SYSTEMS ON CHIP (SOC) FOR EMBEDDED APPLICATIONS
Embedded System

• “System”
 • Set of components needed to perform a function
 • Hardware + software + ….

• “Embedded”
 • Main function not computing
 • Usually not autonomous
 • Usually a computer inside a system
 • Application specific
 • Subject to constraints
System on chip

• Definition
 • (nearly) complete embedded system on a single chip

• Usually includes
 • Programmable processor(s)
 • Memory
 • Accelerating function units
 • Input/output interfaces
 • Software
 • Re-usable intellectual property blocks (HW + SW)
SoC Design Goal

Before

After
smartphone reference design
Apple “A5” SoC

- Used in iPad 2 and iPhone 4S
- Manufactured by Samsung
 - 45nm, 12.1 x 10.1 mm
- Elements (unofficial):
 - ARM Corex-A9 MPCore CPU - 1GHz
 - NEON SIMD accelerator
 - Dual core PowerVR SGX543MP2 GPU
 - Image signal processor (ISP)
 - Audience “EarSmart” unit for noise canceling
 - 512 MB DDR2 RAM @ 533MHz
Example: blood pressure monitor SoC
SoC Challenges

• SoC Designs
 • More complex, more functions, higher gate counts
 • Faster, cheaper, smaller
 • More reliable

• How to handle complexity?
 • System design at multiple abstraction levels
 • Integration of heterogeneous technologies & tools
 • Signal integrity & timing
 • Power management
 • SoC test methodology
SoC design with re-usable IP modules

- IP = intellectual property
 - HW or SW block
 - Designed for reuse
 - Need for standards (VSIA)

- Platform-based SoC design
 - Organized method
 - Reduce cost and risk
 - Heavy re-use of HW and SW IP

- Steps in re-use
 - Block -> IP -> integration architecture
ARM IP (ARM makes no hardware)

- Processors
 - Cortex A, Cortex R, Cortex M, ARM11, ARM9, ARM7, SecurCore
- Multimedia IP - graphics, video, audio
 - Mali-T604 GPU graphics processor
 - Mali-VE6 video engine
- System IP
 - CoreLink – interconnect & memory controllers
 - Supports Cortex and Mali processors
 - AMBA – Advanced Memory Bus Architecture
 - CoreSight – debug and trace IP (build into SoC)
- ARM “Artisan” Physical IP
 - Logic IP, Standard Cells, Memory Compilers, Interface IP
 - Technology-specific
ARM SoC-based products

- Mobile phones: ~100% market share
- Smartphones: 3x 100% market share
- Mobile Computers: 5x 100% market share
- Digital TVs: 30% market share
- Disk Drives: ~70% market share
- PC Peripherals: 30% market share
- Cars: 5x 40% market share
- Microcontrollers: 30% market share
ARM Advanced Microcontroller Bus Architecture (AMBA)

- On-chip interconnect specification for SoC
- Promotes re-use by defining a common backbone for SoC modules using standard bus architectures
 - AHB – Advanced High-performance Bus (system backbone)
 - High-performance, high clock freq. modules
 - Processors to on-chip memory, off-chip memory interfaces
 - APB – Advanced Peripheral Bus
 - Low-power peripherals
 - Reduced interface complexity
 - ASB – Advanced System Bus
 - High performance alternate to AHB
 - AXI – Advanced eXtensible Interface
 - ACE – AXI Coherency Extension
 - ATB – Advanced Trace Bus
Example AMBA System

- High Performance ARM processor
- AHB
- APB Bridge
 - UART
 - Timer
 - Keypad
 - PIO

- High Bandwidth External Memory Interface
- High-bandwidth on-chip RAM
- DMA Bus Master

High Performance
- Pipelined
- Burst Support
- Multiple Bus Masters

Low Power
- Non-pipelined
- Simple Interface
SoC Design Process

- Customer requirements
- System specification
- Architecture design
 - Hardware vs. software
- Component design
- Integration
- Verification
- Manufacture
- Test

Model, simulate, and evaluate at each stage
SoC Design Flow
High-Level Performance Modeling

- **Identify Workloads**
 - Based on target market
 - Standard benchmarks (spec, EEMBC)
 - O/S based “real” benchmarks – browser, real apps

- **Performance Models**
 - C-based, highly configurable
 - Internally developed (no EDA vendor)
 - Fast Instruction-Set Based Model
 - No timing information, but very fast
 - Used for statistics collection and coarse algorithm development (i.e. branch prediction scheme, load/store address patterns)
 - Abstracted Pipeline
 - Reasonably accurate, longer development time
 - More specific to microarchitecture
Higher levels of abstraction for SoC

- ESL (Electronic system level)
 - RTL (register transfer level) to TLM (transaction-level modeling)
 - VHDL to SystemC to UML
- HW/SW co-design
 - Simulation models/emulators of hardware to develop software while hardware is being developed
 - Need new tools
 - Consider the whole system
 - Large optimization potential
 - Combination of formal, semi-formal and non formal techniques
Unit RTL

- Synthesizable HDL models
- Split work into units based on functionality
 - Verilog language of choice
 - Write low-level constructs only (assign, case)
 - Why?
 - Portability; we target multiple partners and have to target
 - ‘lowest-common denominator’ design tools
 - Know your RTL! Easier to count gates “on-the-fly”

- Orderly bring-up; integration as soon as possible
ARM Design Simulation Models (DSM)

- HDL behavioral models of ARM cores
 - for functional and “in some cases, timing” simulation
 - derived from ARM core RTL code
 - full device functionality
 - register visibility
 - configure cache and memory sizes
 - compatible with VHDL/Verilog simulators (ex. ModelSim)
- Back-annotation capable, timing accurate
 - accept timing through SDF files
 - min/typ/max pin-to-pin delays
 - setup/hold/pulse checks
- Also called “Design Sign-Off Models”
 - generated from technology-specific netlist of a core
SoC integration

- Once core is built, integrated with other cores into chip
- Many millions of gates; can we abstract this out?
- System Design
 - SystemC model – transaction level, no timing
 - Can chain processor/peripheral models together to test OS
- Cycle-level system simulation
 - compiled model
 - no internal visibility
 - faster runtimes
 - smaller, simulator won’t run out of memory!
ARM Development Tools

- Software development
 - ARM Development Studio 5 (DS-5)
 - For ASICs and ASSPs
 - Compilers, debugger, system performance analyzer, real-time system simulator
 - Keil Microcontroller Development Kit (MDK)
 - For embedded microcontrollers
 - Cortex M, Cortex-R4, ARM7, ARM 9 devices
 - Compilers, debugger, simulators

- Models
 - ARM Fast Models – virtual platforms for software development before silicon
Conclusions

• SoC design requires different design approach than traditional ASICs
 • More modeling & simulation at higher abstraction levels
• Heavy use of IP, re-usable modules, platform-based design
 • SoC design team must work with IP vendor and foundry
• Use platform design & standard interfaces between IP
• Hardware/software co-design
• Many design challenges