s/Pos	а	b	c	C	1	e	f	G	h		I	Ĵ	k	I
2	CO	1	H M M H M M M M M													
	CO	2	H M H M M M													
	CO	3	H	M				H		M				L	M	
	CO ₄	1	H	M		H		H		M				.		Μ
	CO:	5	H	Μ	M	Η		Н		M				L	Μ	
_	CO	5	H							Μ						Μ
3 Categor		egory	Humanities &	Social Studies (HS)	Basic Sciences	(BS)	Engg Sciences	(ES)	Professional Core (PC)	Core Elective		Non-Major	Elective (NE)	Open Elective(OE)	Project/ Term	paper Seminar/ Internship (PR)
4	App	oroval	37 th	Mee	ting c	of A	cade	emic Co	uncil,]	May 20	15				1	
					U				,	-						

UNIT I INTRODUCTION TO ENERGY AND ENVIRONMENT

Definition – Fossil fuel reserves – Energy consumption – Greenhouse effect, global warming – Renewable energy resources – Environmental aspects, utilization – energy prizes – Energy policies.

UNIT II ENERGY CONSERVATION

Need – different types of energy conservation schemes – industrial energy use – energy surveying and auditing – energy index – cost of energy – cost index-energy conservation in engineering and process industry in thermal systems, in buildings and non-conventional energy resources schemes.

UNIT III ENERGY GENERATION BY TECHNOLOGY

Fuels and consumption – Boilers – Furnaces – Waste heat recovery systems – Heat pumps and refrigerators – Storage systems – Insulated pipe work systems – heat exchangers

9

9

UNIT IV ENERGY MANAGEMENT

Energy management principles – energy resource management – energy management information systems – Instrumentation and measurement – Computerized energy management

UNIT V ENGINEERING ECONOMICS

Costing techniques – Optimization cost – Optimal target investment schedules – Finance appraisal – Profitability – Project management.

TEXT BOOK:

1. W.R. Murphy and G. Mckay, Energy Management, Butterworths, London, 1982.

REFERENCE BOOK:

1. Callaghan P.W. Design and Management for Energy Conservation, Pergamon Press, Oxford,1993.

				1	NANU	BIOIE	CH	NOLOG	τY		L	I	P	C
Prerequisite – Basic Biotechnology, Molecular biology													0	3
		Prer	equisi	ite –	Basic 1	Biotechn	olog	gy, Mole	cular bi	ology		I		
		Cou	rse De	esign	ed by	– Dept o	f In	dustrial l	Biotech	nology				
OBJ	JECTIVE	S: To	o prov	ide b	asic kı	nowledge	e ab	out nanc	science	involved	in bi	otech	nolo	gy
COU	URSE OU	JTCC	MES	6 (CC)s)									
CO	1 to uno	lersta	nd the	e vari	lous na	no devic	ces							
CO	2 to know	ow ab	out na	ano n	nolecu	les								
CO	3 to lea	rn the	e appli	catio	ons of r	nanotech	nolo	ogy in pr	oteins, l	ipids and	nucle	eic aci	ids	
CO	CO4 to know about the applications of nanotechnology in microbiology													
CO	CO5to know about nano technology involved in drug delivery system													
CO	6 To un	derst	and ał	oout	nanopa	rticles								
	(M H/M/	lappir L indi	ng of cates	Course streng	e Outcor gth of co	nes rrela	with Pro ation) H	gram o I-High,	utcomes (M-Mediu	POs) m, L-	Low		
1 0	COs/Pos	a	b	с	d	e	f	G	h	Ι	j		k	1
2 CO1 M M M H M H H L M											М			
(CO2 H M M H H M									L			L	
	CO3	H	M		H	H		M			L	I		M
	<u>CO4</u>	H	M	м	H	H					L			M
	CO5	H	M	M	H	H	<u> </u>	M			т		_	
	CO3 CO3 CO4 CO5 CO6	A M H H H H H	b M M M M	C M M M	d H H H H H H	e M H H H H H		H M M M M			J L L L L			I M M M L M

154

9

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective(CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/ Term paper Seminar/ Internship (PR)
4	Approval	37 th Mee	eting of Aca	idemic C	Council, Ma	y 2015	I	<u> </u>	<u> </u>

Introduction to nanobiotechnology - nanodevices& techniques - micro & nanosystems synthesis & characterization of nanoscale molecules - nanoarchitecture - fabrication technologies – self-assembly systems

UNIT II NANODEVICES

Inorganic nanoscale systems - properties of fullerene carbon nano tubes - quantum dots & wires – gold nanoparticles – nanopores.

UNIT III NANOMOLECULES

Nanomolecules in proteins, lipids RNA & DNA - peptide coupled nanoparticles - proteins nanodevices - cell nanotechnology - cell motility - nanomotors& cellular navigation chemotaxis - transmembranesignaling - nanoscale artificial platform.

UNIT IV MICROBIAL NANOTECHNOLOGY

Nanotechnology and microorganisms - PHA - magnetosomes - cyanophycin inclusions alginates – bacteriophages – bacterial spores – S – layer proteins – bacteriorhodopsin.

UNIT V NANOMEDICINE

Nanotechnology in drug delivery – nanoscale devices for drug delivery – micelles – protein targeting - protein interaction with other molecule - microarray - genomic chips nanobiosensors - nanobiochips - Nanotechnology for cancer diagnosis & treatment.

TEXT BOOK

1. K.K. Jain , 2006, "Nanotechnology in molecular diagnostics - current techniques & applications", Horizon Bioscience publishers

REFERENCE BOOKS

- 1. Microbial bionanotechnology:Biological Self-Assembly Systems and Biopolymer-Based Nanostructuresed: Bernd Rehm, Taylor and Francis, 2006
- 2. Applications of nanoparticles in biology & medicine O.V. Salata, Journal of nanobiotechnology (2004),
- 3. Weblink: nptel

BCE057	INDUSTRIAL WASTE TREATMENT AND	L	Т	Р	С
	DISPOSAL				

9

9

9

			Tota	l Cont	act H	Iours -	- 45						3	0	0	3	
			Prer	equisit	e – E	Enviro	nmenta	l biote	chno	logy	, Was	te mai	nagemei	nt		<u> </u>	
			Cou	rse De	signe	ed by -	- Dept	of Civi	l Eng	ginee	ering						
OI To ap tre	BJE(prov proac atme	CTIVE vide kn ches for nt metl	S owlea r mini hods f	lge on imizing for reco	sour g the overy	ces an gener y, reus	d chara ation a e and d	cterist nd app lisposa	ics of licati l	f ind on o	ustrial f phys	l waste sio che	ewater,t emical a	echniq and bio	lues an logica	ıd 1	
CO	OUR	SE OU	JTCC	OMES	(CO	s)											
C	01	Have minin	a fi nizatio	undam on tech	ental nnolo	knov	wledge	of th	he e	fflue	ent di	ischar	ge stan	ndards	and	waste	
C	02	Have metho	a wel ods	l-foun	ded l	knowle	edge of	charae	cteris	stics	of ind	ustria	l wastev	watera	nd trea	tment	
C	03	Acqui	ire kn	owledg	ge ab	out co	onventio	onal m	ethoo	ls of	treatr	nent f	or indus	strial w	vaste		
C	04	Under	nderstand various biological treatment methods														
C	CO5 Have a fundamental knowledge of combined treatment of industrial and municipal wastes																
C	CO6 Have knowledge about various types of effluent released from industries																
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																
1	CO	s/Pos	a	b	c	d	e	f	C	j	h	Ι	j	k		1	
2	CO	1	Μ	Μ	Μ	Н	М	Н	М		L		L	L	Ν	1	
	CO	2	H	M	M	H	H	H	M			Н	L	L	N	1	
	CO	3	H	M		H	H	M	M		H M	M	L	L		1	
		4 5	H U	M	М	Н U	Ц	H M	M		M	IVI	L			1 1	
	CO.	5	H	IVI	IVI	H	H	H	M			I.	L	L		1 /[
3	Cate	egorv	~~~~	<u>s</u>		$\overline{}$			141				ມ ບ		1		
	Jul	- 0 - 1 - 0	Humanities & Social Studies (HS) (HS) Basic Sciences (BS) Engg Sciences (BS) Engg Sciences (BS) Professional Core (BC) (CE) Non-Major Elective (NE)							Open Elective (OE)	Project/ Term	, paper Seminar/	Internship (PR)				
									_								
4	App	oroval	37 th	Meet	ing o	of Aca	demic	Counci	1, Ma	ay 20)15						

9

Effects of industrial wastes on streams, land and air, waste water treatment plants, water quality criteria – effluent standards : Process modification, method and material changes, housekeeping etc., to reduce water discharges and strength of the waste and established recovery methods for bye products within the plant operations.

UNIT II CHARACTERISTICS OF WASTE

Characteristics of major industrial waste water (liquid wastes) Chemical Industries: Petrochemicals & refineries, pharmaceuticals. Apparel Industries: Textile, synthetic fibres, leather, paper-Agro Industries: Fertilizer Food Industries: Heat – packing pickles, canning poultry and eggs, distillers, sugar. Metallurgical Industries: Thermal power station, nuclear power plants.

UNIT III WASTE TREATMENT

Conventional methods of treatment and disposal of industrial wastes-Equalization and neutralization, separation of solids – sedimentation and filtrations

UNIT IV BIOLOGICAL TREATMENT

Removal of organic contents: Biological treatment methods, aerobic and anaerobic, digestion, tickling filters, stabilization ponds, activated sludge process – oxidation ditch.

UNIT V PHYSICOCHEMICAL TREATMENT

Physico Chemical Treatment Method – Neutralization, coagulation, flocculation, adsorption and precipitation. Combined treatment of industrial and municipal wastes.

TEXT BOOKS:

1. EckenfalderW.W,"Industrial Water Pollution Control", McGraw Hill, New York, 1989

REFERENCES:

- 1. Arceivala S.J & ShyamAsolekarR,"Waste Water Treatment and Pollution Control Tata McGraw Hill, 1998.
- Nelson Leonard Nemerow," Theories and practice of industrial waste treatment", Addison Wesley Pub. Co., 1963
- 3. World Bank Group "Pollution prevention and Treatment Hand Book" World Bank and UNEP Washington DC, 1998

BBTE	17	ENGINEERING OPTIMIZATION	L	Т	Р	С							
		Total Contact Hours – 45	3	0	0	3							
		Prerequisite – Engg Mathematics-I, Input and output ,Engir	neerir	ng con	cepts								
		Course Designed by – Dept of Industrial Biotechnology											
OBJE	DBJECTIVES: To provide knowledge about the process optimization												
COUR	SE OU	JTCOMES (COs)											
CO1	Толи	derstand the fundamentals of process optimization											
COI	10 ul	derstand the fundamentals of process optimization											
CO2	To kn	ow about various optimization methods											
CO3	To kn	ow about statistical approach											
CO4	To un	derstand the linear programming methods											
CO5	To know the yield and economic importance												
CO6	To un	derstand about neural network											

9

9

9

		Mapp	oing c	of Co	ourse Ou	tco	mes wit	th l	Progran	n outcon	nes	(POs)		
	(H	H/M/L in	dicat	es st	rength of	f co	orrelatio	on)	H-Hig	gh, M-M	ediu	ım, L-Lov	V	
1	COs/Pos	а	b	С	D	E	F		g	h	i	j	k	1
2	CO1	Μ	Ν	Μ	Η	N			Μ		Η	L	L	Μ
	CO2	Н	N	Μ	Η	H			Μ			L	L	М
	CO3	Н	N		Η	H			Μ	Μ	Μ	L	L	М
	CO4	Н	N		Н	H			М			L	L	М
	CO5	Н	N	Μ	Н	E			М	L	Μ	L	L	М
	CO6	Н			Н	H			М			L	L	М
3	Category	Humanities & Social Studies	Basic Sciences	(BS)	Engg Sciences (ES)		Professional Core (PC)	Cone Electine	(CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/ Term	paper Seminar/ Internship (PR)
4	Approval	37 th N	leetir	ng of	Academ	nic	Counci	l, N	May 201	15				

Introduction to Optimization, Necessity and need for process optimization- Necessary and Sufficient Conditions for Extremum-Maxima and minima- Local maxima, local minima, global maxima, global minima

UNIT II ONE DIMENSIONAL OPTIMIZATION

Optimization of Unconstrained Functions: One-Dimension. Newton Ralpson Method- Bisection Method- Interval Halving Method

UNIT III MULTI-DIMENSIONAL OPTIMIZATION

Optimization of Unconstrained Functions: Multi-DimensionalOptimization by Generalized Reduced-Gradient method (deterministic process optimization) -Statistical Modeling (empirical process optimization, experimental design and analysis) -Taguchi Method (process optimization) -Random Search Method -Fuzzy Logic (process optimization, control systems) -Linear Programming (process optimization)

UNIT IV STATISTICAL OPTIMIZATION

Linear Programming - Simplex Method-The Nonlinear Problem with Constraints-Statistical Approaches

UNIT V PROCESS OPTIMIZATION

Neural Networks (process optimization, control systems) - Genetic Algorithms (process optimization) - Optimization of Systems with Discrete Variables (process design)

TEXT BOOK

1. Singiresu S. Rao, 2005, "Engineering Optimization Theory and Practice", Third Edition.

9

9

9

9

REFERENCE BOOKS

- 1. Ananthakrishnan TN,2006, "Animal biodiversity" Scientific publishers(India).
- 2. Good enough U,1998, "Human biology; personal, environmental and social concerns" Saunders collage publication.

BE	BA008	ТОТА	L QUA	LITY		Ι	T	P	С							
		Total C	Contact H	Hours -	45						3	0	0	3		
		Prerequ	uisite – I	Profess	ional	l ethic	s& Prot	fession	al Co	ourses	ļ					
		Course	Design	ed by -	- Dep	ot of N	Ianager	nent st	udies	5						
OI	BIECTIVI	ES:														
To	study abou	it the ma	nageme	nt met	hods	involv	ved in q	uality a	asses	sment	of a	produc	ct			
CO	DURSE O	UTCOM	IES (CC)s)												
C	O1 to stu	dy the ba	asic defi	nition	of qu	ality										
C	O2 to stu	dy the in	nportanc	ce of cu	uston	ner sat	isfactio	n								
C	O3 to stu	dy the st	atistical	metho	ds of	quali	ty conti	rol								
C	O4 to exp	plore the	method	s of be	nchn	narkin	g									
C	O5 to cla	5 to classify the products into quality standards 6 To know shout quality principle														
C	O6 To ki	5 To know about quality principle														
	Mapping of Course Outcomes with Program outcomes (POs)															
1		(H/M/L)	indicate	s stren	gth o	f corre	elation)	H-Hi	gh, N	A-Mea	lium i	, L-Lov i	W Iz	1		
1	CO5/FO5	a	U	C	u	C	1	g		11	1	J	к	1		
2	CO1	М	М	М	Н	М		М			L	L	L	M		
-	CO2	H	M	M	H	H		M	L			L	L	M		
	CO3	Н	М		Н	Н	L	М			Μ	L	L	М		
	CO4	Н	М		Η	Н		М	Μ			L	L	М		
	CO5	Η	Μ	М	Η	Η		М			L	L	L	М		
	CO6	Н			Н	Η	L	М	L			L	L	М		
3	Category	Humanities & Social Studies	(HS)	Basic Sciences (BS)	Enoo Sciences	(ES)	Professional Core (PC)	Core Elective	(CE)	Non-Major Flactive (MF)		Open Elective (OE)	Project/ Term	paper Seminar/ Internship (PR)		
4	Approval	37 th]	Meeting	of Aca	adem	ic Co	uncil, N	1ay 201	5				·			

Definition of Quality, Dimensions of quality, Quality planning, Quality costs- Analysis – Techniques for quality costs, Basic concepts of total Quality Management, Historical Review, Principles of TQM, Leadership- Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation

UNIT II TQM PRINCIPLES

Customer satisfaction-Customer Perception of Quality, Customer complaints, Service Quality, Customer Retention and, Employee Involvement- Motivation, Empowerment, Teams, Recognition Reward, Performance Appraisal, Benefits, Continuous process improvement-Jurantrlogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership- Partnering, sourcing, Supplier selection, Supplier rating, relationship development, Performance measure- Basic concepts, Strategy, Performance measure.

UNIT III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, Statistical Fundamentals- Measures of central Tendency and Dispersion, Population and sample, Normal curve, Control charts for variables and attributes, Process capability, Concept of six sigma, New seven management tools.

UNIT IV TQM TOOLS

Benchmarking- Reasons to Benchmark, Benchmarking process, Quality function Deployment (QFD)- House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM)- Concept, Improvement Needs, FMEA- Stages of FMEA.

UNIT V QUALITY SYSTEMS

Need for ISO 9000 and other Quality Systems, ISO 9000:2000 Quality system- Elements, Implementation of Quality systems, Documentation, Quality Auditing, QS 9000, ISO 14000- Concept, Requirements and Benefits.

TEXT BOOK

1. R.Ramakrishnan, 2004, "A Text Book of Total Quality Management" V Ed.

REFERENCE BOOKS:

1. Ronald A. Armstrong, 2006, "Total Quality management", Chapman and Hall,

2. Suresh Lulta, 2002"Total Quality management" Vol. I and Il, ShahTrust, Mumbai

	INTELLECTUAL PROPERTY RIGHTS	L	Т	Р	C									
BBA009	Total Contact Hours - 45	3	0	0	3									
	Prerequisite – Value Education and Professional Ethics	& Profess	ional C	Courses										
	Course Designed by – Dept of Management Studies													
OBJECT	IVES													
Sti	rong intellectual property rights (IPR) protection is cru	icial to f	osterin	g trade,	and									
acl	nieving the goals and benefits of global integration. Course	ntries wit	h high	standard	ds of									
IP	R protection tend to attract more investment, stimulat	e more i	innova	tion, the	reby									

9

9 ov

9

9

developing more rapidly. Countries with inadequate protection are often vulnerable to infringements of intellectual property rights that hinder trade flow and economic development.

Hence, the objective is to introduce IPR to the UG Engineering and Technology students.

COURSE OUTCOMES (COs)

	CO1 Understand the principles function and basic legal rules of IP Law														
	CO1	Une	derstanc	d the	e prin	ciples	s, fu	nctio	n and b	oasic	legal ru	les of IP	Law.		
	CO2	Rec	cognize	the	releva	ant ci	riteri	ia for	genera	ting	and pro	otecting in	ntellectual	works.	
	CO3	Rec pro	cognize fessiona	the al er	inte iviror	llectu ment	ual j t.	prope	erty lik	cely	to be	produced	in the	academi	ic and
	CO4	Dei	nonstra demic a	te and i	appre	ciatio	on a al liv	ind c	ritical	awa	areness	of perti	nent IP	issues	in the
	CO5	Une	derstand	d the	e relev	vance	e and	l impa	act of I	P La	w on ac	cademic/s	cientific	works/st	udies.
	CO6	Une	derstand	d the	e diffe	erent	form	ns of i	infring	emei	nt of int	ellectual	property 1	rights.	
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs/I	POs	а	b	с	d	l	e	f	g	h	i	j	k	1
2	CO1		Η						Н					Н	
	CO2			Η		Μ						H			
	CO3		Μ								Μ		Н		
	CO4				Μ	H								H	
	CO5									Μ					
	CO6		Н			Н						M			L
3	Categ	ory	Humanities & Social	Studies (HS)	Basic	sciences (BS)	Engg	Sciences (ES)	Professional Core (PC)		Elective (CE)	Non-Major Elective (NF)	Open Elective (OF)	Project/Ter m Paper	Seminar/ Internship (PR)
4	Appro	oval	37 th 1	Mee	ting c	of Ac	aden	nic C	ouncil,	, Ma	y 2015		N		

UNIT I PROPERTIES AND TYPES

Introduction – Invention and Creativity – Intellectual Property (IP) – Importance – Protection of IPR – Basic types of property (i). Movable Property ii. Immovable Property and iii. Intellectual Property.

UNIT II PATENTS AND RIGHTS

IP – Patents – Copyrights and related rights – Trade Marks and rights arising from Trademark registration – Definitions – Industrial Designs and Integrated circuits – Protection of Geographical Indications at national and International levels – Application Procedures..

9

UNIT III **INTERNATIONAL TRADE**

International convention relating to Intellectual Property - Establishment of WIPO - Mission and Activities - History - General Agreement on Trade and Tariff (GATT).

WTO **UNIT IV**

Indian Position Vs WTO and Strategies - Indian IPR legislations - commitments to WTO-Patent Ordinance and the Bill - Draft of a national Intellectual Property Policy - Present against unfair competition.

UNIT V **CASE STUDIES**

Case Studies on – Patents (Basumati rice, turmeric, Neem, etc.) – Copyright and related rights – Trade Marks - Industrial design and Integrated circuits - Geographic indications - Protection against unfair competition.

TEXT BOOKS:

1. Subbaram N.R. "Handbook of Indian Patent Law and Practice", S. Viswanathan Printers and Publishers Pvt. Ltd., 1998.

REFERENCES:

- 1. Eli Whitney, United States Patent Number: 72X, Cotton Gin, March 14, 1794.
- 2. Intellectual Property Today: Volume 8, No. 5, May 2001, [www.iptoday.com].
- 3. Using the Internet for non-patent prior art searches, Derwent IP Matters, July 2000.
- 4. www.ipmatters.net/features/000707_gibbs. html.
- 5.http://www.metastudio.org/Science%20and%20Ethics/file/readDoc/535a76367d9d331598f49e 2d/34_Hb_on_IPR.pdf

BCE0	59 ENVIRONMENTAL HEALTH ENGINEERING	L	Т	Р	C
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Waste Management	•			
	Course Designed by – Dept of Civil Engineering				
OBJE	CTIVES				
To give	e an insight into the various diseases that affect human beings and in	ntrod	uces th	ne	
import	ance of sanitation processes				
COUR	SE OUTCOMES (COs)				
CO1	To learn about the various environmental pollution and the impa overuse of natural resources	acts o	f land	use	and
CO2	To learn the various water acts and the sources of water pollution				
CO3	To learn the various Air acts and the sources and the effects of Air	r and	noise	polluti	on
CO4	Insight into the solid waste management and various disposal tech	nique	es		
CO5	Insight into food sanitation and the effects of food borne diseases				
CO6	To acquaint the student with various methods and techniques of demanagement of waste	isposi	ng ar	nd	

9

9

	Mapping of Course Outcomes with Program outcomes (POs)													
	(1	H/M/L i	ndic	ates st	trength of	f corre	lation)	H-l	Hig	gh, M-N	Aedium,	L-Lo	W	
1	COs/Pos	а	b	c	d	e	f	g		h	i	j	k	1
2	CO1	Η	Μ	Μ	Н	Μ	Η	Μ		Η		L	L	М
	CO2	Н	Μ	Μ	Н	Η	Η			Η	Η	L	L	Μ
	CO3	Н			Η	Η	Η	Μ		Η	Μ	L	L	М
	CO4	Н	Μ		Η	Η	Η			Η	Μ	L	L	
	CO5	Н	Μ	М	Н	Н	Η	Μ		Η	L	L	L	М
	CO6	Η			Н	Н	Η			Η	Μ	L	L	М
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/ Term paper Seminar/ Internship (PR)
4	Approval	37 th 1	Meet	ing of	Academ	ic Cou	ıncil, N	1ay 2	201	5				

Impact of Development and Water Pollution – Ecology and ecosystems Impact of development, land use and natural resource management, Cause and effects of environmental pollution

UNIT II SOURCES OF POLLTION

Natural Processes: Pollution due to industrial, agriculture and municipal wastes – Limitation of disposal of dilution. BOD considerations in streams- Water Pollution control legislation.

UNIT III AIR POLLUTION

Air and Noise Pollution and Control- Pollutants and their sources- Effect of pollution of human wealth, vegetation- Air pollution control legislation -noise pollution- sources and effects – Control measures.

UNIT IV SOLID WASTE MANAGEMENT

Solid Wastes Management and Water Control Sources - Characteristics Quantities – Collection methods and disposal techniques - Sanitary -landfill -Incineration and pyrolysis – composting - water borne diseases – of mosquitoes, flies, rodents.Rational control and naturalistic methods of control, uses and limitations of pesticides, engineering measures of water control.

UNIT V FOOD SANITATION

Food & Milk Sanitation : Relation of food to disease – principles of food sanitation – Sanitation of Kitchen in restaurants and other catering establishments – Quality changes in milk – Milk as carrier of infection – Pasteurization of milk – HTST and LTLT processes. Cattle shed sanitation.

TEXT BOOKS

9

9

9

9

1. Ehlws V.M. and E.W. Steel. Municipal and Rural Sanitation – McGraw Hill Co. Inc, New York, 1954

REFERENCES

- 1. Park J.E. and Park K.,"Text Book of Preventing and Social Medicine", M/s. Banarsidos, Bhanot, Jabalpur, 1980.
- 2. Stern A.C. ed, "Air Pollution Vol. I, II & III", Academic Press, New York, 1968
- 3. Cuniff P.E,"Environmental Noise Pollution", John Wiley & Sons, New York. 1977.

BI	BTE1	8	INDU	USTR	IAL	SAI	FET	Y EN	GIN	EEI	RING				L	Т		Р	С
			Total	Cont	act H	ours	5 - 45	i							3	0		0	3
			Prere	quisit	e - Bi	iopr	oces	s, Enz	yme	Eng	gineer	ing &	z Te	chnol	ogy, l	Basi	с		
		-	Biote	chnol	ogy	11		<u> </u>	T 1		1.D.	. 1	1						
			Cours	se Des	signed	і бу	' – D	ept of	Indu	stria	al B10	techr	1010	gy					
O	BJEC	TIVE	S: To	provi	de a b	oasio	c kno	wledg	ge ab	out	Safety	y eng	inee	ering					
C	OURS	SE OU	TCO	MES	(COs	5)													
С	01	to und	erstan	d basi	ic con	icep	ts in	hazar	d ana	alysi	S								
C	O2	to kno	w abo	ut saf	ety a	nd it	ts ma	nagen	nent										
C	03	to kno	w abo	ut acc	cident	s an	nd its	preve	entive	e me	easure	S							
С	04	to und	erstan	d vari	ious p	erso	onal	protec	tive	equi	pmen	t and	firs	t aid					
С	O5	to kno	w abo	ut per	sonal	pro	otecti	ve equ	uipm	ent									
С	CO6 To know about fire and safety																		
	Mapping of Course Outcomes with Program outcomes (POs)																		
		(H/	/M/L i	ndica	tes st	reng	gth of	f corre	elatio	n)	H-Hi	gh, N	1-M	edium	, L-L	.OW			
1	COs	/POs	а	b	с		d	e	f		g	h		i	j	k		1	
2	CO1		Н	Μ	М	Н		Μ		М		М			L			Μ	
	CO2		Η	Μ	М	Η		Η		Μ					L	L		М	
	CO3		Η	Μ		Η		Н		Μ				Μ	L	L		Μ	
	CO4	-	Н	Μ		Η		Н		Μ		L			L	L			
	CO5		H	Μ	Μ	H		H		M				L	L	-		Μ	
2	CO6)	H			H		Η		Μ					L				
3	Cate	gory	Humanities &	SOCIAL SUULIES (HS)	Basic Sciences	(SB)	Engg Sciences	(ES)	Professional	Core (PC)	Core Elective		Non-Major	Elective (NE)	Open Elective	(OE)	Project/ Term	paper Seminar/	Internship (PR)
											1	/							
4	App	roval	37 th	Mee	ting o	of A	cade	mic C	ounc	il, N	May 2	015							

UNIT I INDUSTRIAL HAZARDS

Safety in Process Plants – Hazard Analysis – Types of Hazard – hazard Identification techniques Hazard Evaluation – Important Factories Act.

UNIT II CHEMICAL HAZARD

Hazards in work place: safety in the use of chemicals at work – Chemical hazard - Air-Borne Contaminants – particulate matter – Hazard and safety methods – hazards and Safety measures in Refineries , Paper and Pulp Industries- Safety Conditions in tanneries –Hazards of Pesticide – Sugar industry.

UNIT III SAFETY MANAGEMENT AND FIRE SAFETY

Introduction- Safety policy- Safety in electrical installation: Electrical shock and preventionsafety precautions for residential and commercial installation - Case study-Four stages of Firetypes of Fire Detectors – Fire safety in Industry – chemistry of fire- Types of Combustion- Fire Triangle- Fire extinguishing Technique – Engineering consideration for safety consideration

UNIT IV INDUSTRIAL ACCIDENTS

Industrial accidents – Classification – prevention – accident cost – Steps of investigation – Analysis of Accidents – Remedial Measures – Methods of Prevention – Safety Slogans – Case study

UNIT V PROTECTIVE EQUIPMENTS

Personal protective Equipment and personal Protection – Aim – Need – Types: Non Respiratory Protective equipment- Respiratory typeFirst aid – principles and methods – First aid training – Scope of first aid – Golden rules– First aid treatment : for wounds and Hemorrage , Shock , respiration :Schafer's Method, Shock. Fractures, Burns and Scalds, Unconsciousness, Heat exhaustion and Stroke– First aid Kit box A and B.

TEXT BOOK:

- 1. Nicholas, 2008, "Practical Guidance to Industrial Safety" 3rded
- 2. M.H.Fulekar, 2007, "Industrial Hygiene & chemical Safety" 2nded

REFERENCE BOOKS:

- 1. Rudd,2005, "Strategy of process engineering" Willey
- 2. Wang, Shannmas Hung, 2008, "Advanced hazardous industrial waste treatment" CRC Press.

BBTE	19 BIOENTREPRENEURSHIP DEVELOPMENT	L	Т	Р	C
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Professional Courses				
	Course Designed by – Dept of Industrial Biotechnology				
OBJE	CTIVES: To provide basic knowledge about Entrepreneurship				
COUR	SE OUTCOMES (COs)				
CO1	to understand the fundamentals of Entrepreneurship				
CO2	to know about time management				

9 hni

9

9

9

C	O3	to exp	olore the	e aveni	ues fo	or fi	inanc	cing a	busine	ss ve	entu	re				
С	O4	to kno	ow abou	it vario	ous c	om	pany	laws								
C	05	to und	lerstand	l Entre	pren	eurs	ship i	in biot	echnol	ogy						
С	06	To ge	t knowl	ledge a	bout	dec	cisio	n mak	ing							
			Ma	pping o	of Co	ours	e Ou	tcome	es with	Prog	gran	n out	comes (F	POs)		
	1	()	H/M/L	indicat	tes st	ren	gth o	of corre	elation) H	-Hig	gh, M	-Mediun	n, L-L	OW	
1	COs	/Pos	а	b	с		d	e	f	G	Ĵ	h	Ι	j	k	1
															_	
2	CO1		Н		Μ	Η		Μ	Μ	Μ					L	
	CO2		H M M H H M M L L M													
	CO3 H M CO4 H M		Μ	Μ	Η		Н	L			Н		L		М	
	CO4		Η	Μ				Η		Μ				L	L	Μ
	CO4 H N CO5 H N			Μ	Μ	Η		Н		Μ			Μ	L	L	Μ
	CO6)	Η			Η		Н	Μ	Μ		М		L	L	
3	CO6 3 Category		Humanities & Social Studies	(HS)	Basic Sciences	(BS)	Engg Sciences	(ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major Elective (NE)	Open Elective	(OE)	Project/ Term paper Seminar/ Internship (PR)
4	App	roval	37 th]	Meetin	g of	Aca	adem	ic Co	uncil, N	May	201	5		I		

UNIT I ENTREPRENEURSHIP FUNDAMENALS

 $Entrepreneur-Entrepreneurship-Enterprise-Writing\ good\ business\ plan-operations\ and\ management.$

UNITII DECISION MAKING AND TIME MANAGEMENT

Entrepreneur psychology – personal decision making style – Decision making process – setting personal and Business goals – Setting time priorities – Business person working at home.

UNIT III FINANCE AND ECONOMIC FEASIBILITY

Financing the business– Raising venture capital – Financing sources – Pricing the product (or) Service – operating expenses Economic Analysis – Basic financial Analysis worksheets

UNIT IV COMPANY LAWS AND REGULATIONS

Forming company – Types of companies – Types of market – Proprietary information: Intellectual property, copy right, ownerships, Trademark, Patent – International Trade

UNIT V ENTREPRENEURSHIP IN BIOTECHNOLOGY

Various business opportunities in Biotechnology – Development of Biotech companies in India – Case studies on Biotech companies and its growth

TEXT BOOK

1. Exploring Entrepreneurship: D. Allan Barefield and George F. Smith, Ettmae Westbrook,

9

9

9

Tennesse State University, 2006

REFERENCE BOOK

1. Entrepreneurship fundamentals by ZobiasKollmann International journal of Technology management,2007