

Distributed Space Time Block Coding

Slides Division:

s Introduction

- Space Time Block Codes
- Decode-and-forward distributed STBC
 Performance Analysis
 Numerical Results
 Amplify-and-forward distributed STBC
 Performance analysis
- The synchronization problem
 Delay diversity
 Delay tolerant space-time codes
 Space-time spreading
 Conclusion
- s References

Introduction:

- Solution State State
- Problems / Drawbacks of Distributed Space Time Block Codes
 - so Spreading
 - 🗞 Design
- solutions

 - Solution State
 Solution
 Solution
 - Decode and Forward & Amplify and Forward (will be discussed in next slides)

Two Phase Transmission Protocol Illustration:

Figure 6.1: Illustration of the two-phase transmission protocol using a distributed space-time code. In the first phase (left subfigure) the source transmits to several relays, while in the second phase (right subfigure), the relays simultaneously transmit to the destination.

Space Time Block-Codes:

Some what are Space Time Block Codes ?

Solution of the primary problems associated with forwarding information from relays to a destination in a cooperative wireless network is how information is transmitted from the relays over time, i.e., the space-time transmission scheme.

	transmit antennas				
time-slots	$\begin{bmatrix} s_{11} \\ s_{21} \\ \vdots \end{bmatrix}$	$s_{12} \\ s_{22} \\ \vdots$		$\left \begin{array}{c} s_{1nT} \\ s_{2nT} \\ \vdots \end{array} \right $	
Ļ	s_{T1}	s_{T2}		s_{Tn_T}	

Linear Dispersion (LD) Space Time Block Codes
sti = Ais + Bi⁻s

where s is the column vector containing the complex conjugates of s and the complex T₂ × T₁ matrices A and B are called dispersion matrices.

STBCs Cont..

One linear dispersion code that has been proposed for cooperative communication with R=2 relays is described by the dispersion matrices

$$A_{1} = \begin{bmatrix} +1 & 0 \\ 0 & +1 \end{bmatrix}, A_{2} = 0_{2 \times 2}, B_{1} = 0_{2 \times 2}, B_{2} = \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix}$$

where $0_{m \times n}$ is a $m \times n$ matrix of all-zeros. This code is simply a transpose of the well-known Alamouti space-time block code

Bit Error Rate Performance of 4 Systems:

Figure 6.2: Bit error rate (BER) performance of four systems: An uncoded system with R = 1 transmit antenna, an Alamouti-coded system with R = 2transmit antennas, an orthogonal STBC with R = 4 transmit antennas, and a quasi-orthogonal STBC with R = 4 transmit antennas. In each case, the spectral efficiency is 3 bps/Hz and the signals are transmitted over independent Rayleigh fading channels.

Decode-and-forward distributed STBC

- s Consider Two Phase Relay Network
- s Assume First Channel Transmission is corrupted by noise i
- s Guarantee of data loss
- This Problem is solved by using *decode-and-forward* protocol
- Section 5 Section 2 Sec
- Solution Started in Second phase
 Solution Started in Second phase
- It requires each relay to fully decode the signals received

Performance Analysis

- so Performance depends on error control code
- If LDPC code is used for measuring performance then performance is mentioned by *information-outage probability* of the link
 - sthe probability that the conditional mutual information between the channel input and output is below some threshold.

Final Expression for end-to-end outage probability

$$p_D = p^R + \sum_{k=1}^R \binom{R}{k} (1-p)^k p^{R-k} \left(1 - \sum_{n=0}^{\min\{k, K_{max}\}^{-1}} \frac{\Gamma_2^n}{n!} e^{-\Gamma_2} \right).$$

Numerical Analysis:

We can determine the outage probability for a network comprised of R relays that uses a particular space-time code by the expression given below:

$$p_D = p^R + \sum_{k=1}^R \binom{R}{k} (1-p)^k p^{R-k} \left(1 - \sum_{n=0}^{\min\{k, K_{max}\}-1} \frac{\Gamma_2^n}{n!} e^{-\Gamma_2} \right).$$

Amplify-and-Forward distributed STBC:

- Solution Each relay using this protocol simply converts the received signal to baseband
- And then passing it through a pair of filters matched to the in-phase and quadrature basis functions.
- so The Matched signals are sampled
- Which gives T1 complex samples that are placed into the vector ri
- Finally the relay transmits a linear combination of the samples in ri and its conjugates at power P2
- The normalized signal transmitted by node Ni in vector form is given by

$$\mathbf{t}_i = \sqrt{\frac{1}{P_1 + 1}} \left(A_i \mathbf{r}_i + B_i \bar{\mathbf{r}}_i \right)$$

Performance Analysis:

so By bounding the pairwise error probability

The main result or achieved diversity is given by the expression given below:

$$d = R\left(1 - \frac{\log \log P}{P}\right)$$

The Synchronization Problem:

Solay Diversity:

The point-point communication over multiple channels provide diversity

The Following Scheme is used:

Sin the first time slot, the symbol x[1] is transmitted on antenna 1 and all other antennas are silent. In the second time slot, x[1] is transmitted from antenna 2 and x[2] is transmitted by antenna 1 and all other antennas remain silent. At time slot m, x[m − l] is transmitted on antenna l + 1 for l = 0, 1, ... L 1.

This transmission scheme yields a received signal that is identical to that received in a SISO frequency selective channel with L paths. This special point-point space-time coding scheme is called delay diversity

Delay Tolerant Space-Time Codes

- Another approach is Delay Tolerant is used whose performance in insensitive to delays among each relay
- Let S be a code word matrix from a synchronized spacetime block code and let ΔS be the code matrix received at destination due to transmission or propagation delay.
- so The ΔS can be given by the expression:

$$\Delta S = \begin{bmatrix} 0^{\Delta_1} & 0^{\Delta_2} & \cdots & 0^{\Delta_R} \\ C_1 \mathbf{s}^{(1)} & C_2 \mathbf{s}^{(2)} & \cdots & C_R \mathbf{s}^{(R)} \\ 0^{\tau - \Delta_1} & 0^{\tau - \Delta_2} & \cdots & 0^{\tau - \Delta_R} \end{bmatrix}.$$

Space Time Spreading:

- Assign the source and each relay a unique spreading code.
- When Relays are not synchronized the signal received at the destination will be similar to that obtained in a conventional asynchronous CDMA uplink
- Which allows the separation of transmission from the source and the relays
- Requires the synchronization of the relays

Conclusion:

- Solution STBC are good to use in multiple relay networks
- With this technique each relay transmits a particular column of space-time code word
- The decode-and-forward is used when the number of relays is greater then the no of columns in code word
- Solution → Solutio
- When the number of relays are equal to the no of columns then in this case we use Amplify-and-forward protocol
- In AF it is not necessary that the relays are interconnected

Cont..

- In addition to the implementation challenges that are common to conventional MIMO systems, the lack of synchronization at the destination receiver imposes additional challenges to systems that use distributed space-time codes.
- The synchronization problem can be alleviated by using delay diversity, space - time spreading, or delay-tolerant space-time codes.

References:

- S. M. Alamouti, "A simple transmit diversity technique for wireless communications,"IEEE Journal on Selected Areas in Communications, 16, 1998,1451–1458.
- M. O. Damen, A. Chkeif, and J. Belfiore, "Lattice code decoder for space-time codes," IEEE Communications Letters, 4, 2000, 161–163.
- M. O. Damen and A.R. Hammons, "Delay-tolerant distributed TAST codes for cooperative diversity," IEEE Transactions on Information Theory, 53, 2007, 3755–3773.
- M. El-Hajjar, O. Alamri, S. X. Ng, and L. Hanzo, "Turbo detection of precoded sphere packing modulation using four transmit antennas for differential spacetime spreading," IEEE Transactions on Wireless Communications, 7,2006, 943-952.
- A. R. Hammons and M. O. Damen, "On delay-tolerant distributed space-time codes," in Proc. of IEEE Military Communications Conference (MILCOM), 2007
- S. Hassibi and B. M. Hochwald, "High-rate codes that are linear in space and time," IEEE Transactions on Information Theory, 48, 2002, 1804–1824.
- H. Jafarkhani, "A quasi-orthogonal space-time block code," IEEE Transactions on Communications, 49, 2001, 1–4.

- Y. Jing and B. Hassibi, "Distributed space-time coding in wireless relay networks," IEEE Transactions on Wireless Communications, 5, 2006, 3524– 3536.
- Y. Jing and H. Jafarkhani, "Orthogonal and quasi-orthogonal designs in wireless relay networks," IEEE Transactions on Information Theory, 53, 2007, 4106–4118.
- J. N. Laneman and G. W. Woernell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Transactions on Information Theory, 49, 2003, 2415–2425.
- E. G. Larsson and P. Stoica, Space-time block Coding for Wireless Communications. Cambridge University Press, 2008.
- R. Nabar, H. Bolcskei, and F. Kneubuhler, "Fading relay channels: Performance limits and space-time signal design," IEEE Journal on Selected Areas in Communications, 22, 2004, 1099–1109.
- Y. Shang and X. G. Xia, "Shift-full-rank matrices and applications in spacetime trellis codes for relay networks with asynchronous cooperative diversity," References 175 IEEE Transactions on Information Theory, 52, 2006, 3153– 3167.
- S. Sugiura, S. Chen, and L. Hanzo, "Cooperative differential space-time spreading for the asynchronous relay aided CDMA uplink using interference rejection spreading code," IEEE Signal Processing Letters, 17, 2010, 117–120.
- V. Tarokh, H. Jafarkhani, and A. Calderbank, "Space-time block codes from orthogonal designs," IEEE Transactions on Information Theory, 45, 1999, 1456–1467.

- M. Torbatian and M. O. Damen, "On the design of delaytolerant distributed space-time codes with minimum length," IEEE Transactions on Wireless Communications, 8, 2009, 931–939.
- D. Torrieri and M. C. Valenti, "Efficiently decoded fullrate space-time block codes," IEEE Transactions on Communications, 58, 2010, 480–488.
- D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.
- K. Vardhe, D. Reynolds, and M.C. Valenti, "The performance of multiuser

