Digital Communication Systems

Spread spectrum and Code Division Multiple Access (CDMA) communications
Spread Spectrum Communications - Agenda Today

• Basic principles and block diagrams of spread spectrum communication systems
• Characterizing concepts
• Types of SS modulation: principles and circuits
 – direct sequence (DS)
 – frequency hopping (FH)
• Error rates
• Spreading code sequences; generation and properties
 – Maximal Length (a linear, cyclic code)
 – Gold
 – Walsh
• Asynchronous CDMA systems
How Tele-operators* Market CDMA

Coverage
For Coverage, CDMA saves wireless carriers from deploying the 400% more cell site that are required by GSM.

Capacity
CDMA’s capacity supports at least 400% more revenue-producing subscribers in the same spectrum when compared to GSM.

Cost
A carrier who deploys CDMA instead of GSM will have a lower capital cost.

Clarity
CDMA with PureVoice provides wireline clarity.

Choice
CDMA offers the choice of simultaneous voice, async and packet data, FAX, and SMS.

Customer satisfaction
The Most solid foundation for attracting and retaining subscriber is based on CDMA.
Direct Sequence Spread Spectrum (DS-SS)

- This figure shows BPSK-DS transmitter and receiver
 (multiplication can be realized by RF-mixers)

\[
\sqrt{2P} c(t - T_d) \cos(\omega_t + \theta_d(t - T_d) + \phi)
\]

+ interference

\[
c(t - \hat{T}_d)
\]

\[
P_{av} = \frac{A^2}{2} \Rightarrow A = \sqrt{2P_{av}}
\]
Characteristics of Spread Spectrum

- Bandwidth of the transmitted signal \(W \) is much greater than the original message bandwidth (or the signaling rate \(R \))
- Transmission bandwidth is independent of the message. Applied code is known both to the transmitter and receiver

- Interference and noise immunity of SS system is larger, the larger the processing gain
- Multiple SS systems can co-exist in the same band (=CDMA). Increased user independence (decreased interference) for (1) higher processing gain and higher (2) code orthogonality
- Spreading sequence can be very long -> enables low transmitted PSD-> low probability of interception (especially in military communications)
Characteristics of Spread Spectrum (cont.)

- **Processing gain**, in general
 - Large L_c improves noise immunity, but requires a larger transmission bandwidth
 - Note that DS-spread spectrum is a repetition FEC-coded systems

- **Jamming margin**
 - Tells $L_{c} = 30$ dB, available processing gain
 - $L_{sys} = 2$ dB, margin for system losses
 - $SNR_{desp} = 10$ dB, required SNR after despreading (at the RX)
 - $M_{j} = 18$ dB, additional interference and noise can deteriorate received SNR by this amount
Characteristics of Spread Spectrum (cont.)

- **Spectral efficiency** E_{eff}: Describes how compactly TX signal fits into the transmission band. For instance for BPSK with some pre-filtering:

 $$\begin{align*}
 B_{RF} & \approx \frac{B_{RF, filt}}{k} \approx \frac{1}{T_c} \approx \frac{L_c}{T_b \log_2 M} \\
 \Rightarrow E_{eff} &= \frac{R_b}{B_{RF}} \approx \frac{1}{T_b} \frac{\log_2 M}{L_c} = \frac{\log_2 M}{L_c} \\
 \quad \left\{ \begin{array}{l}
 B_{RF, filt} \text{: bandwidth for polar mod.} \\
 M \text{: number of levels} \\
 k \text{: number of bits} \\
 \end{array} \right. \\
 \quad \left(M = 2^k \Rightarrow k = \log_2 M \right)
 \end{align*}$$

- **Energy efficiency (reception sensitivity)**: The value of $\gamma_b = E_b / N_0$ to obtain a specified error rate (often 10^{-9}). For BPSK the error rate is

 $$p_e = Q(\sqrt{2\gamma_b}), Q(k) = \frac{1}{\sqrt{2\pi}} \int_k^\infty \exp(-\lambda^2/2) d\lambda$$

- QPSK-modulation can fit twice the data rate of BPSK in the same bandwidth. Therefore it is more energy efficient than BPSK.
A QPSK-DS Modulator

- After serial-parallel conversion (S/P) data modulates the orthogonal carriers
- Modulation on orthogonal carriers spreaded by codes c_1 and c_2
- Spreading codes c_1 and c_2 may or may not be orthogonal (System performance is independent of their orthogonality, why?)
- What kind of circuit can make the demodulation (despreading)?
DS-CDMA (BPSK) Spectra (Tone Jamming)

• Assume DS - BPSK transmission, with a single tone jamming (jamming power $J [\text{W}]$). The received signal is

• The respective PSD of the received chip-rate signal is

• At the receiver $r(t)$ is multiplied with the local code $c(t)$ (=despreading)
Tone Jamming (cont.)

Despreading spreads the jammer power and despreads the signal power:

\[\frac{1}{2} PT_c \]

(a) Before despreading

\[S_s(f) \]

\[\text{Jammer area} = \frac{1}{2} J \]

Signal

(b) After despreading

\[S_p(f) \]

\[\frac{1}{2} PT \]

Signal

\[\frac{1}{2} JT_c \]

Jammer

\[\sqrt{2P} c(t - T_d) \cos(\omega_0 t + \text{interference}) \]

\[c(t - \hat{T}_d) \]

Despreadi

Banc fil
Tone Jamming (cont.)

- Filtering (at the BW of the phase modulator) after despreading suppresses the jammer power.
Error Rate of BPSK-DS System*

- DS system is a form of coding, therefore number chips, e.g., code weight determines, from its own part, error rate (code gain)

- Assuming that the chips are uncorrelated, prob. of code word error for a binary-block coded BPSK-DS system with code weight \(w \) is therefore

\[
P_e = Q\left(\sqrt{\frac{2E_b R_c W_m}{N_0}} \right), R_c = k / n \quad (= \text{code rate})
\]

This can be expressed in terms of processing gain \(L_c \) by denoting the average signal and noise power by \(P_{av}, N_{av} \), respectively, yielding

\[
P_{av}, N_{av}
\]

\[
E_b = P_{av} T_b, N_0 = N_{av} T_c \Rightarrow
\]

- Note that the symbol error rate is upper bounded due to repetition code nature of the DS by

\[
P_e = Q\left(\sqrt{\frac{2P_{av} T_b R_c W_m}{N_{av} T_c}} \right) = Q\left(\sqrt{\frac{2P_{av} L_c R_c W_m}{N_{av}}} \right)
\]

where \(t \) denotes the number of erroneous bits that can be corrected in the coded word

\[
P_{es} \leq \sum_{m=t+1}^{n} \binom{n}{m} p^m (1 - p)^{n-m}, t = \left\lfloor \frac{1}{2}(d_{min} - 1) \right\rfloor
\]

*For further background, see J.G. Proakis: Digital Communications (IV Ed), Section 13.2
Example: Error Rate of Uncoded Binary BPSK-DS

- For uncoded DS \(w=n \), thus \(R_c = (1/n)n = 1 \) and

\[
P_e = Q\left(\sqrt{\frac{2E_b}{N_0}} \cdot R_c \cdot w_m\right) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)
\]

- We note that \(E_b = P_{av} T_b = P_{av} / R_b \) and \(J_0 = J_{av} / W \) yielding

\[
\frac{E_b}{J_0} = \frac{P_{av} / R}{J_{av} / W} = \frac{W / R}{J_{av} / P_{av}}
\]

\[
\Rightarrow P_e = Q\left(\sqrt{\frac{2W / R}{J_{av} / P_{av}}}\right)
\]

- Therefore, we note that increasing system processing gain \(W/R \), error rate can be improved
Code Generation in DS-SS

- Binary message
- Binary adder
- Balanced modulator
- Transmitted signal
- Carrier f_0
- PN code generator
- Clock
- DS modulator
- Maximal length (ML) spreading code
- $N = 2^n - 1$

ML code generator

- Feedback taps
- Clock
- $n - 2$
- $n - 1$
- n
- Mod 2
- 1
- 2
- n
Some Cyclic Block Codes

- **Repetition codes.** High coding gain, but low rate
- **Hamming codes.** Minimum distance always 3. Thus can detect 2 errors and correct one error. $n=2^m-1$, $k = n - m$,
- **Maximum-length codes.** For every integer m there exists a maximum length code (n,k) with $n = 2^k - 1, d_{\text{min}} = 2^{k-1}$. Hamming codes are dual of maximal codes.
- **BCH-codes.** For every integer m there exist a code with $n = 2^m-1$, and where t is the error correction capability
- **Reed-Solomon (RS) codes.** Works with k symbols that consist of m bits that are encoded to yield code words of n symbols. For these codes and
- Nowadays BCH and RS are very popular due to large d_{min}, large number of codes, and easy generation
- For further code references have a look on self-study material!
Maximal Length Codes

\[R_c(\tau) \]

\[S_c(f) \]

\[\frac{N+1}{N^2} \cdot \text{sinc}^2 \left(fT_c \right) \]
Design of Maximal Length Generators by a Table Entry

\[
\begin{array}{cccc}
3 & 6 & 7 & \text{octal} \\
0 & 1 & 1 & \text{binary} \\
\downarrow & \downarrow & \downarrow & \text{coefficient} \\
g_7 & g_6 & g_5 & g_4 & g_3 & g_2 & g_1 & g_0
\end{array}
\]
Other Spreading Codes

- **Walsh codes**: Orthogonal, used in *synchronous systems*, also in WCDMA downlink
 - Generation recursively: \(H_0 = [0] \), \(H_n = \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & H_{n-1} \end{bmatrix} \)
 - All rows and columns of the matrix are orthogonal:
 \[(-1)(-1) + (-1)1 + 1(-1) + 1 \cdot 1 = 0 \]

- **Gold codes**: Generated by summing *preferred pairs* of maximal length codes. Have a guarantee 3-level crosscorrelation: \(\{ -t(n)/N, 1/N, (t(n) - 2)/N \} \)
 - For \(N \)-length code there exists \(N + 2 \) codes in a code family and
 \[N = 2^n - 1 \quad \text{and} \quad t(n) = \begin{cases} 1 + 2^{(n+1)/2}, & \text{for } n \text{ odd} \\ 1 + 2^{(n+2)/2}, & \text{for } n \text{ even} \end{cases} \]
 - Walsh and Gold codes are used especially in multiple access systems
 - Gold codes are used in *asynchronous communications* because their crosscorrelation is quite good as formulated above
Frequency Hopping Transmitter and Receiver

- In FH-SS hopping frequencies are determined by the code and the message (bits) are usually non-coherently FSK-modulated.

\[BW = W_d \]
\[BW = W_s \]
\[BW = W_s \]
\[BW = W_d \]

![Diagram of Frequency Hopping Transmitter and Receiver](image)

- This method is applied in BlueTooth®
Frequency Hopping Spread Spectrum (FH-SS)

- Example: transmission of two symbols/chip

- 2 levels
- 2 slots
- k: chip duration
- b: bit duration
- s: symbol duration
- T: chip duration
- T_b: bit duration
- T_s: symbol duration

- $W_d = 2^L f_d$ (≈ data modulator BW)
- $W_s = 2^k W_d$ (≈ total FH spectral width)

- 2^L levels
- 2^k slots
Error Rate in Frequency Hopping

- If there are multiple hops/symbol we have a fast-hopping system. If there is a single hop/symbol (or below), we have a slow-hopping system.

- For slow-hopping non-coherent FSK-system, binary error rate is
 \[P_e = \frac{1}{2} \exp(-\gamma_b / 2), \gamma_b = E_b / N_0 \]
 and the respective symbol error rate is (hard-decisions)
 \[P_{es} = \frac{1}{2} \exp(-\gamma_b R_c / 2), R_c = k / n < 1 \]

- A fast-hopping FSK system is a diversity-gain system. Assuming non-coherent, square-law combining of respective output signals from matched filters yields the binary error rate (with \(L \) hops/symbol)

\[
P_e = \frac{1}{2^{2L-1}} \exp(-\gamma_b / 2) \sum_{i=0}^{L-1} K_i \left(\frac{\gamma_b}{2} \right)^i, \gamma_b = L \gamma_c
\]

\[
K_i = \frac{1}{i!} \sum_{r=0}^{L-1-i} \binom{2L-1}{r}
\]
DS and FH compared

- FH is applicable in environments where there exist **tone jammers** that can be overcame by avoiding hopping on those frequencies
- DS is applicable for **multiple access** because it allows **statistical multiplexing (resource reallocation)** to other users (power control)
- FH applies usually **non-coherent modulation** due to carrier synchronization difficulties -> modulation method degrades performance
- Both methods were first used in **military communications**,– FH can be advantageous because the **hopping span** can be very large (makes eavesdropping difficult)
 – DS can be advantageous because **spectral density** can be much smaller than background noise density (transmission is unnoticed)
- FH is an **avoidance system**: does not suffer on **near-far effect**!
- By using **hybrid systems** some benefits can be combined: The system can have a low probability of interception and negligible near-far effect at the same time. (**Differentially coherent modulation** is applicable)
Multiple access: FDMA, TDMA and CDMA

- FDMA, TDMA and CDMA yield conceptually the same capacity.
- However, in wireless communications, CDMA has improved capacity due to statistical multiplexing and graceful degradation.
- Performance can still be improved by adaptive antennas, multiuser detection, FEC, and multi-rate encoding.
Example of DS multiple access
FDMA, TDMA and CDMA compared (cont.)

• TDMA and FDMA principle:
 – TDMA allocates a time instant for a user
 – FDMA allocates a frequency band for a user
 – CDMA allocates a code for user

• CDMA-system can be synchronous or asynchronous:
 – Synchronous CDMA can not be used in multipath channels that destroy code orthogonality
 – Therefore, in wireless CDMA-systems as in IS-95, cdma2000, WCDMA and IEEE 802.11 user are asynchronous

• Code classification:
 – Orthogonal, as Walsh-codes for orthogonal or near-orthogonal systems
 – Near-orthogonal and non-orthogonal codes:
 • Gold-codes, for asynchronous systems
 • Maximal length codes for asynchronous systems
Capacity of a cellular CDMA system

- Consider uplink (MS->BS)
- Each user transmits Gaussian noise (SS-signal) whose deterministic characteristics are stored in RX and TX
- Reception and transmission are simple multiplications
- Perfect power control: each user’s power at the BS the same
- Each user receives multiple copies of power P_r that is other user’s interference power, therefore each user receives the interference power

$$I_k = (U - 1)P_r$$

where U is the number of equal power users
Capacity of a cellular CDMA system (cont.)

• Each user applies a demodulator/decoder characterized by a certain *reception sensitivity* $E_b/I_0 \ (3 \text{-} 9 \text{ dB depending on channel coding, channel, modulation method etc.})$

• Each user is exposed to the *interference power density* (assumed to be produced by other users only) where B_T is the spreading (and RX) bandwidth

• Received signal energy / bit at the signaling rate R is
 \[E_b = \frac{P_r}{R} \]
 \[[J] = [W][s] \]

• Combining (1)-(3) yields the number of users
 \[I_k = (U - 1)P_r \Rightarrow \]
 \[U - 1 = \frac{I_k}{P_r} = \frac{I_0B_T}{E_bR} = \frac{(1/R)B_T}{E_b(1/I_0)} = E_b/I_0 \]

• This can still be increased by using *voice activity coefficient* $G_v = 2.67$ (only about 37% of speech time effectively used), *directional antennas*, for instance for a 3-way antenna $G_A = 2.5$.
Capacity of a cellular CDMA system (cont.)

• In cellular system neighboring cells introduce interference that decreases capacity. It has been found out experimentally that this reduces the number of users by the factor

$$1 + f \approx 1.6$$

• Hence asynchronous CDMA system capacity can be approximated by

$$U = \frac{W/R}{E_b/I_o} \frac{G_v G_A}{1 + f}$$

yielding with the given values \(G_v = 2.67\), \(G_A = 2.4\), \(1 + f = 1.6\),

$$U = \frac{4W/R}{E_b/I_o}$$

• Assuming efficient error correction algorithms, dual diversity antennas, and RAKE receiver, it is possible to obtain \(E_b/I_o = 6 \text{ dB} = 4\), and then

$$U \approx \frac{W}{R}$$