BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH ELECTRONICS AND COMMUNICATION ENGINEERING B.TECH CURRICULUM AND SYLLABUS (R2015) CHOICE BASED CREDIT SYSTEM (CBCS)

I – VIII SEMESTERS

		SEMESTER I									
Course Code	Category	Course Title	L	Т	Р	С					
		THEORY									
BEN101	HS	English – I	3	1	0	3					
BMA101	BS	Mathematics – I	3	1	0	3					
BPH101	BS	Engineering Physics - I	3	0	0	3					
BCH101	BS	Engineering Chemistry – I	3	0	0	3					
BCS101ESFundamentals of Computing and Programming3003											
BFI101 *	3	0	0	3							
BME102	ES	Engineering Graphics-C	1	0	3	3					
BEE101	ES	Basic Electrical and Electronics Engineering	2	0	0	2					
		PRACTICAL									
BCS1L1	ES	Computer Practice Laboratory	0	0	3	1					
BEE1L1	ES	Basic Electrical and Electronics Engineering Practices Laboratory	0	0	3	1					
BPC1L1 #	BS	Physics and Chemistry Laboratory	0	0	3/3	0					
BSS1L7	HS	Yoga(to be conducted during weekends)	<u> </u>			1					
*Any one of	the follow	ing courses:BFR101–French, BGM101–German, BJP10	1– Ja	apar	nese,						
BKR101 – Korean, BCN101 – Chinese, BTM101 - Tamil #Laboratory Classes on alternate weeks for Physics and Chemistry. The lab examinations will be											
held only in	the second	semester (including the first semester experiments also)	iiiiia	lion	5 11						
Total Nu	mber of C	ontact Hours = 35 Total Number	of C	redi	its= 2	26					

		SEMESTER II								
Course Code	Category	Course Title	L	Т	Р	С				
	I	THEORY								
BEN201	HS	English – II	3	1	0	3				
BMA201	BS	Mathematics – II	3	1	0	3				
BPH201	BS	Engineering physics – II	3	0	0	3				
BCH201	BS	Engineering Chemistry – II	3	0	0	3				
BCS201	ES	Internet Programming	2	0	0	2				
BSS201	HS	Personality Development	2	0	0	2				
BBT202	BS	Biology for Engineers	2	0	0	2				
BME203	ES	Basic Mechanical Engineering	2	0	0	2				
BCE201	ES	Basic Civil Engineering	2	0	0	2				
		PRACTICAL								
BCS2L1	ES	Internet Practices Lab	0	0	3	1				
BCM2L1	ES	Basic Civil and Mechanical Engineering Practices Laboratory	0	0	3	1				
BPC2L1#	BS	Physics and Chemistry Laboratory	0	0	3/3	1				
BSS2L4/ BSS2L5/ BSS2L6	BSS2L4/ BSS2L5/ BSS2L6NCC/NSS/NSO (to be conducted during weekends)1									
Laboratory Cla semester expe	aboratory Classes on alternate weeks for Physics and Chemistry. (Lab exam including the first emester experiments also)									

Total Number of Contact Hours = 33

Total Number of Credits= 26

		SEMESTER III				
Code No.	Category	Course Title	L	Т	Р	С
		Theory				
BMA301	BS	Mathematics -III	3	2	0	4
BEE305	PC	Electrical Machines	3	0	0	3
BEC301	PC	Signals and Systems	4	0	0	4
BEC302	PC	Principles Of Digital Electronics	3	1	0	4
BEE301	PC	Circuit Theory	3	0	0	3
BCE306	HS	Environmental Studies	3	0	0	3
		Practical				
BEE3L3	PC	Electrical Engineering Lab	0	0	3	2
BEC3L1	PC	Electronic Devices and Circuits Lab	0	0	3	2
BEC3L2	PC	Digital Electronics Lab	0	0	3	2
Total No. of Co	ontact Hours:	30		Total (Credit	s: 27

		SEMESTER IV				
Code No.	Category	Course Title	L	Т	Р	С
		Theory				
BMA402	BS	Numerical Methods	3	2	0	4
BEC402	PC	3	0	0	3	
BEC405	PC	Linear Integrated Circuits	3	0	0	3
		Object Oriented Programming and Data				
BCS406	PC	Structures	3	0	0	3
BEC403	PC	Electromagnetic Fields and Waves	4	0	0	4
BEI406	PC	Electronic Instrumentation	3	0	0	3
		Practical				
BEC4L1	PC	Electronic Circuit Design Lab	0	0	3	2
		Object Oriented Programming and Data				
BCS4L3	BCS4L3 PC Structures Lab		0	0	3	2
BEC4L2	PC	Linear Integrated Circuits Lab	0	0	3	2
Total No. of Co	ontact Hours: 3	0	Το	tal Cre	dits: 2	26

		SEMESTER V											
Code No.	Category	Category Course Title L T P											
		Theory											
BEC505	PC	Digital Signal Processing	4	0	0	4							
BEC502	BEC502PCMicroprocessor and Microcontroller3003												
BEC504PCCommunication Engineering-I300													
BMA504	3	2	0	4									
	3	0	0	3									
	CE	Core Elective I	3	0	0	3							
		Practical											
BEC5L1	PC	Digital Signal Processing laboratory	0	0	3	2							
BEC5L6	PC	Microprocessor and Microcontroller Lab	0	0	3	2							
BEC5L3	PC	Communication Engineering Laboratory -I	0	0	3	2							
BEC5C1	BEC5C1PRComprehension I0001												
Fotal No. of Contact Hours: 30 Total Credits: 27													

		SEMESTER VI									
Code No.	Category	Course Title	L	Т	Р	С					
		Theory									
BEC601	PC	Computer Communication and Networks	3	0	0	3					
BEC604	BEC604PCCommunication Engineering - II3003										
BEI 601	PC	Control Systems	4	0	0	4					
BSS601	3	0	0	3							
	CE Core Elective II										
	NE	Non-Major Elective -I	3	0	0	3					
		Practical									
BEC6L1	PC	Computer Communication & Networks Lab	0	0	3	2					
BEC6L2	PC	Electronics System Design Lab	0	0	3	2					
BEC6L3	PC	Communication Engineering –II Lab	0	0	3	2					
Total No. of C	Fotal No. of Contact Hours: 28Total Credits: 25										

		SEMESTER VII								
Code No.	Category	Course Title	L	Т	Р	С				
		Theory			_	-				
BEC701	PC	Fiber Optic Communication	3	0	0	3				
BEC702	PC	Digital CMOS VLSI	4	0	0	4				
BEC703	PC	Microwave Engineering	3	0	0	3				
BEC704	PC	Antennas and Wave Propagation	3	0	0	3				
	NE	Non-Major Elective -II	3	0	0	3				
	CE	Core Elective – III	3	0	0	3				
		Practical								
BEC7L1	PC	Digital CMOS VLSI Lab	0	0	3	2				
BEC7L2	PC	Optical Communication Lab	0	0	3	2				
BEC7L3	PC	Microwave Engineering Lab	0	0	3	2				
BEC7P1	PR	Term Paper	0	0	4	2				
Total No. of (Total No. of Contact Hours: 32Total Credits: 27									

	SEMESTER VIII											
Code No.	Category	Course Title	L	Т	Р	С						
		Theory										
	OEOpen Elective-II3003											
	NE	Non- Major Elective-III	3	0	0	3						
		Practical										
BEC8C1	PR	Comprehension II	0	0	0	1						
BEC8P1	PR	Project Work	0	0	18	9						
Total No. of Co	ntact Hours:2	4		Tota	l Cred	lits : 16						

Overall credits for the Programme: 200

SUMMARY OF CURRICULUM STRUCTURE AND CREDIT DISTRIBUTION

S. No.	Sub Area			Cre	dit as	per Se	emeste	r		No. of	% of
		Ι	II	III	IV	V	VI	VII	VIII	Credit	credit
1	Humanities & Social Sciences (HS)	7	6	3	-	-	3	-	-	19	9.50
2	Basic Sciences (BS)	9	12	4	4	4	-	-	-	33	16.50
3	Engineering Sciences (ES)	10	8	-	-	-	-	-	-	18	09.00
4	Professional Core (PC)	-	-	20	22	16	16	19	-	93	46.50
5	Core Electives (PE)	-	-	-	-	3	3	3	-	9	4.5
6	Non major Electives (NE)	-	-	-	-	-	3	3	3	9	4.5
7	Open Electives (OE)	-	-	-	-	3	-	-	3	6	3
8	Project Work, Seminar, Internship, Term Paper, etc. (PR)	-	-	-	-	1	-	2	10	13	6.50
	Total Credit	26	26	27	26	27	25	27	16	200	100%

LIST OF ELECTIVES

Code no.	Course Title	L	Т	Р	С
	Core Elective–I (CE - I)				
BEC503	Transmission lines, Networks and Waveguides	3	0	0	3
BEC001	Advanced Computer Architecture	3	0	0	3
BEC008	MEMS and NEMS	3	0	0	3
BEC010	VLSI Design	3	0	0	3
	Core Elective – II (CE-II)				
BEC015	ASIC Design	3	0	0	3
BEC012	Cryptography and Network Security	3	0	0	3
BEC007	Digital Image Processing	3	0	0	3
BEC002	Wireless Networks	3	0	0	3
	Core Elective – III (CE-III)				
BEC016	Cognitive Radio	3	0	0	3
BEC005	Blue Tooth Technology	3	0	0	3
BEC003	Satellite Communication	3	0	0	3
BEC705	Cellular Mobile Communication	3	0	0	3
	Non-Major Elective – I (NE-I)		-		
BCS002	Neural Networks	3	0	0	3
BBM054	Bio Informatics	3	0	0	3
BEI605	Embedded Systems Design	3	0	0	3
BCS702	Mobile And Pervasive Computing	3	0	0	3
	Non-Major Elective – II (NE-II)				
BCS701	Grid and Cloud Computing	3	0	0	3
BCS008	Distributed Operating Systems	3	0	0	3
BCS603	Artificial Intelligence Expert System	3	0	0	3
	Non-Major Elective – III (NE-III)				
BBM405	Biosensors and Transducer	3	0	0	3
BEI704	Virtual Instrumentation	3	0	0	3
BET603	Telecommunication Switching Systems	3	0	0	3
	Open Elective-I (OE-I)				
BBA008	Total Quality Management	3	0	0	3
BBA001	Principles of Management and Organizational	3	0	0	3
	Behavior				
BBA004	Engineering Economics and Financial	3	0	0	3
	Management				
	Open Elective-II (OE-II)				
BEI701	Logic and Distributed Control System	3	0	0	3
BEI012	Analog Integrated Circuit Design	3	0	0	3
BET008	Integrated Service Digital Network	3	0	0	3

BE	EN101		ENG	GLIS	H - I								L	Τ	P	С	
			Tota	ıl Con	tact H	Iour	s – 60						3	1	0	3	
			Prer	equisi	te – -	+2 L	evel E	nglish									
			Cou	rse De	esigne	ed by	y – De	pt of E	Engl	ish							
	RIECI	IVE						•									
To	make	the s	5 tuden	ts lea	rn the	e bas	sic mo	des of	coi	nmunica	ation	for fluen	ncy ar	nd at	tainm	ent d	of
coi	nfidenc	e in s	peech	n, read	ling a	nd w	riting						5				
CC	DURSI	E OU	TCO	MES	(COs	5)											
CC	D1	Und	erstan	d the	impo	rtanc	ce of b	eing ro	espo	onsible, l	ogica	l, and the	oroug	h.			
CC)2	Resp	ond t	o the	situat	ions	where	short	repo	orts and	instru	ctions ar	e req	uired	l.		
CC)3	Expl	lain "l	now tł	nings	wor	k", and	l what	to s	suggest v	when '	"things d	lon't v	work	-		
CC)4	Deve	elop c	our con	nfide	nce a	and aut	thority	in t	he pract	ical u	se of lan	guage				
CC)5	Able	e to Fa	ace int	ervie	ws a	ind coi	npetiti	ive e	examinat	tions						
			Ma	pping	of C	ourse	e Outc	omes	with	Program	n out	comes (l	POs)				
		(H	/M/L	indica	ates s	treng	gth of o	correla	tion) H-Hi	gh, M	-Mediur	n, L-I	_ow			
1	COs/	Pos	a	b	с	d	e	;	f	g	h	i	j	ĺ	k	2	
2	CO1		H	Η	Η	H	I	I N	Л	L	L	Н	I	ł	I	I	
	CO2		TT														-
	C03		н u	м					Л	H I	Ц	H U					-
	C04		11	IVI					/1	L	11	11					-
	000																
3	Categ	gory															
			s & '	nes	seou		Jces	lal		ive		or VE)	iive		ш	~	PR
			itie	S)	cier	S)	ciei S)	sion	(PC	E)		Maj e (D	llect	Э	/Te	er/ inar	in (
			nan	(H	c S (B	S E	ofes	ore	е E		on-N ctiv	n E	2	ject	rap emi	nsh
			Hur	200	Basi		Ingg	Pro	Ŭ	Cor		Nc Elec	Ope		Pro	S	nter
				-			н										Ι
			\checkmark														
4	Appro	oval	37 th	Mee	ting	of A	cadem	ic Cou	incil	, May 2	015						

UNIT I STRUCTURES

Parts of speech - Active and passive voices - Subject verb agreement. - Writing about School life, Hobbies, Family and friends – Word formation with prefixes and suffixes - Tenses - Concord - Summarizing - Note-making

UNIT II TRANSCODING

Cause and effect relations – Punctuations –Differences between verbal and nonverbal communication -E - mail communication – Homophones - Etiquettes of E mail communication. Interpreting graphic representation - Flow chart and Bar chart.

UNIT III REPORTING

Degrees of comparison – Positive, Comparative, Superlative - questions- SI units -Lab reports - Physics chemistry, workshop and Survey report for introducing new product in the market.

UNIT IV FORMAL DOCUMENTATION

Writing project proposals - Presentation skills - Prefixes and suffixes - If conditions - Writing a review-Preparing minutes of the meeting, Agenda, official circulars.

UNIT V METHODOLOGY

Accident reports (due to flood and fire) - Hints development - Imperatives - Marking the stress Connectives , prepositional relatives.

TEXT BOOK:

1. Department of Humanities and Social Sciences Division, Anna University, Oxford University Press, 2013.

REFERENCES:

- 1. S.P.Danavel, English and Communication for Students of Science and Engineering, Orient Blackswan, Chennai, 2011.
- 2. Rizvi, M.Asharaf, Effective Technical Communication, New Delhi, Tata McGraw Hill Publishibg Company, 2007.
- 3. Murali Krishna and Sunitha Moishra, Communication Skills for Engineers . Pearson, New Delhi, 2011.

BMA10	1 MATHEMAT	ICS I	L	Т	P	C					
	Total Contact I	Hours - 60	3	1	0	3					
	Prerequisite –	+ 2 Level Mathematics		1		1					
	Course Designed by – Dept of Mathematics										
OBJEC	TIVES										
To make	the students learn Mat	hematics in order to formulate and solve	proble	ms							
effective	ly in their respective fi	elds of engineering.									
COURS	SE OUTCOMES (COs)									
CO1	Study the fundamental	s of mathematics									
CO2	Students learn multiple	e integral techniques									
CO3	Students gain knowled	lge in application of variables									
CO4	Find area and volume	based on a function with one or more va	riables.								
CO5	Apply matrix operatio	ns to solve relevant real life problems in	n engine	ering	•						
CO6	Formulate a mathematical model for three dimensional objects and solve										
	Mapping of Co	urse Outcomes with Program outcomes	(POs)								
	(H/M/L indicates str	rength of correlation) H-High, M-Medi	um, L-I	LOW							

12

12

1	COs/Pos	а	b	с	d	e	f	g	h		i	j	k
2	CO1	Η											
	CO2			Μ		Н							
	CO3		Η				Μ						
	CO4								L				
	CO5							Н				L	
	CO6												L
3	Category	Humanities & Social	Studies (HS)	 ✓ Basic Sciences & Maths (BS) 	Enoo Sciences (F.S)		Professional Core (PC)				Non-Major Elective (NE)	Open Elective (OE)	Project/ Term Paper Seminar/ Internship (PR)
4	Approval	37 th	ⁿ M	eeting	of A	cadem	ic Cou	ncil, M	ay 20	15			1

UNIT 1 MATRICES

Characteristic equations- Eigen values and eigen vectors of the real matrix- Properties- Cayley-Hamilton theorem(Excluding proof)- Orthogonal transformation of a symmetric matrix to diagonal form- Quadratic form- Reduction of quadratic form to canonical form by orthogonal transformation.

UNIT II THREE DIMENSIONAL ANALYTICAL GEOMETRY

Equation of a Sphere- Plane section of a sphere- Tangent plane- Equation of cone- Right circular cone- Equation of a cylinder- Right circular cylinder.

UNIT III DIFFERENTIAL CALCULUS

Curvature in Cartesian coordinates- Centre and radius of curvature- Circle of curvature- Evolutes-Envelopes- Applications of Evolutes and Envelopes.

UNIT 1V FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives- Euler's theorem for homogeneous functions- Total derivatives- Differentiation of implicit functions- Jacobians- Taylor's expansion- Maxima and Minima- Method of Lagrangian multipliers.

UNIT V MULTIPLE INTEGRALS

Double integration- Cartesian and Polar coordinates- Change of order of integration- Change of variables between Cartesian and Polar coordinates- Triple integration in Cartesian coordinates-Area as double integral- Volume as triple integral.

TEXT BOOK:

- A. Ravish R.Singh and Mukkul Bhatt, "Engineering Mathematics-I" First Reprint, Tata McGraw Hill Pub Co., New Delhi. 2011.
- B. Grewal.B.S, "Higher Engineering Mathematics", 40th Edition, Khanna Publications, Delhi. 2007.

12

10

12

12

12

REFERENCES:

- 1. Ramana.B.V. "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Glyn James, "Advanced Engineering Mathematics", 7th Edition, Pearson Education, 2007.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons, New York, 2003.
- 4. Murray R.Spiegel, "Advanced Calculus", Schaum's Outline Series, First Edn, McGraw Hill Intl Book Co., New Delhi, 1981.

BPH 1	101		ENG	INE	ERIN	IG I	PHYSI	CS I			L	Т	P	С	
			Total	Cont	tact H	lour	s - 45				3	0	0	3	
			Prere	quisi	te – +	2 le	vel Phy	vsics							
			Cours	se De	esigne	d by	y – Dep	artment	of Phys	sics					
OBJI	ECTI	VES:													
To en	hance	the fu	ndame	ental	know	ledg	ge in Ph	nysics an	d its ap	oplication	ns relev	ant to	o vari	ous stre	am
Engin	eering	g and T	'echno	logy											
COU	RSE (OUTC	OME	S (CO	Os)										
CO1	Un	derstar	nd the	Princ	iples	and	Laws of	of Physic	s						
CO2	То	unders	stand t	he im	pact	of C	Crystal I	Physics							
CO3	Lea	arn the	Prope	rties	of Ela	astic	ity and	Heat tra	nsfer.						
CO4	Ac	quire K	Knowle	edge	on Q	uant	um Phy	vsics.							
CO5	Un	derstar	nd the	conce	epts o	n L	aser &	Ultrason	ic's and	d its App	lication	S			
CO6	Un	derstar	nd the	Princ	iple of	of L	aser and	l its App	licatior	ns in Eng	ineerin	g and	d Mee	dicine.	
	Mapping of Course Outcomes with Program outcomes (POs)														
		(H/M	/L ind	icate	s stre	ngth	of com	relation)	H-Hi	gh, M-M	edium,	L-Lo	W		
1	COs/	Pos	a	b	c	d	e	f	g	h	i		j	k	Τ
2	CO1		Η						Μ]	H		
	CO2			L	Η		М				М			L	
	CO3														
	CO4		Η		Μ	L							L		
	CO5			L	L									L	
	CO6			L	L									L	
3 Category		Humanities &	(HS)	 ✓ Basic Sciences 	(SU)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	, , ,	Project/Term Paper/	Seminar/ Internship		
4	Appr	oval	37 th	Mee	eting	of A	cademi	c Counc	il, May	2015					_

UNIT I CRYSTAL PHYSICS

9

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)-

Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity-Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders Modes of heat transfer- thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion –Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homo junction & hetero junction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House, 2014.
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai Publishers, 2009.
- 4. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.
- 4. http://ocw.mit.edu/courses/find-by-topic
- 5. http://nptel.ac.in/course.php?disciplineId=122
- 6. https://en.wikipedia.org/wiki/Engineering_physics

9

9

9

BCH1	01	ENG	GINE	ERI	NG	CHE	MISTR	Y -	I			L	Т		P	С	
		Tota	l Cor	ntact	Hou	s - 4	5					3	0	(0	3	
		Prere	equis	ite –	+2 I	Level	Chemis	try				I					
		Cour	rse D	esign	ed b	y – C	Departme	ent o	f Che	emistry							
OBJE	CTIVE	ES															
To im	part a so	ound l	know	ledge	e on	the p	rinciples	of	chem	istry inv	olving th	e diff	erent	t			
applic	cation of	riente	d top	olds re	equir	ed to	r all eng	inee	ring	branches	S.						
COU	KSE OU	JTCC	JME	S (C)	Us)												
CO1	Under	rstand	the p	princi	iples	of w	ater cha	racte	erizat	ion and	treatmen	t for					
	portal	ole an	d ind	ustria	ıl pu	rpose	es.										
CO2	To im	part k	now	ledge	on t	he es	ssential a	spec	cts of	Princip	les of po	lymer	•				
CO2	chemi	stry a	ind er	ngine	ering	g app	lications		polyn	ners							
COS	Havin	ig a sc 'onvei	ouna ntion	know al en	/leag	e m	the Field	1 01 1	ne C	onventio	onal and						
CO4	To im	nart k	now	ledge	c_1gy	he es	sential a	ispec	cts of	electro	chemical	cells					
001	emf a	nd ap	plica	tions	of E	MF r	neasurei	nent	S S	01001101	, incluie and	00115,					
CO5	To ma	ake th	e stu	dents	und	ersta	nd the P	rinci	ples	of corro	sion and	corro	sion	con	trol	•	
CO6	CO6 To impart knowledge about the Conventional and non-conventional energy sources and energy storage devices																
	source			igy si	orag		lices										
		Ma	appir	ng of	Cou	se O	utcomes	wit	h Pro	gram o	utcomes	(POs))				
	(H	H/M/L	_ indi	cates	stre	ngth	of correl	atio	n) H	I-High,	M-Mediu	ım, L	-Low	1			
1	COs/F	os	a	b	c	d	e	f	g	h	i		j		k	5	
2	CO1		Н						Н								
	CO2			L	Η		М										
	CO3			Μ		Η											
	CO4		Η		Μ	L			Η								
	CO5			L	L												
	CO6		Η						Η								
3	Catego	ory	ĸ	S	Se		S	_		e		e		С		ć	2
			es	ıdi€	snce		nce	ona	Ũ	otiv	NE	ctiv		ern		<u>ک</u> ا (Ξ
			niti	Stu HS)	Scie	3S)	cie	ssic	L)	Elec (E)	Ma ve (Ele)E)	t/Τ	per	una Lina	шp
			mai	ial (F	ic S	Ē	50 -	ofe	ore	re I ((on- ctiv	en]	\overline{O}	jec	Pa	Sen	LIIS
			Hu	Soc	Bas		ing: ES)	$\mathbf{P}_{\mathbf{r}}$	0	Coi	N Ele	0 D	•	Pr(,		III
				_	_		ШС									-	-
					N												
4	Appro	val	37 ^t	th Me	etin	g of <i>I</i>	Academi	c Co	ounci	l, May 2	2015						

UNIT I WATER TECHNOLOGY

Introduction-Characteristics : Hardness of water – types - temporary and permanent hardness - estimation by EDTA method Alkalinity – types of alkalinity - Phenolphthalein and Methyl orange alkalinity - determination –Domestic water treatment – disinfection methods (Chlorination, Ozonation , UV treatment) Boiler feed water – requirements – disadvantages of using hard water in boilers Internal conditioning (Calgon Conditioning method) – External conditioning – Demineralization process – Desalination and Reverse osmosis.

UNIT II POLYMERS

Introduction-Polymers- definition – polymerization – degree of polymerization - types of polymerization – Addition polymerization and Condensation polymerization – Mechanism of Polymerization - free radical polymerization mechanism only, Plastics: Classification – thermoplastics and thermosetting plastics – difference between thermoplastics and thermosetting plastics - preparation, properties and uses of PVC, Teflon, nylon-6,6, PET, Rubber :Types – drawbacks of natural rubber -vulcanization of rubber - properties and uses of vulcanized rubber Synthetic rubbers – butyl rubber and SBR

UNIT III ELECTRO CHEMISTRY

Introduction CELLS: types of Electrochemical cells , Electrolytic cells – Reversible and irreversible cells EMF – measurement of EMF– Single electrode potential – Nernst equation Reference electrodes : Standard Hydrogen electrode -Calomel electrode Ion selective electrode :Glass electrode and measurement of pH using Glass electrode Electrochemical series – significance Titrations :Potentiometer titrations (redox - $Fe^{2+}vs$ dichromate titrations) Conduct metric titrations (acid-base – HCI vs, NaOH titrations)

UNIT IV CORROSION AND CORROSION CONTROL

Introduction: Chemical corrosion Definition - Chemical Corrosion - Electrochemical corrosion – different types – galvanic corrosion – differential aeration corrosion – mechanism of Chemical and Electrochemical corrosion factors influencing corrosion control – sacrificial anode and impressed cathodic current methods – Protective coatings :Paints– constituents of the paint and their functions Metallic coatings – electroplating of Gold and electro less plating of Nickel.

UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9

Introduction : Nuclear fission and nuclear fusion reactions – differences between nuclear fission and nuclear fusion reactions – nuclear chain Reactions – nuclear energy critical mass - super critical mass - sub - critical mass Light water nuclear reactor for power generation (block diagram only) – breeder reactor Solar energy conversion – solar cells – wind energy Fuel cells – hydrogen – oxygen fuel cell Batteries :Primary and secondary Batteries – differences between Primary and secondary Batteries Secondary batteries :Lead–acid storage battery –working –uses Nickel–cadmium battery - working – uses Solid – state battery : Lithium battery

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

9

9

9

REFERENCES:

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. https://en.wikipedia.org/wiki/Electrochemistry

BCS10)1	FUN PR(NDAI DGR	MEN' AMM	ΓAL INC	S OF	COMI	PUTI	NG	AN	D			L	Т	P	C
		Tota	l Coi	ntact H	Iour	s - 45								3	0	0	3
		Prer	equis	ite – I	Nil											•	
		Cou	rse D	esigne	ed by	y – De	epartme	nt of	Co	mput	ter Sc	eienc	e &	z Engi	neeri	ng	
OBJE	CTIVE	S															
Studen	ts will	under	stand	l the b	asics	s of co	mputer	s and	so	lve c	ompi	iter	orie	nted p	oroble	ems u	sing
various	s compu	iting t	tools.														
COUR	SE OU	JTCC	DME	S (CO	Ds)												
CO1	Learn	the f	unda	menta	l pri	nciple	s in cor	nputi	ng.								
CO2	Learn	to wi	rite si	imple	prog	rams	using c	ompu	iter	lang	uage						
CO3	To en	able t	he st	udent	to le	arn th	e majoi	com	por	nents	of a	com	put	er sys	tem.		
CO4	Com	puting	g prol	blems													
CO5	To lea	arn to	use o	office	auto	matio	n tools.										
CO6	To int	erpre	t and	relate	pro	grams											
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																
1	COs/I	Pos	a	b	c	d	e	f		g	h		i	j	k		
2	CO1		Н					Н									
	CO2			L	Η		М										
	CO3			L		S											
	CO4		Μ		Μ	W		Μ									
	CO5			L	L												
	CO6		Н					Н									
3	Categ	gory	Humanities &	Social Studies (HS)	Basic Sciences	(BS)	- Engg Sciences (ES)	Professional	Core (PC)	Core Elective	(CE)	Non-Major	Elective (NE)	Open Elective	Project/Term	Paper/ Seminar/	Internship (PR)
				1			N										
4	Appro	oval	37 ^t	^h Mee	eting	of Ac	cademic	c Cou	nci	l, Ma	ay 20	15					

UNIT I INTRODUCTION TO COMPUTER

9

Introduction- Characteristics of computer-Evolution of Computers-Computer Generations - Classification of Computers- Basic Computer Organization-Number system. Computer

Software: Types of Software—System software-Application software-Software Development Steps

UNIT II PROBLEM SOLVING AND OFFICE AUTOMATION

Planning the Computer Program – Purpose – Algorithm – Flowcharts– Pseudo code Introduction to Office Packages: MS Word, Spread Sheet, Power Point, MS Access, Outlook.

UNIT III INTRODUCTION TO C

Overview of C-Constants-Variables-Keywords-Data types-Operators and Expressions. Managing Input and Output statements-Decision making-Branching and Looping statements.

UNIT IV ARRAYS AND STRUCTURES

Overview of C-Constants, Variables and Data types-Operators and Expressions -Managing Input and Output operators-Decision making-Branching and Looping.

UNIT V INTRODUCTION TO C++

Overview of C++ - Applications of C++-Classes and objects-OOPS concepts -Constructor and Destructor- A simple C++ program –Friend classes and Friend Function.

TEXT BOOKS:

- 1. Ashok, N.Kamthane, "Computer Programming", Pearson Education (2012).
- 2. Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Dorling V Kindersley (India Pvt Ltd)., Pearson Education in South Asia, (2011).
- 3. Yashavant P. Kanetkar, "Let us C",13th Edition, BPB Publications(2013).
- 4. Yashavant P. Kanetkar,"Let us C++"10th Edition, BPB Publications (2013).

REFERENCES:

- 1. Pradeep K.Sinha, Priti Sinha "Foundations of Computing", BPB Publications (2013).
- 2. Byron Gottfried, "Programming with C", 2nd edition, (Indian Adapted Edition), TMH Publication.
- 3. Pradip Dey, Manas Ghosh, Fundamentals of Computing and Programming in 'C' First Edition, Oxford University Press(2009).
- 4. The C++ Programming Language , 4th Edition, Bjarne Stroustrop, Addison-Wesley Publishing Company (2013).

BFR 1	01 FRENCH	L	Т	Р	С							
	Total Contact Hours – 45	3	0	0	3							
	Prerequisite – +2 Level English	•										
	Course Designed by – Department of English											
OBJE	OBJECTIVES											
Langua	ge gives access and insights into another culture. It is a fundamental truth	that c	culture	es								
define	hemselves through languages.											
COUR	SE OUTCOMES (COs)											
CO1	Introduce the basics of the language to beginners											
CO2	Understand a dialogue and dialogue presentation											

9

9

9 L

CC)3	To dev respon	velop t nd in si	heir kno mple ev	owledge veryday o	as wel	l as th ts.	eir com	munica	tive s	kills so as t	o be ab	le to			
CO	04	Synch cultur throug used.	ronies e and y h the e	I incluc which a exploita	les docur cclimatiz tion of w	ments ze ther vritten	which n to th and ic	initiate le auther conograp	the leantic use thic do	orners e of th cumer	to another v e French la nts. The Ind	world, a nguage lian con	noth text]	er has been		
CC)5	Grami by the	natical e stude	l and lex nts.	xical not	ions as	well	as activi	ities rea	quired	for commu	inicatio	n are	learnt		
CC)6	Interp	reting s	skills ar	nd confid	lence in	n the l	anguage	е.							
			(H/M	Mappir 1/L indi	ng of Con cates str	urse O ength	utcom of cor	es with relation)	Progra H-H	m ou igh, M	tcomes (PC I-Medium,	os) L-Low				
1	CC	Ds/Pos	a	b	с	d	e	f	g	h	i	j	k			
2	CC	D1	H L H H H M I													
	CC)2	II L H L H L H L H H L L													
	CC)3	H L H M L H H L H H L													
	CC)4			Н					Η	Н	Μ	L			
	CC)5			Н	L				Η	Н	Μ				
	CC	06			Н					Η	Н	Μ				
3	Ca y	tegor	✓ Humanities& Social	Studies (HS)	Basic Sciences	(b) Engg	Sciences (ES)	Professional Core (PC)	Core	Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term	Paper/ Seminar/ Internship		
4	Ap	prova	37 th	Meetin	g of Aca	.demic	Coun	cil, May	/ 2015							
	1															

UNIT I INTRODUCTION

At the airport: Savoir- faire: exchanging greetings, self introduction, introducing another, welcoming someone, identifying someone - Grammar: verbs 'to be', 'to call oneself', subject pronouns, interrogation

UNIT II GRAMMAR

At the University: Savoir-faire: enquiring after one's welfare, taking leave, expressing appreciation - Grammar: definite & indefinite articles, gender of nouns, adjectives, present tense of regular 'er' verbs, 'to have', 'to learn', negation, irregular verbs

UNIT III CONVERSATION

At the café: Savoir –faire: speaking about one's likes, giving information, expressing admiration, asking information about someone - Grammar: Interrogative adjectives, irregular verbs, possessive and interrogative adjectives

UNIT IV PROPOSAL WRITING

At the beach: Savoir faire: proposing an outing, accepting/ refusing the proposal - Grammar: singular & plural, indefinite pronoun, demonstrative adjectives, negation, irregular verbs

UNIT V FORMAL LETTERS

9

9

9

9

A concert: Savoir –faire: inviting, accepting, expressing one's inability to accept an invitation Regular & Irregular Verbs:

Grammar: Present tense of more irregular verbs, contracted articles, future tense, interrogative adverbs, **At Nalli's** Savoir- faire: asking the price of an article, protesting against the price, Grammar: possessive adjectives, Exclamative adjectives, imperative tense

REFERENCES:

- 1. Course Material: Synchronie I Méthode de Français
- 2. Madanagobalane Samita Publications, Chennai, 2007

	~~~~	GERM	[AN								L	Т	Р	С	
BC	FM 101	Total C	ontac	Hours	- 45						3	0	0	3	
		Prerequ	isite -	-2 Leve	el Eng	lish					1				
		Course	Desig	ned by	– Dep	partme	ent of Ei	nglish							
0	BJECTI	VES													
A	t the end	l of this	course	e, stude	nts sh	all be	able to	obtain g	ood kr	lowledg	e of	the la	angua	age, to re	
WI	ite and s	peak Gei	man,	whereb	y the	empha	asis is la	id on spe	ech.						
C	JURSE	OUTCO	DMES	(COs)											
CO	D1 Will	have a b	asic k	nowled	ge of	the lai	nguage								
CO	D2 Will	<ul> <li>2 Will acquire reading and writing skills.</li> <li>3 Will develop basic conversational skills.</li> </ul>													
CO	03 Will	Will develop basic conversational skills.         Will understand Corresp lifestale.													
CO	04 Will	Will understand German lifestyle													
CO	D5 Will	gain cor	fiden	e to su	rvive	in a gl	obal en	vironmen	ıt						
CO	D6 Will	have att	ained	to survi	ve an	d adop	ot chang	e in a for	eign cı	lture.					
		Ν	Iappin	g of Co	ourse (	Outcon	mes wit	h Progran	n outc	omes (P	Os)				
		(H/M/	L indi	cates st	rength	n of co	rrelatio	n) H-Hi	gh, M-	Medium	1, L-1	Low			
1	COs/Po	os a	b	с	d	e	f	g	h	i	j		k		
2	CO1	Н	L												
	CO2			Н	L				Н	Н	Μ		L		
	CO3			Η	L				Н	Н	Μ		L		
	CO4 H H H L														
	CO5			Н	L				Н	Н	Μ				
	CO6			Η					Н	Н	Μ				

3	Category	<ul> <li>Humanities &amp;</li> <li>Social Studies</li> <li>(HS)</li> </ul>	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
4	Approval	37 th Meet	ting of Ac	ademic C	Council, N	May 2015	1	1	1

### **Course structure:**

- A. German Language (speaking, reading, writing, grammar and test)
- B. Life in Germany (shopping, restaurant, doctor, government, bank, post)
- C. The German Way (introduction, doing business, conversation, meetings, dining)
- D. Germany (Culture, Climate)

# UNIT I PRONOUNCIATION

Welcome: Introduction to the Language, Spelling and Pronunciation (The alphabets and numbers) Greetings, ordering, requesting, saying thank you - Grammar – **the article "the", conjugation** of verbs

# UNIT II SELF INTRODUCTION

Shopping - Grammar - adjectives, endings before nouns, practice. Self introduction

# UNIT III TRAINING

Addresses, Occupations, Studies - Grammar - **'to be', the definite/indefinite** articles, individual Training

# UNIT IV ORAL

Leisure Time, Sports, Hobbies - Grammar - position of a verb in a main clause , oral practice

# UNIT V NARRATION

At a Restaurant, Food and Drink - Grammar – the personal pronoun in the Nominative and Accusative, Narrating an event

### **RESOURCES:**

1. Sprachkurs Deutsch 1 (Verlag Diesterweg), New Delhi Learning Centre

	JAPANESE	L	Т	Р	С
BJP 101	Total Contact Hours - 45	3	0	0	3
	Prerequisite – +2 Level English				
	Course Designed by – Department of English				
OBJECT	TIVES				
To	have a basic knowledge of Japanese language, Japanese culture and	l heri	itage		
То	impart knowledge Japanese lifestyle.				

9

9

- 9
- 9

	To give	suffici	ent ex	posure	to de	velc	p basic o	conversa	tional skill	s.						
C	OURSE OU	JTCO	MES	(COs)												
C	D1 Will hav	ve a ba	sic ki	nowled	ge of	the l	language									
CO	D2 Will acc	quire re	eadin	g and w	riting	g ski	lls.									
C	O3 Will dev	velop t	oasic	convers	sation	al sk	cills.									
C	O4 Will un	derstar	nd Jap	oanese l	ifesty	le										
C	O5 Will gai	in conf	idenc	e to sur	rvive	in a	global er	nvironm	ent							
C	O6 Will hav	ve attai	ined t	o survi	ve and	d ad	opt chan	ge in a f	oreign cult	ure.						
			Map	ping of	f Cou	rse (	Dutcome	s with P	rogram ou	tcom	es (PC	Ds)				
		(H/M/L indicates strength of correlation)H-High, M-Medium, L-Lowabcdefghijk														
1	COs/Pos	a b c d e f g h i j k														
2	CO1	H L														
2	$CO^2$	11	H L H L H H M L													
	CO3			H	L				H	H	M		L			
	CO4			H					Н	H	M		L			
	CO5			Н	L				Н	Η	Μ					
	CO6			Н					Н	Η	Μ					
3       Category       Mumanities & Line         3       Category       Non-Maior         4       Approx       Social Studies & Social Studi						Open Elective	(OE)	Project/Term	Paper/ Seminar/	Internship (PR)						
4	Approval	37 th	Meet	ting of .	Acade	emic	Council	l, May 2	015							

# UNIT I CULTURAL HERITAGE

Introduction-history and origin of Japanese language-Japan and its cultural heritage-Self introductioncounting numbers (1-100)-time-conversation with the use of audio devices, grammar– usage of particles wa, no, mo and ka

### UNIT II USAGE

Greetings, seasons, days of the week and months of the year-numbers (up to 99,999)-grammar– usage of kore, sore, are, kono, sono, ano, koko and kochira, arimasu and imasu-i-ending and na-ending adjectives-use of audio and drills for practice

# UNIT III ORAL

Asking the price-associated vocabulary-usage of particles ni, ga and ne- use of audio and drills for practice-Introduction to basic Kanji characters- use of audio and drills for practice

# UNIT IV ART AND CULTURE

Family relationships- colours-Kanji (numbers) and festivals of Japan-religion-Japanese art and culture-ikebana, origami-introduction to hiragana- use of audio and drills for practice

# 9

9

# 9

# UNIT V DRILLS AND PRACTICE

Vocobulary associated with directions-asking way-particles – e, de, mo, koko, soko, asoko, doko, nani, mae, ushiro, ue, shita- use of audio and drills for practice-introduction to katakana

# **TEXT BOOKS**

- 1. Japanese Hiragana and Katakana for beginners, Timothy G. Stout, 2011
- 2. Genki I: An integrated course in elementary Japanese, Eri Banno and Yuko Ikeda, 2011

# **REFERENCE BOOKS**

- 1. Japanese Reader collection Volume I, Yumi Boutwell and Clay Boutwell, Kotoba books, 2013
- 2. Living Language Japanese Complete Edition beginners through advanced course, Living Language, 2012

BI	KR101	KC	OREA	N									L	Т	P		С
		To	tal Co	ntact	Hours -	45							3	0	0		3
		Pre	reauis	ite –	+2 Leve	el Ens	glish										
		Co		Asian	ed by _	Den	artmei	at of Eng	lich								
0	BIECT		'S	csign	icu by	Dep		It Of Life	511511								
	Fo have	a ba	asic kr	owle	dge of l	Korea	n lang	mage. K	orean cu	lture	e and h	erit	age				
-	Fo impa	rt ki	nowled	dge o	n Korea	n life	style a	and herit	age.	11011	o una n	CIIC	uge				
C	OURSE		TCO	MES	(COs)		•		U								
C	D1 Wi	ll ha	ve a ba	asic k	nowled	ge of	the la	nguage									
C	D2 Wi	l ac	auire r	eadin	g and v		g skill	<u>s.</u>									
CC	D3 Wi	l de	velop	basic	conver	sation	al ski	lls.									
CC	D4 Wi	l un	dersta	nd Ko	orean lit	estyl	e										
CC	D5 Wi	ll ga	in con	fiden	ce to su	rvive	in a g	lobal en	vironme	nt							
CC	D6 Wi	6 Will have attained to survive and adopt change in a foreign culture .															
	Mapping of Course Outcomes with Program outcomes (POs)																
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																
1	(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowCOs/Posabcdefghijk																
-	001			Ŧ						-							
2	CO1		Н	L	II	T				TT		TT	М	т			
	$CO_2$				п u					п Ц		п Ц	M				
	$CO_4$				H H	L				H		H	M				
	CO5				H	L				H		H	M				
	C06				Н					Η		Η	М				
3	Catego	ory									<b>I</b>				I		
			s & ies		ces	es	2	ial (	ive		E) II		ive	Ę	E		ГК
			tries	() ()	s)	enc		ion (PC	E lect		1ajo (N		lect 3)	Ę	er/ .	nar	di (
			al S	H)	(B, S)	Sci		fess	CI E		n-N tive		n E (OI	tee	Pap	- in:	USD
			Hum	5	asic	δά	$\widehat{\mathbf{a}}$	CC	ore		No		De			Š	Iteri
			ЦУ	2	В	Eng	Ē		C				0		-	F	Π
									1								
									1								

#### UNIT I **PLANNING**

Asking/giving reasons for studying Korean, making plans for the holiday, writing letters, describing past travel experiences and future travel plans, shopping in a grocery store, shopping in electronics store, storytelling Grammar: would like to (do), want to (do), construct future tense.

#### **UNIT II MODIFIERS**

Asking about feelings, asking about problems and giving advice, brief introductions - Grammar: Noun modifier, please try doing (something), irregular adjective/verb

#### PLACING ORDERS **UNIT III**

Asking about hobbies, asking about abilities (sports), job requirements, Ordering things for delivery, ordering a meal at a restaurant - Grammar: Sentence ending for the honorific form, please do something for me, have tried (something),

#### UNIT IV DESCRIPTIONS

Asking about evening plans, making plans with others, making preparations - Asking about rooms, describing your room to your classmates, describing your house. Grammar: to know/not know how to do something, must (do), have to (do), should,

#### UNIT V **GRAMMAR**

Describing your plans and giving reasons, cancelling appointments. Grammar: Shall we~? / Should we~?, with, and, irregular verbs/adjective, so, because, cannot, intend to, plan to, or hope to, (more) than, the most, tag question/is n't it? , will (do)

# **COURSE MATERIAL:**

Korean for Non-Native Speakers (Student Book 1B) Korean Language Education Center, Sogang University

BCN 101	CHINESE	L	Τ	P	С								
	Total Contact Hours - 45	3	0	0	3								
	Prerequisite – +2 Level English		•	•									
	Course Designed by – Department of English												
OBJECTI	VES												
To ha	ve a basic knowledge of Chinese language, Chinese culture and heritage												
To im	npart knowledge on Chinese lifestyle and heritage.												
COURSE	OUTCOMES (COs)												
CO1	Will have a basic knowledge of the language												
CO2	Will acquire reading and writing skills.												
CO3	Will develop basic conversational skills.												
CO4	Will understand Chinese lifestyle												
CO5	Will gain confidence to survive in a global environment												
CO6	Will have attained to survive and adopt change in a foreign culture	ıre											

9

9

9

		Ma	appir	ng of Co	urse (	Dute	comes w	ith Prog	gram ou	itcor	nes (I	POs)		
		(H/M/L	indi	cates str	ength	of	correlati	ion) H	-High, N	И-М	ediun	n, L-L	ow	
1	COs/Pos	a	b	с	d	e	f	g	h		i	j	k	
2	CO1	Н	L	н	I				н	н		M	T	
	$CO_2$			H	L				H	H		M	L	
	CO4			H					H	H		M	L	
	CO5			Н	L				Н	Η		М		
	CO6			Η					Η	Η		Μ		
3	Category	Humanities & Social Studies	(CH)	Basic Sciences (BS)	Engg		Professional Core (PC)	Core Elective (CE)	Non-Major Flactive (MF)		Open Elective	(OE)	Project/Term	r aper/ Seminar/ Internship (PR)
		$\checkmark$												
4	Approval	37 th N	Ieeti	ng of A	cadem	nic (	Council,	May 20	015		1			

9

9

9

9

9

# UNIT 1 RISE OF DIALECTS

History, Origins, Old and middle Chinese, Rise of northern dialects

### UNIT II VARIETIES

Influences 3 Varieties of Chinese. 1. Classification 2. Standard Chinese and 3. Nomenclature

### UNIT III CHARACTERS

Chinese characters, Homophones, Phonology

### UNIT IV TRANSCRIPTIONS

Tones, Phonetic transcriptions, Romanization, Other phonetic transcriptions

### UNIT V GRAMMAR

Grammar and morphology, Vocabulary, Loanwords, Modern borrowings and loanwords

### **REFERENCES**:

- Hannas, William C. (1997), Asia's Orthographic Dilemma, University of Hawaii Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-1892-0" 978-0-8248-1892-0.
- Qiu, Xigui (2000), Chinese Writing, trans. Gilbert Louis Mattos and Jerry Norman, Society for the Study of Early China and Institute of East Asian Studies, University of California, Berkeley, ISBN HYPERLINK

http://en.wikipedia.org/wiki/Special:BookSources/978-1-55729-071-7,978-1-55729-071-7.

- **3.** Ramsey, S. Robert (1987), The Languages of China, Princeton University Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-691-01468-5" 978-0-691-01468-5.
- Schuessler, Axel (2007), ABC Etymological Dictionary of Old Chinese, Honolulu: University of Hawaii Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-2975-9"978-0-8248-2975-9.

BM	E 102	ENG	NEF	RINO	G GR	APH	ICS -	С					L	Τ	Р	C	
		Total	Cont	act Ho	ours –	45							1	0	3	3	
		Prerec	uisit	e – +2	Leve	l Ma	ths + 1	Phy	/sic	s							
		Cours	e Des	signed	by –	Dept	t of M	ech	iani	ical E	nginee	ering					
OBJ	IECTIVE	ËS															
•	• To dev	velop gi	aphi	cal ski	ills in	stud	ents f	or c	con	nmuni	cation	of cond	cepts,	desig	n ideas	of	
	engine	ering p	orodu	icts, a	ind ex	xpos	e ther	n 1	to	existii	ng sta	ndards	relate	ed to	techni	cal	
		igs. nart a s	ound	l knov	vledor	on e	the n	rina	rinl	les of	compi	iters in	volvir	ησ the	differ	ent	
	applica	ation or	iente	d topi	cs req	uirec	l for a	ll e	ngi	neerin	ig bran	ches.	.01.11	ing the	uniter	ont	
•	• Gradu	ates wil	l der	nonstr	ate th	e ab	ility to	o aj	ppl	y kno	wledge	e of ma	thema	atics to	o devel	lop	
	and an	alyze c	ompu	iting s	ystem	IS.											
	Gradu	ates wil	l hav	e a so	lid un	derst	andin	g 0:	f th	e theo	ory and	concep	ots un	derlyi	ng		
	compu	iter scie	nce														
CO	URSE OU	JTCON	<u>AES</u>	$\frac{(COs)}{cc}$	)	61				<u>c</u> 1° cc		<u> </u>		1 •			
CO	I To kn	low abo	ut di	fferen	t types	s of I	ines &	z us	se c	of diff	erent ty	pes of	penci	ls in a	n engg	•	
<u> </u>		ow how to represents letters & numbers in drawing sheet															
0	2 10 km	low hov	by now to represents letters & numbers in drawing sheet														
CO	3 To kn	now about different types of projection															
CO	4 To kn	To know projection of points ,straight lines, solids etc.															
CO	5 To kn	low dev	elop	ment o	of diff	erent	types	of	sui	rfaces	•						
CO	6 To kn	low abo	ut iso	ometri	c proj	ectic	on.										
		Map	ping	of Co	urse C	Juteo	omes v	vith	ı Pı	rogran	n outc	omes (I	POs)				
1	(F	I/M/L i	ndica	ites str	ength	of c	orrelat	tior	1)	H-Hig	gh, M-	Mediun	n, L-L	LOW			
$\frac{1}{2}$	COS/Pos	5 а Н	D	c	d	e	I	£	5	n		1 j	k	<u> </u>			
2	CO1	M	Н														
	CO3			L													
	CO4						L			Н	Н						
	CO5			L							H						
2	CO6 L H																
5	Calegor	y ay	S	SS			ore		٩	ט	0	, e		L	$\widehat{\mathbf{c}}$		
		es d	ldie	ence	lces		I C		.tiv		ajor NF	ctiv		lern ./	PI (PI		
		miti	HS)	Sci	cien cien		ona	5	Ele,	CE)	-M ve	Ele	OE)	ct/T	hip ship	•	
		ima .	cial (]	sic	S S		essi	ر	arc		Von ecti	Jen	Ξ	oje D,	Ser Ser		
		Ηľ	N N	Ba	ingg	ES)	rof		Č	5	Ξ	Ō		Pı	Int		
					Щ	0											
					N												
4	Approva	ıl   37 ^{tl}	¹ Me	eting	of Aca	adem	nic Co	unc	cil,	May 2	2015						

# UNITI BASIC CURVES, PROJECTION OF POINTS AND STRAIGHT LINES 9

Conics-construction of ellipse, parabola and hyperbola by eccentricity method-construction of involutes of square and circle-Drawing of tangent and normal to the above curves-Scales-Basic drawing conventions and standards- Orthographic projection principles-Principal planes-First angleprojection-Projectionofpoints.Projectionofstraightlines(only first angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method.

# UNITII PROJECTIONS OF PLANES AND SOLIDS

Projectionofplanes(Polygonalandcircularsurfaces)inclinedtoboththeprincipal planes. Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method

# UNITIII ORTHOGRAPHIC PROJECTIONS, ISOMETRIC PROJECTIONS & FREE HAND SKETCHING 9

Orthographic projection of Simplepartsfrom3Ddiagram-Principlesofisometric projection and isometric view-isometric scale- Isometric projections of simple solids and truncated solids-Prisms, pyramids, cylinders, cones.

# UNITIV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 9

Sectioning of solids in simple vertical position when the cutting lane is inclined to the one of the principal planes and perpendicular to the other-obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids-Prisms, pyramids cylinders and cones.

# UNITV PERSPECTIVE PROJECTION, BUILDING DRAWING AND COMPUTER AIDED DRAFTING 9

Perspective projection of cubes and cylinders by visual ray method .Introduction-components of simple residential or office building-specifications-plan and elevation of different types of Residential buildings and office buildings. Introduction to drafting packages and basic commands used in AUTO CAD.Demonstration of drafting packages.

# **TEXT BOOKS:**

- 1. N.D.Bhatt and V.M.Panchal, "Engineering drawing", charotar publishinghouse, 50th edition,2010.
- 2. K.V.Natarajan "ATextbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai,2009.

# **REFERENCES:**

- 1. K.R.Gopalakrishna, "Engineering drawing", (Vol-I&II combined) Subhasstores, Bangalore, 2007.
- 2. K.Venugopal and V.PrabhuRaja, "Engineering Graphics", New Age International Private limited, 2008.
- 3. Luzzader, Warren.J.,and Duff, John.M.,, "Fundamentals of Engineering Drawing with an introduction to Interactivecomputergraphicsfordesignandproduction", Easterneconomyedition, Prentice Hall of India Pvt Ltd, NewDelhi, 2005

			BAS ELE	IC EI CTR	LECTRIC	CAL NGI	AN NE	ND XERING	T			L	Т	Р	C	
			Total	Cont	act Hours	- 30						2	0	0	2	
BE	E101		Prere	quisit	e - +2 Pł	nysic	s &	z + 2 mat	hs			I		1		
			Cour	se De	signed by	– De	epa	rtment c	f Ele	ctrica	& Elect	tronics E	Engir	neer	ing	
OB	BJEC	<b>FIVE</b>	S: To 1	under	stand the l	aws	of e	electrica	l eng	ineeri	ng.					
CC	OURS	E OU	TCON	MES (	(COs)											
CO	01	Stude	nts wi	ll ga	in knowle	dge 1	rega	arding th	ne vai	rious l	aws an	d princij	ples a	asso	ciated	
0	2	with	electri	cal sy	stems.	1		1'	1 4 - 1		1. 1	1	1			
	02	Stude	for pre	III ga Inctical	nroblems	age	reg	arding e	electri	ical n	lachines	and ap	ргу			
CO	3	Stude	nts wi	ll ga	in knowle	dge 1	rega	arding v	ariou	s type	s semico	nductor	s.			
CO	94	Stude	nt wi	ll gaiı	n knowled	lge di	igit	al electr	onics							
CO	5	Stude	Student will gain knowledge on electronic systems.													
CO	6	Students will acquire knowledge in using the concepts in the field of electrical														
		engg. projects and research.														
		(H	Maj	oping	of Course	e Outo th of	con	nes with	Prog	gram High	outcome	s (POs)				
1	COs	$\frac{(11)}{\text{Pos}}$	a	b	c c	d	e	f	g	h h		ium, L-	k			
2	CO1		М	н	М			L	0	L	L	5				
-	CO2			Н	M			L		L	L					
	CO3			Н	М			L		L						
	CO4	•	М	Н	М			L		L	L					
	CO5	,   -	Μ	H	М			L		L						
2	CO6	a comu		Η				L		L	H		-			
3	Cale	gory	es & dies		nces	nces		nal C)	tive		jor NE)	tive	erm		r/ ip	
			nitie Stu	HS)	Scie 3S)	Scie		ssio (Pe	Elec	Ξ)	Ma ve (	Elec	t/T	per/	ina nsh R)	
			maı cial	Ĺ.	ic S (E	50		ofe	ore H	$\overline{O}$	on- sctiv	en ]	oiec	Pa	Sen nter (F	
			Hu	2	Ba	Eng	(ES	Pr	C C		Ele	Op	$\mathbf{P}_{\mathbf{r}}$		- 1	
									1							
4	App	roval	37 th	Meet	ing of Ac	adem	nic	Council	, May	2015		•	•			

# UNIT I ELECTRIC CIRCUITS

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C – Current and voltage source transformation – mesh current & node voltage method –superposition theorem –Thevenin's and Norton's Theorem -Problems.

# UNIT II ELECTRICAL MACHINES

Construction, principle of operation, Basic Equations and applications - D.C.Generators and D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

# UNIT III BASIC MEASUREMENT SYSTEMS

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method – and Energy meter.

# UNIT IV SEMICONDUCTOR DEVICES

Basic Concepts of semiconductor devices – PN Junction Diode Characteristics and its Applications – HWR, FWR –Zener Diode – BJT (CB, CE, CC) configuration & its Characteristics.

# UNIT V DIGITAL ELECTRONICS

Number system – Logic Gates – Boolean Algebra– De-**Morgan's Theorem** – Half Adder & Full Adder – Flip Flops.

# **TEXT BOOKS:**

- 1. N.Mittal "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- 2. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004.
- 3. Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", Tata McGraw Hill

# **REFERENCE BOOKS:**

- 1. Edminister J.A. "Theory and Problems of Electric Circuits" Schaum's Outline Series. McGrawHill Book Compay, 2nd Edition, 1983.
- 2. Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill International Editions, 1993.
- 3. D. P. Kothari and I. J. Nagrath" Electric Machines" Tata McGraw-Hill Education, 2004
- 4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

	COMPUTER PRACTICE LABORATORY	L	Т	Р	С									
DCC1I 1	Total Contact Hours - 45	0	0	3	1									
BCSILI	Prerequisite – Nil				•									
	Course Designed by – Department of Computer Science	e &Er	iginee	ring										
OBJECT	CTIVES: To impart basic computer knowledge         SE OUTCOMES (COs)													
COURS	SE OUTCOMES (COs)													
CO1	Demonstrate major algorithms and data													
CO2	Implementation of array operations													
CO3	Implementation of binary tree.													
CO4	Implementation of linked list													
CO5	Students will able to do analyse data using spread sheet													
CO6	Student will able to understand the basics of C programming.													
	Mapping of Course Outcomes with Program outcomes	(POs	)											
	(H/M/L indicates strength of correlation) H-High, M-Med	um, L	Low											

6

6

1	COs/POs	a	b	с	d	e	f	g	5		h	i	j	k	
2	CO1	Η	Н	L	Η		Н			L			Н	Н	
	CO2						Н	Η		L					
	CO3						Н	Η		L			М		
	CO4						Н	Η		L			М		
	CO5						Н	Η		L			М		
	CO6						Н	Η		L			М		
3	Category	Humanities &	social studies (HS)	Basic Sciences	(64)	Engg Sciences (ES)	Professional		Core Elective	(CE)	Non-Major Elective (NE)		Open Elective (OE)	Project/Term Paper/ Seminar/	Internship (PR)
						N									
4	Approval	37 th	Mee	ting of	f Aca	ademic	Coun	cil, N	May	20	)15				

### A) WORD PROCESSING

Document creation, Text manipulation with Scientific Notations. Table creation Table formatting and Conversion. Mail merge and Letter Preparation. Drawing-Flow Chart

### **B)** SPREAD SHEET

Chart-Line Xy Bar and Pie – Formula-Formula Editor-Spread sheet-Inclusion of Object, Picture and Graphics Protecting the document and sheet-Sorting and Import/Export features.

### C) SIMPLE C PROGRAMMING*

Data types, Expression Evaluation, Condition Statement. Arrays structures and Unions – Functions

### D) SIMPLE C++PROGRAMMING

-Classes and Objects -Constructor and Destructor

### *For Programming exercises Flow chart and Pseudo code are essential.

	BASIC ELECTRICAL AND ELECTRONIC ENCINEEDING PRACTICES LABORATORY	L	Т	Р	C
BEE1L	1 Total Contact Hours – 45	0	0	3	1
	Prerequisite – +2 physics		•		•
	Course Designed by – Department of Electrical & Electronics	Engin	eering	5	
OBJEC	TIVES: To enhance the student with knowledge on electrical and e	electro	onic e	quipn	ents.
COURS	SE OUTCOMES (COs)				
CO1	Students will able to handle basic electrical equipments.				
CO2	Students will able to do staircase wiring.				

15

15

9

CO3	S Studen	ts wi	ll able	to un	der	stan	d doi	mestic v	virin	g procee	dures prac	ctically.			
CO4	Studen	t will a	able to	) asser	nbl	e ele	ectro	nic syst	ems.						
CO5	5 Student	s will	under	stand	all	the f	unda	imental	conc	epts inv	volving el	ectrical e	ngineer	ing	
CO6	5 Student	s will	under	stand	all f	the f	unda	imental	conc	epts inv	olving el	ectronics	engine	ering	
	(H/	Map /M/L i	ping of the second s	of Cou tes stro	irse eng	out Out	tcom f cor	les with relation	Prog	gram ou -High, M	itcomes (I M-Mediui	POs) m, L-Low	,		
1	COs/POs	a	b	c		d	e	f	g	h	i	j	k		
2	CO1	Μ	Н	Μ				L	L	L	L	М	Н		
	CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	CO3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	CO4	М	Н	Μ				L		L	L	М	Н	1	
	CO5	М	Н	Μ				L	. <u> </u>	L		М	Н	1	
	CO6		Н					L		L	Н		Η		
3	Category	Humanities	Studies	Basic		< Engg	Sciences	Professional Core (PC)	Core	Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Ter m Paper/	Seminar/ Internship	
						•									
4	Approval	37 th	Meet	ing of	: Ac	cade	mic	Council	, Ma	y 2015					

# I LIST OF EXPERIMENTS FOR ELECTRICAL ENGINEERING LAB

- 1. Fluorescent lamp wiring
- 2. Stair case wiring
- 3. Measurement of electrical quantities-voltage current, power & power factor in RLC circuit
- 4. Residential house wiring using fuse, switch, indicator, lamp and energy meter
- 5. Measurement of energy using single phase energy meter
- 6. Measurement of resistance to earth of electrical equipment

# **II LIST OF EXPERIMENTS FOR ELECTRONICS ENGINEERING LAB**

- 1. Study of electronic components and equipments.
  - a. Resistor colour coding using digital multi-meter.
  - b. Assembling electronic components on bread board.
- 2. Measurement of ac signal parameters using cathode ray oscilloscope and function generator.
- 3. Soldering and desoldering practice.
- 4. Verification of logic gates (OR, AND, OR, NOT, NAND, EX-OR).
- 5. Implementation of half adder circuit using logic gates.

	ENGLISH II	L	Т	Р	С
<b>BEN 201</b>	Total Contact Hours – 60	3	1	0	3
	Prerequisite – English I				
	Course Designed by – Department of English				
OBJECTIV	ES				
Students wi	ll be able to actively participate in group discussions. Studen	nts w	ill hav	e	

_																	
	Teleph	onic Skills, O	Giving	g Dire	ctions	a	nd Infor	rmatio	n T	ransfer							
	COUR	RSE OUTCO	OMES	6 (CO	s)												
	CO1	To make	the stu	udents	awar	e to	o differe	nt kind	ds o	of Learn	er-f	riend	ly mo	des	of		
		language	to a v	ariety	of sel	<b>f-</b> i	instructi	onal le	arr	ning (Co	mp	uter b	ased)				
	CO2	To make a	stude	nts coi	mpreh	en	d the hal	bit of i	nte	elligent R	lead	ling a	s wel	l as			
		Computer	:- base	ed con	npetiti	ive	exams g	glob									
	CO3	To achiev	e a re	asona	bly go	ood	l level of	f comp	ete	ency in R	lepo	ort Wi	riting	•			
	CO4	To achiev	re a re	asona	bly go	ood	l level of	f comp	ete	ency in g	rou	p disc	cussio	ns			
	CO5	To achiev	e a re	asona	bly go	ood	l level of	f comp	ete	ency in p	ubl	ic spe	aking	Ş			
			Map	ping o	f Cou	rse	Outcon	nes wit	th I	Program	ou	tcome	es (PC	Ds)			
		(H/M/L  indicates strength of correlation) H-High, M-Medium, L-Low COs/POs a b c d e f g h i J k															
	1	COs/POs	$\frac{1}{205/POs} = \frac{b}{c} + \frac{c}{d} + \frac{c}{e} + \frac{c}{g} + \frac{c}{h} $														
	2	CO1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
		CO2	D1MLHLMHMLD2HLHHML														
		CO3			Η	L	Μ			Η			Η	L			
		CO4			Η	L	Μ			Η			Μ	L			
		CO5			Н	L	Μ			Η			Μ	L			
	3	Category													1		
			8.	lies	ces		ses	lal		ive	r.	Ξ	ive		E	PR	
			ties	tuo	ien	<u>`</u>	enc	ion PC	) I,	E (	Taid	γČ	ect	()	Te	er/ nar p (	
			ani	SH E	S	ĝ	Sci	ess re (		E E	2	ive	E	O	ect	ape min shi	
			- un	000	sic		50 (	rof Co		ore (		ect	) jen	<u> </u>	loj.	P Se ern	
			H	Ň	Βį		Eng (ES	Р		U U	-	Ξ	Ō		P	Int	
															. <u></u>		
	4	A pprovol	27th		ting	f A	andomi	o Corr		   May 20	015						
	4	Appioval	57	wiee	ung 0	P P	Caueim	c Cour	ICII	i, wiay 20	515						

#### UNIT I **ORIENTATION**

Numerical adjectives - Meanings in context - Same words used as different parts of speech -Paragraph writing - Non- verbal communication - Regular and Irregular verbs.

#### UNIT II **ORAL SKILL**

Listening to audio cassettes - C.Ds , News bulletin - Special Lectures, Discourse - Note taking -Sentence patterns - SV, SVO, SVC, SVOCA - and Giving Instructions - Reading Comprehension answering questions. Inferring meaning.

#### **UNIT III THINKING SKILL**

Self- introduction describing -Group Discussion - Debate -Role play- Telephone- Things- etiquette-Recommendation and Sequencing jumbled sentences to make a suggestions-paragraph-advertisement and notice, Designing or drafting posters, writing formal and informal invitations and replies.

#### UNIT IV WRITING SKILL

Definitions - Compound nouns - Abbreviations and acronyms - (a) business or official letters(for making enquiries, registering complaints, asking for and giving information, placing orders and sending replies): (b) Letters to the editor (giving suggestions on an issue).

#### FORMAL INFORMATION UNIT V

# 12

12

# 12

12

Editing – Prepositions - Articles - Permission letter for undergoing practical training, Essay writing - Application for a job , letter to the principal authorities regarding admissions, other issues, requirement or suitability of course etc.

### **TEXT BOOK:**

1. Meenakshi Raman, Sangeetha Sharma, Technical English for Communication: Principle and Practice, OUP, 2009.

## **REFERENCE BOOKS:**

- 1. Sumanth, English for Engineers, Vijay Nicole, Imprints Pvt ltd.2013.
- 2. Meenakshi Raman and Sangeetha Sharma, Technical Communication Principles and Practice, Oxford University Press, 2009.
- 3. Sangeetha Sharma, Binod M ishra , Communication skills for engineers and scientists , PHI Learning Pvt Ltd, New Delhi, 2010.

		MA	ATH	IEMA	TICS	- II						L	Т	P		С	
		To	tal C	lontac	t Houi	rs - 6(	)					3	1	0		3	
BMA	201	Pre	erequ	isite -	- Matł	nemat	ics I					L					
		Co	urse	Desig	gned b	y – D	epartme	ent of	Mathe	ematic	2S						
OBJE	CTIVE	S															
Abilit	y to app	ly th	lese	princi	ples of	fmat	hematic	s in p	rojects	s and 1	esearch w	vorks	•				
COU	RSE OU	JTC	OM	ES (C	COs)												
CO1	Stude	nt sł	nall ł	be able	e to So	olve d	lifferent	ial eq	uation	s, sim	ultaneous	linea	ır equ	atior	ıs,		
	and so	ome	spec	cial typ	pes of	linea	r equati	ons re	elated	to eng	ineering.						
CO2	Relate	e the	use of mathematics in applications of various fields namely fluid flow, solid mechanics, electrostatics, etc.														
	heat f	low,	solid mechanics, electrostatics, etc. test hypothesis														
CO3	Abilit	y to	, solid mechanics, electrostatics, etc. ) test hypothesis nsity of degree of relationship between two variables and also bring out														
CO4	Find i	nten	test hypothesis nsity of degree of relationship between two variables and also bring out														
	regres	sion	sity of degree of relationship between two variables and also bring out n equations.														
CO5	Under	stan	nd to	solve	matri	x pro	blems r	elated	l to rea	l life	problems.						
CO6	Form	ılate	e ma	thema	tical n	nodel	S										
			Map	ping o	of Cou	rse O	utcome	s witl	n Prog	ram c	outcomes (	(POs)	)				
	()	H/M	I/L i	ndicat	es stre	ngth	of corre	elation	n) H-	High,	M-Mediu	m, L	-Low				
1	COs/Po	OS	а	b	с	d	e	f	g	h	i	j		k			
2	CO1		Н		L												
	CO2			Η				Н		L	L		N	1			
	CO3			Н				Н		L	L		N	1			
	CO4						М						N	1			
	CO5											Μ	N	1			
	CO6											Μ					

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)						
4	Approval	37 th Me	7 th Meeting of Academic Council, May 2015												

# UNIT I ORDINARY DIFFERENTIAL EQUATION

Higher order linear differential equations with constant coefficients - Method of variation of parameters – Cauchy's and Legendre's linear equations - simultaneous first order linear equations with constant coefficients.

### UNIT II VECTOR CALCULUS

Gradient, divergence and curl –Directional derivatives –Irrotational and solenoidal vector fields – vector integration– Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (without proofs) – simple applications involving cubes and rectangular parallelepipeds.

# UNIT III ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy-Riemann equation and sufficient conditions (without proofs) – Harmonic and orthogonal properties of analytic functions – Harmonic conjugate – construction of analytic functions – conformal mapping: W=Z+C, CZ, 1/Z and bilinear transformation.

# UNIT IV COMPLEX INTEGRATION

Complex integration – Statement and application of Cauchy's integral theorem and Cauchy's integral formula – Taylor and Laurent expansions – Singular points – Residues – Residue theorem – Application of Residue theorem to evaluate real integrals – Unit circle and semi-circular contour (excluding poles on boundaries).

# UNIT V STATISTICS

Mean, Median, Mode – Moments – Skewness and Kurtosis – Correlation – Rank Correlation – Regression – Chi square test for contingency tables.

# **TEXT BOOK:**

- 1. R.M.Kannan and B.Vijayakumar" Engineering Mathematics–II "2ndEdition, SRB Publication, Chennai 2007.
- 2. Bali.N.P and Manish Goyal, "Engineering Mathematics", 3rdEdition, Laxmi Publications (P) Lltd, 2008.
- 3. Grewal .B/S "Higher Engineering Mathematics", 40thEditon, Khanna Publications, Delhi, 2007

# **REFERENCES**:

- 1. Ramana.B.V, "Higher Engineering Mathematic", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Gupta SC, and VK.Kapoor, "Fundamentals Mathematical Statistics", 11thedition, Sultan Chand Sons, New Delhi, 2014.

# 12

12

### 12

12

		EN	GIN	IEER	ING I	PHYS	SICS -	·II					L	Т	Р	C
RPH	201	Tot	tal C	ontact	Hour	rs - 45	í						3	0	0	3
DIII	201	Pre	requ	isite –	- ENG	INE	ERINC	3 PHY	SIC	CS -I	[			1		
		Co	urse	Desig	ned b	y – D	epartn	nent of	f Pł	nysic	s					
OB.J	ECTIVE	ES														
•	To exp	pose	the s	studen	ts to	multij	ole are	eas of s	scie	ence	of en	gineering	g mat	erials	which	ı
	hav	e dir	ect r	elevai	nce to	diffe	ent E	nginee	rin	g apj	plicati	ons	C		<i>.</i> .	
•	To un mag	ders	tand $c \& b$	the dielec	conce	pts a ateria	nd ap	plicat vell as	10n the	is of eir oi	con con	ducting,	Sem	Icondu	lcting	,
COU	RSE OU	JTC		ES (C	(Os)	ateria	15 45 1	wen us	un		ptical	properti				
CO1	Unde	rstan	d ab	out pr	operti	es an	d adva	inceme	ents	s of c	condu	cting ma	terial	s.		
CO2	Unde	rstan	d the	e prino	ciple a	and pr	operti	es sem	nico	ondu	cting	materials	5.			
CO3	Acqu	ire K	now	ledge	on M	agnet	ic and	dielec	ctri	c Ma	terial	s.				
CO4	To Ki	now	abou	it the	creatio	on of	new m	nateria	ls v	with	novel	properti	es			
CO5	To U	nder	stan	d the i	mpac	t of m	odern	mater	ials	s in t	echni	cal uses.				
C06	Learn	new	/ eng	gineeri	ng ma	aterial	s and	its cha	irac	cteris	stics					
	0	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	(1)	Mapping of Course Outcomes with Program outcomes (POs)(H/M/L indicates strength of correlation)H-High, M-Medium, L-LowPosabcdefghijk														
2	CO1	.5	н	0	C	u	Ŭ	1	-	8		1	J	K		
	CO2			L	Н		Μ								-	
	CO3			Μ		Η										
	CO4		Η	т	M	L									-	
	CO5		Н	L	L				<u> </u>							
3	Categor	ry	П				1					0	(			
			ociɛ		(BS	ć	E)	ore		CE)		ctive	OE	aper	R	
			& S	(HS	ces		es (			ve (		Eleo )	ve (	n Pa	ar/ D (P)	
			iies	lies	cien		lenc	ion:	) -	lecti		ajor (NE	lecti	Terr	min Ishij	
			lanit	Stud	c Sc	2	20	fess	-	e El		-Ma	n El	ect/	Sedern	
			Hum	- 4	Basi	_	ggu	Pro		Cor		Non	Ope	Proj	In	
			I		2		Ц									
			<u> </u>	th a -	N							~				
4	Approv	al	37	^m Me	eting	of Ac	ademi	c Cou	ncil	I, Ma	ay 201	5				

# UNIT I CONDUCTING MATERIALS

Conductors – classical free electron theory of metals – Electrical and thermal conductivity – Wiedemann – Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states – carrier concentration in metals.

# UNIT II SEMICONDUCTING MATERIALS

Intrinsic semiconductor – carrier concentration derivation Fermi level – Variation of Fermi level with temperature – electrical conductivity – band gap determination – compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor – variation of Fermi level with temperature and impurity concentration — Hall effect –Determination of Hall coefficient – Applications.

# UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS

Origin of magnetic moment – Bohr magneton – comparison of Dia, Para and Ferro magnetism – Domain theory – Hysteresis – soft and hard magnetic materials – antiferromagnetic materials – Ferrites and its applications Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

# UNIT IV DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarization – frequency and temperature dependence of polarisation – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferroelectricity and applications.

# UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials– Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications.

# **TEXT BOOKS:**

- 1. Jayaraman D Engineering Physics II. Global Publishing House, 2014.
- 2. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011.
- 3. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

# **REFERENCES:**

1. Arumugam M., Materials Science. Anuradha publishers, 2010

- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
- 4 http://ocw.mit.edu/courses/find-by-topic
- 5 http://nptel.ac.in/course.php?disciplineId=122
- 6 https://en.wikipedia.org/wiki/Engineering_physics

	ENGINEERING CHEMISTRY-II	L	Т	Р	C					
BCH 201	Total Contact Hours - 45	3	0	0	3					
	Prerequisite – ENGINEERING CHEMISTRY –I									
	Course Designed by – Department of Chemistry									
OBJECTIVES										
To impart a sound knowledge on the principles of chemistry involving application										
oriented topics required for all engineering branches.										
COURSE OUTCOMES (COs)										

34

9

9

COI	Students chemistry	Students will understand the concepts and further industrial applications of surface chemistry														
CO2	2 To impar	To impart knowledge about the Industrial importance of Phase rule and alloys														
CO3	3 To make their imp	To make the students to be conversant with Analytical techniques of chemistry and their importance														
CO4	To have a	To have an idea and knowledge about the Chemistry of Fuels and														
COS	5 Understa	Understanding of engineering materials														
CO	5 All about	All about bonding and molecular structures														
Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																
1	COs/Pos	a	b	c	d	e	f	g	5	h		i	j		k	
2	CO1	Н	Η	L		Н		H M				М				
	CO2		Η	_		H		H								
	CO3	H		L		H		<u>H</u>						M		
	CO4			L		H	H									
	C05			L		H										
2	CO6			L		H		Η			-1	H			M	
3	Engg Sciences (BS) (ES)		Professional Core	(PC)	Core Elective (CE)		Non-Major	Elective (NE)	Open Elective (OE)	Project/Term Paper/		Seminar/ Internship (PR)				
4	Approval	pproval 37 th Meeting of Academic Council, May 2015														

# UNIT I SURFACE CHEMISTRY

Introduction : Adsorption , absorption , desorption , adsorbent, adsorbate and sorption – (definition only) Differences between adsorption and absorption Adsorption of gases on solids – factors affecting adsorption of gases on solids – Adsorption isotherms –Frendlich adsorption isotherm and Langmuir adsorption isotherm Role of adsorbents in catalysis, Ion-exchange adsorption and pollution abatement.

# UNIT II PHASE RULE AND ALLOYS

Introduction :Statement of Phase Rule and explanation of terms involved – one component system – water system – Construction of phase diagram by thermal analysis - Condensed phase rule [Definition only] Two Component System : Simple eutectic systems (lead-silver system only) – eutectic temperature – eutectic composition – Pattinsons Process of desilverisation of Lead Alloys: Importance, ferrous alloys –nichrome and stainless steel – 18/8 stainless steel – heat treatment of steel – annealing – hardening – tempering normalizing – carburizing - nit riding . Non- ferrous alloys: Brass and Bronze

# UNIT III ANALYTICAL TECHNIQUES

Introduction: Type of Spectroscopy - Atomic spectroscopy - molecular spectroscopy - Explanation IR spectroscopy - principles - instrumentation (block diagram only) - applications - finger print region UV-visible spectroscopy — principle - instrumentation (block diagram only) -

### 9

9

Beer-Lambert's law- – estimation of iron by colorimetry– Atomic absorption spectroscopy- principle - instrumentation (block diagram only) - estimation of Nickel by Atomic absorption spectroscopy Flame photometry– principles – instrumentation (block diagram only) - estimation of sodium ion by Flame photometry

# UNIT IV FUELS

Introduction : Calorific value – types of Calorific value - gross calorific value – net calorific value Analysis of Coal – Proximate and ultimate analysis – hydrogenation of coal - Metallurgical coke – manufacture by Otto-Hoffmann method Petroleum processing and fractions – cracking – catalytic cracking – types – fixed bed catalytic cracking method- Octane number and Cetane number (definition only) Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG (definition and composition only) Flue gas analysis – importance - Orsat apparatus

9

9

# UNIT V ENGINEERING MATERIALS

**Introduction:** Refractory's – classification – acidic, basic and neutral refractory's – properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling) Manufacture of Refractory's: alumina bricks and Magnesite bricks, Abrasives – natural and synthetic abrasives Natural type : Siliceous - quartz ; Non –siliceous – diamond Synthetic Abrasives : silicon carbide and boron carbide. Lubricants: Liquid lubricants - Properties – viscosity index, flash and fire points, cloud and pour points, oiliness, Solid lubricants – graphite and molybdenum sulphide

# TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S.Dara "A text book of Engineering Chemistry" S.Chand &Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

# **REFERENCES:**

- 1. B.Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub. Co.Ltd, New Delhi,(2008)
- 2. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. https://en.wikipedia.org/wiki/Spectroscopy

BCS 201	INTERNET PROGRAMMING	L	Т	Р	C					
	2	0	0	2						
	Prerequisite – Fundamentals of Computing & programming									
	Course Designed by – Dept of CSE									
OBJECTIVES										
• To impart a sound knowledge on the principles of computers involving the different application oriented topics required for all engineering branches.										
• Graduates will demonstrate the ability to apply knowledge of mathematics to develop and analyze computing systems.										

• Graduates will have a solid understanding of the theory and concepts underlying computer science.

# COURSE OUTCOMES (COs)

CO1	To enable the student to	learn the major	components of a	computer system.												
-----	--------------------------	-----------------	-----------------	------------------												
CO2	To know t	he con	rrect wa	ay of	solv	ing probl	em.									
-----	-------------	-------------------------------------------------------------------------------------------------------------------------------------------------	------------------------	----------------	----------------	----------------------------------------------	-----------------	------------	---------------	-------------	------------	---------------	----------------	------	--------------	---------------------------------------
CO3	To identify	y effic	cient wa	ay of	solvi	ing probl	em.									
CO4	To learn to	o use o	office a	uton	natior	n tools.										
CO5	To implen	nent o	ffice at	itom	ation	tools										
CO6	To learn a	nd wr	ite prog	gram	in "C	?".										
	М (Н/М	Mappi /L ind	ng of C licates	Cours stren	se Ou gth o	tcomes v f correlat	vith I tion)	Prog H-	ram Hig	out h, M	cor [-M	nes ( ediu	(POs) m, L-	-Lov	V	
1	COs/POs	а	b	c	d	e	f	2	g	h		i	j	1	K	
2	CO1	M         M         H         M         M         M         L         L           H         M         H         H         M         L         L														
	CO2	Η	М	Μ	Н	Н		Μ					L	L		
	CO3	Н	Μ		Η	Н		Μ					L	L		
	CO4	Η	Μ		Η	Н		Μ					L	L		
	CO5	Η	Μ	Μ	Η	Н		Μ					L	L		
	CO6	Η			Η	Н		Μ					L	L	-	
3	Category	Humanities &	Social Surdies (HS)	Basic Sciences	(BS)	<ul><li>Engg Sciences</li><li>(ES)</li></ul>	Professional	Core (PC)	Core Elective	(CE)	Non-Maior	Elective (NE)	Open Elective	(OE)	Project/Term	Paper/ Seminar/ Internship (PR)
4	Approval	37 th	Meeti	ing o	f Aca	demic C	ounc	il, N	/lay 1	2015	5					

#### UNIT I BASIC INTERNETCONCEPTS

Internet principles-IP addressing-Internet Service Provider (ISP)-URL-Basic web concepts-World Wide Web (WWW)-Intranet and Extranet-Internet Protocols: HTTP, TCP, UDP, FTP, Telnet-Domain Name System(DNS)-E mail-Next generation internet.

#### UNITII WEBDESIGNBASICS

Introduction to HTML–Structure of HTML Document– Tags-Headings–Links–Images–Lists–Tables –Forms–Frames-Style sheets and its types.

#### UNITIII DYNAMIC HTML

Introduction to Dynamic HTML-Object model and collections-Event model-Filters and transition-Data binding-Data control-Activex control.

#### UNITIV CLIENT ANDSERVERSIDEPROGRAMMING

VBScript &JavaScript: Introduction-Operators–Data type-Control structures-Looping–Classes and Objects–Arrays-Functions-Events-Example programs.

#### UNITV INTERNETAPPLICATIONS

Onlinedatabase-functions of onlinedatabase-Merits and Demerits-InternetInformation Systems (IIS)-EDI applications in business and its types-Internet commerce-Types and Applications

## **TEXT BOOKS:**

#### 37

6

6

6

#### 6

- 1. Deitel, Deitel and Nieto, ''Internet and World Wide Web- How to program'', Pearson Education Publishers, 5th edition, 2008.
- 2. Elliotte Rusty Harold, "Java Network Programming", O'Reilly Publishers, 2010
- 3. Java Script: A Beginners Guide John Pollock 4thEdition, TMH Edition (2013)
- 4. VB Script Beginners Guide, Jyoti B. Giramkar, Create Space Independent Publishing (2014)

#### **REFERENCES:**

- 1... Krishnamoorthy & S.Prabhu, ''Internet and Java Programming'', New Age International Publishers, 2010.
- 2. Thomno A.Powell, ''The Complete Reference HTML and XHTML'', fourth edition, Tata McGraw Hill, 2001
- 3. E Commerce Kamlesh K.Bajaj, Debjani Nag, Tata McGraw Hill, Second edition, 2010

BSS	5201		I	PERS	ONAL	JTY	DEVE	LOP	ME	NT			L	Т	Р	C
			J	Fotal C	Contac	t Hou	rs - 30						2	0	0	2
			F	Prereq	uisite -	- Nil										
			(	Course	Desig	gned b	oy – De	epartn	nent	of Ma	nag	ement St	udies			
OB.	IECTIV	ES														
To r	nake stuc	lent	s groo	om the	eir pers	sonali	ty and	prove	e the	mselve	es a	s good Sa	amarit	ans c	of the sc	ciety.
CO	URSE O	UT	COM	IES (C	COs)		-	_								
CO	l	Inc	dividu	ual or	in-gro	oup c	lass pr	esent	atior	s pert	ain	ing to th	e app	licati	ons of	conce
		the	eories	s or iss	ues in	huma	an deve	elopm	ent	1		U				
CO2	2	Sc	ores	obtain	ed from	m ess	ay and	or ob	jecti	ve test	s.					
CO	3	At	tenda	ince, c	lassro	om pa	rticipa	tion,	smal	l grou	p in	teraction	s.			
CO	1	Re	esearc	h and	write	about	releva	nt top	oics.							
CO	5	De	esign	and c	comple	ete a	researc	ch pr	oject	that of	can	take the	e form	of	a devel	lopme
interview, an observation or assessment through servic													ning.			
CO6Develop and maintain a Reflection																
			Map	ping o	of Cou	rse O	utcome	es wit	h Pro	ogram	ou	tcomes (	POs)			
1		(H/I	M/L i	ndicat	es stre	ngth	of corr	elatio	n)	H-Higl	n, N	1-Mediu	m, L-L	LOW		
1	COs/Po	S	a	b	C	d	e	Ť	g	h	1	J	ŀ	K .		
2	<u>CO1</u>		L	TT	H				M							
	CO2			Н	H				M	11						
	$\frac{CO3}{CO4}$								IVI	н	п					
	C04 C05								М		11	 Н	н			
	CO6								M							
3	Categor	y		·	s											<u>.</u>
		-	ss & die	m	nce		seou	nal	()	tive		NE)	tive	L un		(PR
			uitie Stur	S)	ciel (S		cier	sio	)Y)	E) E		Maj e (Î	llec E)	ì	v r v ber/ inai	iip (
			nan	(H	S S E	9	Š	ofes	ore	е E	-	on-l ctiv	n E O		Par	dsn'
			Hur	2010	3asi		ngg ES)	Prc	Ċ	Cor		N Ele	Эре	Dro	s s	nter
				•	щ		Ξ			-			•			IJ

		$\checkmark$				
4	Approval	37 th Meeting of Ac	cademic Council, I	May 2015		

#### UNIT I INTRODUCTION TO PERSONALITY DEVELOPMENT

The concept personality- Dimensions of theories of Freud & Erickson- personality – significant of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles - Factors responsible for success – What is failure - Causes of failure. SWOT analyses.

#### UNIT II ATTITUDE & MOTIVATION

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages - Negative attitude - Disadvantages - Ways to develop positive attitude - Difference between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self-motivation- Factors leading to de-motivation

#### UNIT III SELF-ESTEEM

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive self-esteem – Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self-esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

#### UNIT IV OTHER ASPECTS OF PERSONALITY DEVELOPMENT

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader - Character-building -Team-work - Time management -Work ethics –Good manners and etiquette.

#### UNIT V EMPLOYABILITY QUOTIENT

Resume building- The art of participating in Group Discussion – Acing the Personal (HR & Technical) Interview -Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

#### **TEXT BOOKS:**

- 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill.
- 2. Stephen P. Robbins and Timothy A. Judge (2014), Organizational Behavior 16th Edition, Prentice Hall.

#### **REFERENCE BOOKS:**

- 1. Andrews, Sudhir. How to Succeed at Interviews. 21st (rep.) New Delhi.Tata McGraw-Hill 1988.
- 2. Heller, Robert. Effective leadership. Essential Manager series. Dk Publishing, 2002
- 3. Hindle, Tim. Reducing Stress. Essential Manager series. Dk Publishing, 2003
- 4. Lucas, Stephen. Art of Public Speaking. New Delhi. Tata Mc-Graw Hill. 2001
- 5. Mile, D.J Power of positive thinking. Delhi. Rohan Book Company, (2004).
- 6. Pravesh Kumar. All about Self- Motivation. New Delhi. Goodwill Publishing House. 2005.
- 7. Smith, B. Body Language. Delhi: Rohan Book Company. 2004

6

6

6

#### 6

#### .

BBT20	)2	BIC	DLOG	Y FO	R EN	GIN	EER	.S					L	T	I	P	С
		Tota	al Con	tact H	lours -	- 30							2	0	(	)	2
		Prer	equisi	ite – +	2 Bas	ic Sci	ience										<u> </u>
		Cou	rse D	esigne	ed by -	- Dep	artm	ent of	Inc	lustr	ial Bic	Tech	nolog	у			
OBJE	CTIVE	S															
Gain v	vivid kr	nowle	edge i	in the	funda	amen	tals a	and us	ses	of	biolog	y, hur	nan s	yste	m a	nd j	plant
system	•																
COUR	SE OU	JTCO	OMES	5 (CO	<b>s</b> )												
CO1	To un bioche	derst emica	and th al con	ne fun stituer	damer nts	ntals (	of liv	ing th	ing	s, th	eir cla	ssifica	tion,	cell	struc	eture	and
CO2	To ap situati	ply t ions	he co	ncept	of pla	int, a	nima	l and	mic	crobi	al sys	tems a	ind gr	owt	h in	real	l life
CO3	To co	mpre	hend	geneti	cs and	l the i	immu	ine sys	ster	n							
CO4	To kn	ow tł	ne cau	se, sy	mpton	ns, di	agno	sis and	l tr	eatm	ent of	comm	ion di	seas	es		
CO5	To give a basic knowledge of the applications of biological systems in relevant industries Mapping of Course Outcomes with Program outcomes (POs)																
	industries Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low																
1	COs/l	POs	a	b	c	d	e	f		g	h	i	j		k		
2	CO1		Η						Μ	[							
	CO2			Η								Η					
	CO3				Н								Μ				
	CO4												H			_	
	CO5								-							_	
2	<u>CO6</u>							Н						<u> </u>			
3	Categ	gory	Humanities &	(CII) solutions local	Basic Sciences	noo Sciences	ES)	Professional Core		Ore Elective (CE)		Non-Major Elective (NE)	Open Elective	, (OE)	Project/Term	Paper/ Seminar/	Internship (PR)
			Ŭ	מ		<u>T</u>											
4	Appro	oval	37 th	Mee	ting of	f Aca	demi	c Cou	nci	l, Ma	ay 201	5					

#### UNITI INTRODUCTION TO LIFE

6

Characteristics of living organisms-Basic classification-cell theory-structure of prokaryotic and eukaryotic cell-Introduction to biomolecules: definition-general classification and important functions of carbohydrates-lipids-proteins-nucleic acids vitamins and enzymes-genes and chromosome.

#### UNIT II BIODIVERSITY

Plant System: basic concepts of plant growth-nutrition-photosynthesis and nitrogen fixation-Animal System: elementary study of digestive-respiratory-circulatory-excretory systems and their functions-Microbial System: history-types of microbes-economic importance and control of microbes.

#### UNIT III GENETICS AND IMMUNE SYSTEM

Evolution: theories of evolution-**Mendel's** cell division–mitosis and meiosis-evidence of e **laws** of **inheritance**-variation and speciation- nucleic acids as a genetic material-central dogma immunity-antigens-antibody-immune response.

#### UNIT IV HUMAN DISEASES

Definition- causes, symptoms, diagnosis, treatment and prevention of diabetes, cancer, hypertension, influenza, AIDS and Hepatitis

#### UNIT V BIOLOGY AND ITS INDUSTRIAL APPLICATION

Transgenic plants and animals-stem cell and tissue engineering-bioreactors-biopharmingrecombinant vaccines-cloning-drug discovery-biological neural networks-bioremediationbiofertilizer-biocontrol-biofilters-biosensors-biopolymers-bioenergy-biomaterials-biochips-basic biomedical instrumentation.

#### **TEXT BOOKS:**

- 1. A Text book of Biotechnology, R.C.Dubey, S. Chand Higher Academic Publications, 2013
- 2. Diseases of the Human Body, Carol D. Tamparo and Marcia A. Lewis, F.A. Davis Company, 2011.
- 3. Biomedical instrumentation, Technology and applications, R. Khandpur, McGraw Hill Professional, 2004

#### **REFERENCE BOOKS**

- 1. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 2. Cell Biology and Genetics (Biology: The unity and diversity of life Volume I), Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning, 2008
- 3. Biotechnology Expanding horizon, B.D. Singh, Kalyani Publishers, 2012

BME203	BASIC MECHANICAL ENGINEERING	L	Т	Р	C
	Total Contact Hours – 30	2	0	0	2
	Prerequisite – +2 Level Maths & Physical Science				
	Course Designed by – Dept of Mechanical Engineering				
OBJECTIV	<b>TES</b>				
• The	program educational objectives (PEOs) for the mechanical-engi	neeri	ng pr	ogran	ı are
to ea	ducate graduates who will be ethical, productive, and contra	ibutir	ng me	ember	s of

- The broad education necessary to understand the impact of engineering solutions in a
- global, economic, environmental, and societal context
- The ability to apply principles of engineering, basic science, and mathematics to design

6

6

	and rea	alize p	hysica	al syste	ems, co	mponer	nts, or j	proc	esse	S						
CC	OURSE OU	TCO	MES	(COs)												
CC	D1 An ab	ility to	appl	y know	vledge	of matł	nemati	cs								
CC	D2 An ab	ility to	appl	y know	vledge	of sciei	nce, an	d en	ngine	eering	2					
CO	D3 Ability	y to de	sign a	and co	nduct e	xperim	ients, a	is w	ell a	s to a	nalyze	and interp	oret dat	a.		
CO	D4 An ab	ility to	func	tion or	n multi-	-discipl	inary t	eam	ıs							
CC	D5 To pro	vide b	asic I	Knowle	edge of	basic n	nanufa	cturi	ing p	oroce	ss.					
CC	D6 Ability	y to ide	entify	, formu	ılate, ar	nd solve	e engin	eeri	ng p	roble	ms					
		М	appin	g of Co	ourse O	utcome	es with	Pro	gran	n out	comes (	POs)				
	(	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
1	COs/POs	Os/POs a b c d e f g h i j k														
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
2	CO1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	CO2	M         M         H         M         M         L         L           H         M         H         H         M         L         L														
	CO3	Н	Μ		Н	Н		Μ				L	L			
	CO4	Н	Μ		Н	Η		Μ				L	L			
	CO5	Η	Μ	Μ	Η	Η		Μ				L	L			
	CO6	Н			Н	Н		Μ				L	L			
3	Category	Humanities & Social Studies	(HS)	Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Professional	Elective (PE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/	Seminar/ Internship (PR)		
4	Approval	37 th	Meet	ting of	Acadeı	$\frac{\sqrt{1}}{1}$	uncil, I	May	201	5						

#### UNIT I ENERGY RESOURCES AND POWER GENERATION

Renewable and Non-renewableresources-solar, wind, geothermal, steam, nuclear and hidepowerplants-Layout,

majorcomponents and working. Importance of Energy storage, Environmental constraints of power generation nusing fossil fuels and nuclear energy.

#### UNIT II IC ENGINES

Classification, working principles of petrol and diesel engines-two stroke and four stroke cycles, functions of main components of I.C engine. Alternate fuels and emission control.

#### UNIT III REFRIGERATION AND AIR-CONDITIONINGSYSTEM

Terminology of Refrigeration and Air-Conditioning, Principle of Vapor Compression& Absorption system- Layoutoftypicaldomesticrefrigerator-window&Splittyperoomairconditioner.

#### UNITIV MANUFACTURING PROCESSES

Brief description of mould makes and casting process, Metal forming, Classification types of forging, forging operations, Brief description of extrusion, rolling, sheet forging, and drawing. Brief

6

6

6

description of welding, brazing and soldering. Principal metal cutting processes and cutting tools, Brief description of Centre lathe and radial drilling machine.

#### UNITV MECHANICALDESIGN

Mechanical properties of material-Yield strength, ultimate strength, endurance limit etc., Stress-Strain curves of materials. Stresses induced in simple elements. Factor of safety-Design of Shafts and belts. Types of bearings and its applications. Introduction to CAD/CAM/CIM &Mechatronics.

6

#### **TEXTBOOKS:**

1. T.J.Prabhu etal, "BasicMechanicalEngineering", SciTechPublications(p)Ltd,2000

#### **REFERENCES:**

- 1. NAGPAL,G.R,"PowerplantEngineering",KhannaPublishers,2004.
- 2. RAO.P.N, "ManufacturingTechnology", TataMcGraw-HillEducation, 2000.
- 3. Kalpakjian, "ManufacturingEngineeringandTechnology", AdissoWesleypublishers, 1995.
- 4. Ganesan.V,"Internalcombustionengines", TataMcGraw-HillEducation, 2000.
- 5. C.P.Arora, "RefrigerationandAir Conditioning", TataMcGraw-HillEducation, 2001.
- 6. V.B.Bhandari,"DesignofMachineelements", TataMcGraw-HillEducation, 2010.

		BASIC CIVIL ENGINEERINGLTPCTotal Contact Hours - 302002Prerequisite - +2 Level Maths & Physical ScienceCourse Designed by – Department of Civil Engineering $2$ 002Creation of Course Designed by – Department of Civil EngineeringCOUTCOMES (COs)Till gain knowledge in Design, concept preparationrawing and chart preparationTill understand the components of buildings.//// Lindicates strength of correlation)H H HDi HAcCOutroomes (POs)(H/M/L indicates strength of correlation)H HLITotal Contact Hours - 3020Prerequisite - +2 Level Maths & Physical ScienceCourse Designed by – Department of Civil EngineeringCOUTCOMES (COs)Till gain knowledge in Design, concept preparationructural component designTructural component designTill understand the components of buildings.///////////////////////////////////														
BCE	201	Tota	l Cor	ntact	Hou	<u>s – 3</u>	0					2	0	0	2	
	·	Prer	equis	ite –	+2 L	evel	Math	s & Ph	ysical	Scien	ice				I	
		Cou	rse D	esign	ed b	y – D	Depart	ment o	of Civ	il Engi	ineering					
OBJI	ECTIV	ES: U	Jnder	stand	the	basic	conc	epts of	f civil	engin	eering.					
COU	RSE O	UTC	OMI	ES (C	Os)											
CO1	Will g	ain k	nowl	edge	in D	esign	i, cond	cept pr	epara	tion						
CO2	Loadi	ng ca	lcula	tion												
CO3	Struct	ructural component design awing and chart preparation														
CO4	Drawi	Drawing and chart preparation Vill understand the components of buildings														
CO5	Will u	Drawing and chart preparation Vill understand the components of buildings.														
CO6	Will	learn	the e	ngine	ering	g asp	ects to	o dams	s, wat	er sup	ply and s	ewa	ge di	sposal.		
		Ma	appin	g of C	Cour	se Oi	itcom	es witl	h Prog	gram o	outcomes	(PC	)s)			
	(H	/M/L	indic	cates	stren	gth o	of corr	elation	n) H	High,	M-Medi	um,	L-Lo	W		
1	COs/P	Os	a	b	с	d	e	f	g	h	i		j	k		
2	CO1		Η	Н			Н		L							
	CO2						Η	Н								
	CO3								Η	L						
	CO4										L					
	CO5										] ]	H		L	_	
	CO6										]	H		L		

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)				
4	Approval	37 th Meeting of Academic Council, May 2015											

#### UNIT I CIVIL ENGINEERING MATERIALS

Introduction – Civil Engineering – Materials – Stones – Bricks – Sand – Cement – Plain Concrete – Reinforced Cement Concrete – Steel Sections – Timber – Plywood – Paints – Varnishes (simple examples only)

#### UNIT II SURVEYING

Surveying – objectives – classification – principles of survey-Measurement of distances – Chain survey – Determination of areas – Use of compass – Use of leveling Instrument – (simple examples only)

#### UNIT III FOUNDATION FOR BUILDING

Bearing Capacity of Soil – Foundation – Functions – Requirement of good foundations – Types of foundations – Merits & Demerits.

#### UNIT IV SUPERSTRUCTURE

Stone Masonry – Brick Masonry – Columns – Lintels – Beams – Roofing – Flooring – Plastering– White Washing (Simple examples only)

#### UNIT V MISCELLANEOUS TOPICS

Types of Bridges –Dam- purpose – selection of site - Types of Dams – Water Treatment & Supply sources – standards of drinking- distribution system. – Sewage Treatment (simple examples only)

#### **TEXT BOOKS:**

- 1. Raju.K.V.B, Ravichandran .P.T, "Basics of Civil Engineering", Ayyappa Publications, Chennai, 2012.
- 2. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies, (1st ed. 2005).
- 3. Dr.M.S.Palanisamy, "Basic Civil Engineering" (3rded. 2000), TUG Publishers, New Delhi/Tata McGrawHill Publication Co., New Delhi

#### **REFERENCE BOOKS:**

- 1. Rangwala.S.C, "Engineering Materials", Charotar Publishing House, Anand, 41st Edition: 2014.
- 2. National Building Code of India, Part V, "Building Materials", 2005
- 3. Ramesh Babu"A Textbook on Basic Civil Engineering" (1998). Anuradha Agencies, Kumbakonam.
- 4. RamamruthamS., "Basic Civil Engineering", DhanpatRai Publishing Co. (P) Ltd. (1999).

5

8

5

5

BCS2L	.1			INT	FERN	ET I	PRA	CTICE	S		L	Т	Р		С
			T-4-1	<u>C</u>			<u>ATO</u>	<b>KY</b>			0	0	2	_	1
			Total	Cont	act Ho	urs -	45				0	0	3		1
			Prerec	luisit	e – Fu	ndan	nenta	ls of co	omput	ing	& Pro	gram	iming,		
			Comp	uter j	practic	e lat	).								
			Cours	e Des	signed	by –	- Dep	ot of CS	E						
OBJE	CTIV	<b>'ES</b>							_						
•	To in	npart a	sound l	cnow	ledge	on th	ie pri	nciples	of co	mp	uters in	nvolv	ving th	e	
	diffe	rent app		1 orie	ented t	opics	s requ	uired fo	r all e	ngi	neerin	g bra	inches.		
•	Grad	luates w	analyz	onstr	ate the		ity to	o appiy	know	lea	ge of r	nathe	ematic	s to	
	Grad	lugtes w	allaryz		lid un	g sys darst	andi	o. ng of th	a thac	<b>173</b> 7	and co	ncon	te und	arlui	na con
•	scien	iuales w	III IIave	c a su	iiu uii	ueisi	anun	ig of th	e thec	лу		ncep	is unu	21191	ng con
COUR	SE C	UTCO	MES (	COs	)										
COI		To ena	ble the	stude	ent to l	earn	the r	najor c	ompo	nen	ts of a	com	puter s	yste	m.
CO2	2	To kn	low the	corre	ect and	l effi	cient	way of	f solvi	ng	proble	m.			
CO3	3	To id	entify a	nd in	nplem	ent t	he co	orrect a	nd eff	ïcie	ent way	y of s	olving	pro	blem.
CO4	ŀ	To lear	n to us	e offi	ce aut	omat	tion t	ools.							
CO5	5	To infe	er from	use	office	auto	matio	on tools							
COe	5	To lear	n and v	vrite	progra	ım in	• "C"								
		Map	ping of	Cour	se Ou	tcom	es w	ith Prog	gram	out	comes	(PO	s)		
	(H	$\frac{I/M}{L}$ in	ndicates	strei	ngth o	f cor	relati	on) H	-High	<u>, M</u>	-Medi	um, l	L-Low		1
1	CO	s/POs	a	b	c	d	e	f	g	h	i	j		k	
2	CO	2	M	M	M	H	M		M						
	$\frac{co}{co}$	2	H	M	M	H	H		M						
		<u>з</u> Л	п Ц	M		п ц	п		M						
	$\frac{co}{co}$	5	H	M	М	H	H		M			I I			
	CO	<u>5</u> 6	H	111	111	H	H		M			L			
3	Cat	egory													
		01	ss & dies		nces	Sect	221	nal C)	tive		jor VE)	tive	mr.		r' (PR)
			nitie Stu	[ <b>S</b> )	cie			(Pe	llec	Ē	Ma re (]	Ilec	ΞĮ	per/	ina ip
			nar ial	E)	ic S		2	ore	еE	$\overline{O}$	on- ctiv	n F	(C	Pal	em msł
			Hui Soc		Bas	μασ	ES)	C Dr	Coi		Ele N	Op£	Pro	•	S ntei
			.,			Ŭ,	J E				. ,				Ĥ
4	Ap	proval	37 th	Meet	ing of	Aca	demi	c Coun	cil, M	[ay	2015		•		

## LIST OF EXPERIMENTS

# 1. HTML (Hypertext Mark-up Language):

Basics of HTML.How to create HTML DocumentSteps for creating a simple HTML Program.a) Favorite Personality

b) Resume Preparation

#### 2. ADVANCED HTML: Advanced Topics of HTML

- a) Time Table
- b) Table Creation

#### 3. JAVASCRIPT:

- Script Basics.
- Incorporating JavaScript into Web page.
- a) Star Triangle
- b) Temperature Converters
- Script Basics.
- Incorporating JavaScript into Web page.
- a) Star Triangle
- b) Temperature Converters

#### 4. VBSCRIPT:

**VBScript Basics**.

Incorporating VBScript into HTML.

- a) Changing Background Color
- b) Simple Calculator

## 5. WEB DESIGN:

- Inserting External Media in the Web Page.
- a) Forms and Links
- b) Frames with Links and Lists

To export a Dream weaver Document as XML File, checking entries, working in frames, windows control, the java script URL.

	BASIC CIVIL & MECHANICALENGINEERING	L	Т	Р	С
BCM2	L1 PRACTICES LABORATORY				
	Total Contact Hours - 30	0	0	3	1
	Prerequisite – Nil				
	Course Designed by – Department of Mechanical En	ginee	ring &	& Ci	vil
	Engineering	_			
OBJE	CTIVES				
To pro	vide exposure to the students with hands on experience on varie	ous ba	sic		
Civil &	z Mechanical Engineering practices.				
COUR	SE OUTCOMES (COs)				
CO1	Learn Basic concepts				
CO2	Students will get exposure regarding pipe connection for pump	s & tu	rbines	and	to
	study the joint used in roofs, doors, windows and furniture's.				
CO3	Students will get exposure regarding smithy, foundry operation	ns an	d in la	atest	
	welding operations such as TIG, MIG, CO2, spot welding etc.,				
CO4	Students will get hands on experience on basic welding technic	ues, n	nachin	ing a	nd
	sheet metal works.				
CO5	Students will get hands on experience on basic machining techn	iques			

CO6	Students w	vill ge	t har	nds or	n expe	rience	on basi	ic she	et met	al techr	niques					
	M (H/M/L	apping L indic	g of C cates :	Course streng	e Out gth of	comes correla	with Pr tion)	ogran H-Hig	n outo gh, M-	omes ( Mediu	POs) m, L-Lo	OW				
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k				
2	CO1	Н	L													
	CO2				Η											
	CO3		H         L         L         H           H         M         L         H													
	CO4		H M L H													
	CO5		H M H													
	CO6		H         M         L         H           H         M         L         H													
3	Category	Humanities &	Humanities & Social Studies (HS) (HS) (HS) (BS) (BS)				Professional Core (PC)	Core Elective	(CE) Man Maion	Elective (NE)	Open Elective	Project/Term Paper/	Juternship (PR)			
						N										
4	Approval	37 th	Mee	eting	of Ac	ademic	Counc	cil, Ma	ay 201	5	· ·					

#### LIST OF EXPERIMENTS

## I. CIVILENGINEERINGPRACTICE

#### **Buildings:**

a) Studyofplumbingandcarpentrycomponentsofresidentialandindustrialbuildings.Safetyaspe cts.

#### **Plumbing Works:**

a)

Studyofpipelinejoints, its location and functions: valves, taps, couplings, unions, reducers, elbo wsin house hold fittings.

- b) Study of pipe connections requirements for pumps and turbines.
- c) Preparation of plumbing line sketches for water supply and sewage works.
- d) Hands-on-exercise: Basic pipe connection of PVC pipes & G.I.Pipes–Mixed pipe material connection–Pipe connections with different joining components.
- e) Demonstration of plumbing requirements of high-rise buildings.

#### **Carpentry using Handtools and Powertools:**

- a) Study of the joints in roofs, doors, windows and furniture.
- b) Hands-on-exercise: Woodwork, joints by sawing, planning and cutting.
- c) Preparation of halfjoints, Mortise and Tenon joints.

#### II MECHANICALENGINEERINGPRACTICE

#### Welding:

- a) Preparation of butt joints, lap joints and tee joints by arc welding **Basic Machining:**
- **a**) Simple Turning and Taper turning
- **b**) Drilling Practice

#### Sheet Metal Work:

- a) Forming & Bending:
- b) Model making–Trays, funnels, etc.

- c) Different type of joints
- d) Preparation of air-conditioning ducts
- e) Preparation of butt joints, lap joints and tee joints by arc welding

#### Machine assembly practice:

- a) Assembling, dismantling and Study of centrifugal pump
- b) Assembling, dismantling and Studyofair conditioner
- c) Assembling, dismantling and Study of lathe

#### Moulding:

a) Moulding operations like mould preparation for gear and step cone pulley etc

#### Fitting:

a) Fitting Exercises–Preparation of square fitting and vee–fitting models.

#### **Demonstration:**

- a) Smithy operations, upsetting, swaging, setting down and bending. Example–Exercise– Production of hexagonal headed bolt.
- b) Gas welding.

#### **REFERENCES:**

- 1. K. Jeyachandran, S. Nararajan & S, Balasubramanian, "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. T.Jeyapoovan, M. Saravanapandian S. Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd. (2006)
- 3. H. S. Bawa, "Workshop Practice", Tata McGraw-Hill Publishing Company Limited, (2007).
- 4. A. Rajendra Prasad & P. M. M. S Sarma, "Workshop Practice", Sree Sai Publication, (2002).
- 5. P. Kannaiah& K.L. Narayana, "Manual on Workshop Practice", Sci tech Publication, (1999).

			PHYSICS AND CHEMISTRY LABORATORYLTPTotal Contact Hours – 4500 $3/3$ Prerequisite – Engineering Physics and Chemistry labCourse Designed by – Department of Physics & ChemistryES: To impart knowledge to the students in practical physics arUTCOMES (COs)ents will understand the concept of hall effectlents will understand the concept of semiconductorsent will understand the working of spectrometer.lent will able practically understand the chemical reactions.ents will Study the magnetic hysteresis and energy productMapping of Course Outcomes with Program outcomes (POs) $M/L$ indicates strength of correlation)H-High, M-Medium, L-LowsabcdefghijkMHMLLMHMHMHMHMHMHMHMHMHMHMHMHHHHHHHHHHHHHHHHHHHHH <t< th=""></t<>													
		-	Tota	al Con		0	0	3/3	1							
BP	PC 2I	21	Prer	requisi	te – Eng	gineeri	ng Phy	vsics ar	nd Che	emistry	lab				1	
			Cou	rse De	esigned	by – D	epartn	nent of	Phys	ics & C	hemist	ry				
OF che	BJEC emist	CTIVE ry	<b>S:</b> 1	Го im	part kı	nowled	lge to	the s	tuden	ts in p	practic	al p	ohys	ics a	ind	
CC	OUR	SE OU	TCO	COMES (COs) is will understand the concept of hall effect its will understand the concept of semiconductors												
CC	D1	Studer	ents will understand the concept of hall effect ents will understand the concept of semiconductors													
CC	02	Stude	dents will understand the concept of hall effect idents will understand the concept of semiconductors													
CC	)3	Studer	lents will understand the concept of semiconductors ent will understand the working of spectrometer.													
CC	04	Stude	nt w	ill able	e practio	cally u	ndersta	and the	chem	ical rea	ctions.					
CC	)5	Studen	nts w	ill Stu	dy the 1	nagnet	tic hyst	teresis	and e	nergy p	roduct					
		M (H/M/	1app L ine	ing of dicates	Course s strengt	Outco th of co	mes w orrelati	ith Pro on) H	gram I-Higl	outcon n, M-M	nes (PO edium,	Ds) , L-I	Low			
1	CO	s/POs	a	b	с	d	e	f	g	h	i	j	k			
2	CO	1	L	L	Μ	Η										
	CO	2		Н	М			L		L	L		Η			
	CO	3		Н	Μ			L		L			Η			

	CO4	Μ	Н	М		Ι			L	L	Μ	Η	
	CO5		Н			Ι			L	Η		Η	
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective	(CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term	Paper/	Seminar/ Internship (PR)
				N									
4	Approva l	37	th Mee	eting of	Acade	mic Cou	ncil,	May	y 2015				

#### I -LIST OF EXPERIMENTS – PHYSICS

- 1. Determination of Wavelength, and particle size using Laser
- 2. Determination of acceptance angle in an optical fiber.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of thermal conductivity of a bad conductor Lee"s Disc method.
- 6. Determination of Young"s modulus by Non uniform bending method
- 7. Determination of specific resistance of a given coil of wire Carey Foster's Bridge
- 8. Determination of Young"s modulus by uniform bending method
- 9. Determination of band gap of a semiconductor
- 10. Determination of Coefficient of viscosity of a liquid -Poiseuille"s method
- 11. Determination of Dispersive power of a prism Spectrometer
- 12. Determination of thickness of a thin wire Air wedge method
- 13. Determination of Rigidity modulus Torsion pendulum

#### **II-LIST OF EXPERIMENTS – CHEMISTRY**

- 1. Estimation of hardness of Water by EDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Determination of DO in water (Winkler'smethod)
- 4. Estimation of Chloride in Water sample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determination of molecular weight
- 7. Conduct metric titration (Simple acid base)
- 8. Conduct metric titration (Mixture of weak and strong acids)
- 9. Conduct metric titration using BaCl2vs Na 2 SO4
- 10. Potentiometric Titration (Fe  $^{2+}$  / KMnO₄ or K₂ Cr ₂ O ₇ )
- 11. pH titration (acid & base)
- 12. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 13. Estimation of Ferric iron by spectrophotometer.

BMA301	MATHEMATICS - III	L	Т	P	С
	Total Contact Hours – 75	3	2	0	4
	Prerequisite – Mathematics I & II				
	Course Designed by – Dept. of Mathematics				

#### **OBJECTIVES**

- To introduce Fourier series analysis which is central to many applications in engineering apart
- From its use in solving boundary value problems systems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations
- That model several physical processes and to develop Z transform techniques for discrete time

COUR	SE OUTCOMES (COs)
CO1	Solve PDE of second and higher order with constant coefficients.
CO2	Expand given functions by using the concept of Fourier series
CO3	Find Solve many of the Engineering models of Heat equations and Wave equations which are PDEs with boundary conditions
CO4	Solve many problems in Automobile, Medicine, Electronic Engineering which are Differential equations of linear or nonlinear
CO5	Solve differential equations by Laplace transforms
CO6	To understand about Fourier Transform which is necessary for signal processing.

	Mapping of Course Outcomes with Program outcomes (POs)															
		(H/M	I/L in	dicates str	rength o	of correl	ation)	H-High	, M-N	/ledi	um,	L-Lo	)W			
1	COs/S	Ds/SOsabcdefghijkCO1HMLMLLCO2MHHHLH														
2	CO	1	H M L													
	CO	2	Μ		H H L H											
	CO	3	Μ				Ν	I	Н					Μ		
	CO	4	Μ									Μ		Μ	Η	
	CO	5			L		Ν	1	Η	Η				Η		
	CO	6							Η	Η	Η			Η		
3	Cate gory	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE)		Project/Term	Paper/	Seminar/ Internshin	(PR)	
				$\checkmark$												
4	Appr oval	37 th	¹ Mee	eting of A	cademi	c Cound	cil, May	2015								

#### 51

#### UNIT I **PARTIAL DIFFERENTIAL EQUATIONS**

Formation - Solutions of standard types of first order equations - Lagrange's Linear equation -Linear partial differential equations of second and higher order with constant coefficients.

#### **FOURIER SERIES** UNIT II

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

#### UNIT III **BOUNDARY VALUE PROBLEMS**

Classification of second order linear partial differential equations - Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of two-dimensional heat equation - Fourier series solutions in Cartesian coordinates

#### LAPLACE TRANSFORMS UNITIV

Transforms of simple functions - Basic operational properties - Transforms of derivatives and integrals - Initial and final value theorems - Inverse transforms - Convolution theorem - Periodic functions - Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficients and simultaneous equations of first order with constant coefficients.

#### UNIT V FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

#### **TEXT BOOKS:**

- 1. Kreyszig, E.,"Advanced Engineering Mathematics"8th Edition, John Wiley and Sons, (Asia) Pvt., Ltd, Singapore, 2000.
- 2. Grewal, B.S.,"Higher Engineering Mathematics" (35thEdition), Khanna Publishers, Delhi2000.

#### **REFERENCE BOOKS:**

- 1. Kandasamy, P., Thilakavathy, K., and Gunavathy, K. "Engineering Mathematics", Volumes 1 and 3(4th Edition) S Chand and Co., New.
- 2. Narayanan, S.Manicavachangam Pillai, T.K.Ramanaiah, E.,"Advanced mathematics for Engineering Students", Volume2 and 3(2nd Edition), S.Viswanathan (printers & publishers Pvt, Ltd.,) 1992.
- 3. Venkataraman, M.K,"Engineering Mathematics"Volumes3-A&B, 13th Edition National Publishing Company, Chennai, 1998.
- 4. Shanmugam, T.N.: http://www.annauniv.edu/shan/trans.h

9+6

## 9+6

9+6

#### 9+6

# 9+6

BEE30	5 ELECTRICAL MACHINES	L	Т	Р	C								
	Total Contact Hours – 45	3	0	0	3								
	Prerequisite –Basic Electrical and Electronics Engineering												
	Course Designed by – Dept. of Electrical and Electronics E	nginee	ring.										
OBJEC	TIVES												
To i	part basic knowledge on electrical machines, principles and its operation.												
COURS	COUTCOMES (COs)												
CO1	Outline the basics of electrical machines and analyze the charact	eristics	s of DC	machi	nes.								
CO2	Understand and implement speed control techniques for practica	l appli	cations										
CO3	Describe the working of transformer and assess its regulation and	d effici	iency o	n load a	ınd								
	no-load.												
CO4	Know the working concept of different types of induction motor	and ar	nalyze t	he oper	ating								
	behavior of induction motor using its performance indices.												
CO5	Explain the basics of synchronous machines and interpret performance characteristics.												
CO6	Understand the power generation and transmission system.												

	( <b>- -</b> )	Map	opin	g of Co	urse Ou	utcomes	with Pro	ogram c	outcor	nes (	POs	)				
	(H/.	M/L i	indic	cates str	ength o	of correl	lation) I	I-High,	M-M	ediu	m, L	-Lov	V			
1	COs/SOs	a			b		С		d	e	f	g	h	i	j	k
	CO1										М				Η	
	CO2	M					H	[								
	CO3								Η					M		
	CO4	Μ										Μ				Η
	CO5				L											
	CO6										Η					
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE)		Project/Term	Paper/	Seminar/ Internship (PR)		
4	Approval	37 th	¹ M	eeting o	of Acad	emic Co	ouncil, N	lay 2015	5							

## UNIT I CIRCUITS AND TRANSFORMERS

Three phase circuits and transformers, Three phase balanced circuits with R-L-C loads, Power measurement in 3 Phase circuit, Two watt meter method, Principle of operation of Transformers, Equivalent circuit, Voltage regulation, Efficiency, Transformer connections.

#### UNIT II DC MOTORS

Construction, Operating principle of motor, Types, Characteristics, Starting, Speed control, Testing.

#### UNIT III INDUCTION MOTORS

Construction, Types, Principle of operation of 3 phase induction motors, Equivalent circuit, Performance calculation, Starting and Speed control.

#### UNIT IV SYNCHRONOUS AND SPECIAL MACHINES

Construction of synchronous machines, Types, Induced EMF, Voltage regulation of round rotor alternators. Brushless Alternators, Permanent magnet Synchronous machines, Reluctance machines, Hysteresis motors, Stepper motor.

#### UNIT V TRANSMISSION AND DISTRIBUTION

Structure of Electric Power systems, Generation, Transmission, Sub Transmission and Distribution systems, EHVAC and EHVDC transmission systems, Substation layout, Insulators, Cables.

#### **TEXT BOOKS:**

- 1. Nasar S.A., " Electric Machines and Power Systems ", Vol. 1, McGraw Hill Inc., New Delhi, 1995.
- 2. Wadhwa C.L., " Electrical Power Systems ", Wiley eastern Ltd., India, 1985.

## **REFERENCE BOOKS:**

1. www.ceecs.fau.edu

BEC301	SIGNALS AND SYSTEMS	L	Т	Р	С
	Total Contact Hours –60	4	0	0	4
	Prerequisite – Mathematics-II				
	Course Designed by – Dept. of Electronics and Communica	ation E	ngineer	ring.	
<b>OBJEC</b>	<b>FIVES</b>				
• T	his course trains students for an intermediate level of fluency v	vith sig	gnals a	nd syste	ems in
	both continuous time and discrete time, in preparation for n	nore a	dvance	d subje	ects in
	digital signal processing (including audio, image and video p	rocessi	ing), co	ommuni	cation
	theory, and system theory, control and robotics.				
COURS	E OUTCOMES (COs)				
CO1	To Understand different types of signals-continuous and discrete	e,odd a	and eve	n,perioc	licand
	a periodic etc.Be able to classify systems based on their properti	es			
CO2	To familiarize the concepts of transform based continuous time	e and c	liscrete	time ar	alysis

9

9

9

	of signals and systems
CO3	Analyze continuous time signals and systems by using appropriate mathematical tools
CO4	Analyze sampling process and sampling of discrete time signals.
CO5	Analyze discrete time signals and systems by using appropriate mathematical tools
CO6	Determine Fourier transforms for continuous-time and discrete-time signals (or impulse- response functions), and understand how to interpret and plot Fourier transform magnitude and phase functions.

	Mapping of Course Outcomes with Program outcomes (POs)														
		(H/M/L	indicate	s stren	gth o	f correlat	tion)	H-	High,	M-M	led	ium, L	L-Low		
	1	1	1		1		1	1							
1	COs/POs	a	b	с	d	E	f		g	h		i	j	k	
2	CO1	Н	М		Μ	Η									
	CO2	Н			Μ	Η							L		
	CO3	Μ			Η	Н									
	CO4					Н		N	1					Μ	
	CO5	Н	Μ		Μ										
	CO6	Н	Μ		Μ		М						М		
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	✓ Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)		Open Elective (OE)		roject/Term Paper/ Seminar/ Internship (PR)nship (PR)
4	Approval	37 th N	leeting o	f Acac	lemio	c Council	, May	20	)15						

#### UNITI CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous time signals (CT signals), discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals - periodic and aperiodic, random singals, CT systems and DT systems, Classification of systems - Linear Time invariant Systems.

#### UNIT II ANALYSIS OF C.T. SINGALS

Fourier series analysis, Spectrum of C.T. signals, Fourier Transform and Laplace Transform in Signal Analysis.

#### UNIT III LTI-CT SYSTEMS

Differential equation, Block diagram representation, Impulse response, Convolution integral, Frequency response, Fourier Methods and Laplace transforms in analysis, State equations and Matrix.

# 12

12

#### UNIT IV ANALYSIS OF D.T. SIGNALS

Spectrum of D.T. signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Properties of Z-transform in signal analysis.

#### UNIT V LTI-DT SYSTEMS

Difference equations, Block diagram representation, Impulse response, Convolution SUM, Frequency response, FFT and Z-transform analysis, State variable equation and Matrix.

#### **TEXT BOOKS:**

1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2007.

#### **REFERENCE BOOKS:**

- 1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.
- 2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems Continuous and Discrete", Pearson, 2007.
- 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 20076.
- 4.www.nptel.ac.in

BE	C302		PRINC	CIPLE	S OF	DIGI	TAL E	LECT	RONIC	CS	L	Т	Р	C
		Tota	al Contac	ct Hou	rs – 6	0					3	1	0	4
		Prer	equisite	–Basio	e Elec	trical &	k Electi	ronics I	Enginee	ring	•		•	
		Cou	rse Desi	gned b	y – D	ept. of	Electro	onics ar	d Com	munica	ation En	gineeri	ing.	
OB	JECT	IVE	5											
	• To	o man	ipulate a	cross	variou	ıs num	ber syst	tem and	l to con	npute b	inary ar	ithmet	ic ope	rations.
	• To	o und	erstand t	he desi	ign of	combi	nationa	al and so	equenti	al circu	its usin	g gates		
	• To	o kno	w the con	ncept o	of mer	mories	and pro	ogramm	able lo	gic dev	vices			
	• To	) lear	n the des	ign of	asvno	chronoi	is and s	synchro	nous se	auenti	al circui	ts.		
				-8	j			, <b>j</b>		1				
CC	URSE	E OU	TCOM	ES (CO	)s)									
CC	01 R	ecall	the diffe	rent nu	ımber	systen	ns and o	demons	trate th	e simpl	lificatio	n of Bo	olean	l
	expressions using Boolean algebra & K-Map method.													
CC	D2 A	nalyz	e the Co	mbina	tional	buildi	ng bloc	ks.						
CC	03 A	nalyz	e the sec	luentia	l buil	ding bl	ocks.							
CC	04 D	evelo	p a state	diagra	ım an	d simpl	ify the	given s	equent	ial logi	c.			
CC	D5 T	o illu	strate the	conce	pt of	synchr	onous s	sequent	ial circu	uits				
CC	06 T	o illu	strate the	conce	pt of	asynch	ronous	sequen	tial circ	cuits				
			Mapp	oing of	Cou	se Out	comes	with Pr	ogram	outcon	nes (PO	s)		
		I)	H/M/L in	dicate	s stre	ngth of	correla	tion)	H-High	, M-M	edium,	L-Low	-	
1	COs/	PO	а	b	с	d	e	f	g	h	1	J	k	
2	S CO1		II	тт		TT	т	м			М			
2	$\frac{COI}{CO2}$		H M	H	М	H	L	M			IVI			
	$CO_2$			H	M	Н		M						
	C03		п u	п										
	C04		M	н	М	н		М			М			
	CO6		H	H	M	H		111			M			

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	roject/Term Paper/ Seminar/ Internship (PR)
					$\checkmark$				
4	Approva 1		37 th Me	eting of A	Academic	c Council,	May 2015	5	

#### UNIT I BASIC CONCEPTS ,BOOLEAN ALGEBRA AND LOGIC GATES

Number systems - Binary, Octal, Decimal, Hexadecimal, conversion from one to another, complement arithmetic, Boolean theorems of Boolean algebra, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map, Quine-McCluskeymethodofminimization .NAND-NOR implementation of Logic gates, Multilevel gate implementation, Multi output gate implementation, TTL and CMOS logic and their characteristics, Tristate gates.

#### **UNITH COMBINATIONAL CIRCUITS**

Problem formulation and design of combinational circuits, Half Adder ,Full adder,HalfSubtractor, Full Subtractor, Carry Look Ahead adder, BCD adder, Fast adder,Serial adder/subtractor,BinaryMultiplier,Binary Divider, Encoder ,Decoder, Mux / Demux, Code-converters, Parity Generators, Comparators.

#### UNIT III SEQUENTIAL CIRCUIT

Latches, Flip-flops - SR, JK, T, D, Master/Slave FF, Triggering of FF, Realization of one flip flop using other flip flops Analysis of clocked sequential circuits - their design, State minimization, State assignment, Circuit implementation, Registers-Shift registers, AsynchronousUp/Down counterSynchronousUp/Down counters, Modulo–n-counter, Ringcounter ,Shiftcounters ,Sequencegenerators.

#### UNIT IV MEMORY DEVICES

Classification of memories – ROM ,ROM organization - PROM , EPROM , EAPROM, RAM – RAM organization – Write operation , Read operation , Memory cycle, Timing wave forms , Memory decoding , memory expansion , Static RAM Cell, Dynamic RAM cell ,Programmable Logic Devices – Programmable Logic Array (PLA) and Programmable Array Logic (PAL) ,Field Programmable Gate Arrays (FPGA) ,Implementation using ROM, PLA, and PAL.

#### UNIT V SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS 12

Synchronous Sequential Circuits: General Model – Classification – Design – Use of Algorithmic State Machine – Analysis of Synchronous Sequential Circuits.

Asynchronous Sequential Circuits: Design of fundamental mode and pulse mode circuits – Incompletely specified State Machines – Problems in Asynchronous Circuits – Design of Hazard Free Switching circuits.

#### **Text Book:**

1. M. Morris Mano, "Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd., 2008 / PearsonEducation (Singapore) Pvt. Ltd., New Delhi, 2003.

12

12

12

2. William I. Fletcher, " An Engineering Approach to Digital Design ", Prentice-Hall of India, 1980.

#### **REFERENCE BOOKS:**

- 1. John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
- 2. John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 4. Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
- 6.http://www.electrical4u.com/digital-electronics

	CIRCUIT THEORY     L     T     P     C															
			CIRC	CUIT	THE	ORY						L	Т	Р	С	
п	eran	]	Fotal (	Conta	ct Ho	urs-45	5					3	0	0	3	
BI	EEJU		Prerec	quisite	e- Bas	ic Ele	ectrical 8	z Electr	onics	Engg						
			Cours	e Des	signed	by –	Dept of	Electric	cal &	Electroni	cs Engin	eerin	g			
0	BJEO	CTIVE	S													
To	o dev	elop pr	oblem	n solv	ing sk	cills a	nd under	rstandin	g of o	circuit the	eory thro	ough	the a	pplica	tion of	
tecl	hniqu	ies and	princi	ples o	of elec	etrical	circuit a	nalysis	to co	mmon cir	cuit prol	olem	s.			
C	OUR	SE OU	TCO	MES	(CO	s)										
C	D1	To de	velop	an ur	ndersta	anding	g of the f	fundam	ental	laws and	elements	of e	lectri	c circ	uits.	
C	D2	To de	velop	the a	bility	to app	oly circui	it analys	sis to	DC and A	AC circui	its				
C	03	To ur	dersta	and a	dvanc	ed ma	athemati	cal met	hods	such as I	aplace a	and F	Fourie	er trar	sforms	
		along	with li	near	algebr	a and	differen	tial equ	ations	s techniqu	les for so	olving	g circ	uits p	roblem	
CO	D4	To le	learn the "alphabet" of circuits, including wires, resistors, capacito													
		voltage	tage and current sources, and operational amplifiers.													
CO	D5	To un	To understand about sinusoidal steady state analysis.													
CO	D6	To analyze about coupled circuits.														
Μ	appir	ng of Co	ourse	Outco	omes v	with F	Program	outcom	nes (P	Os)						
(H	[/M/L	M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	CO	s/POs	а	b	c	d	e	f	g	h	i	j	k			
2	CO	1		Н	Н	Н	L	М	L			Η	N	1		
			Μ													
	CO	2	Μ	Η	Η	Μ	М	Н	Μ	Μ		L	Ν	1		
	CO	3	Η	Μ		Η	Н		Μ			L	L	,		
	CO	4	Η	Μ		Η	Н	L	Μ	М		L	N	1		
	CO	5	M	M	M	M	H		M			L	L	,		
	<u>C06</u>	5	M	Η	H	H	L	M			Ð	H	N	1		
3	Cat	Category $\operatorname{Figure}^{\operatorname{Category}}$ $Figur$										Ē		er/		
														ap	$\sim \hat{\boldsymbol{z}}$	
		r $r$ $r$ $r$ $r$ $r$ $r$ $r$ $r$ $r$												mH	nar (PF	
			itie	ciel	Sc		cier	ion		lect	ajoi	lect		Ter	ime dir	
			lan	L S	<b>)</b>		ы Х	ess		Ш	M-	nΕ		ct/	Ser	
			Iun	DCi	asi	an	ing 19	C July		Ore	Von VE)	)pe		oje	nteı	
	H A A A A A A A A A A A A A A A A A A A												<u> </u>			
								N								

4	Approval	37 th Meeting of Academic Council, May 2015

#### UNIT I BASIC CIRCUIT CONCEPTS

Circuit elements – Kirchhoff's Law – V-I Relationship of R,L and C – Independent Sources – Dependent sources – Simple Resistive circuits – Networks reduction – Voltage division – current source transformation.- Analysis of circuit using mesh current and nodal voltage methods.

#### UNIT II SINUSOIDAL STEADY STATE ANALYSIS

Phasor – Sinusoidal steady state response concepts of impedance and admittance – Analysis of simple circuits – Power and power factors — Solution of three phase balanced circuits and three phase unbalanced circuits – Power measurement in three phase circuits.

#### UNIT III NETWORK THEOREMS (BOTH AC AND DC CIRCUITS)

Superposition theorem – The venin's theorem - Norton's theorem-Reciprocity theorem- Maximum power transfer theorem.

#### UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS

Transient response of RL, RC and RLC Circuits using Laplace transform for DC input with sinusoidal input.

#### UNIT V RESONANCE AND COUPLED CIRCUITS

Series and paralled resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.

#### **TEXT BOOKS:**

- 1.Sudhaker A. and Shyam Mohan S.p., "Dircuits and Network Analysis and Synthesis" TataMcGrew Hill Co. Ltd., New Delhi, 1994.
- 2. Hyatt W.H. and Kemmerlay J.E. "Engineering Circuits Analysis", McGrew Hill international Editions, 1993.

#### **REFERENCE BOOKS:**

1.Edminister J.A. "Theory and Problems of Electric Circuits " Schaum's outline series, McGrew Hill Book Company 2nd edition, 1983.

3.http://nptel.ac.in/courses/108102042/

BCE306	ENVIRONMENTAL STUDIES	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – Engineering chemistry I & II				
	Course Designed by – Dept of Civil Engineerin	ng			
OBJECTIVES					

- 1. To study the nature and facts about environment.
- 2. To find and implement scientific, technological, economic and political solutions to environmental problems.
- 3. To study the interrelationship between living organism and environment.
- 4. To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.

9

9

9

9

- 5. To study the dynamic processes and understand the features of the earth's interior and surface.
- 6. To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

COURSI	E OUTCOMES (COs)
CO1	Play an important role in transferring a healthy environment for future generations
CO2	To study the interrelationship between living organism and environment.
CO3	Discuss contemporary issues that results in environmental degradation and would
	attempt to provide solutions to overcome those problems
CO4	Ability to consider issues of environment and sustainable development in his
	personal and professional undertakings
CO5	Highlight the importance of ecosystem and biodiversity

			Mannii	ng of C	Oure	e Outcom	nec wit	h Pr	oora	m ou	tco	mes (Pl	$\mathbf{O}(\mathbf{r})$				
		(H/	M/L ind	cates s	stren	oth of cor	relatio	n) ]	H-H	ioh N	100 1-N	filedium	L-Lo	w			
1	COs/POs	a (11)	B	c	d	e	F		g	h	1 1	i	i i	k			
2	CO1						М	M	0				M				
	CO2	L					М	Н					Н				
	CO3		Н					Η									
	CO4							Μ					М				
	CO5	М	М					Η								L	
3	Category	Humanitie s & Social	Studies (HS)	Basic Sciences	(BS)	Engg Sciences (ES)	Profession al Core	(PC)	Core	Elective (CE)	Non-Maior	Elective (NE)	Open Elective	(OE)	Project/T	erm	Paper/ Seminar/
		-	$\checkmark$														
4	Approval	37 th	37 th & 38 th Meeting of Academic Council, May 2015 and January 2016														

#### UNIT I THE MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES 9

Definition, scope and importance, Need for public awareness.

#### Natural Resources : Renewable And Non – Renewable Resources

Natural resources and associated problems

- a) Forest resources : Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effect on forests and tribal people.
- b) Water resources : Use and over-utilization of surface and ground water, flood, drought conflicts over water, dams-benefits and problems.
- c) Mineral resources : Uses and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources : World food problems, changes caused by agriculture and overgrazing , effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources : Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, case studies.
- f) Land resources : Land as a resource, Land degradation, man induced landslides, soil erosion and desertification

Role of an individual in conversation of natural resources, Equitable use of resources for sustainable lifestyles.

#### UNIT II ECOSYSTEMS

Concepts of an ecosystem. Structure and function of an ecosystem, producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem :- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)-

Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation - Ethics : Issues and possible Solutions, Climate change, global warming, acid rain, ozone layer depletion.

#### UNIT III BIODIVERSITY AND ITS CONSERVATION

Introduction and Definition - genetic, species and ecosystems diversity, Biogeographical classification of India - Value biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels. India as a megadiversity nation, Hot-spots of biodiversity -Threats to biodiversity, habitat, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation biodiversity - Insitu and Ex-situ conservation of biodiversity.

#### **Environmental Pollution**

Definition, Causes, effects and control measures of ;- Air Pollution, Water pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solid waste Management : Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution - Pollution case studies - Disaster Management : floods earthquake, cyclone and landslides.

#### UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable development, Urban problems related to energy, nuclear accident and holocaust, case studies, wasteland reclamation, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife protection Act, Forest Conservation Act, Issues involved in enforcement of environmental Legislation, public awareness –

Fireworks and its impact on the Environment – Chemicals used in Fireworks – (Fuel –oxidizing Agent – Reducing Agent –Toxic Materials – Fuel –Binder- Regulator) – Harmful nature of ingredients – chemical effects on health due to inhaling fumes – Noise produced by fire crackers – Noise pollution – Noise level standards for fire crackers – Intensity of sound – Impact on hearing – Safety measures.

#### UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations, population explosion-Family Welfare programs, Environment and human health, Human Rights, Value Education, HIV and AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human health - Case Studies.

#### **TEXTBOOKS:**

- 1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.
- 2. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p

#### 8

7

#### 8

7

- 3. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, 1989.
- 4. Benny Joseph, "Environmental Studies"., TATA McGraw Hill, 2010

#### REFERENCES

- 1. Trivedi R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol.I and II, EnviroMedia 2009
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Wager K.D. "Environmental Management", W.B. Saunders Co., Philadelphia, USA, 1998.
- 4. Trivedi R.K. and P.K. Goel, "Introduction to Air Pollution", Techno Science Publications 2013
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB),2001.
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- 7. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- 8. Jadhav, H &Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- 9. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 11. Rao M N. &Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publish Co. Pvt. Ltd. 345p.
- 12. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut.
- 13. http://eng.mft.info/uploadedfiles/gfiles/c8e31c9e52d84c3.pdf

BE	E3L3			ELECI	RIC	AL E	NGINEE	CRIN	GL	AB			L	Т	P	С
		Г	Total Co	ontact Ho	ours –	- 45							0	0	3	2
		P	Prerequi	isite – Ba	asic I	Elect	rical & I	Elect	roni	cs ]	Engi	inee	ering p	practic	es Lal	b
		C	Course l	Designed	l by –	Dept	. of Elect	rical	and H	Elec	troni	ics E	Engine	ering.		
OF	BJECT	IVES	5													
	To	o und	erstand	the per	rform	ance	of electr	ical	gene	rato	rs, 1	note	ors and	d transf	former	s by
	co	nduct	ing diff	ferent tes	sts											
CC	DURSE	E OU'	ГСОМ	ES (CO	s)											
C	01	Expe	rimenta	ally verif	y the	perfo	rmance cl	narac	terist	ics	of G	ener	ators			
C	02	Expe	rimenta	ally verif	y the	perfo	rmance cl	narac	terist	ics	of M	otor	S			
C	<b>O</b> 3 ]	Exper	imenta	lly verify	y the p	perfor	mance ch	aract	eristi	ics (	of Tr	ansf	ormers	8		
C	O4 ′	To ve	rify the	perform	ance	chara	cteristics	of In	ducti	on 1	noto	rs.				
C	205	To Ur	nderstar	nd the co	ncept	s of a	lternators									
C	206 '	To ve	rify the	perform	ance	of co	mpound n	notor	`S							
			Map	ping of <b>(</b>	Cours	e Out	comes wi	th Pr	ograi	m c	outco	mes	(POs)	)		
	(H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low         1       COs/POs       a       b       c       d       e       f       g       h       i       j       k															
1	COs/l	POs	Os     a     b     c     d     e     f     g     h     i     j     k													
2	CO1		Н			Η										
	CO2		Η	Н	Η	Η	Н					Μ		Μ		
	CO3		Η		Η	Η										
	CO4			Н		Η										
	CO5		Μ			Η						Μ		Μ		
-	C06			Н	Μ	H	H			1						
3	Catego	ory	_				_						Ē			
			ocial		BS)		ES)	PC		CE)			S S	DE)		iper
			k Sc HS)		es (		ses (	ore (		ve ((			ctiv	/e ((		ı Pa ar/
			es 6 es (		ienc		ienc	Ŭ		ectiv			Ele	ectiv		erm
			aniti tudi		Sci		Sc	ona		E			ajor	I Ele		t/Te
			S		asic		ngg	essi		ore			Ĩ.	per		jeci
			H		В		Щ	Prof					Non			ro
													-			
								N								
4	Appro	oval	37 th	Meeting	g of A	cader	nic Coun	cil, M	lay 2	015						

- List of Experiments: 1. Power Measurements in 3-phase circuits. 1.
- 2. Swinburne's Test.
- 3. Speed control of DC Shunt motors
- 4. Load Test on DC shunt generator
- OCC and Load Test on DC shunt generator 5.
- OC and SC tests on Transformers 6.
- Load Test on Transformer. 7.

- 8. Regulation of alternator by EMF and MMF methods.
- 9. Equivalent circuit on Single phase induction motor.
- 10. Load test on DC Compound motor
- 11. Speed control of DC Compound motor.
- 12. Study of DC and AC motor starters.

## Experiments beyond the syllabus should be conducted.

BEC	3L1	EL	ECT	RONI	C DEV	/ICE	S AND (	CIRC	UITS	5 LA	B	L	Т	Р	С
	-	Fotal C	Contac	ct Hou	rs – 45							0	0	3	2
	1	Prerequ	uisite	–Basic	e Electi	rical	& Electro	onics	Engir	neerii	ng pr	actices	Lab		
	(	Course	e Desi	gned b	y – De	pt. of	Electror	nics a	nd Co	omm	unicat	tion Eng	gineerin	g.	
OBJI	ECTIV	<b>'ES</b>													
	• ]	Fo be e	expose	ed to th	ne char	acter	istics of b	oasic (	electr	onic	devic	es			
	• 1	Model	the el	ectroni	ic circu	iits us	ing tools	such	as PS	SPIC	E				
COU	RSE C	OUTC	OME	S (CO	s)										
CO1	Learn	the cl	haract	eristic	s of bas	sic el	ectronic (	device	es.						
CO2	Learn	the C	harac	teristic	s of U.	JT									
CO3	Learn	the C	harac	teristic	s of F	ET									
CO4	Learn	about	t Pow	er amp	lifiers.										
CO5	Learn	about	t Diffe	erentia	l ampli	fiers									
CO6	To ur	ndersta	nd the	e conce	epts of	simu	lation by	using	g Spio	ce too	ol				
	Mapping of Course Outcomes with Program outcomes (POs)														
		(H	H/M/L	indica	ates str	ength	of corre	lation	) H	-Higl	n, M-l	Medium	n, L-Lov	V	
1	(H/M/L indicates strength of correlation)     H-High, M-Medium, L-Low       COs/POs     a     B     c     d     e     f     g     h     i     j     k														
2	CO1		Η			Η		Μ				Μ	Μ		
	CO2		M		H	H			M						
	CO3		M		Н	H			Μ			Μ	M		
	CO4		M	т		H	H								
	COS		M		TT	H		TT				М			
3	Cotego	<b>173</b> 7		Н	Н	н		н				IVI			
5	Calego	лу	al		6		<u>(</u>	Ũ				e	<u>.</u>		$\mathrm{Sr}/$
			Soci	5	(BS		(E	e (P		(CE		sctiv	(OE		ape
			& H		seou		nces	Cor		ive		Ele	ive		mF
			ities		cier		ciei	nal		Elect		ajor (NF	llect		leri.
			Stu		ic S		້ອຍ	sio		e E		M-r	en E		ct/]
			Hun		Bas		Eng	ofes		Coi		Noi	Ope		oje
4	Appr	oval	37 th	ⁿ Meet	ing of	Acad	emic Co	uncil,	May	201:	5		<u> </u>		1
					C			,	5						

## LIST OF EXPERIMENTS

- 1. CE Transistor Characteristics
- 2. UJT Characteristics
- 3. FET Characteristics

- 4. SCR Characteristics
- 5 Power Supplies
- 6. Frequency Response of CE, CB and CC Amplifiers with self bias, fixed bias and Collector to Base feedback bias.
- 7. Source Follower with gate resistance, Bootstrapped.
- 8. Class A and Class B Power amplifiers
- 9. Differential Amplifiers, CMRR measurements
- 10. Spice Simulation of Common Emitter and Common Source amplifiers

#### Experiments beyond the syllabus should be conducted.

BF	BEC3L2DIGITAL ELECTRONICS LABLTPCTotal Contact Hours - 450032														
		То	tal Conta	ct Hou	urs - 43	5					0	0	3	2	
		Pre	erequisite	e – Bas	ic Elec	ctrica	l & Elect	ronics	s Enginee	ering pr	ractic	es La	b		
		Co	urse Des	igned	by – D	ept.	of Electro	nics a	and Com	municat	ion I	Engine	ering.		
O	BJEC	<b>FIVES</b>													
		• ]	o know t	the cor	ncepts	of Co	ombinatio	nal ci	rcuits.						
		• 7	o unders	tand th	ne conc	cepts	of flip-flo	ops, re	egisters a	nd cour	nters				
CO	DURS	E OUI	COMES	5 (COs	5)										
C	01 I	<ul> <li>Learn the basics of gates.</li> <li>Construct basic combinational circuits and verify their functionalities</li> <li>Apply the design procedures to design basic sequential circuits</li> <li>Learn about counters</li> <li>Learn about Shift registers</li> </ul>													
C	$O2 \mid C$	Constru	ct basic o	combii	nationa	l cire	cuits and	verify	their fur	nctional	ities				
С	O3 A	Apply t	he desigr	n proce	edures	to de	sign basic	c sequ	ential cir	cuits					
С	04 I	Learn a	bout cou	nters											
C	05 I	Learn a	bout Shif	t regis	ters										
C	06 []	l'o unde	erstand th	e basi	c digita	al cir	cuits and	to ver	ify their	operation	on				
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High M-Medium, L-Low														
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	Mapping of Course Outcomes with Program outcomes (POs)         (H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low         COs/POs       a       b       c       d       e       f       g       h       i       j       k         CO1       M       H       M       M       M       M       M														
2	CO1	(H/M/L indicates strength of correlation)     H-High, M-Medium, L-Low       POs     a     b     c     d     e     f     g     h     i     j     k       M     H     M     M     M													
	CO2		Н		Η	Η			М			М			
	CO3		Н		Η	Η			Μ		Μ	М			
	CO4		Μ	Μ	Η	Η	Η								
	CO5		M	L		H									
2	CO6		Н	Н	H	H		Н			Μ				
5	Calego	лу	Studies		S)		S)		Ē	(NE)		E)	er/		
			ial S		s (B		ss (E	(PC	e (C	tive		e (O	Pap r/	(PR	
	Inip unitary ctrive ence														
			ss & (F		Scie		Sci	al C	Ele	jor l		Ele	/Te	rnsl	
			mitie		asic		ggu	sion	ore	-Ma		ben	ject	Inte	
			uma		В		Ц	ofes		Non		C	ro	_	
			H					Pr							
								$\checkmark$							

4	Approval	37 th Meeting of Academic Council, May 2015
---	----------	--------------------------------------------------------

#### List of Experiments

- 1.Study of logic gates.
- 2. Design and implementation of adders and subtractors using logic gates.
- 3. Design and implementation of encoder and decoder using logic gates.
- 4. Design and implementation of multiplexer and demultiplexer using logic gates .
- 5. Design and implementation of 2-bit magnitude comparator using logic gates,
- 6. Design and implementation of 16-bit odd/even parity checker.
- 7. Design and implementation of Flipflops using logic gates.
- 8. Design and implementation of code converters using logic gates.
- 9. Design and implementation of counters.
- 10. Design and Implementation of shift registers.

#### Experiments beyond the syllabus should be conducted.

BMA402   NUMERICAL METHODS										L	Т	P	С		
			Total C	ontact	Hour	s - 75					3	2	0	4	
		Γ	Prerequ	isite –	Math	emat	ics I,II,II	[					•		
			Course	Design	ned by	y – D	ept. of M	laths	•						
0	BJECTI	VES													
	• To	train	the stu	dents	to Pre	edict	the syste	em d	ynamic	behavior	throu	gh sol	ution of		
	OD	Es	modeli	ng the	syster	n									
	• To	solve	PDE	model	s rep	resen	ting spa	tial	and ten	nporal va	ariatior	ns in	physical		
	SVS	tems t	hrough	numer	ical n	netho	ds.			•					
C	OURSE	OUT	COME	S (CO	s)										
	$\frac{1}{C01}$	Solv	re a set o	of alge	braic	equat	ions renr	esen	ting stea	dv state i	nodels	forme	d in eno	ineering	
	001	prob	olems	JI uige	oruie	equat	ions repr	esen	ung stea	dy state i	1100015	Torrite	u ili elig	meening	
	CO2	Fit s	mooth o	curves	for th	e disc	crete data	con	nected to	each oth	ner or t	o use			
		inter	interpolation methods over these data tables												
	CO3	Find the trend information from discrete data set through numerical differentiation and													
		Sun	nmary in	nforma	tion t	hroug	gh numer	ical i	ntegrati	on.					
	CO4	Pred	lict the s	system	dyna	mic b	ehavior t	hrou	gh solut	ion of OI	DEs mo	odeling	g he syste	em	
	CO5	Solv	e PDE i	models	repre	esenti	ng spatia	l and	l tempor	al variati	ons in	physic	al		
		syste	ems thro	ough n	ımeri	cal m	ethods.								
	CO6	To ti	rain the	studen	ts wi	th Ma	thematic	al teo	chniques	s to solve	proble	ms in l	Engineer	ing with	
		num	erical d	ata.	6.0				<u> </u>		()				
		(1	Map	oping c	of Cou	irse C	Jutcomes	with	n Progra	m outcor	nes (P	Us)			
1		()	H/M/L	ndicat	es stro	angth	of correl	atior	i) H-H	lgn, M-M		, L-LO	W 1r		
1	COS/PC	COS/Pos a b c d e f g n i j K													
2	CO1		Н	Н				М			L				
	CO2		Н	Н	Μ	Μ	Н				М	Н			
	CO3		Н					Η							
	CO4		Н		Μ		Н								
	CO5		Н	Μ							М				
	CO6	H         M         M         M           H         H         M         H         L         H													

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	roject/Term Paper/ Seminar/ Internship			
4	Approval	37 th Meetin	37 th Meeting of Academic Council, May 2015									

#### UNIT I SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEM 9+6

Iterative method,Newton-Raphson method for single variable-solutions of linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss-Siedal methods,Inverse of matrix by Gauss-Jordan method,Eigen value of a matrix power and Jacobian methods.

#### UNIT IIINTERPOLATION (FINITE DIFFERENCES)9+6

Newton's Divide difference formula, Lagrange's Interpolation, forward and backward difference formula Stirling's, Bessel's central difference formula.

#### UNIT III NUMERICAL DIFFERNTIATION AND INTEGRATION

Numerical Differentiation with interpolation polynomials, Numerical integration by Trapezoidal Simpson's (Both 1/3" and 3/8") rule, Double integrals using Trapezoidal and Simpson's rule.

9+6

9+6

#### UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION 9+6

Single step methods, Taylor series, Euler and modified Euler, Runge kutta method of first and second order differential equations, multiple step methods, Milne and Adam's –bash forth predict and corrected method.

#### UNIT V BOUNDARY VALUE PROBLEMS FOR ODE AND PDE

Finite difference for the second order ordinary differential equations, finite difference solutions for one dimensional heat equations(both implicit and explicit), one dimensional wave equation, Two dimensional, Laplace and Poisson equation.

#### **TEXT BOOKS:**

1. Sastry.SS "Introductory Numerical Methods" PHI, 2010

2. Jain K.K. Iyengar, S.R.K and Jain, R.K. "Numerical Methods for Scientific and Engineering Computation" 3rd edition, New Age International Publications and Co. 1993.

#### **REFERENCE BOOKS:**

Grewal, B.S. "Higher Engineering Mathematics (36th edition)" Khanna Publication Delhi .
 Curtis F.Gerald. "Applied Numerical Analysis" 7th Edn. Pearson Education, Chennai-600113.
 Dennis G.Zill and Warren S.Wright. "Advanced Engineering Mathematics". 3rd Edn. Jones & Bartlett Publishers, UK. 1992

4. <u>www.mathforcollege.com</u>

Bl	EC402			ELE	CTR	ONI	C CIRC	UITS	)			L	'	Т	Р		(	ר ר
		Tota	al Conta	ct Ho	urs - 4	-5						3		0	0		3	;
		Prer	requisite	e – Cir	cuit T	heor	y, Basic	Electi	rical	& E	lectro	nics E	Engi	ineeri	ng			
		Cou	rse Des	igned	by – E	Dept.	of Elect	ronics	s and	Co	mmur	nicatio	n E	ngine	eering	•		
0	BJECTI	VES						_										
	• Deve	elop tl	ne funda	imenta	l knov	vledg	ge about t	he ne	ed fo	r bia	asing	and its	va	rious	metho	ods.		
	• Anal	yze tł	ne small	signal	equiv	alen	ts circuits	and I	high	freq	uency	analy	sis	of Bi _l	polar			
	<ul> <li>Junct</li> </ul>	tion T	ransisto	r and ]	Field E	Effec	t Transist	tor										
	• Anal	yze tł	ne metho	ods of	constr	uctin	ig feedba	ck an	plifie	ers,	oscil	lators	and	tune	d amp	lifi	ers.	
	• Outli	ne th	e perfor	mance	e of w	vave	shaping	circui	ts, m	ulti	vibrat	ors an	d ti	me b	ase ge	ene	rator	S
	• Cons	tructi	ion of p	ower s	supplie	es												
C	OURSE	OUT	COME	ES (CO	Os)													
CO	D1 Dise	cuss t	he conc	epts o	f vario	ous t	iasing m	ethod	ls for	BJ	Γ. An	alyze	the	BJT	config	gura	ation	ιS
	and	BJT	amplifi	ers usi	ng sm	all s	ignal mo	del.										
C	D2 To	learn	about th	ne larg	e sign	al ar	nplifiers											
C	D3 To	learn	about th	ne vari	ous fe	edba	ick ampli	ifier.				11.01						
C	204 Understand the basic principles of different types of tuned amplifiers and learn the neutralization techniques																	
C	neutralization techniquesCO5Describe the operation of multivibrator circuits, time base generators, and their																	
	CO5 Describe the operation of multivibrator circuits, time base generators, and their applications																	
C	applications         O6       Discuss the working and characteristics of regulated power supply and SMPS.																	
			Map	ping c	of Cou	rse (	Dutcomes	s with	Prog	gran	1 out	comes	(P	Os)				
		(I	H/M/L i	ndicat	es stre	ngth	of corre	lation	) H	-Hig	gh, M	-Medi	um	, Ĺ-L	ow			
1	COs/Po	)S	а	b	с	d	e	f	g		h		i	j	k			
2	CO1		М	М		Н		М				M						
2	$\frac{CO1}{CO2}$		H	101	Н	H		111	М			111		М				
	CO3		Η		Н	Η			Μ			Μ		Μ				
	CO4		M	M	Н	H	Н											
	<u>CO5</u>		M		TT	H						M						
3	Category	7	Н	Н	н							M						
5	Cutogory		cial		BS)		ES)	0		CE)		ive		)E)			_	
			k Sc HS)		es (		) səs	Core		ve ((		Elect		/e ((		ť	erm	:/ ar/
			ies δ ies (		ienc		tienc	nal		ectiv		jor I NE)		ectiv		oiec	Ϋ́,Τ	nin
			anit		c Sc		Sc	ssio		Ē		-Ma		n El		Pr	Jec	P2 Ser
			Hum S		Basi		Enge	rofe	$\hat{\mathbf{b}}$	Core		Non		Ope			Ľ	,
			I				-	P. F.	2	•	r	Π						
		N N																
4	Approv	al	37 th 1	Meetin	g of A	cade	emic Cou	incil,	May	201	5							

#### UNIT I BASIC DEVICE STABILIZATION AND LOW FREQUENCY DESIGN ANALYSIS 9

circuits for BJT, DC and AC Load lines, Stability factor analysis, Temperature compensation methods, biasing circuits for FET's and MOSFET's. Transistor, FET and MOSFET Amplifiers, Equivalent circuit, input and output characteristics, calculation of midband gain, input and output impedance of various amplifiers, cascode amplifier, Darlington Bootstrapping, Differential amplifier, CMRR measurement, Use of current source in Emitter.

#### UNIT II LARGE SIGNAL AMPLIFIERS

Class A, AB, B, C and D type of operation, efficiency of Class A amplifier with resistive and transformer coupled load, efficiency of Class B, Complementry Symmetry amplifiers, MOSFET Power amplifiers, Thermal stability of Power amplifiers, heat sink design.

#### UNIT III FEEDBACK AMPLIFIERS

Types of feedback, Effect of feedback on noise, distortion, gain, input and output impedance of the amplifiers, Analysis of Voltage and Current feedback amplifiers, Negative Resistance Oscillator, Barhausen Criterion for oscillation in feedback oscillator, Mechanism for start of oscillation and stabilization of amplitude, Analysis of RC Oscillators using Cascade connection of Lowpass and Highpass filters, Wein Phase shift and twin-T network, Analysis of LC Oscillators, Colpitts, Hartley, Clapp, Franklin, Armstrong and Miller Oscillator, Quartz Crystal Oscillator circuits.

#### UNIT IV TUNED AMPLIFIERS & MULTIVIBRATOR CIRCUITS

Tank circuits, Analysis of single tuned amplifier, Double tuned, stagger tuned amplifiers, instability of tuned amplifiers, stabilization techniques, Narrow band neutralization using coil, Broad banding using Hazeltine neutralization, Class C tuned amplifiers and their applications. Efficiency of Class C tuned Amplifier. Astable multivibrators, monostable and bistable multivibrator using similar and complementary transistors, speed up capacitors, Schmitt trigger circuits.

#### UNITV RECTIFIERS, BLOCK OSCILLATORS AND TIMEBASE GENERATORS9

Half Wave Rectifier - Full Wave Rectifier – Bridge Rectifier – Performance of Rectifiers – Filters – Types of Filters – L, C, LC,  $\pi$  Filters – Ripple Factor Calculation for C, L, LC and  $\pi$  Filter – Regulators – Shunt and SeriesVoltage Regulator – IC Regulator – SMPS – Power Control using SCR. RC and RL wave shaping circuits, UJT sawtooth generators, Linearization using constant current circuit, Bootstrap and Miller saw tooth generators, current time base generators, Time base circuits - Voltage-Time base circuit, Current-Time base circuit.

#### **TEXTBOOK:**

- 1.RobertL.BoylestadandLouisNasheresky, "ElectronicDevices and CircuitTheory", 10thEdition,PearsonEducation/PHI,2008
- 2. David A.Bell, "Electronic Devices and Circuits", FifthEdition, Oxford University Press, 2000
- 3. Donald .A. Neamen, Electronic Circuit Analysis and Design –2nd Edition, Tata McGraw Hill, 2009.
- 4. Millman.J. and Halkias C.C, "Integrated Electronics", McGraw Hill, 2001.

#### **REFERENCE BOOKS:**

1.MillmanJ.andTaub H., "Pulse Digital and SwitchingWaveforms", TMH,2000.

2.Adel.S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", 6th Edition, Oxford University.

9 20

9

3.David A., "Bell Electronic Devices and Circuits", Oxford Higher Education Press,5th Editon,
4.Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata Mc Graw Hill,2007.
5.Paul Gray, Hurst, Lewis, Meyer "Analysis and Design of Analog Integrated Circuits",

Bl	EC405	05LINEAR INTEGRATED CIRCUITSLTPCTotal Contact Hours – 453003														
			Total C	Contact	Hour	s – 4	5					3	0	0		3
			Prerequ	isite –	Princ	iple	of Digi	tal Electi	onics							
		-	Course	Desig	ned by	y - D	Pept. of	Electron	ics and	d Com	ımun	icatio	n Engi	neerir	ıg	
0	BJECT	ΓIVE	S				-									
	• To	unde	rstand t	the bas	ic con	cept	s of ope	erational	ampli	fier an	d its	variou	is appl	licatio	ns	
	• To	unde	rstand tl	he basi	cs of l	PLL	and its	practical	applic	cations	s.					
	• To	know	about a	analog	multi	plier	S									
	• To	know	about	various	s analo	og sv	vitches	and diffe	erent A	/D an	d D/	A conv	vertors	5.		
	• To	unde	rstand tl	he con	cepts o	of sw	vitched	capacitor	r filter	s, Volt	tage	regula	tor			
C	OURS	ΕΟ	TCOM	IES (C	COs)											
(	CO1	Lea	rn abou	t the ba	asic co	oncer	ots for t	he circui	t confi	gurati	on fo	or the o	lesign	of lin	lear	
		inte	grated c	ircuits	and d	evel	ops skil	ll to solve	e engii	neering	g pro	blems	U			
(	CO2	Dev	elop ski	ills to o	lesign	sim	ple circ	uits usin	g OP-4	AMP						
(	CO3	Gai	n knowl	edge a	bout v	vario	us mult	iplier ci	rcuits,	modu	lator	s and o	demod	lulato	rs	
(	CO4	Gai	n knowl	edge a	bout I	PLL										
(	CO5	Lea	Learn about various techniques to develop A/D and D/A convertors													
(	206	Develop skills to develop simple filter circuits and various amplifiers and can														
	CO6 Develop skills to develop simple filter circuits and various amplifiers and can solve problems related to it.															
			-	Maj	oping	of C	ourse C	utcomes	with l	Progra	m o	utcom	es (PC	)s)		
			(H	I/M/L	indica	tes s	trength	of correl	ation)	H-H	ligh, I	M-Me	dium,	L-Lo	W	
1	COs/I	POs	а	b	c	d	e	f	g		h	i	j	k		
2	CO1			н				M								
-	CO2		М			Н	М	111				М				
	CO3		M	Μ	М		M									
	CO4		М						Μ							
	CO5			L		Μ	L		Μ			Μ	Μ			
	CO6		Μ		Μ			Н								
3	Catego	ory	se									_				
			ndie								Í	SE)			),r/	-
			al St		(BS		(ES	PC)		(CE		ve (	(OE		ane	K)
			ocia		ces		lces	ore (		ive		ecti	ive		n P	p (]
			& S (HS		cien		cier	C		llect	l	L L	lect		ler Ter	imi shi
			ties		IC S		20 00	onal		е		lajo	'nЕ		t/T	Se
			nani		Bas		Eng	ssic		Cor		N-u	Ope		Diec	Int
			Hum				_	rofé				ZC			h	l l
			Ι													
								N								

4	Approval	37 th Meeting of Academic Council, May 2015

9

9

9

9

#### UNIT ICIRCUIT CONFIGURATION FOR LINEAR ICS

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Operational Amplifier- DC Characteristics- Frequency response characteristics - Stability - Limitations -Frequency Compensation-Slew rate.

#### UNIT II APPLICATION OF OPERATIONAL AMPLIFIERS

Integrator Voltage to Current convertor, Instrumentation amplifier, Sine wave Oscillators, Low pass and band pass filters, comparator, Multivibrator and Schmitt trigger, Triangle wave generator, Precision rectifier, Log and Antilog amplifiers, Non-linear Linear and Nonlinear Circuits using operational amplifiers and their analysis, Inverting and Non inverting Amplifiers, Differentiator function generator.

### UNIT III ANALOG MULTIPLIER AND PLL

Analog Multiplier using Emitter Coupled Transistor Pair - Gilbert Multiplier cell – Variable transconductance technique, analog multiplier ICs and their applications ,Voltage controlled Oscillator, Closed loop analysis of PLL, AM, PM and FSK modulators and demodulators. Frequency synthesizers, Compander ICs.

#### UNIT IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTOR 9

Analog switches, High speed sample and hold circuits and sample and hold IC's, Types of D/A converter Current driven DAC, Switches for DAC, A/D converter, Flash, Single slope, Dual slope, Successive approximation, DM and ADM, Voltage to Time and Voltage to frequency converters.

#### UNIT V SPECIAL FUNCTION IC

Timers, Voltage regulators - linear and switched mode types, Switched capacitor filter, Frequency to Voltage converters, Tuned amplifiers, Power amplifiers and Isolation Amplifiers, Video amplifiers, Fiber optics ICs and Opto couplers, Sources fo Noises, Op Amp noise analysis and Low noise OP-Amps.

#### **TEXT BOOKS:**

- 1. D.Roy Choudhry, Shail Jain, "LinearIntegratedCircuits", NewAgeInternational Pvt.Ltd., 2000.
- 2. Sergio Franco, "Design with Operational Amplifiers and Analog IntegratedCircuits",3rd Edition, Tata McGraw-Hill, 2007.

#### **REFERENCE BOOKS:**

- 1.Ramakant A.Gayakwad, "OP-AMP and LinearICs",4thEdition, Prentice Hall-PearsonEducation,2001.
- 2.RobertF.Coughlin,FrederickF.Driscoll,"OperationalAmplifiersandLinearIntegratedCircuits", Sixth Edition,PHI,2001.
- 3.B.S.Sonde, "Systemdesignusing IntegratedCircuits", 2ndEdition, NewAgePub, 2001
- 4. Grayand Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International, 2005.
- 5. MichaelJacob, "Applications and Design with Analog Integrated Circuits", Prentice Hallof India, 199 6. William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson Education , 2004.
- 7.S.Salivahanan&V.S.Kanchana Bhaskaran, "Linear IntegratedCircuits", TMH, 2008.
- 8. www.chegg.com/tutors/

B	CS406		OBJECTED ORIENTED PROGRAMMING AND DATA STRUCTURES								L	Т	]	P	С	
Total Contact Ho			urs - 45							3	0	(	)	3		
		Prerequisite – Fundamentals of Computing and Programming										ng				
	Course Designed by – Dept. of Computer Science Engineering.															
OBJECTIVES																
	• To develop solutions to a given problems using class object concepts.															
	•	• To understand the concepts offloading, inheritance and polymorphism														
	٠	To learn the basic data structures and its operations.														
С	DURSE OUTCOMES (COs)															
	CO1	D1 Develop solutions to a given problems using class object concepts.														
	CO2 Illustrate overloading, inheritance and polymorphism concepts with example															
	CO3 Explain the basic data structures and its operations															
	CO4	Make use of basic data structures to solve problems														
	CO5	To develop programs using $C$ ++ which forms the basic for advanced programming														
	CO6	Ου	tline var	ious se	archin	g and	sorting	algori	thm	s				-		
			Ma	pping	of Cou	rse O	utcome	s with	Prog	grar	n outcoi	nes (P	Os)			
			(H/M/L	indica	tes stre	ength	of corre	lation	) H	-Hi	gh, M-M	ledium	, L-Lo	W		
1	COs/P	Os	а	b	с	d	e	f	g	5	h	i	j	k		
	L		М	Η				Μ								
	CO2		М			Н	Μ					Μ				
	CO3		М	М			Μ									
	CO4		L						Μ							
	CO5		Н	Н	L	Μ			Μ			М	Μ			
	CO6		М					Н								
3	3 Category				IS						Ē	E)			2	
			cial		Aatł	ć	ES)	SC)		(Ĥ			)E)		ipei	8)
			: So HS)		& N	5	l) se	re (J		e (C	tive		e (C		l P2	ur/ (PI
			ss & ss (F		ces		enco	Col		ctiv	La Calla		ctiv		une .	uina uip
			nitie udie		E (E		SC	nal		Ele	or ]	5	Ele		Ţ	em
			St		c Sc		60	ssio		ore	Ž	ĥ	pen		jeci	S ntei
			Ηu		3asi	t	En	ofe		Ŭ	- uol		Ō		Pro.	II
					_			P1				4			Γ	
4	Approv	val	37 th M	leeting	of Aca	ademi	c Coun	cil, Ma	iy 20	015	I					
				2					-							

#### UNIT I DATA ABSTRACTION&OVERLOADING

OverviewofC++-Structures-Class Scope and Accessing Class Members -Reference Variables-Initialization-Constructors-Destructors-MemberFunctionsandClasses-Friend Function-Dynamic Memory Allocation - Static Class Members -Overloading: Function overloading and Operator Overloading.

#### UNIT II INHERITANCE&POLYMORPHISM

9

Base Classes and Derived Classes–Protected Members–Overriding –Public,Protected and Private Inheritance –Constructors and Destructors in derived Classes–Implicit Derived– Class Object To Base–Class Object Conversion–Virtual functions–This Pointer–Abstract Base Classes and Concrete Classes– Virtual Destructors– Dynamic Binding.

#### UNIT III LINEAR DATASTRUCTURES

Abstract Data Types(ADTs)–ListADT–array-basedimplementation– linked list implementation– singly linked lists–Polynomial Manipulation-Stack ADT – Queue ADT

#### UNIT IV NON-LINEAR DATASTRUCTURES

Trees–BinaryTrees–Binary tree representation and traversals–The Search Tree ADT– Graph and its representations–Graph Traversals–Breadth-first search–Depth-first search– Bi-connectivity.

## UNIT V SORTING AND SEARCHING

Sorting algorithms: Insertion sort-Quick sort –Mergesor-Searching: Linear search –Binary Search.

#### **TEXT BOOKS:**

- 1. Deitel and Deitel,—C++,HowTo Programl,FifthEdition, PearsonEducation, 2005.
- 2. BhushanTrivedi,—Programming withANSIC++,AStep-By-Step approach, OxfordUniversityPress, 2010.

#### **REFERENCE BOOKS:**

- 1. Goodrich, Michael T., Roberto Tamassia, DavidMount, —Data Structures and Algorithms in C++I, 7th Edition, Wiley. 2004
- 2. Thomas H. Cormen, CharlesE. Leiserson, RonaldL. Rivest and Clifford Stein, "Introduction to Algorithms", Second Edition, McGraw Hill, 2002.
- 3. BjarneStroustrup,—TheC++ProgrammingLanguagel,3rdEdition,Pearson Education,2007
- 4.EllisHorowitz,SartajSahniandDineshMehta,—Fundamentals ofDataStructures inC++|, GalgotiaPublications, 2007.

#### **OtherReferences:**

- 1. http://users.cis.fiu.edu/~weiss/
- 2. www.youtube.com/watch?v=x3aC8F1X8ao

<b>BEC403</b>	ELECTROMAGNETIC FIELDS AND WAVES	L	Т	Р	C						
	Total Contact Hours -60	4	0	0	4						
	Prerequisite –Mathematics-III										
	Course Designed by – Dept. of Electronics and Communication Engineering.										
OBJECTI	VES										
To underst	and and gain complete knowledge about										
• ]	Theorem, Laws, Principle & Applications of Static Electro	omagn	etic Fi	elds							
• \	Various Laws of Static Magnetic Field										
• \	Various relation & parameters of Electric Field in Dielectric	rics									
• N	Magnetic Field with different structure in Ferromagnetic M	Aateria	als								
	Fime Verving Electric And Magnetic Fields										

# • Time Varying Electric And Magnetic Fields .

#### COURSE OUTCOMES (COs)

9

9
0	201	To u Elec	indersta	and the '	Theor elds	em,	Laws, P	rincipl	e ar	nd ti	heir re	elated p	oblem	s ove	er St	atic		
(	-02	Tol	earn the	e basic	laws i	n St	atic Mag	metic	Fiel	d a	nd ab	le to fin	d vario	n suc	arar	nete	ers	with
		the 1	elated	probler	ns				1 101	u u	ind do		a van	Pas P	ui ui		10	
(	203	Tok	now ho	bw the I	Electri	c Fie	eld is app	plied i	n D	iele	ectrics	with va	rious e	quati	ons	and	1	
		appl	ications	5			1	L						1				
0	CO4	Τoι	indersta	und how	the N	Aagr	etic fiel	d worl	ks w	vith	Ferro	magne	ic Mat	erials	5			
(	205	To a	analyse	how th	e Tim	ne is	Varying	g in bo	oth I	Eleo	ctric A	And Ma	gnetic	Field	ls w	vith	var	ious
		Deri	vation					-										
(	206	Το ι	understa	and, and	d anal	yset	he elect	romag	neti	ic f	ield d	istribut	on wh	ich f	orm	is th	le b	asis
		for a	advance	ed subje	ects re	late	d to elec	troma	gne	tic	field.							
			Maj	pping o	f Cou	rse (	Dutcome	es witl	n Pr	ogr	am o	utcome	s (POs	)				
		(]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
1	COs/I	POs	a     b     c     d     e     f     g     h     i     j     k       H     M     M     M     Image: A state of the															
2	CO1		a         b         c         a         c         1         g         n         1         j         k           H         M         M         M         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I															
	CO2		Μ	Μ	Μ				Μ				Η					
	CO3		Μ						L									
	CO4						H		M			M	Μ					
	CO5			L	Μ	Μ						Μ						
	CO6		Μ				Η	Н	<u> </u>			H						
3	Catego	ry					8	e							Г			
			s & dies		nces		nce	Co		tive		NE)	tive		ern	_	۲	di 2
			Stu		S)	ì	Scie SCie	nal		Elec	E)	Maj 'e (J	Elec	ì	t/T	per	ina	hsn (PI
			mar cial		ic S (B	ļ	ы Эл Ш	ssio		le H	$\overline{O}$	on- ctiv	en H		jec	Paj	em	PR
			Hu Soc		Bas		Eng	C) ofe		Co		ΣΞ	Op		Pro		$\mathbf{v}$	
								Pr (P	Ļ									
4	Appro	oval	37 th :	Meetin	g of A	cad	emic Co	uncil,	Ma	y 2	015		1					
	**				-			,		-								

#### UNIT ISTATIC ELECTROMAGNETIC FIELDS

Introduction to co-ordinate system, Gradient, Divergence, Curl, Divergence Theorem, Stoke's Theorem, Coulomb's Law, Electric field Intensity, Principle of superposition, Electric Scalar potential, Line charge distribution by Moment method, Electric flux Density, Gaus's Law and its applications, Field Computations and Problems.

#### UNIT II STATIC MAGNETIC FIELD

Magnetic field of a current carrying element, Ampere's Force law, The Biot-Savart Law, Magnetic Flux density, Gauss law for magnetic fields, Torgue on a loop, Magnetic moment, Ampere's Law and Magnetic field intensity, Magneto motive force, Field cells and permeability, Vector potential, Field computation and problems.

#### **UNIT IIIELECTRIC FIELD IN DIELECTRICS 12**

Permittivity, Polarization, Boundary relation, Capacitance, Dielectric strength, Energy and energy density, Poisson's and Laplace equations and applications, Electric Current, Current Density, Ohms law at a point, Resistance and Conductance, Continuity relations for current problems.

#### UNIT IV MAGNETIC FIELD IN FERROMAGNETIC MATERIALS 12

12

Magnetic materials, Magnetic dipoles, Loops and Solenoids, Magnetization, Inductance, Energy in an Inductor and Energy Density, Boundary relations, Ferro magnetism, Hysteresis, Reluctance and Permeance, Problems.

#### UNIT VTIME VARYING ELECTRIC AND MAGNETIC FIELDS 12

Faraday's Law, Transformer and Motional Induction, Maxwell's equation from Faraday's Law, Self and Mutual Inductance, Displacement current, Maxwell's equation from Ampere's Law and its inconsistency, Boundary relation, Poynting Vector, Comparison of field and circuit theory, Circuit Application of pointing Vector.

#### **TEXT BOOKS:**

1. William H Hayt and Jr John A Buck, "Engineering Electromagnetics", Tata McGraw-Hill Publishing Company Ltd, NewDelhi, 2008

- 2. Sadiku MH, "Principles of Electromagnetics", Oxford University PressInc, NewDelhi, 2009
- 3. David K Cheng, "Field and Wave Electromagnetics", Pearson EducationInc, Delhi, 2004

#### **REFERENCE BOOKS:**

- 1. John D Kraus and Daniel A Fleisch, "Electromagnetics with Applications", McGrawHill Book Co, 2005
- 2. Karl E Longman and SavaV Savov, "Fundamentals of Electromagnetics", Prentice Hall of India, NewDelhi, 2006
- 3. Ashutosh Pramanic, "Electromagnetism", Prentice Hall of India, NewDelhi, 2006
- 4. www.Wiley.com

BI	EI406		EL	ECTR	ONIC	INS	TRUME	NTA	ΓΙΟΝ		L	Т	Р	С	
		Т	otal Co	ntact Ho	ours -	45					3	0	0	3	
		P	rerequis	site –Ba	sic El	ectric	al & Elec	ctronic	es Engir	neerin	g				
		C	ourse D	)esignec	l by –	Dept	. of Elect	ronics	and ins	strum	entatio	on Eng	ineerin	ıg.	
O	<b>BJEC</b> '	TIVES	5												
		• E	xplain b	asic coi	ncepts	and c	definition	s in m	easurem	nent.					
		• D	escribe	the brid	ge coi	nfigur	ations an	d their	applica	tions.					
		• E	laborate	discus	sion	about	the imp	oortand	ce of s	ignal	gener	ators	and an	alyzers in	
		m	easuren	nents.			1			U	U			5	
C	OURS	E OU	<b>TCOMES (COs)</b> nize the evolution and history of units and standards in Measurements												
С	01	Recog	nize the evolution and history of units and standards in Measurements												
C	02	Identif	y the va	rious pa	aramet	ters th	nat are me	easural	ble in el	ectror	nic ins	trumer	ntation		
C	03	Emplo	y appro	priate ir	nstrum	ents	to measui	re give	en sets o	of para	meter	s			
C	04	Practic	the co	onstructi	on of	testin	ig and me	easurin	ig set up	o for e	lectro	nic sys	tems.		
С	05 /	To ha	ve a de	ep und	erstan	ding	about in	strum	entatior	n con	cepts	this ca	an be a	applied to	
		contro	l systen	ns.											
C	06	Relate	the usa	ge of va	rious	instru	mentatio	n stano	dards.						
			Map	ping of	Cour	se Ou	itcomes v	vith Pı	rogram	outco	omes (	POs)			
		(H	I/M/L i	ndicates	s stren	igth o	of correlat	tion)	H-High	n, M-N	Mediu	m, L-L	.OW		
1	COs/	POs	а	b	с	d	e	f	g	h	i	j	k		
2	CO1			м											
2			TT	IVI	тт		М	т		м	м	_			
	CO2		Н		Н		IVI	L		IVI	IVI				

	CO3	Μ	Μ	Η	Η				Μ		Μ	
	CO4	Н		Η	Η	Н			Μ			
	CO5				Μ					Μ		
	CO6	Н	L				Н				L	
3	Category	Humanities & Social Studies (HS)		Basic Sciences & (BS)		Engg Sciences (ES)	<ul> <li>Professional Core</li> <li>(PC)</li> </ul>	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
4	Approval	37 th 1	Meeting	of A	caden	nic Coun	cil, Ma	y 201:	5		1	

#### **UNIT ITRANSDUCERS**

Measurements, Instrumentation, Errors in measurements, Calibration and standard, Classification and characteristics of Transducers, Digital, Electrical, Electronic Weighing System, AC / DC Bridge measurement and their applications.

#### UNIT IISIGNAL GENERATOR AND SIGNAL ANALYZERS

A.F. Generator, Pulse Generator, AM/FM Signal generator, Function generator, Sweep frequency generator, wave analyzers, Spectrum Analyzers, Logic Analyzers, Distortion Analyzers.

#### **UNIT III DIGITAL INSTRUMENTS**

Digital Voltmeters and Multimeters, Automation in Voltmeters, Accuracy of DVM, Guarding Techniques, frequency, period, time interval and pulsewidth measurements, automatic vector voltmeter.

#### UNIT IV DATA DISPLAY AND RECORDING SYSTEM

CRO, single beam, dual trace, double beam CRO, Digital storage and Analog storage Oscilloscope, sampling Oscilloscope, Power scope, Curve Tracer, Analog, Digital Recorders and Printers.

#### UNIT V COMPUTER CONTROLLED TEST SYSTEM

Testing and Audio amplifier, Testing a Radio Receiver, Instrument used in Computer Controlled Instrumentation, Digital Control Description, Microprocessor based measurements, Isolation and safety standards of Electronic equipments, Case studies in Instrumentation.

#### **TEXT BOOKS:**

1. Rangan C.S., "Instrumentation Devices and Systems", Tata McGraw Hill, 1998.

2. Cooper, " Electronic Instrumentation and Measurement Techniques ", Prentice Hall of India, 1988.

#### **REFERENCE BOOKS:**

- 1. H.S.Kalsi, "Electronic Instrumentation", Tata Mc Graw-Hill Education, 2004.
- 2. J.B.Gupta, "Measurements and Instrumentation", S K Kataria & Sons, Delhi, 2003.
- 3. Oliver and Cage, "Electronic Measurements and Instrumentation", McGraw Hill, 1975.
- 4. https://www.nptel.ac.in

9

9

9

## 9

B	EC4L1	_	]	ELEC	TRO	NIC	CIRCUI	T DES	IGN	LA	B	L	Т	P	С
			Total C	ontact	Hours	5 - 43	5					0	0	3	2
			Prerequ	isite –	Electr	onic	s Devices	s and ci	rcuits	La	ıb				
			Course	Desig	ned by	/ – D	ept. of E	lectroni	cs and	d C	ommun	ication I	Enginee	ering.	
0	BJECT	IVE	S												
	• To	o gaii	n hands o	on exp	erienc	e in	designing	g electro	onic c	ircu	uits.				
	• To	) lear	m simula	ation s	oftwar	e us	ed in circ	uit desi	gn.						
	• To	) lear	n the fur	ndame	ental pr	rinci	ples of ar	nplifier	,Osci	llat	or and 1	nultivib	rator ci	rcuits	
	• Co	onstr	uct wave	form	genera	tion	circuits								
C	OURSE	E OU	тсом	ES (C	Os)										
(	CO1	Ana	lyse the	chara	cteristi	ics of	f amplifi	ers.							
(	CO2	Ana	lyse the	chara	cteristi	ics o	f Oscillat	ors.							
(	CO3	Ana	lyse the	chara	cteristi	ics of	f Multiv	ibrators	5						
(	CO4	Ana	lyse the	chara	cteristi	ics o	f tuned a	mplifie	rs						
(	CO5	Ana	lyse the	freque	ency re	espo	nse of an	plifiers	using	g pS	Spice				
(	CO6	Mo	del the d	esign	of elec	tron	ic circuit	s using	PSpic	ce ce	1				
	I		Ma	pping	of Co	urse	Outcome	s with	Progra	am	outcom	nes (POs	5)		
			(H/M/L	indica	ites str	engt	h of corre	elation)	H-H	ligh	n, M-Me	edium, L	L-Low		
1	COs/P	Os	a	b	c	d	e	f	g		h	i	j	k	
2	CO1		Н		Η	Η		Μ				М			
	CO2		Н	Μ	Н	Η		Μ			Μ	Μ	L		
	CO3		М	Μ		Η									
	CO4		М			Η			Μ						
	CO5		-		M		H								
2	CO6		L	Η	H		H	Н			M	Μ	Μ		
3	Categor	У	HS)		&		ES)	e		Ê	`	ive	)E)	u	S.
			es & es (F		ces 3S)		es (	Cot		/e ((	/	llect	'e ((	ern	, 'I
			nitie udie		cien Is (E		ienc	nal		sctiv		or E ME)	ctiv	ct/T	hip
			uma al St		ic So Aath		Sc	ssio		Ē		Maj (1	l Ele	ojec	Pa Sen rns
			Hu ocia		Bas		ngg	rofe C)		Ore		lon-	ben	$\Pr$	Inte
			Š				Ш	P (I				4		_	
									N						
4	Appro	val	$37^{\text{th}}$ N	leetin	g of A	cade	mic Cou	ncil, M	ay 201	15	1		•		

- 1.Feedback amplifier
- 2. Transistor phase shift oscillator
- 3. Class A single tuned amplifier
- 4. LC Oscillators
- 5. Collector coupled and Emitter coupled Astable multivibrator6. Wein bridge oscillator
- 7. Schmitt Trigger
- 8. Emitter coupled bistable multivibrator
   9. Monostable multivibrator

10. Class C tuned amplifier

#### SIMULATION USINGSPICE:

11.Frequencyresponse f CE amplifier with Emitterresistance.

12.DC responseofCS amplifier

13.Frequencyresponseof Cascodeamplifier.

14. TransferCharacteristics of Class B PowerAmplifier

Experiments beyond the syllabus should be conducted.

BI	EC4L2		LIN	EAR	INTEG	RAT	ED C	CIRCU	ITS	LA	B	L	Т	P	С	
		Tot	tal Cor	ntact H	Iours - 4	45						0	0	3	2	
		Pre	erequist	ite – E	Basic El	ectrica	al & I	Electro	nics	Eng	gineeri	ng Lab				
		Co	urse D	esigne	ed by –	Dept.	of El	ectroni	cs ar	nd C	Commi	unication	n Engir	neerii	ng	
O	BJECTIV	/ES														
	• To a	pply	operat	tional	amplifi	ers in	linea	r and n	onlir	near	applic	cations.				
	• To a	cqui	re the	basic l	knowled	lge of	speci	ial func	tion	IC	s					
	• To u	se S	PICE 9	softwa	are for o	circuit	desig	on								
C	OURSE (	)UT	COM	ES (C	(Os)			5**								
C	D1 Desi	gn a	ind ana	lyse t	he vario	ous lin	ear aj	oplicati	on o	f oj	p-amp					
C	D2 Desi	gn a	nd ana	lyse t	he vario	ous no	n-line	ear app	icati	ion	of op-	amp				
C	D3 Desi	gn a	nd ana	lyse f	ilter cire	cuits u	sing	op-am	)		-	-				
C	O4 Desi	gn a	nd ana	lyse o	scillato	rs and	mult	ivibrat	or ci	rcu	its usir	ng op-an	np			
C	O5 Desi	gn a	nd ana	lyse t	he vario	us ap	plica	tion of	555	tim	er					
C	O6 Ana	lyse	the per	rforma	ance of	oscilla	tors	and mu	ltivi	bra	tors us	ing SPI	CE			
			se the performance of oscillators and multivibrators using SPICE Mapping of Course Outcomes with Program outcomes (POs)													
		(H/	M/L in	dicate	es streng	gth of	corre	lation)	H-1	Hig	h, M-1	Medium	, L-Lov	W		
1	COs/PO	S	а	b	с	d	e	f	g		h	i	j	k		
2	CO1		Н		Η	Η		М			L					
	CO2		Н		Η	Н						Μ	L			
	CO3		М	М	Μ	Н	Μ				Η	Μ	М			
	CO4		М		Μ	Η						Μ				
	CO5		М		Μ	Н						Н				
	CO6		Н	Μ	Μ	Н	Μ					Н	М			
3	Category		Humanities & Social Studies (HS)		Basic Sciences & Maths (BS)	Engg Sciences	(ES)	← Professional ← Core (PC)		Core Elective	(CE)	Non-Major Elective (NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)	
4	Approva	ıl	37 th N	Meetir	ng of Ac	adem	ic Co	uncil, l	May	20	15		<u> </u>			

#### LIST OF EXPERIMENTS

- 1. Inverting and non-inverting amplifier
- 2. Integrator , differentiator

- 3. Summer, subtractor using op-amp
- 4. Triangular wave generator using op-amp
- 5. RC Phase shift Oscillator using op-amp
- 6. Schmitt trigger using Op-amp
- 7. Active low pass and high pass filters.
- 8. Astable Multivibrator using 555 timer
- 9. Monostable multivibrator using 555 timer
- 10. Schmitt trigger using 555 timer
- 11. Voltage controlled Oscillator.
- 12. PLL characteristics.
- 13. Study of SMPS.

### SIMULATION USINGSPICE

- 14. Simulation of Experiments, 4, 5, 6, 7 and 8..
- 15. CMOS Inverter, NAND and NOR

### Experiments beyond the syllabus should be conducted.

BC	CS4L3	0	)BJE(	CT OI DA	RIENT TA ST	ED PI RUC'	ROG	RAMN ES LA		AND	L	Т	Р	С
		Tota	al Con	tact H	11101	15					0	0	3	2
		Prer	requisi	te –C	ompute	r Prac	tice L	Lab						
		Cou	irse De	esigne	d by – l	Dept.	of Co	mpute	r Scienc	e Engin	eering	,		
OI	BJECTIV	/ES												
	• To le	earn v	variou	s obje	ct orien	ted co	ncep	ts throu	ıgh sim	ple prog	rams.			
	• To u	nders	stand t	he con	ncepts o	of sear	ching	g and so	orting a	lgorithm	IS			
CC	)URSE (	)UT(	COM	ES (C	Os)									
CC	D1 Imp	emer	nt vari	ous oł	oject ori	ented	conc	epts th	rough s	imple pr	ogram	IS		
CC	D2 Impl	emer	nt diffe	erent c	lata stru	ictures	s usin	ngC++.						
CC	D3 App	ply the different data structures for implementing solutions to practical problems.												
CC	D4 Dem	emonstrate searching algorithms												
CC	D5 Dem	onsti	rate so	rting	algorith	ms								
CO	D6 To c prog	levelo ramn	op the ning	skills	in pro	gramr	ning	using o	c++ wh	ich form	ns the	basics	for adv	vanced
			Mapp	ing of	Course	e Outc	omes	s with I	Program	outcon	nes (P	Os)		
		(H/N	∕ <i>I</i> /L in	dicate	s streng	th of	corre	lation)	H-Hig	h, M-M	edium	, L-Lo	w	
1	COs/PC	s	а	b	с	d	e	f	g	h	i	j	k	
2	CO1	]	H	Н				Μ		L				
	CO2					Μ	М				М	М		
	CO3			Μ		Μ	Μ		М		М	М		
	CO4	]	Μ	Μ	М						Μ			
	CO5	I	M		М						Η			
	CO6	]	H	Η	М		Μ		Η		Н	Μ		

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
					$\checkmark$				
4	Approval	37 th Meetir	ng of Aca	demic Co	ouncil, May	2015			

#### **Programs forC++ Concepts**

□ Constructors and destructors

- □ Static data member
- □ Function overloading
- □ Operator overloading

□ Inheritance

#### **Data Structures**

1. List

□Arrayimplementation

□Linked list implementation

□ Polynomial operations

#### 2. Stack

□Arrayimplementation

- □Linked list implementation
- □Applications

#### 3. Queue

□ Array implementation

□Linked list implementation

#### 4. Binary Search tree

5. Sorting

□Quick sort

□Mergesort

6. Searching

 $\Box$ Linear search

Binarysearch

### Experiments beyond the syllabus should be conducted.

BEC505	DIGITAL SIGNAL PROCESSING	L	Т	Р	С
	Total Contact Hours - 60	4	0	0	4
	Prerequisite –Signals and Systems				
	Course Designed by – Dept. of Electronics and Commun	nicatio	n Engi	neering	
OBJECTIV	ES:				
To study	about discrete time systems and to learn about FFT algorithm	rithms			
• To study	the design techniques for FIR and IIR digital filters				
• To study	the finite word length effects in signal processing				

•	То	study	the	properti	les of	f rar	ndom si	gnal,M	ultira	te dig	gital	sign	nal				
	proc	essing	g and a	bout QI	MF fil	ters.											
CC	OURS	E OU'	TCON	IES (C	Os)												
C	01	To ap	oply D	FT for t	he and	alysis	s of digit	al signa	als &	systen	ns						
C	02	To d	lesign l	FIR filte	ers												
C	03	To de	esign I	IR filter	:S												
C	04	To cł	naracte	rize fin	ite Wo	ord le	ength eff	ect on f	ilters								
C	05	To h	ave a	deep u	nderst	andi	ng on ba	asics of	f digi	tal sig	gnal	proce	essing	whic	h can be		
		appli	ed to c	ommun	icatio	n sys	stems										
C	06	To de	esign tl	he Mult	irate I	Filter	S										
			Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
		(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	COs	/POs	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
2	C01		a     b     c     d     e     f     g     h     i     j     k       H     H     H     H     I     I     I     I														
	CO2		Н	Н	Н	Η	Н				]	М			1		
	CO3		Н	Н	Н	Η	Н				]	М			1		
	CO4			Μ		Μ		Η			]	Μ			1		
	CO5		М										М		1		
	CO6				Н			L									
3	Categ	ory	Humanities & Social Studies	(HS)	Basic Sciences (BS)	· · · · · · · · · · · · · · · · · · ·	Engg Sciences (ES)	<ul> <li>Professional</li> <li>Core (PC)</li> </ul>		COFE ELECTIVE (CE)	Non-Major	Elective (NE)	Open Elective (OE)	Project/Term	Laper/ Seminar/ Internship (PR)		
4	App	roval	37 th	Meetin	g of A	Acade	emic Cou	ıncil, N	1ay 20	015							

#### UNIT I DISCRETE – TIME SIGNALS AND SYSTEMS

Sampling of Analogue signals – aliasing – standard discrete time signals – classification – discrete time systems – Linear time invariant stable casual discrete time systems – classification methods – linear and circular convolution – Overlap add and Save methods-Difference equation representation – DFS, DTFT, DFT – FFT computations using DIT and DIF algorithms.

#### UNIT II INFINITE IMPULSE RESPONSE DIGITAL FILTERS

Review of design of analogue Butterworth and Chebyshev Filters, Frequency transformation in analogue domain – Design of IIR digital filters using impulse invariance technique – Design of digital filters using bilinear transform – pre warping – Frequency transformation in digital domain – Realization using direct, cascade and parallel forms.

#### UNIT III FINITE IMPULSE RESPONSE DIGITAL FILTERS:

Symmetric and Antisymmetric FIR filters – Linear phase FIR filters – Design using Frequency sampling technique – Window design using Hamming, Hanning and Blackmann Windows – Concept of optimum equiripple approximation – Realisation of FIR filters – Transversal, Linear phase and Polyphase realization structures.

#### UNIT IVFINITE WORD LENGTH EFFECTS:

12

12

12

Quantization noise – derivation for quantization noise power – Fixed point and binary floating point number representations – Comparison – Overflow error – truncation error – coefficient quantization error – limit cycle oscillations- signal scaling – analytical model of sample and hold operations.

#### UNIT V SPECIAL TOPICS IN DSP:

#### 12

Discrete Random Signals- Mean, Variance, Co-variance and PSD – Periodiogram Computation – Principle of Multi rate DSP – decimation and Interpolation by integer factors – Time and frequency domain descriptions – Single, Multi stage, polyphase structures – QMF filters – Subband Coding

#### **TEXT BOOKS:**

1. JohnG. Proakis& DimitrisG. Manolakis, "Digital Signal Processing–Principles,

2. Algorithms&Applications",FourthEdition,PearsonEducation/Prentice Hall,2007.

#### **REFERENCE BOOKS:**

1.Sanjit K.Mitra, "Digital Signal Processing-A Computer Based Approach", Tata McGraw Hill,

2. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8th IndianReprint, Pearson, 2004.

3. www.ocw.mit.edu

B	EC502		MICRO	PRO	CESSO	DR A	ND MI	CROC	ONTRO	LLER	L	Т	P	С
		Т	otal Con	tact H	ours -	45					3	0	0	3
		Pı	rerequisi	ite –Pr	inciple	s of I	Digital E	lectroni	cs			•	•	
		С	ourse D	esigne	d by –	Dept.	of Elec	tronics	and Com	municat	ion En	gineeri	ing	
0	BJEC	ГIVE	ËS											
	• T	he ol	ojective	of this	cours	e is t	o becon	ne famil	iar with	the arch	itecture	e and t	the inst	truction
	S	et of a	an Intel	microp	rocess	sor								
	• A	ssem	bly lang	guage	progra	mmir	ng will t	e studio	ed as we	ll as the	design	n of va	rious t	ypes of
	d	igital	and ana	log int	erface	S								
	• U	Inder	stand the	e archi	tecture	e of 80	085 and	8051						
C	OURS	ΕΟ	OUTCOMES (COs)         sign and implement programs on 8086,ARM, PIC.											
C	01 D	esign	gn and implement programs on 8086,ARM, PIC.											
C	02 D	esign	ign and implement programs on 8086,ARM, PIC. ign I/O circuits.											
C	O3   T	he pr	ogram p	repare	s stude	ents to	o succes	sfully co	ompete f	or emplo	yment	in Ele	ctronic	s,
	Ν	lanuf	acturing	and E	mbedd	led fi	elds.							
C	04 D	esign	Memor	y Inter	facing	g circu	uits.							
C	05 D	esign	and im	plemei	nt 805	1 mic	rocontro	oller bas	ed syster	ns.				
C	06 D	escri	be the a	rchitec	ture ar	nd ins	truction	set of A	RM mic	rocontro	oller			
			Ma	apping	of Co	urse (	Dutcome	es with H	Program	outcome	es (POs	s)		
			(H/M/L	indica	ites str	ength	of corre	elation)	H-High	n, M-Meo	dium, I	L-Low		
1	COs/	POs	a	b	с	d	e	f	g	h	i	j	k	
2	CO1		М	Н		Η		Μ			Н	Μ		
	CO2		Μ	L	Н		М				L			
	CO3		Μ											
	CO4		Μ			Η	Н				М	Μ		
	CO5		Μ	Η			Н				Μ			

	CO6					Μ	Η							
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Project/Term	Paper/ Seminar/ Internship (PR)
							-	$\checkmark$						
4	Approval	37 th N	Aeeting	g of Ac	cade	mic Cour	ncil, Ma	y 201	15	·			•	

#### UNITI MICROPROCESSOR 8086

Register Organization -Architecture-Signals-Memory Organization-Bus Operation-I/O Addressing-Minimum Mode-Maximum Mode-Timing Diagram-Interrupts - Service Routines – I/O and Memory Interfacing concepts.

#### UNIT II PROGRAMMING OF 8086

Addressing Modes-Instruction format-Instruction set-Assembly language programs in 8086. RISC architecture – introduction to ARM Programming register configuration and instruction set - introduction to PIC Programming register configuration and instruction set – sample program.

#### UNIT III INTERFACING DEVICES

Programmable Peripheral Interface (8255) - Programmable Interval Timer (8254) - Programmable Interrupt Controller (8259A) - Programmable DMA Controller (8257) - Programmable Communication Interface (8251A) – Programmable Keyboard and Display Controller (8279).

#### UNIT IV MICROCONTROLLER-8051

Register Set-Architecture of 8051 microcontroller- I/O and memory addressing-Interrupts-Instruction set- Addressing modes. Timer-Serial Communication-Interrupts Programming-Interfacing to External Memory-Interfacing to ADC, LCD, DAC, Keyboard and stepper motor.

#### UNIT V SYSTEM DESIGN USING MICROPROCESSOR & MICROCONTROLLER 9

Case studies – Traffic light control, washing machine control, RTC Interfacing using I2C Standard- Motor Control- Relay, PWM, DC & Stepper Motor.

#### **TEXT BOOKS:**

- 1. Muhammad Ali Mazidi and Janice Gillispie Mazidi, "The 8051 -Microcontroller and Embedded systems", 7th Edition, Pearson Education, 2004.
- 2. Doughlas.V.Hall, "Microprocessor and Interfacing : Programming and Hardware", Revised 2nd edition, McGraw Hill, 1992
- 3. Steve Furber, "ARM System On Chip Architecture", Second Edition, Pearson Education, 2000.
- 4. K. Ray and K. M. Bhurchandi, "Advanced Microprocessors and Peripherals Architectures, Programming and Interfacing", Tata McGraw Hill, 2002 Reprint
- 5. Design with PIC microcontroller by John B Peatman.

#### **REFERENCE BOOKS:**

9

9

9

1. Kenneth.J.Ayala, "8051 Microcontroller Architecture, Programming and Applications", 3rdedition, Thomson, 2007.

2. NuvoTon Cortex M0 (Nu-LB-NUC100/140) Driver and Processor Reference Manual;

3.<u>www.nuvoton.com</u>

BEC	504			COM	MUN	<b>ICA</b>	TION H	ENGI	NEF	ERI	ING I		]	]	Γ	Р	С
		Total	Conta	ct Hou	rs - 4	5							(*)	3 0	)	0	3
		Prerec	uisite	-Sign	als an	d Sy	stems										
		Course	e Desi	gned b	by – D	ept.	of Elect	tronics	s and	d C	omm	unication	Engii	neeri	ng		
OBJ	ECI	TIVES															
•	А	nalog m	odulat	ion an	d dem	odu	lation te	chniqu	les.								
•	А	cquiring	mathe	ematic	al unc	lerst	anding o	of Ana	log	Co	mmur	nication S	Systen	ıs.			
•	U	nderstan	ding	the t	rade-c	offs	(in ter	ms c	of t	and	dwidt	h, powe	er, an	d c	om	plex	ity
	re	quireme	nts)														
•	P	erforman	ice eva	aluatio	n of c	omn	nunicati	on sys	tem	s in	the p	oresence	of nois	se.			
COU	JRS	E OUTC	COME	ES (CC	)s)			2			1						
CO	1	Student	s will	have	know	ledg	ge of ba	sic m	athe	ema	tical	concepts	and	fron	ı a	blo	ck-
		diagram	n syste	m app	roach	•											
CO	2	It will a	m system approach. allow thinking in the two "domains" of communications, the time domain and equency domain.														
	2	the freq	equency domain. /aluate communication systems in the presence of noise.														
CO	3	To eval	valuate communication systems in the presence of noise. will have knowledge of basic types of analog modulation (AM, FM, and PM)														
	4	from ma	valuate communication systems in the presence of noise. v will have knowledge of basic types of analog modulation (AM, FM, and PM) mathematical description.														
CO	5	To un	Il allow thinking in the two "domains" of communications, the time domain and requency domain. valuate communication systems in the presence of noise. will have knowledge of basic types of analog modulation (AM, FM, and PM) mathematical description. understand trade-offs (in terms of bandwidth, power, and complexity														
		requirer	ill allow thinking in the two "domains" of communications, the time domain and frequency domain. Evaluate communication systems in the presence of noise. If will have knowledge of basic types of analog modulation (AM, FM, and PM) in mathematical description. In understand trade-offs (in terms of bandwidth, power, and complexity direments) ign of practical communication system at the block diagram level under certain														
CO	6	Design	Il allow thinking in the two "domains" of communications, the time domain and requency domain. valuate communication systems in the presence of noise. v will have knowledge of basic types of analog modulation (AM, FM, and PM) mathematical description. understand trade-offs (in terms of bandwidth, power, and complexity irements) gn of practical communication system at the block diagram level under certain traints and requirements														
		constrai	nts an	d requ	ireme	nts		:'41. T					$(0, \mathbf{v})$				
		г (Н/М	/I ind	ng oi ( icates	_OUIS(	e Ou rth o	tcomes	with P	тоgi H_	ran Hio	1 OUU	Medium	US)	117			
1	CC			h	c	d d		f f		, ng	h 11, 11	i	i, L-L(	k			
1	cc	5/105	u	U	C	u	C	1	ε	,	11		J	К			
2	CC	)1	н		М	Н		М	М				М				
_	CC	02	M	Μ				1.1	M			M	1.1				
	CC	)3	М	Μ		Η	Μ	L				М	L				
	CC	)4	Μ		Μ		Н						Μ				
	CC	)5		Μ		Μ		Μ				Н					
	CC	)6	Н	Μ		Μ	Μ		Μ			Μ					
3	Ca	tegory	જ	S	es		ses			ve		u m	ve		Ξ		R
			ies		enc	(	ienc	nal		scti	. (	ajoı (NI	ecti		., en	ar/	C (P
			anit	HSH	Sci.	CO.	Sc ES	Sio!	) I	Ele	CE	I-M ive	Ele			min	shij
			um		sic		88 )	ofes		ore		Non ect	ben		<u>ה</u> ק	Sei	ern
			Η̈́	ň	B		En	Prc	3	Ŭ	)	Ξ	Ō		L'		Int

4	Approval	37 th Meeting of Academic Council, May 2015

#### UNIT I AMPLITUDE MODULATION SYSTEMS

Need for modulation, Amplitude Modulation System, Single Tone & Multiple Tone Amplitude Modulation, Power Relation, Generation of Amplitude Modulation – Linear Modulation – Collector Modulation method Non-linear Modulation – Square law Modulator, Product Modulator, Switching Modulator - Demodulation of Amplitude Modulation – Envelope Detector,Coherent Detector, VSB, Performance comparison of various Amplitude Modulation System.

9

9

9

9

9

#### UNIT II ANGLE MODULATION SYSTEMS

Frequency Modulation, Types of Frequency Modulation, Generation of NBFM, WBFM, Transmission BW of FM Signal, Phase Modulation. Relationship between PM & FM, Comparison, Generation of FM Direct Method, Indirect method, Demodulation of FM - FM Discriminators.

#### UNIT III RADIO RECEIVERS

Introduction – Functions & Classification of Radio Receivers, Tuned Radio Frequency (TRF) Receiver, Superheterodyne Receiver – Basic Elements, Receiver Characteristics, Frequency Mixers, AGC Characteristics

#### UNIT IV NOISE THEORY

Noise, Types of noise, White Noise, Addition of Noise due to several sources in series and parallel, Generalized Nyquist Theorem for Thermal Noise, Calculation of Thermal Noise for a Single Noise Source, RC Circuits & Multiple Noise sources. Equivalent Noise Bandwidth, Signal to Noise Ratio, Noise-Figure, Noise Temperature, Calculation of Noise Figure, Noise FigureDetermination for Cascaded Stages of Amplifiers

#### UNIT V PERFORMANCE OF COMMUNICATION SYSTEM

Receiver Model, Noise in DSB-SC Receivers, Noise in SSB-SC Receivers, Noise in AM receiver (Using Envelope Detection), Noise in FM Receivers, FM Threshold Effect, Threshold Improvement through Pre-Emphasis and De-Emphasis, Noise in PM system – Comparison of Noise performance in PM and FM, Link budget analysis for radio channels.

#### **TEXT BOOKS:**

- 1. John G. Proakis & Masoud Salehi, "Communication System Engineering", 2nd Edition, 2002.
- 2. R.P. Singh & S.D. Sapre, "Communication Systems: Analog & Digital", 3rd Edition, Tata McGraw-Hill, 2012.

#### **REFERENCE BOOKS:**

- 1. Sanjay Sharma, "Communication Systems, Analog & Digital", S.K. Kataria & Sons, 5th Edition, 2009.
- 2. Dennis Reddy & John Coolen, "Electronic Communications", 4th Edition, Prentice Hall, 2008.
- 3. www.techvyom.com

BMA504	RANDOM PROCESS	L	Т	Р	С
	Total Contact Hours - 75	3	2	0	4

Prerequisite – Mathematics II															
		(	Course De	signe	ed by -	– Dep	ot. of Ma	athem	atics						
OE	BJEC'	TIVES	5												
	• 1	'o imp	art adequa	te kn	owled	lge at	out prol	oabili	ty conc	epts,					
	• T	`o mak	e students	unde	erstand	d Mo	ment Ge	enerati	ing Fun	ctions.					
CC	DURS	E OU	TCOMES	6 (CC	Os)										
C	O1	After	completin	ng thi	is cou	rse s	tudents	would	l be ab	le to aj	pply conc	epts o	of Pro	bability to	
		solve	problems	in El	ectror	nic Er	ngineerii	1g.							
C	O2	Find	functional	relat	ionsh	ip be	tween ra	ndon	n inputs	s and o	utputs wi	th the	use c	of Random	
~	Process Techniques														
C	O3	J3       Find the linearity in Birth and Death Processes with the use of Poisson processes.         J4       To make students understand Discrete and Continuous Pendem variables. Pendem													
C	O4	To make students understand Discrete and Continuous Random variables, Random													
	Processes and their applications in Electronic Transmissions														
C	CO5 To Understand about the correlation Functions														
C	CO6 Find the trend information from discrete data set through numerical differentiation and														
	summary information through random process														
	Mapping of Course Outcomes with Program outcomes (POs)														
1	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs	/POs	a	b	с	d	e	f	g	h	1	j	k	_	
2	COI		H	N	TT			M	M	H	H		H	_	
	CO2	r	H	M	Н	TT	м	м				T		_	
	C03		H		М	н	M	M	М	T		L	М	_	
	C04		H		IVI		н		IVI	L			IVI		
	CO5		H	M		Μ	1.1		H		M				
2	CO6		Н	Μ		<u> </u>	Μ	H			M	Μ			
3	Categ	ory									E)			L/	
			cial		3S)		ES)	C)	Ē	Ĺ,	N N	)E)		ape R)	
			(SF		es (J		es (]	re (]	) (		tive	e ((		n Pa ur/ (P]	
			ss & ss (I) ss		ence		enc	Col		сп <b>v</b>	Elec	ctiv		erne hine	
			nitie udie		Sci		Sci	nal	E12		jor ]	Ele		t/T(em lem msl	
			St		asic		188	ssio			Ma	pen		jeci S nter	
	I     O     O     O       J1     O     O     O														
								Pr						-	
4	Ann	roval	37 th Me	etino	of A	cade	nic Cou	ncil	May 20	)15		1			
						2		, -							

#### UNIT I PROBABILITY AND RANDOM VARIABLES

Probability concepts, Bayes' theorem, Random variables. Moments, Moment Generating function, Binomial, Poisson, Geometric, Exponential, and Normal distributions. Univariate Transformation of random variable.

#### UNIT II TWO-DIMENSIONAL RANDOM VARIABLES

Marginal and conditional distributions, Covariance, Correlation and regression, Transformation of random variables, Central limit theorem-Lindberg and Liapounouff Theorems (applications).

#### UNIT III RANDOM PROCESSES

9+6

9+6

9+6

Classification, Stationary and Markov processes, Binomial process, Poisson process, Sine-wave process, Ergodic processes.

#### UNIT IV CORRELATION FUNCTION

9+6

Auto correlation for discrete and continuous processes, Cross correlation functions, Correlation integrals.

#### UNIT V SPECTRAL DENSITIES

9+6

Power spectral density, Cross spectral density, Applications to linear systems with random inputs

#### **TEXT BOOKS:**

- 1. S.C.Gupta & V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand and Sons, New Delhi , 2003.
- 2. O Flynn M., "Probability, Random Variables and Random Processes", HarperandRowPublishers, New York, (1982).

#### **REFERENCE BOOKS:**

- 1. Peebles Jr.,"Probability, Random Variables and Random Signal Principles", McGraw Hill Publishers, (1987).
- 2. Ochi M.K., "Applied Probability and Stochastic Processes ", Wiley India Pvt Ltd, New Delhi.
- 3. Douglas C.Montgomory, George C.Runger, and Norma F.Hubele. "Engineering Statistcs" 4th Edn. Wiley India Pvt Ltd., New Delhi. 2007.
- 4. Ronald E.Walpole. "Probability and Statistics for Engineers and Scientists". ^{9th} Edn. 2014.
- **5.** Pearson Education, Chennai-600113
- 6. www.math.chalmers.se/Stat/.../CTH/.../091

BEC5L1	DIGITAL SIGNAL PROCESSING LABORATORY	L	Т	Р	С
	Total Contact Hours - 45	0	0	3	2
	Prerequisite - Object Oriented Programming & data Structu	ires La	ab		
	Course Designed by - Dept. of. Electronics and Communic	ation I	Engine	ering	
OBJECTIV	VES				
• To	implement Linear and Circular Convolution				
• To	implement FIR and IIR filters				
• To	study the architecture of DSP processor.				
COURSE (	DUTCOMES (COs)				
CO1	Experiment concepts of DSP and its applications using MAT	LAB	Softwa	re	
CO2	To understand about the basic signal generation				
CO3	To learn Fourier Transform Concepts				
CO4	To design FIR filters				
CO5	To design IIR filters.				
CO6	Demonstrate their abilities towards DSP processor based im	pleme	ntatior	of DS	P
	systems				
	Mapping of Course Outcomes with Program outcome	s (POs	3		
	(H/M/L indicates strength of correlation) H-High, M-Med	ium, L	Low		

1	COs/POs	a	В	c	d	e	f	g	h	i	j	k	
2	CO1	Η	Н		Μ	Н	М			М			
	CO2	L		Μ		Н		Μ					
	CO3	М				Н		Μ		Μ	М		
	CO4	М	М	Μ		Н		Μ		Μ	М		
	CO5	М	М	Μ		Н				Μ			
	CO6	L			Μ						Η		
3	Category	Humanities & Social Studies	(HS)	Basic Sciences	(60)	Engg Sciences (ES)	Professional		COTE ELECTIVE (CE)	Non-Major Elective (NE)	Open Elective	Ducioot/Torm	Paper/ Paper/ Seminar/ Internship (PR)
4	Approval	37 th N	Aeeting	g of A	cade	mic Cour	ncil, M	ay 20	15				

- 1.Waveform generation
- 2.Sampling and its effect on aliasing
- 3.Linear and circular convolution
- 4.DFT computation
- 5.Fast Fourier transforms
- 6. FIR Filters Implementation
- 7. IIR Filters Implementation
- 8. Quantisation Noise.
- 9. Multirate Signal Processing
- 10. DSP processor implementation.

#### Experiments beyond the syllabus should be conducted.

BEC5	<b>MICROPROCESSOR AND MICROCONTROLLER LAB</b>	L	Т	Р	C
	Total Contact Hours - 45	0	0	3	2
	Prerequisite –Digital Electronics Lab				
	Course Designed by – Dept. of Electronics and Communication E	nginee	ring		
OBJE	CTIVES				
	• Study the Architecture of 8085&8086 microprocessor.				
	• Learn the design aspects of I/O and Memory Interfacing circuits.				
	• Study the Architecture of 8051 microcontroller				
COU	RSE OUTCOMES (COs)				
CO1	Design and implement programs on 8085 microprocessor.				
CO2	Design and implement programs on 8086 microprocessor.				

CC	3 Design	interfacing	g circu	its wi	th 808	85										
CC	4 Design	interfacing	g circu	its wi	th 808	86.										
CC	5 Design	and imple	ment 8	8051 n	nicro	controller	based	l sy	stems							
CC	6 To Und	erstand th	e conc	epts re	elated	to I/O ar	nd me	mo	ry inte	rfacin	g					
	I	Map	ping of	f Cour	se Ou	utcomes v	with Pr	rogi	ram o	utcom	es (PO	s)				
		(H/M/L ir)	ndicate	es strei	ngth c	of correla	tion)	H-]	High, I	M-Me	dium, l	L-Low				
1	COs/POs	а	В	c	d	e	f		g	h	i	j	k			
2	CO1	H         M         L         H         L														
	CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	CO3	CO3     M     M     M       M     M     M     M														
	CO4	М	Μ	Μ	Η					Η		Μ				
	CO5	М	Н	Н		Н					Η					
	CO6			Μ			Μ									
3	Category	CO6 Category Rundies & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	← Professional Core (PC)		Core Elective (CE)		NOII-MAJOT ELECUVE (NE)	Open Elective (OE)		Project/ Seminar/ Internship (PR)		
4	Approval	pproval 37 th Meeting of Academic Council, May 2015														

- 1. Programming with 8085 8-bit/16-bit addition/subtraction
- 2. Programming with 8085 8-bit/16-bit multiplication/division using repeated addition/subtraction.
- 3. Programming with 8085 8-bit/16-bit Ascending/Descending order
- 4. Programming with 8085 8-bit/16-bit Largest/smallest number
- 5. Programming with 8085- code conversion, decimal arithmetic, bit manipulations.
- 6. Programming with 8085 matrix multiplication, floating point operations.
- 7. Programming with 8086 String manipulation, search, find and replace, copy operations, sorting.
- 8. Interfacing with 8085/8086 8255, 8253.
- 9. Interfacing with 8085/8086 8279, 8251.
- 10. 8051 Microcontroller based experiments Simple assembly language programs
- 11. 8051 Microcontroller based experiments simple control applications.

Experiments beyond the syllabus should be conducted.

BEC5L3	COMMUNICATION ENGINEERING LABORATORY-I	L	Т	Р	С
	Total Contact Hours - 45	0	0	3	2

Prerequisite –Nil														
	Co	urse Desi	gned b	y – Dep	ot. o	f Electr	onics	and (	Con	nmuni	cation Er	nginee	ring	
OBJ	ECTIVES													
•	To practic	e the bas	ic theo	ries of	anal	og com	munic	catio	n sy	/stem.				
•	To use c	omputer	simula	ation t	ools	such	as P-	SPIC	CE,	or M	latlab to	o carr	y out	design
	experimer	nts as it is	a key	analysi	s to	ol of en	ginee	ring	desi	ign.				
•	To give a	specific	design	proble	m to	o the st	udent	s, wł	nich	after	complet	ion th	ey wil	l verify
	using the	simulatio	n softw	are or	harc	lware in	mplem	nenta	tior	1.				
COU	<b>IRSE OUT</b>	COMES	(COs)											
CO1	CO1 To develop practical knowledge about theories of analog communication													
CO2	D2   To develop practical knowledge about simulation software													
CO3	3 To provide hands-on experience to the students, so that they are able to apply													
	theoretical concepts in practice.													
CO4	Demonstrate various pulse modulation techniques													
CO5	O5 Evaluate analog modulated waveform in time /frequency domain and also find modulation													
	index													
_ CO6	CO6 Develop understanding about performance of analog communication systems													
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H_High M_Medium L_Low													
1			b	c			1011) f	п-п а	ign,	h		-LOW	k	
1	05/105	a	U	C	u	C	1	B		11	1	J	к	
2	CO1	Н	М				Μ			L	Μ		L	-
	CO2	М												
	CO3	Μ	М	М	Η							L		-
	<u>CO4</u>	M	M	M		Н		M			H		H	-
	<u>CO5</u>	N	L	Μ						Μ		TT		-
3	Cotagory	M					Н					Н		
5	Category	z HS)		s		S	ore		CE)			OE)	я	R)
		es & es (]		ence		ence	ŭ		ve (i		ujor NE	ve (I	len	r/ ar/ ) (P
		aniti tudi		Sci( BS)	(	ES)	onal		ecti		-Ma ive (	ectiv	ct/]	ape nin ship
		uma al S		asic (			essio		EI		Non lecti	n El	oje	Pa Ser erns
		H Soci		B	ţ	Ē	PC)		Core		Ш	Dpei	Pr	Inte
							N							
4	Approval			37 th	Me	eting o	f Acad	lemi	c Co	ouncil,	May 20	15		

- 1. AM modulator and Demodulator.
- 2. DSB-SC modulator and Demodulator.
- 3. SSB modulator and Demodulator.
- 4. FM modulator and Demodulator.
- 5. PAM modulator and Demodulator.
- 6. TDM Multiplexer and Demultiplexer.
- 7. FDM Multiplexer and Demultiplexer.
- 8. Pre emphasis and De-emphasis in FM.

- 9. Simulation experiments using P-SPICE and Matlab.
- i) AM modulator with AWGN noise in Matlab.
- ii) Pre-emphasis and De-emphasis in FM using P-SPICE.

#### RESOURCESREQUIRED

- 1. AM Kit
- 2. TDM Kit

#### Experiments beyond the syllabus should be conducted.

BEC5C1	COMPREHENSION-I	L	Т	Р	С									
	Prerequisite –All subjects up to fifth semester	0	0	0	1									
	Course Designed by – Dept. of Electronics and Communication Engineering													
OBJECTIV	<b>ZES</b>													
<ul> <li>To pro</li> </ul>	wide a complete review of Electronics & Communication Eng	gineeri	ng topi	cs										
cove	red up to fifth semesters, so that a comprehensive understand	ing is a	chieve	d.										
• It will	also help students to face job interviews, competitive examin	ations	and als	o to										
enhance the employment potential.														
• To provide overview of all topics covered and to assess the overall knowledge level														

• To provide overview of all topics covered and to assess the overall knowledge let up to fifth semester.

BEC	601	COM	PUTE	ER CO	MMU	NICA'	TION	AND	NETW	ORKS	L	Т	P	С
		Tota	l Conta	act Hou	rs - 45	í					3	0	0	3
		Prere	equisite	e - Com	munic	cation 1	Engine	ering-	Ι		•			
		Cour	se Des	signed b	by – D	ept. of	Electr	onics	and Con	nmunicati	ion Eng	gineeri	ng.	
OBJ	ECT	IVES												
•	То	make	the s	tudents	to un	Idersta	nd the	e diffe	rent lay	ers of IS	SO /OS	Imode	l and	TCP/IP
	Ne	twork	IEEE	standar	ds.									
•	То	under	stand I	P addre	essing	metho	ds and	I QOS	paramet	ters.				
•	• To know the functions and congestion control mechanism of TCP.													
•	<ul> <li>To know about application layer and network security.</li> </ul>													
COU	OURSE OUTCOMES (COs)													
CO1 Explain the networks, topologies and layers of OSI model, compare with TCP/IP model														
CO	2	Classi	fv erro	r contro	ol and	flow c	ontrol	techni	ques and	d types of	of LAN	techno	ologies	
CO	3	Analy	ze diff	erent ro	uting	algorit	hms ar	nd met	hods to	improve	QOS.		0	•
CO	4	Explai	n the r	ole of p	orotoco	ols in n	etwor	king.						
CO	5	Summ	arize t	he trans	sport la	ayer pr	otocol	s and	congesti	on contro	ls meth	nods.		
CO	6	Descri	be var	ious ap	plicati	on laye	er serv	ices ar	nd crypto	ographic	techniq	ues.		
			Maj	oping o	f Cour	se Out	comes	with 1	Program	outcom	es (POs	5)		
	-	(H	[/M/L	indicate	es strer	ngth of	correl	lation)	H-Hig	h, M-Me	dium, I	L-Low		
1	CO	s/Pos	а	b	с	d	e	f	g	h	i	j	k	
2	CO	1	TT	TT			м	м				TT	т	
2		1 ว	H M	H T			IVI	IVI			М	Н	L	
	CO	۷ 2	IVI M		М	М			Ц		IVI	М		
	CO	5 1	IVI M	п	M	M	ц		п		М	IVI	п	
	CU ²	+	IVI	п	IVI	IVI	п		IVI		IVI		п	

	CO5									L		Н			
	CO6	Η					М								
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)		Non-Major Elective	(NE)	Open Elective (OE)	Project/Term	raper/ Seminar/ Internship (PR)
4	Approval	37 th	Meetir	ng of A	Acade	mic Co	uncil,	May	201	15					
	1														

#### UNIT I DATA COMMUNICATION:

ISO reference model, Open system standard, Transmission of Digital Data – Electrical Interface, MODEMS, Line Configuration, Encoding and Decoding, Multiplexing, Error Detection and Correction (CRC).

#### UNIT II DATA LINK CONTROL AND PROTOCOLS:

Flow control and error control, stop and wait, Sliding windows, Automatic Repeat (ARQ), Asynchronous Protocols, - X MODEM, Y MODEM, Synchronous protocols – Character Oriented and Bit oriented protocols (HDLC).

#### UNIT III LOCAL AREA NETWORKS:

IEEE 802 standards, LLC, MAC layer protocols – CSMA/CD Ethernet, Token Bus, Token Ring, FDDI, Distributed Queue Dual Bus, Switched Multimega Bit Data Service.

#### UNIT IV WIDE AREA NETWORKS:

Circuit Switch packet Switch, Message Switching, X .25 Protocols, Architecture And Layers of Protocol, Frame Delay, ISDN and ATM Protocol, Internet working Device, Repeater, Bridge, Routes and Gateways, Routing Algorithms.

#### UNIT V UPPER OSI LAYERS:

Session layer protocols, Presentation layer – Data Security, Encryption/Decryption, Authentication, Data Composition, Application layer protocols – MHS, File transfer, Virtual terminal, CMIP.

#### **TEXT BOOKS:**

1. Behrus A. Forouzane.tal, "Data Communication and Networking", 2nd Edition, Tata McGraw-

#### **REFERENCE BOOKS:**

1. William Stallings, "Data and Computer Communication", Fifth Edition, Prentice Hall of India,1997.

2. Andrew S. Tanenbaum, "Computer networks", Third Edition, prentice Hall of India, 1996.

3.www.studytonight.com/computer-network...

9

9

9

9

B	EC604		C	COMN	<b>IUNI</b>	CAT	ION EN	IGINEE	RIN	<b>G</b> - 1	II	L	Т	F		С
		To	otal (	Conta	ct Ho	urs -4:	5					3	0	0	)	3
		Pr	ereq	luisite	- Co	mmun	ication	Engineer	ing-	Ι						
		Co	ourse	e Desi	gned	by	- Dept. c	of Electro	onics	and	Com	municati	on En	ginee	ering	5
0	BJECTI	VE	S													
	•	Го 1	earr	n and u	unders	stand										
	•	Гhe	pro	cess o	of san	npling	, quanti	zation ar	nd co	oding	g that	are fund	amen	tal to		
	t	he	digi	tal		transı	nission	of analo	og si	gnals	s and	digital r	nodul	ation		
	S	yste	ems.	•												
	• ]	Base	ebar	nd and	l passł	oand t	ransmis	sion syst	ems.							
	• 1	M-a	ry s	ignali	ng and	d spre	ad spect	rum Tec	hniq	ues.						
C	OURSE	OU	TC	OME	<u>s (CC</u>	)s)			-							
C	01 Stu	lent	ts w	ill lea	rn ah	$\frac{1}{0.01}$ th	e basic	concents	of	Sam	nling	basic co	ncent	s of	hase	hand
	tran	<ul> <li>transmission of binary data</li> <li>2 They gain knowledge about basics of digital modulation techniques.</li> <li>3 They can understand the concepts of spread spectrum digital communication system</li> <li>4 To provide in-depth analysis of noise performance in various receivers</li> </ul>														
C	O2 The	They gain knowledge about basics of digital modulation techniques.They can understand the concepts of spread spectrum digital communication systemTo provide in-depth analysis of noise performance in various receivers														
C	O3 The	ev c	an u	inders	tand t	he co	ncepts o	f spread	spec	trum	digita	al comm	unicat	ion s	vste	m
C	04 To j	To provide in-depth analysis of noise performance in various receivers Design basic communication systems														
C	O5 Des	esign basic communication systems o understand the basic concepts of analog pulse modulation techniques														
С	06 To 1	Design basic communication systems         To understand the basic concepts of analog pulse modulation techniques         Mapping of Course Outcomes with Program outcomes (POs)         (U)M(Link)														
	06       To understand the basic concepts of analog pulse modulation techniques         08       Mapping of Course Outcomes with Program outcomes (POs)         (H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low															
	O5       Design basic communication systems         O6       To understand the basic concepts of analog pulse modulation techniques         Mapping of Course Outcomes with Program outcomes (POs)         (H/M/L indicates strength of correlation)         H-High, M-Medium, L-Low															
1	203       They can understand the concepts of spread spectrum digital communication system         204       To provide in-depth analysis of noise performance in various receivers         205       Design basic communication systems         206       To understand the basic concepts of analog pulse modulation techniques         207       Mapping of Course Outcomes with Program outcomes (POs)         (H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low         COs/POs       a       b       c       d       e       f       g       h       i       j       k         CO1       H       M       M       M       H       M       M															
2	CO1		Η	М		М		М	Н			Н				
	CO2		Μ	Μ	Н		М	М	Μ			Н		Μ		
	CO3		Μ			Η						Η				
	CO4		М	Μ			М		Μ			Η				
	CO5			L	H		Μ	-						M		
0	CO6		Μ	Μ		M		L						L		
3	Categor	У	ial		S)		S)			Ê		ve	Ê		er/	
			Soc	2)	B		Э.	ore		$\widehat{\Omega}$		ecti	Q		ap	PR)
			Š	H)	Ices		lces	C		ive		E	ive		mH	p (I
			ies	ies	cien		cier	nal		lect		yjor NE	lect		Ter	inir
			anit	tud	c Sc		Ň	ssic		Щ		-M ²	ΠΞ		ct/	Se
			um	$\mathbf{v}$	asic		ggn	ofe C)		ore		on-	Ibei		roj€	Int
			Η		В		Ē	Pr P				Z	0		P	
		ĺ														
4	Approv	al	37	th Me	eting	of Ac	ademic	Louncil.	May	/ 201	5		1			
					0			,	5							

# UNIT I SAMPLING AND QUANTIZATION

Sampling Process – Aliasing – Instantaneous sampling – Natural Sampling – Flat Sampling – Quantization of signals – sampling and quantizing effects – channel effects – SNR for quantization pulses – data formatting techniques – Time division multiplexing.

#### UNIT II DIGITAL MODULATION

PCM Systems – Noise Considerations in PCM system – Overall Signal-tonoise ratio for PCM system – Threshold effect – Channel Capacity – Virtues, Limitations & Modification of PCM system – PCM Signal Multiplexing – Differential PCM – Delta Modulation – Noise Considerations in Delta Modulation – SNR Calculations – Comparison of PCM, DPCM & DM.

#### UNIT III BASE BAND PULSE TRANSMISSION

Maximum likelihood receiver structure – Matched filter receiver – Probability error of the Matched filter – Intersymbol interference – Nyquist criterion for distortionless baseband transmission – Correlative coding – Eye pattern.

#### UNIT IV PASS BAND DATA TRANSMISSION

Pass Band Transmission Model – Generation, Detection, Signal Space Diagram, Probability of Error for BFSK, BPSK, QPSK, DPSK, and Schemes – Comparison.

# UNIT V M-ARY SIGNALING AND INTRODUCTION TO SPREAD SPECTRUM TECHNIQUES 9

M-ary signaling, vectoral view of MPSK and MFSK signaling, symbol error performance of Mary systems –Introduction – Discrete Sequence Spread Spectrum technique – Use of Spread Spectrum with CDMA-Ranging Using Discrete Sequence Spread Spectrum – Frequency Hopping Spread Spectrum –Generation & Characteristics of PN Sequence.

#### **TEXT BOOKS:**

1. Bernard Sklar, "Digital Communication, Fundamentals and Application", Pearson Education Asia, 2nd Edition, 2001.

2. Simon Haykin, "Communication Systems", John Wiley & Sons, 4th Edition, 2000.

3. Taub & Schilling, "Principle of Communication Systems", 2nd Edition, 2003.

#### **REFERENCEBOOKS:**

1. John G. Proakis, "Digital Communication", McGraw Hill Inc, 5th Edition, 2008.

2.Singh, R.P. & Sapre, S.D, "Communication Systems: Analog &Digital", Tata McGraw-

Hill, 5th reprint

3.www.scribd.com

<b>BEI601</b>	CONTROL SYSTEMS	L	Т	Р	С
	Total Contact Hours - 60	4	0	0	4
	Prerequisite – Electronic Instrumentation, Signals & Systems	5			
	Course Designed by – Dept. of Electronics and Instrumentat	ion En	gineerii	ıg.	
<b>OBJEC</b>	TIVES				
•	Γo study control problem, control system dynamics and feedbac	k princ	ciples.		
•	Γο study time response of first and second order systems and ba	sic stat	te varial	ole anal	ysis and
	to do simple problems.				
•	Γο study the concept of stability and criteria for stability and to	do sim	ple prol	olems.	
				· · .	

• To study the frequency response through polar plots and Bode plots and Nyquist stability

9

	criteri	a and t	to do simp	le prol	olems	5.									
CC	OURSE OU	TCON	MES (CO	s)											
CC	01 Outline	the de	velopmen	t of ma	athem	natical m	odels	to re	pres	sent sy	ste	ems and	l theirr	epres	sentation
	by trans	fer fur	nctions												
CC	Discuss	the tra	ansient and	d stead	y stat	te respon	se of	cont	rol s	system	S				
CC	03 Practice	frequ	ency doma	ain plo	ts (B	ode and	Polar)	)							
CC	Analyze	e perfo	rmance of	contro	ol sys	tems									
CC	05 Design	compe	nsation ne	etwork	s										
CC	06 Design	the dif	ferent type	es of c	ompe	nsators									
	Mapping of Course Outcomes with Program outcomes (POs)         (H/M/L indicates strength of correlation)       H-High, M-Medium, L-Low         1       COs/POs       a       B       c       d       e       f       g       h       i       i       k														
(H/	(H/M/L indicates strength of correlation)     H-High, M-Medium, L-Low       1     COs/POs     a     B     c     d     e     f     g     h     i     j     k       2     CO1     H     I     M     I     M     M     M														
1	Integration of construction of constructin on of construction of construction of construction of														
2	/M/L indicates strength of correlation)H-High, M-Medium, L-Low $COs/POs$ aBcdefghijk $CO1$ HMLMMCO2MLHMMLCO3 $CO3$ MHHIIIIIIII														
	COs/POs         a         B         c         d         e         f         g         h         i         j         k           CO1         H          M         L         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M<														
	COS/FOS         a         B         C         u         e         1         g         n         1         J         K           CO1         H          M         L         M         M         M           CO2         M         L         H         M         M         L         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I														
	CO4	Μ		Μ		Н		Μ					Η		
	CO5		L									Μ			
	CO6						Η								
3	Category	& Social (HS)		s & Maths		ces (ES)	ore (PC)		ve (CE)		Flantina		ve (OE)		n Paper/ ar/ ) (PR)
Humanities & Basic Sciences & (BS) (BS) (BS) (BS) (BS) (BS) (BS) (BS)												Project/Terr Semin Internship			
4	Approval	37 th	Meeting	of Aca	demi	c Counci	il, Ma	y 20	15						

#### UNIT I **CONTROL SYSTEM MODELLING**

System concept. Differential equations. Transfer functions. Introduction to model based design-Modelling of electric systems, Translational and rotational mechanical systems, simple Electro mechanical systems. Block diagram representation of systems. Block Diagram reduction methods. Closed loop transfer function, determination of Signal flow graphs. Mason's gain formula. Examples.

#### TIME RESPONSE ANALYSIS: UNIT II

First Order Systems. Impulse and Step Response analysis. Second Order system Analysis. Steady state error. Error Coefficients and Generalized error series. Principle of PI, PD and PID Compensation. Servo Motor, Synchros & Stepper Motor-analysis using Matlab.

#### **STABILITY IN TIME DOMAIN** UNIT III

Stability Analysis. Routh - Hurwitz Criterion. Root locus Method. Construction of root, locus diagrams. Stability Study. Application of root locus diagram-analysis using Matlab.

#### **UNIT IV STABILITY IN FREQUENCY DOMAIN**

12

12

12

Frequency response analysis. Frequency domain specifications . Polar plot, Bode's Plot, Magnitude - Phase plot, Constant M and N Circles. Nichol's Chart Nyquist Stability Criterion. Relative Stability - gain Margin and Phase margin, determination from Polar plot, Bode's Plot and Magnitude – Phase Plot. Use of Nichol's Chart in system analysis to determine relative stability, Bandwidth, Resonance peak and resonance frequency- Analysis using Matlab.

UNIT VCOMPENSATION TECHNIQUES

12

Cascade and feedback compensation. Lag, Lead and Lag- lead Compensation. Design of Cascade Compensators - Using Bode's Plot.

#### **TEXT BOOKS:**

1. J.Nagrath and M.Gopal, "Control SystemEngineering", NewAgeInternational Publishers, 5thEdition, 2007.

#### **REFERENCE BOOKS:**

- 1. Benjamin.C.Kuo, "Automatic control systems", Prentice Hall ofIndia, 7thEdition, 1995.
- 2. M.Gopal, "Control System– Principles and Design", TataMcGrawHill, 2nd Edition, 2002.
- 3. Schaum"sOutlineSeries, "FeedbackandControlSystems" Tata McGraw-Hill,2007.
- 4. John J.D"Azzo & Constantine H. Houpis, "Linear Control System Analysis and Design", Tata McGraw-Hill, Inc., 1995.

5. www.electrical4u.com

BS	<b>S601</b>		VAL	UE	EDUC	ATI	ON AN	D PR	OFES	SION	NAL ETH	ICS	L	Τ	P	C
			Total	Co	ntact Ho	ours	- 45						3	0	0	3
			Prere	quis	site – N	il										
			Cours	se D	esigned	l by -	- Dept o	of Ma	nagem	ent St	tudies					
OI	BJEC	TIVE	S													
	•	о То	teach	the	philoso	phy	of Life,	perso	onal va	lue, s	ocial value	e, mind	cult	ural v	alue a	and
		pers	sonal	heal	th											
	•	To	teach	prof	fessiona	l eth	ical val	ues, c	odes o	f ethic	cs, respons	sibilitie	es, sa	fety,	rights	
		and	relate	ed g	lobal is	sues.					•			•	C	
CC	DURS	SE OU	TCO	MĒ	S (COs	)										
C	01	To lea	rn abc	out p	hilosop	hy o	f Life a	nd Inc	lividua	al qua	lities					
C	02	To lea	rn and	l pra	actice so	ocial	values a	and re	sponsi	bilitie	es					
C	03	To lea	rn and	l pra	actice m	ind c	culture,	forces	s acting	g on tl	he body an	d caus	es of	disea	uses a	nd
		their c	uring													
C	04	To lear	rn mo	re o	f Engin	eer a	s Respo	onsible	e Expe	rimen	iter.					
C	05	To lear	rn mo	re o	f Risk a	ind S	afety as	ssessn	nent wi	ith cas	se studies.					
C	06	To lea	arn n	nore	of Re	espor	nsibilitie	es an	d Rig	hts as	s Professi	onal a	ind t	facing	g Glo	obal
		Challe	nges			-			Ũ						-	
			Μ	appi	ing of C	Cours	e Outco	omes v	with Pr	ogran	n outcome	es (POs	s)			
 	1	(1	H/M/I	_ inc	licates s	stren	gth of c	orrela	tion)	H-Hi	gh, M-Meo	dium, I	L-Lo	w		
1	COs	/POs	a	b	С	d	e	f	g	h	i	j	k			
2	C01	-			M		H		M	H	M	L	L			
CO2 M H M H M											M	L				
	CO3	<u>)</u>			M		H		M	H	M					
	04	ŀ		1	H		H		IVI	H	IVI	L	L			

	CO5			Η		Н		Μ	I	Η	М	L	L			
	CO6			Η		Н		Μ	I	Η	М	L	L			
3	Category	Humanities &	SUCIAL SUULIES (HS)	Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional		Core Elective	(CE)	Non-Major Elective (NE)	Open Elective	(GOE	Project/Term	Paper/ Seminar/ Internship (PR)	
		Ŋ														
4	Approval	37 th	M	eeting o	of Ac	ademic	Coun	cil, N	⁄lay	201	5					

#### UNIT I PHILOSOPHY OF LIFE AND INDIVIDUAL QUALITIES

Human Life on Earth - Purpose of Life, Meaning and Philosophy of Life. The Law of Nature – Protecting Nature /Universe. Basic Culture - Thought Analysis - Regulating desire - Guarding against anger - To get rid of Anxiety – The Rewards of Blessing - Benevolence of Friendship - Love and Charity - Self – tranquility/Peace

9

9

9

9

9

#### UNIT II SOCIAL VALUES (INDIVIDUAL AND SOCIAL WELFARE)

Family - Peace in Family, Society, The Law of Life Brotherhood - The Pride of Womanhood – Five responsibilities/duties of Man : - a) to himself, b) to his family, c) to his environment, d) to his society, e) to the Universe in his lives, Thriftness (Thrift)/Economics. Health - Education - Governance - People's Responsibility / duties of the community, World peace.

#### UNIT III MIND CULTURE & TENDING PERSONAL HEALTH

Mind Culture - Life and Mind - Bio - magnetism, Universal Magnetism (God –Realization and Self Realization) - Genetic Centre – Thought Action – Short term Memory – Expansiveness – Thought – Waves, Channelising the Mind, Stages - Meditation, Spiritual Value. Structure of the body - the three forces of the body- life body relation, natural causes and unnatural causes for diseases, Methods in Curing diseases

#### UNIT IV ENGINEERING AS SOCIAL EXPERIMENTATION AND ENGINEERS'SRESPONSIBILITIES FOR SAFETY

Engineering as Experimentation – Engineer as Responsible Experimenters – Codes of Ethics – The Chalenger, case study. Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk – The Three Mile Island and Chernobyl case studies.

# UNIT V ENGINEERS'S RESPONSIBILITIES FOR RIGHTS AND GLOBALISSUES

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Whistle Blowing – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development –Engineers as Managers – Consulting Engineers – Engineers as Expert Eye Witnesses and Advisors – Moral Leadership

#### **TEXT BOOKS:**

1. Value Education for Health, Happiness and Harmony, The World Community Service, Centre Vethathiri Publications (Unit 1 – III).

2. Mike W Martin and Roland Schinzinger, Ethics In Engineering, Tata Mcgraw Hill, Newyork 2005 (Units IV & V)

#### **REFERENCE BOOKS:**

- 1. Philosophy of Universal Magnetism (Bio magnetism, Universal Magnetism) The World Community Service Centre Vethathiri Publications (for Unit III)
- 2. Thirukkural with English Translation of Rev. Dr. G.U. Pope, Uma Publication, 156, Serfoji Nagar, Medical College Road, Thanjavur 613 004 (for Units I III)
- 3. R S Nagaarazan, Textbook On Professional Ethics And Human Values, New Age International Publishers, 2006 (for Units IV-V)
- 4. Charles D Fledderman, Engineering Ethics, Prentice Hall, New Mexico, 2004 (Units IV-V)
- 5. www.waceinc.org/philly2011/conference.../KARSTE~1.PDF

BE	C6L1	CC	OMPU	TER NE	COMI TWO	MUNI RKS L	CATIC AB	ON AN	ND	L	T	Р	С	
		Total	Conta	ct Hou	urs - 4	5				0	0	3	2	
		Prere	quisite	e – Coi	nmun	ication	s Engiı	neering	g I lab	)				
		Cour	se Des	igned	by – D	Dept. of	f Electr	onics	and co	ommu	nicatio	n Engine	ering	
OB	JECTIVES													
	• Defini a Netw	ng, usi vork sy	ng and ′stem.	imple	ementi	ng Cor	nputer	Netwo	orks a	nd the	basic c	ompone	ents of	
	• Knowi	ing and	l Apply	ying p	oieces	of hard	lware a	nd sof	tware	to ma	ike netv	vorks m	ore	
	efficie	nt, fast	er, mo	re secu	ıre, ea	sier to	use, ab	ole to the	ransm	nit seve	eral sim	ultaneo	us	
	messag	ges, an	d able	to inte	erconn	ect wit	h other	netwo	orks.					
	• Differe	entiatir	ng the v	variou	s types	s of net	work c	configu	iratio	ns and	applyi	ng them	to	
	meet the	he chai	nging a	and cha	allengi	ing net	workin	ig need	ls of c	organiz	zations.			
CC	OURSE OUTCO	<b>MES</b>	(COs)	<u>c</u> 1		1 1	1 •		1 (			. 1.		
	CO1Understand fundamental underlying principles of computer networkingCO2Understand details and functionality of layered network architecture.CO2Apply methometical foundations to solve computational problems in													
	<u>CO2</u>	Unde	erstand	detail	$\frac{1}{1}$	tunctio	nality (	of laye	red no	etwork	c archite	ecture.		
	CO2Understand details and functionality of layered network architecture.CO3Apply mathematical foundations to solve computational problems in computer networking													
	<u>CO4</u>	Analy		forma	unce of	vario	is com	munic	ation	nrotoc	ole			
	04	Anar	yze pei	101111		variot		mume	ation	protoc	.015.			
	CO5	Com	pare ro	uting	algorit	hms								
	001		•	1 ( / ()	1 4		1 4		1					
	006	Pract	ice pac	cket /fi	le tran	ISM1SS1	on bety	ween n	odes					
	N	lapping	g of Co	ourse (	Dutcon	nes wit	h Prog	ram o	utcon	nes (P	Os)			
	(H/M/	L indic	ates st	rength	of con	rrelatio	n) H-	High,	M-M	edium	, L-Lov	V		
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k		
2		ц					м		т	ц		М		
2		п	T	ц	м	М	IVI			п	м	IVI		
	CO2	M	L	п	и Ц	IVI				М	IVI			
	C04	M	М		11	н		М		111		Н		
	C05	101	M	н		11		101			T	11		

	CO6						Н						
3	Category	Humanities & Social Studies	(HS)	Basic Sciences	(60)	Engg Sciences (ES)	<ul> <li>Professional</li> <li>✓ Core (PC)</li> </ul>		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/	Seminar/ Internship (PR)
4	Approval	37 th	Meetin	ng of $A$	Acade	emic Co	uncil,	May	2015				

- 1. PC to PC Communication Parallel Communication using 8 bit parallel cable Serial communication using RS 232C
- 2.Ethernet LAN protocol: To create scenario and study the performance of CSMA/CD protocol through simulation
- 3. Token bus and token ring protocols: To create scenario and study the performance of token bus and token ring protocols through simulation
- 4. Wireless LAN protocols: To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.
- 5. Implementation and study of stop and wait protocol
- 6. Implementation and study of Go back-N and selective repeat protocols
- 7. Implementation of distance vector routing algorithm
- 8. Implementation of Link state routing algorithm
- 9. Implementation of Data encryption and decryption
- 10. Transfer of files from PC to PC using Windows / Unix socket processing

#### Experiments beyond the syllabus should be conducted.

BEC6L	2 ELECTRONICS SYSTEM DESIGN LAB	L	Т	Р	С
	Total Contact Hours - 45	0	0	3	2
	Prerequisite –Electronics Circuits, Communication Eng	ineerin	g I lab		
	Course Designed by – Dept. of Electronics and Commu	nicatio	n Engi	neering	<b>y</b> .
OBJEC	TIVES				
	• To understand the design procedure of different power	supplie	s.		
	• To know to design transreceiver and voltage regulator.				
	• To understand the working of Microprocessor and DSF	based	syster	n desig	'n
COURS	SE OUTCOMES (COs)				
CO1	Design different forms of power supply.				
CO2	Design Voltage regulators				
CO3	AM/FM transreceiver.				
CO4	Know the design procedure of Instrumentation amplifier and	Digital	Indica	ator.	
CO5	Learn CAD based PCB layout design.				
CO6	Understand the working of modems and timers.				
	Mapping of Course Outcomes with Program outcon	es (PO	s)		
	(H/M/L indicates strength of correlation) H-High, M-Me	edium,	L-Low	/	
1 C	Ds/POs a b c d e f g h	i	j	k	

2	CO1	Η					Μ		L	Η		Μ	
	CO2	Μ	L	Η	Μ	Μ					Μ		
	CO3	Μ			Η					Μ			
	CO4	Μ	Μ			Η		Μ				Η	
	CO5		Μ	Η							L		
	CO6						Η						
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core	, ,	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)		Project/Term Paper/ Seminar/ Internship (PR)
4	Approval	37 th ]	Meet	ing o	f Aca	demic C	Council,	May 2	015				

- 1. Design of high current linear variable DC Power supply.
- 2. Design of Switched Mode power supply.
- 3. Design of AC / DC Voltage regulator using SCR.
- 4. Design of Programmable Logic controller.
- 5. Design of process control timer.
- 6. Design of AM / FM transreceiver
- 7. Design of wireless data Modems
- 8. Design of Instrumentation amplifier and Digital Indicator
- 9. PCB layout Design using CAD
- 10. Microprocessor based system design.
- 11. DSP based system design.
- . Experiments beyond the syllabus should be conducted.

BEC6I	L3 COMMUNICATION ENGINEERING-II LAB	L	Т	Р	С
	Total Contact Hours - 45	0	0	3	2
	Prerequisite –Communication engineering-I Lab				
	Course Designed by – Dept. of Electronics and Communication	ion En	gineerir	ng	
OBJE	CTIVES				
•	To demonstrate digital communication concepts using hands	on e	xperien	ce and	using
	simulation environments such as PSPICE/Multisim, or Matlab/Si	mulinl	k, or La	bVIEW.	
•	To use commercial, modular systems which have some disti	nct ad	vantage	es over	bread
	boarding to examine more complex communication topics a	and to	delive	r a har	ids-on
	laboratory experience.				
COUR	SE OUTCOMES (COs)				
CO1 /	To understand linear time invariantsystem with random inputs, and optimum the standard stan	mumre	eceiver	for AWO	GN
	channel.				
CO2	To understand the Discrete channel models and itsproperties				

CC	03 To unde	erstand	the Co	ntinuou	s chan	nel mod	lels a	ndits pr	opertie	s						
CC	04 Execute	hardw	vare imp	lement	ation											
CC	5 They wi mathem	ll have atical o	e knowle descripti	edge of .on	basic	e types o	of dig	gital mo	dulatio	n (ASK,	FSK,	and F	PSK) from			
CC	06 Develop	under	standing	g about	perfor	mance of	of dig	gital cor	nmunic	ation sys	stems					
	(	M (H/M/I	apping of L indicat	of Cour tes strer	se Ou ngth of	tcomes v f correla	with ( tion)	Progran H-Hig	n outco gh, M-N	omes (PC Aedium,	)s) L-Lov	V				
1	COs/POs	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
2	CO1	D1     H     M     L     M     L       O2     M     L     H     Image: Constraint of the second sec														
	CO2	XO1         H         M         L         M         L           XO2         M         L         H         Image: Constraint of the second														
	CO3	M         L         H         Image: Constraint of the second se														
	CO4	M     H     L       M     H     M       H     H       M     H       M     H														
	CO5	5         M         H         L           4         M         H         M         H           5         L         M         M         H														
	CO6	4         M         H         M         H         H           5         L          M          H         H           6           H         H         H         H														
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Project/Term Paper/ Seminar/ Internship (PR)			
4	Approval	37 th	Meetin	g of Ac	ademi	c Counc	cil, M	lay 201	5							

- 1. FSK Modulation and Demodulation.
- 2. PSK Modulation and Demodulation.
- 3. QPSK Modulation and Demodulation.
- 4. DPSK Modulation and Demodulation.
- 5. PAM Modulation and Demodulation.
- 6. PWM Modulation and Demodulation.
- 7. PPM Modulation and Demodulation.
- 8. Pulse Code Modulation and Demodulation.
- 9. Delta Modulation and Demodulation.
- 10. Differential Pulse Code Modulation and Demodulation.
- 11. Data formatting.
- 12. BER comparison of different modulation schemes in AWGN channel in MATLAB Simulink.

#### RESOURCESREQUIRED

- 1. PSK
- 2. PCM Kit
- 3. Delta modulation kit
- 4. Line coding and Decoding kit

- 5. FSK kit
- 6. PAM,PWM,PPM kit7. Delta demodulation kit
- 8. Sampling kit

## Experiments beyond the syllabus should be conducted.

BE	C701		]	FIBRE	OPTI	C CO	MMUN	ICA	TIO	N			L	Т	Р	С
		Tot	tal Co	ntact Ho	ours - 4	5							3	0	0	3
		Pre	requis	site – El	ectrom	agneti	ic Fields	and	wav	es.						
		Co	urse D	esigned	l by – I	Dept. o	of Electi	onic	s and	d Co	ommu	ini	cation	Engine	ering.	
OE	<b>JECT</b>	IVE	S													
	•	To le	earn th	ne basic	eleme	nts of	optical	fiber	trans	smi	ssion	lin	ık, fibe	r mode	es	
		Conf	igurat	ions and	l struct	ures.										
	•	To ui	nderst	and the	differe	nt kin	d of loss	ses, s	igna	l di	stortic	on,	SM fi	bers.		
	•	To le	arn th	e variou	s optic	al sou	rces, ma	ateria	als ar	nd f	iber s	pli	cing			
	•	To le	arn th	e fiber o	optical	receiv	ers and	noise	e per	for	mance	e ir	n photo	detec	tor.	
	•	To le	arn lir	nk hudø	-t WΓ	M so	litons a	nd S(	ONE	T/S	SDH n	et	work			
	-	1010		ik oudg		, 50	intons a			1/2			work.			
CC	URSE	E OU	TCO	MES (C	COs)											
CC	01 De	mons	strate a	an under	rstandi	ng of	optical f	ïber	com	mu	nicatio	on	link, s	tructur	e, prop	oagation
00	and	d tran	ISM1SS	ion prop	berties	$\frac{\text{of an}}{1}$	optical f	1ber.	•	-		•	• •		. 1	
CC	J2       Estimate the fosses and analyze the propagation characteristics of an optical signal in different types of fibers         J3       Describe the principles of optical sources and power launching-coupling methods															
CC	O3       Describe the principles of optical sources and power launching-coupling methods.         O4       Compare the observatoriation of fiber optic receiver.															
	D3 Describe the principles of optical sources and power launching-coupling methods.         D4 Compare the characteristics of fiber optic receivers.															
	04       Compare the characteristics of fiber optic receivers.         05       Design a fiber optic link based on budgets															
CC	<ul> <li>Design a fiber optic link based on budgets</li> <li>To assess the different techniques to improve the capacity of the system</li> </ul>															
CC	D5Design a fiber optic link based on budgetsD6To assess the different techniques to improve the capacity of the system.															
			Ma	pping o	f Cour	se Out	tcomes	with	Prog	ran	n oute	cor	nes (P	Os)		
		(H	I/M/L	indicate	es strer	igth of	f correla	tion)	H-	Hig	gh, M·	-M	edium	, L-Lo	W	
1	COs/I	POs	а	b	С	d	e	f	g		h		i	j	k	
2	CO1		Н					Μ			L		М		L	
	CO2		Μ	L	Н											
	CO3		Μ			Η								L		
	CO4		Μ				Н		Μ				Н		Н	
	CO5			L							Μ					
	<u>CO6</u>							Η				1		Н		
3	Catego	ry	ial		S)	ŝ				Ê			ט <	Ê		
			Soc Soc		s (B	s (E		ore		Ũ				0	srm	(PR
			s & S (H		nce	nce		al C		≎tive		- E -	E E	tive	t/Te	inal ip
			nitie		Scie	Scie		iona		Elec		Loio I		Elec	ject	em nsh
			Stu		sic	50	0	fess		ore		-	AI-III	en j	Pro	S
			Hu		Ba	En		Pro	L)	ő				0 ^t		Ir
												<u> </u>				
	•	1	orth		C .		·	•1 •	NÆ	00	1.5					
4	Appro	oval	374	Meetin	ig of A	caden	nc Cour	ncil,	May	20	15					

#### UNIT I INTRODUCTION TO OPTICAL FIBER

Evolution of fiber Optic system – Element of an Optical Fiber Transmission link – Ray Optics – Optical Fiber Modes and Configurations – Mode theory of Circular Wave guides – Overview of Modes – Key Modal concepts – Linearly Polarized Modes – Single Mode Fibers – Graded Index fiber structure.

#### UNIT IISIGNAL DEGRADATION IN OPTICAL FIBER

Attenuation – Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides – Information Capacity determination – Group Delay – Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers – Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers – Mode Coupling – Design Optimization of SM fibers – RI profile and cut-off wavelength.

#### UNIT III FIBER OPTICAL SOURCES

Direct and indirect Band gap materials – LED structures – Light source materials – Quantum efficiency and LED power, Modulation of a LED, Laser Diodes – Modes and Threshold condition – Rate equations – External Quantum efficiency – Resonant frequencies – Laser Diodes structures and radiation patterns – Single Mode lasers – Modulation of Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers.

#### UNIT IVFIBER OPTICAL RECEIVERES

PIN and APD diodes – Photo detector noise, SNR, Detector Response time, Avalanche multiplication Noise – Comparison of Photo detectors – Fundamental Receiver Operation – preamplifiers - Error Sources – Receiver Configuration – Probability of Error – The Quantum Limit.

#### UNIT V DIGITAL TRANMISSION SYSTEM

Point-to-Point links – System considerations – Fiber Splicing and connectors – Link Power budget – Rise-time budget – Noise Effects on System Performance – Operational Principals of WDM, Solutions.

#### **TEXT BOOKS:**

1. Gerd Keiser, -Optical Fiber Communications Tata McGraw-Hill Education private Limited, New Delhi, fifth Edition, 2008, Reprint2009.

#### **REFERENCE BOOKS:**

- 1. J.Senior,-Optical Communication, Principles and Practicell, Prentice Hall of India, third Edition,2004.
- 2. J.Gower,-Optical Communication System ||, Prentice Hall ofIndia,2001
- 3. Yarvi.A. QuantumEletronics JohnWiley4thedition, 1995
- 4 https://books.google.co.in/books?isbn=9380156693

<b>BEC702</b>	DIGITAL CMOS VLSI	L	Т	Р	С						
	Total Contact Hours - 60	4	0	0	4						
	Prerequisite – Principles of Digital Electronics										
	Course Designed by – Dept. of Electronics and Communication Engineering.										
OBJECTI	VES										
• To	learn basic CMOS Circuits.										

9

9

9

9

	To how CMOS we are to the locu													
	•	To lea	arn CMOS	5 pro	cess te	echno	ology.							
	•	To lea	arn techni	ques	of chi	p de	sign usin	ng progi	ramm	able de	vices.			
	•	To lea	arn the co	ncept	ts of d	esign	ning VLS	SI Subs	ysten	ns.				
C	COURSE OUTCOMES (COs)													
C	201	To le	arn about	IC fa	abricat	tion,	MOS tra	ansistor	actio	n and i	ts param	eters.		
C	202	Expre	ess the La	yout	of sin	nple	MOS cir	cuit usi	ng La	ambda l	based de	sign ru	ıles.	
C	203	About the implementation of various adders and multipliers in VLSI												
		technology.												
C	O4	About the design styles of FPGA.												
C	205	About testing of CMOS circuits.												
C	:06	To understand the concepts of modeling a digital system using Hardware Description												
	Language.													
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H High M Medium L Low													
1	COs	$\frac{1}{POs}$		b		d		f	σ σ	h h	i i	i <u>1</u>	k	
2	CO1	100	M	~				*	D	н	M	J		
-	$CO^2$		M		Н	+	+			M	H	Н		
	CO3		M		M	Н				171		H	Н	1
	CO4		M				H			М		H		1
	CO5			Н							Н			
	C06		Н		<u> </u>	1	Н						Н	1
3	Categ	ory						0					1	
			& ies		ces		ces	Core	ve Ve		E) E	ve	rm	PR
			ities stud S)		S)		cien S)	al (	ecti	m	1ajc e (N	E)	/Te	er/ nar ip (
			nan al S (H;		e S S	2	Š. E	sion	LT.	0	on-N otive	0 E	ect	Pap emi nsh
		Hun Soci		3asi		ingg	D)	Ore		Nc Elec	Ope	roj	F S∈ terr	
		_ •1		I		щ	Prc (PC	Ŭ				Р	In	
1	Ann	ovol	27th M	ootin	a of A	anda	mia Cou		ov 20	15				
4	Appi	oval	57° IVI6	eeung	3 01 A	cade	Inic Cou	IIICII, IVI	lay 20	15				
1	1		i											

#### UNIT I INTRODUCTION TO MOS TRANSISTOR

MOS Fabrication, Enhancement mode and Depletion mode MOSFET, Threshold voltage derivation – body effect – Drain current Vs voltage derivation – channel length modulation - CMOS technologies, CMOS Fabrication: n-well – p-well – twin tub –DC transfer characteristics-

#### UNIT II MOS CIRCUITS DESIGN PROCESSAND CMOS LOGIC GATES 12

MOS Layers, Stick Diagram, Layout Diagram, Propagation Delays, CMOS Static Logic Transmission Gate Logic, Tri-State Logic, Pass Transistor Logic, Dynamic CMOS Logic, Domino CMOS Logic, Differential Cascade Voltage Switch (DCVS) Logic, Scaling of MOS Circuits.

#### UNIT III VLSI IMPLEMENTATION STRATEGIES

Introduction – Design of Adders: carry look ahead-carry select-carry save. Design of multipliers: Array – Braun array – Baugh-Wooley Array. Introduction to FPGA – Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures.

12

#### UNIT IV CMOS TESTING

Need for testing- Testers, Text fixtures and test programs- Logic verification- Silicon debug principles- Manufacturing test – Design for testability – Boundary scan

### UNIT V SPECIFICATION USING VERILOG HDL

Basic concepts- identifiers- gate primitives, gate delays, operators, timing controls, procedural assignments conditional statements, Data flow and RTL, structural gate level switch level modeling, Design hierarchies, Behavioral and RTL modeling, Test benches, Design of decoder, equality detector, comparator, priority encoder, half adder, full adder, Ripple carry adder, D latch and D flip flop

#### **TEXT BOOKS:**

1. Weste and Harris: CMOS VLSI DESIGN (Third edition) Pearson Education, 2005

2. Uyemura J.P: Introduction to VLSI circuits and systems, Wiley 2002.

#### **REFERENCE BOOKS:**

1.D.A Pucknell & K.Eshraghian Basic VLSI Design, Third edition, PHI, 2003

2. Wayne Wolf, Modern VLSI design, Pearson Education, 2003

3.M.J.S.Smith: Application specific integrated circuits, Pearson Education, 1997

4.J.Bhasker: Verilog HDL primer, BS publication, 2001

5. Ciletti Advanced Digital Design with the Verilog HDL, Prentice Hall of India, 2003 6.https://en.wikipedia.org/wiki/Very-large-scale_integration

BEC70	3 MICROWAVE ENGINEERING	L	Т	Р	С							
	Total Contact Hours - 45	3	0	0	3							
	Prerequisite – Electromagnetic Fields and waves.											
	Course Designed by – Dept. of Electronics and Commu	unicati	ion Eng	gineerin	ıg							
OBJEC	CTIVES											
• Microwave Engineering introduces the student to RF/microwave analysis methods and												
design techniques												
• Scattering parameters are defined and used to characterize devices and system behavior.												
]	Passive and active devices commonly utilized in microwave subsystems are analyzed											
• ′	• To analyze the current popular distributed systems such as peer-to-peer (P2P) systems											
,	will also be analyzed.											
• ′	To understand about microwave measurements											
COURS	SE OUTCOMES (COs)											
CO1	Demonstrate the ability to identify formulate and solve micro problems	wave	networ	k relate	d							
CO2	Understand the need for the different microwave components	and th	neir spe	ecificati	ons							
CO3	Understand the working principles of different microwave so	ources										
CO4	Demonstrate the ability to identify microwave active d	evices	along	g with	their							
	applications.											
CO5	Know how to model and determine the performance characteristic	cteristi	ics of a	a micro	wave							
	circuit or system.											
CO6	Identify the measurement techniques for different parameters	like V	'SWR,									
	impedance, frequency, power of microwave sources and load	ls.										

	Mapping of Course Outcomes with Program outcomes (POs)														
	(H	/M/L in	dicate	s strer	ngth o	of correla	tion)	H-Hi	gh, M-	Medium	, L-Lo	W			
1	COs/Pos	a	b	c	d	e	f	g	h	i	j	k			
2	CO1	Н					М				Μ				
	CO2	Μ	Μ	Μ	Μ					Η		Μ			
	CO3	Μ		Μ	Μ	Μ									
	CO4	Μ				Μ		Μ			Η				
	CO5		Μ	Μ						М		Μ			
	CO6				Μ		Н								
3	Category	Humanities & Social Studies	(HS)	Basic Sciences	(cd)	Engg Sciences (ES)	Professional	Core Flective	(CE)	Non-Major Elective (NE)	Open Elective	Project/Term	Paper/ Seminar/ Internship (PR)		
4	Approval	37 th 1	7 th Meeting of Academic Council, May 2015												

#### UNIT I MICROWAVE NETWORK THEORY

Introduction –Microwave frequency range, applications of microwaves.– Scattering matrix representation of multi port network -properties of S-parameters – S matrix of a two port network with mismatched load – Z and ABCD parameters-Comparison between [S] - [Z] and [Y] matrices

#### UNIT II MICROWAVE PASSIVE DEVICES

Coaxial cables-connectors and adapters – Wave guides- Matched terminations –Rectangular to circular wave guide transition–Wave guide corners – Bends and twists – Windows – Attenuators – Phase shifters – Wave guide tees– E plane tee – H plane tee – Magic tee – Isolators – Circulators –Directional couplers – scattering matrix derivation for all components.

#### UNIT III MICROWAVE VACCUM TUBE DEVICES 10

Introduction – Two cavity klystron amplifier – Mechanism and mode of operation –Power output and efficiency -Applications – Reflex klystron oscillator – Mechanism and mode of operation-Power output – Efficiency – Mode curve –Applications – TWT amplifier – Principle of operation-gain and applications – Magnetron oscillator – Hull cut-off voltage mechanism of operation– Power output and efficiency –Applications – Numerical problems.

#### UNIT IVMICROWAVE SEMICONDUCTOR DEVICES AND CIRCUITS9

Principles of tunnel diodes - Varactor and Step recovery diodes – Transferred Electron Devices -Gunn diode- Avalanche Transit time devices- IMPATT and TRAPATT Devices- Parametric Amplifiers – Introduction to Micro strip Lines, & Monolithic Microwave Integrated circuits-Materials, MMIC Fabrication Techniques.

#### UNIT V MICROWAVE MEASUREMENTS

Introduction – Slotted line carriage — Spectrum analyzer – Network analyzer – Power measurements – Schottky barrier diode sensor –Bolometer sensor – Power sensor – High power

10

9

measurement – Insertion loss and attenuation measurement – VSWR measurement – Low and high VSWR – Impedance measurement – Frequency measurement – Measurement of cavity Q – Dielectric measurement of a solid by wave-guide method – Antenna measurement – Radiation pattern – Phase and gain.

#### **TEXT BOOKS:**

1. Annapurna Das, Sisir K. Das, "Microwave Engineering", TMH Co., Ltd., 1999.Reprint 2001.

#### **REFERENCE BOOKS:**

1. Collin R.E., "Foundation of Microwave Engineering", 2nd Edition, TMH, 1992.

2. Samuel Y. Liao, "Microwave devices and Circuits", PHI Pvt Ltd., 1995.

3. http://www.microwaves101.com

BF	EC704		AN	<b>FENN</b>	A AN	D WA	AVE PR	<b>OPAG</b> A	ATION		L		Г	Р	C
		Tot	al Cont	act Ho	urs –	45					3	(	0	0	3
		Pre	requisit	e – Ele	ectror	nagnet	tic Fields	and wa	ves.						
		Cou	ırse De	signed	by –	Dept.	of Electr	onics ar	nd Com	munic	cation l	Engir	neerir	ng	
OI	BJECTI	VES	5												
	• Stu	dents	s will	be	intı	oduce	d to ar	ntennas,	their p	rincip	le of o	perat	ion		
	• An	tenna	a analys	sis and	their	applic	ations.		-	-		-			
	• intr	oduc	re the s	student	to	wave	nronagat	ion ov	er oro	und	throug	oh t	ronos	nhere	and
	ionosphere: diversity principles.														
	<ul> <li>Propagation effects in microwave systems satellite space and radar links</li> </ul>														
	Propagation effects in microwave systems, satellite, space, and radar links.														
C	COURSE OUTCOMES (COs)														
CC	D1 Def	ine v	various	antenr	ia pai	amete	rs								
CC	D2 Ana	lyze	radiati	on patt	erns	of ante	nnas								
CC	D3 Eva	luate	antenn	as for	giver	i speci	fications								
CC	04 Illus	strate	e techni	ques fo	or ant	enna p	arameter	r measur	rements						
CC	05 To i	inde	rstand t	he vari	ious a	applica	tions of a	antennas	s.						
CC	D6 Dise	cuss	radio w	vave pr	opaga	ation									
	•		Map	ping of	f Cou	rse Ou	itcomes v	with Pro	gram o	utcon	nes (PO	Ds)			
		(H	[/M/L in	ndicate	s stre	ength c	of correla	tion) H	I-High,	M-M	edium,	L-L	OW		
1	COs/P	Os	а	b	с	d	e	f	g	h	i	j	k		
2	CO1		Η					М			Н		Μ		
	CO2		М	Μ	Η	М	М					L			
	CO3		М		Μ	Η			Μ		М				
	CO4		М		Μ	М	Н		Μ				Η		
CO5				L								Μ			
	CO6 M L														

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
					N				
4	Approval	37 th Meeting	g of Acade	emic Coun	cil, May 2	2015			

#### UNIT I BASIC ANTENNA CONCEPTS

Radiation Patterns, Beam solid angle, radiation intensity, Directivity, effective aperture, Antenna field zones, Polarization, impedance, cross field, Poynting vector. Friis Transmission formula, Duality of Antennas, Antenna and Transmission line, Radiation from a dipole antenna, Antenna temperature System temperature.

9

9

9

9

9

#### UNIT II POINT SOURCES

Definition, Power patterns, Array of two point sources – Pattern multiplication, Broad side array, End fire array, nisotropic array, Evaluation of null directions and maxima, Amplitude distributions. Concept of Phased arrays, Adaptive array, Basic principle of antenna Synthesis-Binomial array.

#### UNIT III SMALL ANTENNAS:

Halfwave dipole antenna radiated fields of short dipole, small loop and helical Antenna, monofilar- multifilar helix. Radiation resistance, Directivity and Design Feature. Half wave dipole: radiated fields and other feature. Numerical tool for antenna analysis.

#### UNIT IV SPECIAL ANTENNAS:

Yagi uda Antenna, Tunstile antenna, Principle of frequency independent antennas –Spiral antenna, Helical antenna, Log periodic. Modern antennas- Reconfigurable antenna, Active antenna, Dielectric antennas, rhombic antenna, Horn antenna, Reflector antennas and their feed systems, Micro strip antenna, Impedance and antenna measurements.

#### UNIT V WAVE PROPOGATION

Ground wave propagation, Troposphere wave, wave- tilt of the surface wave, Ionosphere propagation – effective permittivity and Conductivity of ionized gas, Reflection – Refraction of waves from ionosphere, regular – irregular variation of Ionosphere, earth magnetic field, Faraday rotation, wave propagation in the Ionosphere. Duct propagation, Critical frequency and Space propagation,

#### **TEXT BOOKS:**

- 1. John D Kraus, Ronald J Marhefka, Ahmad S Khan, "*Antenna and Wave Propagation*", Tata McGraw Hill, 4th Edition, 2010.
- 2. R.L.Yadava, "Antennas and Wave Propagation", PHI, 2011

#### **REFERENCE BOOKS:**

- 1. Constantine A.Balanis, "Antenna Theory: Analysis and Design", Third Edition, John Wiley and Sons, 2012.
- 2. G.S.N. Raju, "Antennas and wave propagation", 1st Edition Pearson Education, 2012.
- 3. Robert S. Elliott, "Antenna Theory and Design", John Wiley and Sons, Revised Edition, 2007.

4.www.studynama.com/.../229-Antenna-wave-propagation-(AWP)-pdf-eb.

B	EC7L1	D	IGITAL	CMO	S VLS	S VLSI LAB								Т	P	С
		To	otal Conta	act Hou	ırs - 45	5							0	0	3	2
		Pr	erequisit	e –Digi	tal Ele	ctro	nics	s Lab								
		Co	ourse Des	signed l	by – D	ept.	of I	Electro	onics	and C	Com	nmunicat	ion Eng	gineerii	ng.	
0	BJECT	IVE	S													
	•	Tol	learn Har	dware ]	Descri	ptiv	e La	nguag	ge(Ve	rilog	VH	IDL)				
	•	Tol	earn the	fundam	nental j	prin	cipl	es of V	/LSI	circu	it d	esign in	digital o	domain	l	
	•	To f	familiariz	e imple	ementa	ntior	ı of	logica	l mod	lules	on	FPGAs				
C	OURSE	ιοι	TCOM	ES (CC	)s)											
C	O1 Demonstrate a clear Understanding in hardware design language Verilog HDL.															
C	D2 Mo	del	a Comb	oination	al cir	cuit	usi	ng ha	ırdwa	re de	escr	iption la	anguage	e Veril	log HI	DL and
	val	idate itsfunctionality.														
C	D3 De	sign and implement a sub system on a FPGA board.														
C	D4 Mo	Model a Sequential circuit using hardware description language Verilog HDL and validate its														
	fun	unctionality														
C	$\frac{1}{2}$ De	Demonstrate implementation of FPGA of ADC.														
	J6 10	Unc	ierstand t	ne FPC	$\frac{1}{1}$ A 1mp		lent	ation (	DI Ira	IIIC I	_1gr	it Contro	oner	a)		
			(H/M/I)	indicate	I COUI	se C		ones	wittin 1	H_H	am Tig	outcom	es (POs	s)		
1	COs/P	0s	(11/1 <b>v</b> 1/L)	h			1	- P	f	11-1 σ	. ngi	h	i i	i	k	
-		05		0	Ŭ		*			5	•		-	J		
2	CO1		H					H	M			Μ		H	H	
	$CO_2$		M	M	H	тт		Н	M	H		м	M	м	м	
	$CO_3$		M	H U	п	H M		ц	м			M	M	IVI	IVI	
	C04		111	п	п	M		п	IVI	п			IVI			
	CO5			L		M								T		
3	Categor	v	(			IVI										-
5	0		& (HS		es		ses		ore		(CE		u m	(OE	E	PR)
			ies ies		ienc		ienc		I C		ive		(NI NI	ive	Teı	er/ p (]
			anit		Sc: (BS		$S_{C}$	(ES	iona		lect		n-M tive	lect	ect/	ape min shi
			Hum ial S		asic	188			fessi	<b>`</b>	e E		Noi Eleci	în E	roje	P Se ern
			F Soc		Ш		Щ		Pro		Cor		Ι	Opé	Р	Int
1	Annes	uo1	27th N	anting		dam		Tours	 1 Ma	v 201	15					
4	Аррю	vai	57 IVI	cenng (	JI ACA	uell			u, i <b>vi</b> a	y 20.	15					

#### LIST OF EXPERIMENTS

1. Design and implementation of logic gates
- 2. Design and implementation of Half adder and full adder
- 3. Design and implementation of Half subtractor and full subtractor
- 4. Design and implementation of Boolean expressions
- 5. Design and implementation of simple logic circuits
- 6. Design and implementation of MUX & DEMUX 4x1 and 8x1
- 7. Encoder and decoder -2x4 and 3x8
- 8. Magnitude comparator
- 9. Code converters
- 10. Design and implementation of counters
- 11. Design and implementation of flipflops
- 12. FPGA implementation of ADC
- 13. FPGA implementation of traffic light controller

## REQUIREMENTSHARDWARE

- 1. FPGA Trainer kit
- 2. ADC module
- 3. Traffic light interfacing module

## SOFTWARE

- 1. XILINX 10.1
- 2. Modelsim

### Experiments beyond the syllabus should be conducted.

BE	C7L2	(	<b>PTICA</b>	L CO	MM	UNICA	<b>FION L</b>	AB		L	Т	Р	С	
		Total Cont	act Hour	rs - 45						0	0	3	2	
		Prerequisit	e –Com	munica	ation	Enginee	ring I &	II lab						
		Course De	signed b	y – De	ept. of	f Electro	nics and	Comr	nunicati	on Eng	gineerii	ng.		
OB.	JECTI	VES												
•	o To s	tudythe pe	rforman	ce para	imete	rs of opt	ical sour	rce and	l detecto	or.				
•	то То	study fiber	losses a	nd los	s mec	hanism	the operation	ation o	f optical	l detec	tors – I	PIN		
	pho	todiode, av	alanche	photoc	liode									
•	Tos	tudy the light	ght propa	agatior	n of th	ne fiber.								
CO	URSE	RSE OUTCOMES (COs)												
CO	1 Cou	Couple light in and out of fibers and connect them												
CO2	2 Mea	sure loss a	nd dispe	rsion i	n fibe	ers								
CO	3 Mea	sure the pe	rformanc	e of a	nalog	and dig	ital fiber	links						
CO ₄	4 Rela	te an integr	ated vie	w of e	ngine	ering by	explain	ing the	fundam	nental a	analogi	es betw	een	
	elect	rical and o	ptical co	mmun	icatio	n systen	ns							
CO:	5 To s	tudy the nu	merical	apertu	re of t	the fiber								
CO	5 Tob	ecome fam	iliar wit	h diffe	rent n	nodes.								
	Mapping of Course Outcomes with Program outcomes (POs)													
		(H/M/L	indicate	es strei	ngth c	of correla	ation) H	I-High	, M-Me	dium,	L-Low			
1	COs/Po	Ds a	b	с	d	e	f	g	h	i	j	k		
2	CO1	Η					М		Н			М		

	CO2	Μ	L	Η	Μ	Μ		Н	Η	Μ	Η		
	CO3	Μ	Н	Η	Η	М	М	Μ		Μ			]
	CO4	Μ	Н		Μ			Μ	Μ	Μ			
	CO5	Μ	Μ			Μ	Μ			L			
	CO6				Μ						Μ	Η	
3	Category	Humanities & Social Studies		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)	Core Elective	(CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Ter	III rapet/ Seminar/ Internship
							1	/					
4	Approval	37 th 1	Meeting	of Aca	adem	ic Counc	cil, May	2015					

#### LIST OF EXPERIMENTS

- 1. V-I and P-I characteristics of LED
- 2. V-I and P-I characteristics of Photodiode
- 3. Setting up an analog link using plastic fiber cable
- 4. Setting up a digital link using plastic fiber cable
- 5. Amplitude Modulation and Demodulation
- 6. Frequency modulation and Demodulation
- 7. Numerical Aperture for a Plastic Fiber
- 8. Pulse width modulation and Demodulation
- 9. Pulse position modulation and Demodulation
- 10. Time Division Multiplexing(TDM)
- 11. Finding V-number for a glass fiber(Multimode / single mode fiber)
- 12. Numerical Aperture for optical glass fiber(Multimode / single mode)
- 13. Coupling loss in optical glass fiber(multimode / single mode fiber)
- 14. Bit Error Rate Measurement
- 15. Study of Pulse Broadening

#### **Resources required:**

- 1. Optical Communication Kit
- 2. CRO
- 3. FG

#### Experiments beyond the syllabus should be conducted.

BEC7L3	MICROWAVE ENGINEERING LAB	L	Т	Р	С							
	Total Contact Hours - 45	0	0	3	2							
	Prerequisite – Electromagnetic Fields and waves.											
Course Designed by – Dept. of Electronics and Communication Engineering												
OBJECTIVES												
• Kn	ow about the behavior of microwave components.											
• Understand the radiation pattern of horn antenna.												
COURSE	COURSE OUTCOMES (COs)											

CO	1 Demor	nstrate the	e chara	cterist	ics of	f Microwa	ve sour	ces	5						
CO	2 Demor	nstrate the	e chara	cterist	ics of	f direction	al Coup	ler	:S						
CO	3 To test	the char	acterist	ics of	micr	owave con	nponen	ts							
CO	4 To ana	lyze the	radiatic	on patt	ern o	f antenna.									
CO	5 To me	asure ant	enna ga	ain											
CO	6 Practic	e microv	vave m	easure	ment	procedui	res								
	1	Ma	pping o	of Cou	rse (	Dutcomes	with Pro	ogr	am	outco	om	es (POs	s)		
		(H/M/L	indicat	es stre	ength	of correla	ation) I	H-I	Hig	h, M-N	Me	dium, I	L-Low	7	
1	COs/P	a	b	c	d	e	f		g	h		i	j	k	
	Os														_
2	CO1	H         H         H         M         L         Image: Constraint of the second													
	CO2	M     L     H     H       M     H     H     H													
	CO3	M     H     L													
	CO4	Μ			Η	Μ		Ν	1						
	CO5		Μ		Η	М						L	Μ		
	CO6						Η		1					Η	
3	Catego						e								_
	ry	& les		ces		ces	101		ve			Е	ve	В	R)
		ies	_	end		ien(			scti		•	S a	scti	Ler	ar/ 5 (F
		St	<u>c</u>	Sci.	2 D	ES	anc		Ele	Ε		ve -IM	Ele	ct l	nin hij
		ma cial		iic	2	a D	ssio		re	Ξ		ščti.	en	oje	Pa Ser
		Hu Soc		Bas		Sun Sun	C)		Co		2	E	Op	$\mathbf{P}_{\mathbf{r}}$	nte
		Ir II B B B B B B B B B B B B B B B B B													
4	Approv	37 th Meeting of Academic Council, May 2015													
'	al			51	1110			~ `	u		±u,	, 2013			

#### LIST OF EXPERIMENTS

- 1. Study of microwave components
- 2. Characteristics of reflex klystron oscillator
- 3. Characteristics of gunn diode oscillator
- 4. Radiation pattern of horn antenna
- 5. Measurement of Antenna gain
- 6. Frequency and wavelength measurement
- 7. Impedance measurement by slotted line method
- 8. VSWR and Reflection Co-efficient measurement
- 9. Characteristics of E Plane/ H Plane Tee.
- 10. Characteristics of Magic Tee.
- 11. Characteristics of Directional coupler.

#### Experiments beyond the syllabus should be conducted.

BEC7P1	TERM PAPER	L	Т	Р	С
	Total Contact Hours – 4 hours per week	0	0	4	2
	Prerequisite – Nil				
	Course Designed by – Dept. of Electronics and Communicati	on Eng	gineerin	g	
OBJECT	IVES				

	• Lea	<ul> <li>Learn to work as a member of a project team.</li> <li>Understand project management tasks.</li> </ul>													
	• Uno	derstand	project	manag	gemer	nt tasks.									
	• Dev	velop a h	ardwar	e / soft	ware	solution	for a rea	ll-time	e, indust	ry relev	ant pro	blem.			
CO	URSE OU	UTCOM	ES (CO	Os)											
CO	l Apply	knowled	ge of b	asic sc	ience	and engi	neering	to Ele	ectronics	and Co	ommun	icatio	n		
	Engine	ering pro	oblems												
CO2	2 Implen	nent the s	simple	applica	ations	and verit	fy using	mode	ern simu	lation to	ools.				
CO.	3 Identif	y, formul	late, an	d mod	el eng	ineering	equipm	ent							
CO4	4 Recogi	nize the r	real wor	rld app	olicati	ons and t	o solve	with c	ore engi	neering	, know	ledge.			
CO	5 Analyz	e and wo	ork on 1	nultid	iscipli	nary task	(S								
CO	5 Choose	e latest to	ools, so	ftware	and e	quipmen	t to solv	e real	world p	roblem	S				
		Ma	pping o	of Cou	rse O	utcomes	with Pro	ogram	outcon	nes (PO	s)				
	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COs/PabcdefghijkOs														
	Os	Os J													
2	CO1	Н					Μ		Н						
	CO2	М	L	Н				Н	Н	L	Η				
	CO3	М	Н		Η		Μ	L		Μ		Η			
	CO4	Н	Н		Μ	Η		Μ	М	Μ					
	CO5		L				Μ			L					
	CO6				Μ		Η					-			
3	Catego					_	e								
	ry	& ies		ces		ces	Col	ve		Ē	ve	н	PR)		
		ies tud		) ien	<b>`</b>	ien	al	ecti		N ai	ecti	Ter	r/ nar/ p (]		
		anit 1 St	2	SC		ES	onâ	E	CE i	-M Ne	El OF		ape shij		
		tim,		sic		őő Ú	SSSi	ore		lon	) en	oje	P Sei erni		
	Lift Pr Op Eld Co Co Co Base Base														
							P1 (F								
													$\checkmark$		
4	Approv			37 th	¹ Mee	eting of A	cademi	c Cou	ncil, Ma	y 2015					
	al					č				-					

#### **VIII SEMESTER**

rerequisite –All subjects up to eighth semester course Designed by – Dept. of Electronics and Communica	0 ation E	0 nginaa	0	1								
ourse Designed by – Dept. of Electronics and Communica	ation E	Course Designed by – Dept. of Electronics and Communication Engineering										
<ul> <li><b>JECTIVES</b></li> <li>To provide a complete review of Electronics &amp; Communication Engineering topics</li> </ul>												
• To provide a complete review of Electronics & Communication Engineering topics												
• To provide a complete review of Electronics & Communication Engineering topics												
up to eighth semesters, so that a comprehensive understan	ding is	s achiev	ved.									
b help students to face job interviews, competitive examination	ations	and als	o to									
the employment potential.												
• To provide overview of all topics covered and to assess the overall knowledge level												
	up to eighth semesters, so that a comprehensive understant help students to face job interviews, competitive examine the employment potential. e overview of all topics covered and to assess the overall help students	up to eighth semesters, so that a comprehensive understanding is help students to face job interviews, competitive examinations the employment potential. e overview of all topics covered and to assess the overall knowle hth semester	the employment potential. e overview of all topics covered and to assess the overall knowledge level by the semester	up to eighth semesters, so that a comprehensive understanding is achieved. The help students to face job interviews, competitive examinations and also to the employment potential. e overview of all topics covered and to assess the overall knowledge level hth semester.								

up to eighth semester.

BE	C8P1			PR	OJECT	WOR	K			L	Т	Р	С
	'	Total Cont	tact Ho	urs – 1	8 hours	s per we	ek			0	0	18	9
		Prerequisit	te – Tei	m pap	er								
		Course De	signed	by – E	Dept. of	Electro	nics an	d Com	municat	ion Eng	gineeri	ng	
<b>OB</b>	JECTIV	<b>'ES</b>											
	• L	earn to wo	rk as a	memb	er of a	project (	team.						
	• U	nderstand	project	manag	gement	tasks.							
	• D	evelop a h	ardwar	e / soft	tware so	olution f	for a rea	al-time	e, industr	y relev	ant pro	blem.	
		1								•	1		
CO	URSE (	OUTCOM	ES (CO	Os)									
CO	1 Appl	y knowled	ge of b	asic sc	ience a	nd engi	neering	to Ele	ectronics	and Co	ommur	ication	
	Engi	neering pro	oblems										
CO	2 Imple	ement the	simple	applic	ations a	and verif	fy using	g mode	ern simul	ation to	ools.		
CO	CO3 Identify, formulate, and model engineering equipment												
CO	4 Reco	gnize the 1	real wo	rld app	olication	ns and to	o solve	with c	ore engin	neering	, know	ledge.	
CO	5 Anal	yze and we	ork on 1	nultid	isciplin	ary task	S						
CO	6 Choo	se latest to	ools, so	ftware	and eq	uipment	t to solv	ve real	world pr	oblem	S		
	<u>.</u>	Ma	apping of	of Cou	rse Ou	tcomes	with Pr	ogram	outcom	es (PO	s)		
		(H/M/L	indicat	tes stre	ength of	f correla	tion) 1	H-Hig	h, M-Me	dium, l	L-Low		
1	COs/P	a	b	c	d	e	f	g	h	i	j	k	
	Os												
2	CO1 H M H												
	CO2	M	L	H				H	Н	L	Н		
	CO3	M	H		H		M	L		M		Н	
	CO4	H	H		M	H		M	M	M			
	CO5		L				M			L			
	CO6				Μ		H						

3	Catego ry	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
									v
4	Approv al		37 th Me	eting of A	cademic (	Council, N	/lay 2015		

#### <u>CORE ELECTIVE – I</u>

BE	C503			TRA	NSM	ISSIO	N LINE	ES, N	ETWC	ORKS		L	Т	P	С
					A	ND WA	AVEG	UIDE	S						
		Tot	al Conta	act Hou	rs - 4	5						3	0	0	3
		Pre	requisite	e –Elec	troma	gnetic l	Fields a	and w	aves.						
		Co	urse Des	signed l	by – D	ept. of	Electro	onics	and Co	mmunica	ation En	gineeri	ng		
OF	BJECT	TVES	5												
	• T	o intro	duce the	e vario	us type	es of tra	ansmiss	sion li	nes and	d to discu	iss the lo	osses as	ssocia	ted.	
	• T	o give	thoroug	gh unde	rstand	ing abo	out imp	edanc	e trans	formatio	n and m	atching	<b>z</b> .		
	• T	o impa	art know	ledge o	on filte	er theor	ies and	wave	eguide	theories					
CC	OURS	E OU'	ГСОМІ	ES (CC	)s)										
C	201	Disc	uss the f	fundam	ental c	concept	s of wa	ve pr	opagati	ion in Tra	ansmissi	ion Lin	es an	d Wa	ve
		Guid	es												
C	202	Anal	yze the	line par	amete	ers and	various	losse	es in tra	insmissic	on lines.				
C	203	App	Apply smith chart for line parameter and impedance calculations												
C	204	Evaluate the characteristics of parallel plane and rectangular wave guides.													
C	205	Eval	uate the	charac	teristic	es of Ci	rcular v	waveg	guides.						
C	206	Eval	uate the	charac	teristic	es of res	sonator	s.							
			Ma	pping c	of Cou	rse Out	comes	with	Prograi	m outcom	mes (PC	)s)			
		(	(H/M/L)	indicat	es stre	ngth of	correl	ation)	H-Hi	gh, M-M	ledium,	L-Low			
1	COs/	POs	а	b	с	d	e	f	g	h	i	j	k		
2	C01		Н	_	Μ	Н		Μ	Μ			Μ			
	CO2		Μ	L					Μ		M	_			
	CO3		M	M		H	M				M	L			
	CO4		M	M	M		H		M						
	CO5	D5 M M													
	CO6					Μ					Ĺ				

3	Category	Humanities & Social Studies (HS)	Basic Sciences	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
						N			
4	Approval	37 th Meeting	g of Acader	mic Coun	cil, May	2015			

9

9

9

9

#### UNITI TIME VARRYINGFIELDSAND MAXWELL'S EQUTIONS

Motional Electromotive Force, General Expression for motional EMF, Faraday''s Law of Induction, Displacement current, Maxwell''s equation in the point or differential form, Maxwell''s equations in Integral form, Maxwell''s equations from Gauss''s Law, Maxwell''s equations and Boundary conditions, Poynting''s theorem, Time harmonic (sinusoidal) fields, Maxwell''s equations in phasor form.

#### UNITII TRANSMISSION LINES

Need for Transmission Lines, Types of Transmission lines, Characterization in terms of primary and secondary constants, Characteristic impedance, General wave equation, Loss less propagation, Propagation constant, Wave reflection at discontinuities, Voltage standing wave ratio, Transmission line of finite length, The Smith Chart, Smith Chart calculations for lossy lines, Impedance matching by Quarter wave transformer, Single and double stub matching.

#### UNIT IIITHE UNIFORM PLANE WAVE

Wave propagation in free space, Wave propagation in dielectrics, Forward and Backward Travelling Wave, Poynting Theorem and Wave Power, Energy of the Radiated wave, Propagation in good conductors and good dielectrics, Skin effect, Wave polarization, Linearly, Elliptically and Circularly polarized waves,

#### UNIT IV TRANSMISSION AND REFLECTION OF PLANE WAVES AT BOUNDARIES 9

Normal incidence of Uniform Plane waves: Conductor-Conductor interface, Dielectric-Dielectric interface, Dielectric-perfect Conductor interface, Dielectric-Conductor interface. Oblique incidence on a plane boundary for perpendicular polarization, Dielectric-Dielectric interface, Dielectric-Conductor interface, Dielectric-Conductor interface, Dielectric-Dielectric interface, Dielectric interface, Dielectr

#### UNIT V WAVE GUIDES AND CAVITY RESONATORS

General Wave behaviors along uniform Guiding structures, Transverse Electromagnetic waves, Transverse Magnetic waves, Transverse Electric waves, TM and TE waves between parallel plates, TM and TE waves in Rectangular wave guides, Bessel"s differential equation and Bessel function, TM and TE waves in Circular wave guides, Rectangular and circular cavity Resonators.

#### **TEXTBOOK:**

1. John D Ryder, "Networks lines and fields", Prentice Hall of India, New Delhi, 2005

#### **REFERENCE BOOKS:**

1. William H Haytand Jr John A Buck, "Engineering Electro magnetic" Tata McGraw-Hill

Publishing Company Ltd, New Delhi, 2008

2.David K Cheng, "Field and Wave Electromagnetics", Pearson Education Inc, Delhi, 2004

- 3. John D Kraus and Daniel A Fleisch, "Electromagnetics with Applications", McGraw Hill BookCo,2005
- 4. GSN Raju, "Electromagnetic Field Theory and Transmission Lines", Pearson Education, 2005
- 5. Bhag Singh Guru and HR Hiziroglu, "Electromagnetic Field Theory Fundamentals", Vikas Publishing House, New Delhi,2001.

6.N.Narayana Rao, "Elements of Engineering Electromagnetics"6thedition PrenticeHall,2004 7.mit.edu/.../Microwave_Engineering_David_M_Pozar_4ed_Wiley_2011

BF	EC001		Α	DVAN	CED CO	MPU	JTER	ARCH	ITE	СТ	URE	L	Т	P	С
			Total	Conta	ct Hours -	45						3	0	0	3
			Prere	quisite	- Princip	les of	[•] Digita	al Electi	ronic	S					
			Cour	se Desi	gned by -	- Dept	t. of E	lectroni	cs &	Co	mmunica	ation Er	nginee	ring	
O	BJECT	IVE	S												
	• To	mal	ce stuc	lents kr	now about	the F	Paralle	lism co	ncept	ts ir	n Program	nming			
	• To	give	e the s	tudents	an elabor	ate id	lea abo	out the o	liffer	ent	memory	system	is and	buses.	
	• To	intr	oduce	the adv	anced pro	ocesso	or arch	itecture	es to	the	students				
	• To	mal	ce the	student	s know al	oout t	he imp	ortance	e of n	nult	iprocess	or and r	nulti-c	omput	ers.
	• To	stuc	ly abo	ut data	flow com	puter	archit	ectures						•	
CO	DURSE	OU	TCO	MES (	COs)										
(	CO1	Den	nonstra	ate con	cepts of p	aralle	lism ir	n hardw	are/s	oft	ware.				
(	CO2	Disc	cuss m	emory	organizat	ion ar	nd map	oping te	chni	que	s.				
(	203	Des	cribe a	rchitec	tural feat	ures o	f adva	nced pr	oces	sor	8.				
(	CO4	Inte	rpret p	erform	ance of di	ifferei	nt pipe	lined p	roces	ssor	Ś.				
(	205	Exp	lain da	ata flow	v in arithn	netic a	algorit	hms							
(	CO6	Dev	elopm	ent of s	software t	o solv	ve com	putatio	nally	' int	ensive p	roblems	5.		
	Mapping of Course Outcomes with Program outcomes (POs)														
			(H/M/	'L indic	cates stren	igth of	f corre	lation)	H-H	Higl	h, M-Me	dium, L	-Low		
1	COs/P	Os	а	b	c	d	e	f	g	5	h	i	j	k	
2	CO1		H					Μ			-		M		
	CO2		M	Μ	H						L				
	CO3		M		H	Н						H		14	
	CO4		M	М			H		M			м		M	
	C05			IVI			IVI	ц	-			IVI			
3	Catego	orv	1				I	11			I				
5	Calogo	Лу	ocia)		s	ES	~	re		CE)		inve	OE)	я	R)
			& S( HS)		ence	ces (		Ĉ		ve (			ve (i	ſen	ar/ b (P
			ies d ies (		Scie	iene		nal		ecti		Le (E)	ecti	ct/J	ape nin shif
	El Die Ssic Schutzen in tud														
			Ium S		В	ngg	,	PC)		Core		-HON	Dpei	$\mathbf{Pr}$	Inté
			E			ш		P Ú							
										V					
4	Appro	val	37 th	Meetin	ng of Aca	demic	c Coun	cil, Ma	y 201	15					

#### UNIT IPARALLEL COMPUTER MODELS

Evolution of Computer architecture, system attributes to performance, Multi processors and multi computers, Multi-vector and SIMD computers, PRAM and VLSI models-Parallelism in Programming, conditions for Parallelism-Program Partitioning and Scheduling-program flow Mechanisms-Speed up performance laws-Amdahl's law, Gustafson's law-Memory bounded speedup Model.

#### UNIT IIMEMORY SYSTEMS AND BUSES

Memory hierarchy-cache and shared memory concepts-Cache memory organization-cache addressing models, Aliasing problem in cache, cache memory mapping techniques-Shared memory organization-Interleaved memory organization, Lower order interleaving, Higher order interleaving. Back plane bus systems-Bus addressing, arbitration and transaction.

#### UNIT IIIADVANCED PROCESSORS

Instruction set architectures-CISC and RISC scalar processors-Super scalar processors-VLIW architecture- Multivector and SIMD computers-Vector processing principles-Cray Y-MP 816 system-Inter processor communication

#### UNIT IVMULTI PROCESSOR AND MULTI COMPUTERS

Multiprocessor system interconnects- Cross bar switch, Multiport memory-Hot spot problem, Message passing mechanisms-Pipelined processors-Linear pipeline, on linear pipeline-Instruction pipeline design-Arithmetic pipeline design.

#### UNIT VDATA FLOW COMPUTERS AND VLSI COMPUTATIONS

Data flow computer architectures-Static, Dynamic-VLSI Computing Structures-Systolic array architecture, mapping algorithms into systolic arrays, Reconfigurable processor array-VLSI matrix arithmetic processors-VLSI arithmetic models, partitioned matrix algorithms, matrix arithmetic pipelines.

#### **TEXT BOOKS:**

- 1. Kai Hwang, Advanced Computer architecture Parallelism, scalablity, Programmablity, McGraw Hill,N.Y, 2003
- 2. Kai Hwang and F.A.Briggs, Computer architecture and parallel processor I McGraw Hill, N.Y, 1999

#### **REFERENCE BOOKS:**

- 1. David A. Patterson and John L. Hennessey, —Computer organization and design Elsevier, Fifth edition, 2014.
- 2. www.sci.tamucc.edu/~sking/Courses/COSC5351/syllabus.php

<b>BEC008</b>	MEMS AND NEMS	L	Т	Р	С
	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Engineering Physics – I & II, Engineering Che	mistry	–I & II		
	Course Designed by – Dept. of Electronics and Communicat	ion En	gineerir	ıg.	
OBJECT	IVES				
• Ha	ve a concept on the scope and recent development of the	scienc	e and t	echnolo	ogy of
mie	cro- and nano-systems;				

117

9

9

9

•	Gain the physical knowledge underlying the operation principles and design of micro- and
	nano- systems;

• Learn some typical or potentially applicable micro- and nano-systems at the frontier of the

de	evelopment of the field COURSE OUTCOMES (COs)																
C	OURSE OUTCOMES (COs) O1 Ability to understand the operation of micro devices, micro systems and their applications.																
C	D1	Ability t	o underst	and the	e opera	tion (	of micro	device	s, mi	icro	system	ns a	nd the	ir appli	ication	s.	
CO	D2	Ability t	o design t	the mic	cro dev	vices,	micro sy	stems	using	g th	e MEN	AS f	fabrica	tion pr	ocess.		
CO	D3	Gain a k	nowledge	e of bas	sic app	roach	nes for va	rious s	sensc	or d	esign						
CO	D4	Gain a l	knowledg	e of ba	isic app	proac	hes for v	arious	actua	ator	design	1					
CO	D5	Develop	o experier	nce on	micro/	nano	systems	for pho	otoni	ics.							
CO	D6	Gain the characte	technical rization o	l know f nano	ledge i -struct	requinured 1	red for co materials	ompute	er-aic )- an	led d na	design ano-sca	, fat ale c	oricatio levices	on, ana s.	lysis a	nd	
	.Mapping of Course Outcomes with Program outcomes (POs)         (H/M/L indicates strength of correlation)         H-High, M-Medium, L-Low         COs/POs       a       b       c       d       e       f       g       h       i       j       k																
1	CO	s/POs	а	b	С	d	e	f	g	5	h		i	j	k		
2	CO	1	H         M         M         H         M         H         M         H         M         H         M         H         M         H         M         H         M         H         M         H         M         H         M         H         M         H         M         H         M         M         H         M         H         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M														
	CO	2	H         M         M         H         M         H           M         M         M         H         H         H         H           M         M         M         H         H         H         H         H														
	CO	3	M         M         M         H         Image: Margin and the second														
	CO	4	M         M         M         M         M         M           M         H         M         M         H         H           M         H         M         M         H         H           M         H         M         M         M         H														
	CO	5		М	М		Н	М			М		M		М		
	CO	6				М	Н	Н					M				
3	Cate	egory	Humanities & Social Studies (HS)		Basic Sciences &		Engg Sciences (ES)	Professional Core (PC)		<ul> <li>✓ Core Elective (CE)</li> </ul>		Non-Major Elective (NE)		Open Elective (OE)	Project/Term Paper/	Internship (PR)	
4	App	proval	37 th M	eeting	of Aca	demi	c Counci	l, May	201	5				I			

#### UNIT I OVERVIEW AND INTRODUCTION

New trends in Engineering and Science: Micro and Nano scale systems Introduction to Design of MEMS and NEMS, Overview of Nano and Micro electro mechanical Systems, Applications of Micro and Nano electro mechanical systems, Micro electro mechanical systems, devices and structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals

#### UNIT II MEMS FABRICATION TECHNOLOGIES

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials

#### 118

9 n (

#### UNIT III MICRO SENSORS

MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Microsensors. Case study: Piezo-resistive pressure sensor

#### UNIT IV MICRO ACTUATORS

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators

#### UNIT V NANOSYSTEMS AND QUANTUM MECHANICS

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Shrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

#### **TEXT BOOKS:**

1. Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997.

2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers, 2001

#### **REFERENCE BOOKS:**

1. Tai Ran Hsu ,"MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002.

2. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006

3.www.tutorials point.com

BF	EC010			V	LSI I	DESIGN				L	Т	P		С
		Total Co	ntact H	ours -	45					3	0	0		3
		Prerequi	site – P	rincip	les of	Digital E	Electro	onics, l	Electron	nics Cir	rcuits.			
		Course I	Designe	d by –	Dep	t. of Elect	tronic	s and (	Commu	nicatio	n Eng	ineerii	ıg.	
0	BJECTI	VES												
	• To	learn bas	sic CM	OS Cii	cuits	•								
	• To	learn CM	1OS pro	ocess t	echn	ology.								
	• To	learn tec	hniques	s of ch	ip de	sign using	g prog	gramm	able de	vices.				
	• To	learn the	concer	ots of a	lesig	ning VLS	I Sub	system	ns.					
C	DURSE	OUTCO	MES (C	COs)	0	0		2						
C	D1 Ide	Identify the various IC fabrication methods.												
C	D2 Exp	oress the I	Layout	of sim	ole M	IOS circu	it usi	ng Lan	ıbda ba	sed des	sign ru	les.		
C	D3 Ap	oly the La	mbda b	ased d	lesign	n rules for	subs	ystem	design.		0			
CO	D4 Dif	ferentiate	various	FPG	A arc	hitectures	5.	•						
C	D5 Des	ign an ap	plicatio	n usin	g Ve	rilog HDI	L.							
CO	D6 Co	ncepts of a	nodelin	g a di	gital	system us	sing H	Iardwa	re Desc	ription	Lang	uage.		
		Mar	ping of	Cours	se Ou	itcomes w	vith P	rogram	outco	mes (P	Os)			
		(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low												
1	COs/PO	Ds a	b	c	d	e	f	g	h	i	i	k		
2	CO1	Н					Μ		Н					
	CO2	М	L	Н					Μ	L	Н			
	CO3	М			Η				Μ			Н		

119

9 or

9

	CO4	Μ				Н		Μ	Μ						
	CO5		L								L				
	CO6						Η								
3	Category	Humanities & Social Studies	(HS)	Basic Sciences &	(CCI) SINAUIS	Engg Sciences (ES)	Professional core	(PC)	Core Elective		Non-Major Elective (NE)	Open Elective	(UE)	Project/Term Paper/	Seminar/ Internship (PR)
									N						
4	Approval	37 th	Meetin	ng of A	Acad	lemic Cou	incil,	May	2015	•					

#### UNIT I MOS TRANSISTOR THEORY

MOSFET– Enhancement mode & Depletion mode – Fabrication – NMOS, PMOS – CMOS fabrication – P-well, N-well, Twin-Tub, SOI – BiCMOS Technology –Comparison with CMOS.

#### UNIT II MOS CIRCUITS AND DESIGN

Basic Electrical properties of MOS circuits – DC Equations, NMOS & CMOS inverter –Second Order Effects– Basic circuit concepts-Sheet resistance-Area Capacitances-Capacitance calculations-Inverter delays–Scaling of MOS Devices –Scaling Models and Scaling Factors-MOS layers – Stick diagram – NMOS Design Style – CMOS Design style – lambda based design rules– Simple Layout examples

#### UNIT III SUBSYSTEM DESIGN & LAYOUT

Switch Logic – Pass transistors and transmission gates – Two input NMOS, CMOS gates: NOT– NAND– NOR gates – Other forms of CMOS logic – Static CMOS logic-Dynamic CMOS logic – Clocked CMOS logic - Precharged domino CMOS logic – Structured design of simple Combinational logic design– Multiplexers – Clocked sequential circuits – Two phase clocking – D-Flip-flop-Charge storage - Dynamic register element –Dynamic shift register

#### UNIT IV PROGRAMMABLE LOGIC DEVICES

Programmable Logic Devices – PLA , PAL – Finite State Machine design using PLA – Introduction to FPGA – FPGA Design flow –Architecture – FPGA devices: Xilinx XC 4000 – Altera cyclone III

#### UNIT V VERILOG HDL DESIGN PROGRAMMING

Basic concepts: VLSI Design flow, Modeling, Syntax and Programming, Design Examples: Combinational Logic – Multiplexer, Decoder/Encoder, Comparator, Adders, Multipliers, Sequential logic- Flip Flops, Registers, and Counters, Memory- Introduction to back end tools.

#### **TEXT BOOKS:**

1. Douglas A.Pucknell, K. Eshragian,—Basic VLSI Designl, Third edition, PHI, 2009

#### **REFERENCE BOOKS:**

1. Neil.H.E.Weste,KamaranEshraghian,—PrinciplesofCMOSVLSIDesignl,Second Edition,

9

9

9

9

AddisoWesleyPublications,2002

- 2. SamirPalnitkar,—VerilogHDL–GuidetoDigitaldesignandsynthesisl,SecondEdition Pearson Education,2009
- 3. Wayne Wolf, --Modern VLSI Design^{II}, Pearson Education, 2003

https://en.wikipedia.org/wiki/Very-large-scale_integration

#### **CORE ELECTIVE-II**

BE	C015		A	SIC D	ESIG	N						L	]	[	P	С
		Total	Contact	t Hour	s – 45							3	0	)	0	3
		Prerec	quisite -	Princi	iples o	f Dig	ital Electr	onics								
		Cours	e Desig	ned by	y – Dej	pt. of	Electroni	cs and	Con	nmu	nicat	ion E	ngir	neering	<b>.</b>	
OB	JECTI	IVES														
	• To	acquire	e knowl	edge a	bout d	iffere	ent types of	of ASI	Cs de	esig	n.					
	• To	study a	bout va	rious	types o	of Pro	grammab	le ASI	Cs a	rchi	tectu	res ar	nd in	tercon	nects.	
CC	URSE	OUTC	COMES	G (COs	5)											
CO	1 Rec	ognize	need for	or prog	ramma	able c	levices.									
CO	Des Des	cribe a	rchitect	ure of	progra	ımma	ble device	es.								
CO	3 Exp	olain pro	ogramn	nable r	nethod	lologi	les.									
CO	4 Rec	all IC f	abricati	on tec	hnique	es vis	-à-vis CM	IOS sw	vitch							
CO	5 Rel	ate desi	ign and	imple	mentat	ion fl	low for PI	LDs.								
CO	6 Lov	v powe	r design	techn	iques	and n	nethodolo	gies.								
			Mapp	ing of	Cours	e Out	tcomes wi	ith Prog	gram	ou	tcom	nes (P	Os)			
		(H/	M/L in	dicates	s streng	gth of	f correlati	on) H	-Hig	sh, N	/I-Me	edium	, L-1	Low	1	
1	COs/P	Os	a	b	c	d	e	f	2	5	h		<u>i</u>	j	k	_
2	CO1		H	<b>.</b>	M		M	M	M		Н	N			L	_
	CO2		M	L	H				H				r	Н		_
	CO3		M	H	M		М		M		M		l r		H	_
	C04		M	H T	Н		M	М	М				1		M	_
	$CO_{5}$			L		м	M		M						IVI	_
3	Cotegy	)ry	-			IVI	IVI	11	IVI							
5	Calego	JIY	ss & SHS S		ces &		nces	Core		ctive		jor		tive	erm	r/ (PR)
			anitie tudie		Scien hs (F		Scie ES)	onal		Elec	CE)	i-Ma	יערי	Elec	ect/T	apu, mina ship
	Humau Humau Anatho Matho Matho Matho Matho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho Hatho															
										V						
4	Appro	val	37 th ]	Meetir	ng of A	cade	mic Coun	cil, Ma	ay 20	)15					•	

### UNIT I INTRODUCTION TO ASICS, CMOS LOGIC, ASIC LIBRARY DESIGN 9

Types of ASICs - Design flow - CMOS transistors- CMOS Design rules -Combinational logic

Cell Sequential logic cell - Transistor as Resistors - Transistor parasitic capacitance – Logical effort - Library cell design – Library architecture.

#### UNIT II PROGRAMMABLE ASICS, PROGRAMMABLE ASIC LOGIC CELLS 9

Anti fuse - Static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA –Altera FLEX - Altera MAX DC & AC inputs and outputs - Xilinx I/O blocks.

# UNIT IIIPROGRAMMABLE ASIC INTERCONNECT, PROGRAMMABLE ASIC<br/>DESIGN SOFTWARE AND LOW LEVEL DESIGN9

Entry: Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX –Design systems - Logic Synthesis - Half gate ASIC -Low level design language - PLA tools EDIF- CFI design representation.

#### UNIT IV SILICON ON CHIP DESIGN

Voice over IP SOC - Intellectual Property – SOC Design challenges- Methodology and design-FPGA to ASIC conversion – Design for integration-SOC verification-Set top box SOC.

#### UNIT V PHYSICAL AND LOW POWER DESIGN

Over view of physical design flow- tips and guideline for physical design- modern physical design techniques- power dissipation-low power design techniques and methodologies-low power design tools- tips and guideline for low power design.

#### **TEXT BOOKS:**

1. M.J.S. Smith, —Application Specific Integrated Circuits^I, Pearson Education, 2008

#### **REFERENCE BOOKS:**

- 1. Wayne Wolf, —FPGA-Based System Design^{II}, Prentice Hall PTR, 2009.
- 2. Farzad Nekoogar and Faranak Nekoogar, —From ASICs to SOCs: A Practical Approach^{II}, Prentice Hall PTR, 2003.
- 3. www.vhdl.org/rassp/vhdl/guidelines/DesignReq.pdf

BECO	012 CRYPTOGRAPHY AND NETWORK SECURITY	L	Т	Р	С
	Total Contact Hours – 45	3	0	0	3
	Prerequisite –Communication Engineering-I				
	Course Designed by – Dept. of Electronics and Communicat	ion En	gineerir	ıg.	
OBJE	CTIVES				
•	To know about various encryption techniques.				
•	To understand the concept of Public key cryptography.				
•	To study about message authentication and hash functions				
•	To impart knowledge on Network security				
COU	RSE OUTCOMES (COs)				
CO1	Classify the symmetric encryption techniques.				
CO2	Illustrate various Public key cryptographic techniques.				
CO3	Evaluate the authentication and hash algorithms.				
CO4	Discuss authentication applications				
CO5	Summarize the intrusion detection and its solutions to overcome t	he atta	cks.		

9

C	D6 Basic c	oncepts	of syst	em lev	el secu	rity								
		Ma	pping	of Cou	rse Ou	tcomes wi	ith Pr	ograi	m o	outcom	es (POs)			
		(H/M/L)	indica	tes stre	ength of	f correlati	on) l	H-Hi	igh,	M-Me	dium, L-l	Low		
1	COs/POs	a	b	с	d	e	f	g	5	h	i	j	k	
2	CO1	Н		М		М	Μ	Μ		Η	М		L	
	CO2	М	L	Н				Η			L	Η		
	CO3	М	Н	М	Μ			Μ		Μ	Μ		Н	
	CO4	Μ	Н	Η		Μ					Μ		Μ	
	CO5		Μ			Μ	Μ	Μ			Μ			
	CO6				Μ	Μ	Η	Μ						
3	Category	Humanities & Social Studies (HS)		Basic Sciences & Maths (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/	Internship (PR)
4	Approval	$37^{\text{th}}$ N	leeting	g of Ac	ademic	c Council,	May	201	5					

#### UNIT I INTRODUCTION

OSI Security Architecture - Classical Encryption techniques – Cipher Principles – Data Encryption Standard – Block Cipher Design Principles and Modes of Operation - Evaluation criteria for AES – AES Cipher – Triple DES – Placement of Encryption Function – Traffic Confidentiality

#### UNIT II PUBLIC KEY CRYPTOGRAPHY

Key Management - <u>Diffie</u>-Hellman key Exchange – Elliptic Curve Architecture and Cryptography - Introduction to Number Theory – Confidentiality using Symmetric Encryption – Public Key Cryptography and RSA.

#### UNIT III AUTHENTICATION AND HASH FUNCTION

Authentication requirements – Authentication functions – Message Authentication Codes – Hash Functions – Security of Hash Functions and MACs – MD5 message Digest algorithm - Secure Hash Algorithm – RIPEMD – HMAC Digital Signatures – Authentication Protocols – <u>Digital</u> <u>Signature</u> Standard.

#### UNIT IVNETWORK SECURITY

Authentication Applications: Kerberos – X.509 Authentication Service – Electronic <u>Mail</u> <u>Security</u> – PGP – S/MIME – <u>IP Security</u> – Web Security.

#### UNIT V SYSTEM LEVEL SECURITY

Intrusion detection – password management – Viruses and related Threats – Virus Counter measures – Firewall Design Principles – Trusted Systems.

### 9

9

9

9

9

#### **TEXT BOOKS:**

- 1. WilliamStallings,CryptographyandNetworkSecurity,6th Edition, Pearson Education, March 2013.
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002.

#### **REFERENCE BOOKS:**

- 1. Behrouz A. Ferouzan, "Cryptography&NetworkSecurity", TataMcGrawHill, 2007.
- 2. Charles Pfleeger, "Security in Computing",4th Edition, Prentice Hall ofIndia,2006.
- 3. Ulysess Black, "Internet Security Protocols", PearsonEducationAsia,2000.
- 4. Charlie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Second Edition, Private Communication in Public World", PHI2002.
- 5. Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dream tech India PvtLtd, 2003.

6.www.ics.uci.edu/~stasio/spring04/ics180.html

<b>BEC</b> 0	007	D	IGITA	L IMA	AGE P	ROCE	SSIN	r J		L	Τ	P	C
		Total C	ontact	Hours	- 45					3	0	0	3
		Prerequ	isite –	Digital	Signal	l Proce	ssing						
		Course	Design	ned by ·	– Dept.	of Ele	ctronic	s and C	Commu	nicatio	n Engi	neering	•
OBJE	CTI	VES											
•	То	study th	ie imag	ge fund	lamenta	als and	mathe	ematica	l transf	orms 1	necessa	ry for	image
	pro	cessing.											
•	То	study the	e image	e enhan	icemen	t techn	iques						
•	То	study im	lage res	storatio	n proce	edures.							
•	То	study the	e image	e comp	ression	proced	lures.						
COU	RSE	OUTCO	OMES	(COs)									
C01	Rev	view the	fundan	nental c	concept	ts of a c	ligital i	image p	processi	ng sys	tem		
CO2	Ana	alyze ima	ages in	the fre	quency	v domai	in using	g vario	us trans	forms			
CO3	Eva	luate the	e techni	iques fo	or imag	ge enha	nceme	nt and i	mage re	estorat	ion		
CO4	Cat	egorize v	various	compr	ression	technic	ques.						
CO5	Inte	rpret Im	age con	mpress	ion sta	ndards							
CO6	Inte	erpret im	age seg	gmenta	tion and	d repre	sentatio	on tech	niques.				
		Ma	apping	of Cou	rse Out	tcomes	with P	rogram	outco	mes (P	Os)		
		(H/M/L	indica	tes stre	ngth of	f correl	ation)	H-Hig	h, M-N	Iedium	n, L-Lo	W	
1	C	Os/POs	а	b	C	d	е	f	g	h	i	j	k
		CO1	Н					М		Н			
		CO2	М	М	Н				Н		L		
2		CO3	M	H	М				М	М	М		Н
		CO4	M	H			M				M	H	M
		CO5		M			M	M	Μ		L		M
		CO6				M	M	H	M				

3	Category	Humanities & Social Studies (HS)	Basic Sciences &	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
4	Approval	37 th M	leeting o	of Acaden	nic Council	, May 201	.5		
		1							

#### UNIT I DIGITAL IMAGE FUNDAMENTAL

Elements of digital image processing systems, Elements of Visual perception, Image sampling and quantization, Matrix and Singular Value representation of discrete images.

#### UNIT II IMAGE TRANSFORMS

1D DFT, 2D DFT, Cosine, Sine Hadamard, Hear, Slant, KL, SVD transform and their properties.

#### UNIT III IMAGE ENHANCEMENT

Histogram – Modification and specification techniques Image smoothing, Image sharpening, generation of spatial masks from frequency domain specification, Nonlinear filters, Homomorphism filtering, false color, Pseudo color and color image processing.

#### UNIT IV IMAGE RESTORATION AND RECOGNITION

Image DEGRADATION models, Unconstrained and Constrained restoration, inverse filtering, Least mean square filter, Pattern Classes, optimal statistical classifiers, Neural networks and associated training methods and use of neural networks in image processing.

#### UNIT V IMAGE COMPRESSION

Run length, Huffman coding, Shift codes, arithmetic coding, bit plane coding, transform coding, JPEG Standard, wavelet transform, predictive techniques, Block truncation coding schemes, Facet modeling.

#### **TEXT BOOKS:**

1.Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2010

#### **REFERENCE BOOKS:**

- 1.Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata McGraw Hill Pvt. Ltd., 2011.
- 2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.
- 3. Willliam K Pratt, "Digital Image Processing", John Willey, 2002.
- 4.Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First Edition, HI Learning Pvt. Ltd., 2

5.www.tutorialspoint.com/dip/

#### 125

9

9

9

9

		Т	'otal C	Contact	t Hours	- 45						3	0		0	3
		Р	rerequ	isite -	- Comn	nunic	ation e	ngineeri	ng-I,	Ran	ldom l	Proces	S			
		C	Course	Desig	ned by	– De	pt. of E	Electroni	cs &(	Con	ımuni	cation	Engine	eer	ring	
OI	BJECT	<b>VE</b>	S													
	• To	stuc	iy abo	ut Wi	reless n	etwo	rks, pro	otocol sta	ack ar	nd s	tandar	ds.				
	• To	stuc	ly abo	ut fun	dament	als of	f 3G Se	ervices, i	ts pro	otoc	ols an	d appl	ication	s.		
	• To	stuc	ly abo	ut evo	olution	of 4G	Netwo	orks, its a	archit	ectu	ire and	d appli	ications	5.		
CO	DURSE	OU	TCO	MES	(COs)											
CC	D1 Cor	iver	sant w	vith the	e latest	3G/4	G and Y	Wi-MAZ	K netv	wor	ks and	l its ar	chitect	ıre		
CC	D2 Des wir	sign eles:	and ir s proto	nplem ocols a	ent wir ind star	eless dard	networ 5.	k enviro	nmer	nt fo	or any	applic	ation u	sir	ng lat	est
CC	03 Imp netv	olem worł	ent di c strate	fferen egies	t type o	of app	licatior	ns for sm	hart pl	hon	es and	l mobi	le devi	ces	s with	latest
CC	04 Con	npa	re and g wirel	contra less ne	ast mul tworks	tiple (	divisio	n technic	lues,	moł	oile co	ommur	nicatior	n sy	ystem	is, and
CC	05 Cla PA	<ul> <li>Classify network protocols, ad hoc and sensor networks, wireless MANs, LANs and PANs;</li> <li>Apply wireless ID technologies, in particular RFID work</li> </ul>														
CC	6 Apply wireless ID technologies, in particular RFID work.															
(H	Mapping of Course Outcomes with Program outcomes (POs) M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1	COs/P	Os	a	b	с	d	e	f	g		h	i	j			k
2	CO1		Η					М					N	1		
	CO2		Μ	L	Н						L					
	CO3		Μ			Μ						Η				
	CO4		L				H		Μ							М
	<u>CO5</u>			Μ												
2	<u>CO6</u>							H								
3	Catega Sciences & Maths (BS) (HS) Basic Sciences & Maths (BS) Engg Sciences & Maths (BS) (ES) Professional Core (PC) Core Elective (CE) Non-Major Elective (NE) Doen Elective (CE) Seminar/ Internship (PR)															
										$\checkmark$						
4	Approv	val	37 th	Meet	ting of .	Acad	emic C	ouncil, N	May 2	2015	5		I			

#### UNIT- I WIRELESS LAN

9

9

Introduction-WLAN technologies: Infrared, UHF narrowband, spread spectrum -IEEE802.11: System architecture, protocol architecture, physical layer, MAC layer, 802.11b, 802.11a – Hiper LAN: WATM, BRAN, HiperLAN2 – Bluetooth: Architecture, Radio Layer, Baseband layer Link manager Protocol, security - IEEE802.16-WIMAX: Physical layer, MAC, Spectrum allocation for WIMAX

#### UNIT- II MOBILE NETWORK LAYER

127

Introduction - Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation, IPV6- Network layer in the internet- Mobile IP session initiation protocol - mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing

#### UNIT –III MOBILE TRANSPORT LAYER

TCP enhancements for wireless protocols - Traditional TCP: Congestion control, fast retransmit/fast recovery, Implications of mobility - Classical TCP improvements: Indirect TCP, Snooping TCP, Mobile TCP, Time out freezing, Selective retransmission, Transaction oriented TCP - TCP over 3G wireless networks.

#### UNIT- IV WIRELESS WIDE AREA NETWORK

Overview of UTMS Terrestrial Radio access network-UMTS Core network Architecture: 3G-MSC, 3G-SGSN, 3G-GGSN, SMS-GMSC/SMS-IWMSC, Firewall, DNS/DHCP-High speed Downlink packet access (HSDPA)- LTE network architecture and protocol.

#### UNIT- V 4G NETWORKS

 $\label{eq:2.1} Introduction-4G vision-4G features and challenges - Applications of 4G-4G Technologies: Multicarrier Modulation, Smart antenna techniques, OFDM-MIMO systems, Adaptive Modulation and coding with time slot scheduler, Cognitive Radio.$ 

#### **TEXT BOOKS:**

- 1.Jochen Schiller, Mobile Communications, Second Edition, Pearson Education 2012.(Unit I,II,III)
- 2.Vijay Garg, Wireless Communications and Networkingl, First Edition, Elsevier 2007.(Unit IV,V)

### **REFERENCE BOOKS:**

- 1.Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "3G Evolution HSPA and LTE for Mobile Broadbandl, Second Edition, Academic Press, 2008.
- 2. Anurag Kumar, D. Manjunath, Joy kuri, —Wireless Networking, First Edition, Elsevier 2011.
- 3.Simon Haykin, Michael Moher, David Koilpillai, —Modern Wireless Communications, FirstEdition, Pearson Education 2013

### CORE ELECTIVE III

<b>BEC016</b>	COGNITIVE RADIO	L	Т	Р	С				
	Total Contact Hours – 45	3	0	0	3				
	Prerequisite – Computer Communication and Networks								
	Course Designed by – Dept. of Electronics and Communication Engineering.								
OBJECT	IVES								
•	Learn the design of the wireless networks based on the co	ognitiv	e radio	8					
•	Understand the concepts of wireless networks and next g	enerati	on netv	vorks.					

9

9

COU	RSE OUTCOMES (COs)
CO1	Describe the basics of the software defined radios.
CO2	To learn the hardware and software architecture of software defined radio
CO3	Design the wireless networks based on the cognitive radios.
CO4	Gives an understanding of cognitive radio architecture
CO5	Explain the concepts behind the wireless networks and next generation networks
CO6	To have a better understanding of cognitive techniques

	Mapping of Course Outcomes with Program outcomes (POs)														
	(H/M/L	indica	ates	streng	gth of	corre	lation)	H-H	High	n, M-N	/lec	lium, I	L-Low		
1	COs/POs	a	b	с	d	e	f	g		h		i	j	k	
2	CO1	Н				Μ	Μ			Н		М	Н		
	CO2	Μ	Μ	М		Μ		Η							
	CO3	Μ	Η		Μ		Μ							Н	]
	CO4	Μ	Η		L			Μ		М			Μ		
															-
	CO5		M	Μ		Н	M			Μ		Μ		Μ	-
	CO6				Μ	Η	H					Μ			
3	Category	Humanities & Social Studies (HS)	(CIT) comme	Basic Sciences &	Engg Sciences (ES)	)	Professional Core (PC)		Core Elective (CE)		Non-Maior Flective	(NE)	Open Elective (OE)	Project/Term Paper/ Seminar/	Internship (PR)
									γ						
4	Approval	37 th	ⁿ M	leeting	g of A	caden	nic Cou	ıncil,	Ma	ay 201	5				

#### UNITI INTRODUCTION TOSOFTWARE DEFINED RADIO

Definitionsandpotentialbenefits, softwareradioarchitecture evolution, technology trade off sand architecture implications.

#### **UNITII SDRARCHITECTURE**

Essential functions of the software radio, basic SDR, hardware architecture, Computational processing resources, software architecture, top level component interfaces, interface topologies among plug and play modules,.

#### UNITIII INTRODUCTION TOCOGNITIVE RADIOS

Marking radio self-aware, cognitive echniques-position awareness, environment awareness in cognitive radios, optimization o fradio resources, Artificial Intelligence Techniques.

#### UNITIV COGNITIVE RADIOARCHITECTURE

Cognitive Radio- functions, components and design rules, Cognition cycle-orient, plan, decide and act phases, Inference Hierarchy, Architecture maps, Building the Cognitive Radio Architecture on Software defined Radio Architecture.

#### 128

9

9

#### 9

#### UNITV NEXTGENERATION WIRELESS NETWORKS

The XGNetwork architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross –layer design.

#### **TEXT BOOKS:**

- 1. JosephMitolaIII,"SoftwareRadioArchitecture:Object-OrientedApproachesto Wireless System Engineering",JohnWiley&SonsLtd.2000.
- 2. Thomas W. Rondeau, Charles W.Bostain, "Artificial Intelligence in Wireless communication", ARTECH HOUSE.2009.
- 3. BruceA. Fette, "Cognitive RadioTechnology", Elsevier, 2009.
- 4. IanF. Akyildiz, Won –Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next generation/Dynamic spectrum access/cognitive radio wireless networks: A Survey" Elsevier Computer Networks, May2006.

#### **REFERENCE BOOKS:**

- 1. Simon Haykin, "Cognitive Radio: Brain–Empowered Wireless Communications", IEEE Journal on selected areas in communications, Feb 2005.
- 2. Hasari Celebi, Huseyin Arslan, "Enabling Location and Environment Awareness in Cognitive Radios", Elsevier Computer Communications, Jan 2008.
- 3. Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio", John Wiley,2003.
- 4. Huseyin Arslan, "Cognitive Radio, SDR and Adaptive System", Springer, 2007.
- 5. Alexander M. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio Communication and Networks", Elsevier, 2010
- 6. www.nptel.ac.in

BEC005	BLUE TOOTH TECHNOLOGY	L	Т	Р	С					
	Total Contact Hours – 45	3	0	0	3					
	Prerequisite –Computer Communication & Networks									
	Course Designed by – Dept. of Electronics & Communica	tion E	ngineer	ring						
OBJECTI	VES									
• To s	tudy the fundamental concepts of Bluetooth module.									
• To a	nalyze the protocol operation.									
• To g	gain knowledge on various low power modes and Quality of Se	ervice	parame	eters.						
• To (	To understand the security issues									
COURSE	COURSE OUTCOMES (COs)									
CO1 U	Jnderstand Bluetooth's standards, architecture and operation.									
CO2 U	Jnderstand the APIs, radio interface used by Bluetooth.									
CO3 (	Configure Bluetooth-enabled devices including mobile phones,	PDAs	and A	ccess P	oints.					
CO4 I	nstall and configure Bluetooth hardware and software.									
CO5 (	Configure LAN access, remote access and FAX gateway access	s point	solutio	ons usin	g					
I	Bluetooth.									
CO6 Understand the Protocol layers used by Bluetooth.										
	Mapping of Course Outcomes with Program outcome	s (POs	)							
	(H/M/L indicates strength of correlation) H-High, M-Med	ium, L	-Low							
1 COs/PO	Ds a b c d e f g h	i	j	k						

2	CO1	Η			Μ		Μ				Μ	Ν	М		
	CO2	М	Μ	Н						L					
	CO3	М		Н	Η	Н		Μ			Н				
	CO4	Μ						L						М	
	CO5		Μ			Μ					Μ				
	CO6		Μ	Н		Μ	Η					Ν	М		
3	Category	Humanities & Social Studies (HS)		Basic Sciences	Engg Sciences	(ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major Elective (NE)	Ę	Open Elective (OE)	Project/Term	Paper/ Seminar/ Internship (PR)
4	Approval	37 th	Meeti	ng of Acad	lemio	c Cour	ncil, Ma	y 201	5						

#### UNIT I BASIC CONCEPTS

Origin, Blue tooth SIG, Protocol Stack, Security, applications and Profiles, Management, Test and qualification Technology Basics. RF and IR Wireless Communication.

#### UNIT II BLUETOOTH MODULE

Antennas Patterns, Gain and losses; Types of antennas: on chip antennas Radio interface: FH, Modulation, symbol timing, power emission and control, Performance Parameters, RF architecture, Blur RF, Base band:- Blue tooth Device address system Timing ,Physical links , Packet, structuring types and construction, channel coding and time base synchronization.

#### UNIT III LINK CONTROLLER AND MANAGEMENT

Link controller and management: LCP, controller states, Pico net and scattered operations, Master/Slave Role switching LC Architectural Overview, LMC< Link set up, Quality of service, LMP version, Name Represent, Test Mode.

#### UNIT IV BLUETOOTH HOST

L LC and adaptation Protocol L2cap signalling: Connections: Blue Tooth profiles; Version 1.0; Generic Profiles, Serial and Object exchange.

#### UNIT V SECURITY

Encryption and security Key generation, security Modes and architecture, Low power Operation and QOS Management.

#### **TEXT BOOKS:**

1. Blue tooth Connect without cables Jennifer Bray and c.f. stuntman Pearson Education 2001.

#### References

- 1. Blue Tooth Reveeled: Brent A. Miller and C.Bisdikian, Pearson Education 2001.
- 2. Bluetooth Demystified Nathan J.Miller Tata Mc Graw Hill 2001
- 3. www.radio-electronics.com/info/.../bluetooth/bluetooth_overview.php

#### 9

#### ~

9

Q

9

BI	EC705	CEI	LUL	<b>LAR</b>	MOB	ILE	COM	MUNI	CAT	ION	J	L	Т	Р	С
		Total Co	ntact	Hou	rs – 43	5						3	0	0	3
		Prerequis	site –	Con	nputer	Com	munic	ation &	Netv	worl	ks				
		Course I	Desigr	ned t	by – D	ept. o	f Elec	tronics	and C	Com	munic	ation E	Engine	ering.	
0	BJECTI	VES													
	•	To unde	rstand	d the	basic	cellu	lar sys	tem cor	ncept	s.					
	•	To have	an ii	nsigł	nt into	the v	various	s propag	gatio	n m	odels a	and the	e speed	ch code	rs used in
		mobile o	comm	unic	ation.										
	•	To unde	erstan	d the	e mult	iple a	access	techniq	ues a	nd	interfe	rence	educat	ion tech	iniques in
		mobile o	comm	unic	ation.										
C	OURSE	OUTCO	MES	(CC	s)										
C	D1 Dis	cuss cellul	ar rac	lio c	oncept	ts									
CC	D2 Ider	ntify vario	ous pr	opag	gation	effec	ts								
CC	D3 To 1	have know	ledge	e of t	the mo	bile s	system	specifi	catio	ns.					
CC	D4 Cla	ssify multiple access techniques in mobile communication.													
CO	D5 Out	line cellul	ar mo	bile	comm	nunica	ation s	tandard	s.						
CO	D6 Ana	5 Analyze various methodologies to improve the cellular capacity													
		Mapping of Course Outcomes with Program outcomes (POs)													
		(H/M/	L ind	icate	s strer	ngth o	of corre	elation)	H-H	High	n, M-M	ledium	, L-Lo	W	
1	COs/PO	Os	a	b	c	d	e	f	g	,	h	i	j	k	
2	CO1		Н					Μ			Н	Μ	Η		
	CO2		Μ	L	Μ				Η			L			_
	CO3		M	H	Μ	L		Μ	L					H	_
	CO4		Μ	H		M	Н		Μ		М	-	M		_
	<u>CO5</u>			L				M							_
2	CO6					M	H	Н				Μ			
3	Category	1	s & s (HS)		ss) (S	lces		Core		e (CE)		lective	3 (OE)	erm	r/ (PR)
			nitie		s (B	cier	(S)	lar		ctiv(		E) E	ctive	t/Te	ina nip
			mar Sh		c Sc lath:	رم 1	б Н	sior		Ele		Aajo (N	Ele	iec	Pal em insh
			Hu	214	3asi M	Eng	J	ofes C)		ore		¶-uc	pen	Pro	S nter
			Ŭ.	5	Ц			Pr (P		Ŭ		ž	Ō		II
4	Approv	oval 37 th Meeting of Academic Council, May 2015													

#### UNIT I INTRODUCTION TO WIRELESS MOBILE COMMUNICATION 9

History and evolution of mobile radio systems, Types of mobile wireless services/systems – Cellular, WLL, Paging, Satellite systems, Standard, Future trends in personal wireless systems.

#### UNIT II CELLULAR CONCEPT AND SYSTEM DESIGN FUNDAMENTALS 9

Cellular concept and frequency reuse, Multiple Access Schemes, Channel assignment and handoff, Interface and system capacity, Trunking and Erlang capacity calculations.

#### UNIT III MOBILE RADIO PROPAGATION

Radio wave propagation issues in personal wireless systems, Propagation models, Multipath fading and based and impulse models, Parameters of mobile multipath channels, Antenna systems in mobile radio.

#### UNIT IV MODULATION AND SIGNAL PROCESSING

Analog and digital modulation techniques, Performance of various modulation techniques – Spectral efficiency, Error rate, Power Amplification, Equalization/Rake receiver concepts, Diversity and Space-time processing, Speech coding and channel coding.

#### UNIT V SYSTEM EXAMPLES AND DESIGN ISSUES

Multiple Access Techniques – FDMA, TDMA and CDMA systems, Operational systems, Wireless networking, design issues in personal wireless systems.

#### **TEXT BOOKS:**

1. K. Feher, Wireless Digital Communication, Prentice Hall of India, New Delhi, 1995.

#### **REFERENCE BOOKS:**

1.T.S. Rappaport, Wireless Communication; Principles and Practice, Prentice Hall, NJ, 1996.

2.W.C.Y. Lee, Mobile Communication Engineering; Theory and Application, Second Edition, McGraw-Hill International, 1998.

3.https://en.wikipedia.org/wiki/Cellular_network

BEC0	SATELLITE COMMUNICATION L T P C										
	Total Contact Hours – 45	3	0	0	3						
	Prerequisite –Communication Engineering I & II										
	Course Designed by – Dept. of Electronics and Communica	tion E	ngineer	ing.							
OBJE	CTIVES										
•	To enable the student to become familiar with satellites and satell	ite ser	vices.								
•	Study of satellite orbits and launching.										
•	Study of earth segment and space segment components										
•	Study of satellite access by various users.										
COUR	RSE OUTCOMES (COs)										
CO1	Define orbital mechanics and launch methodologies										
CO2	Describe satellite subsystems										
CO3	Design link power budget for satellites										
CO4	Compare competitive satellite services										
•											

132

9

9

С	CO5 Explain satellite access techniques															
C	06	DTH a	and comp	ressio	on stand	dard	S									
				Map	ping o	f Co	urse O	utcome	es wi	th F	Progra	am out	comes (	POs)		
			(H/I	M/L i	ndicate	es str	ength	of corre	elatio	on)	H-H	ligh, M	-Mediu	m, L-	Low	
1	COs/	'POs	a	b	с	d	e	f	g		h	i	j	k		
2	CO1		Н		Μ		Μ	Μ	Μ		Η	Μ		L		
	CO2		М	L	H				Η			L	Η			
	CO3		М	Η	Μ				Μ		Μ	Μ		Η		
	CO4		М	Η	H		Μ					Μ		Μ		
	CO5			L M M M L M												
	CO6					Μ	Μ	Η	Μ							
3	Categ	ory	Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major Elective (NE)	Open Elective		Project/Term Paper/ Seminar/ Internship (PR)	
										v						
4	Appr	oval	37 th M	eetin	g of Ac	adei	nic Co	uncil, I	May	201	15					

#### UNIT I INTRODUCTION

Introduction, Types – Active and Passive Satellite, Frequency allocation, Satellite orbits, Kepler's laws, Definitions of terms for earth-orbiting Satellites, Apogee and Perigee heights, Orbit Perturbations, Geo stationary orbit, Antenna look angles, Limits of visibility, Earth Eclipse of Satellite, Sun transit outage, launching orbits.

#### UNIT II THE SPACE SEGMENT

Introduction, The Power supply, Attitude control, Spinning satellite stabilization, Momentum Wheel Stabilization, Station keeping, Thrmal control, TT & C subsustem, Transponders, The Wide Band receiver, The Input Demultiplexer, The Power Amplifier, The Antenna subsystem.

#### UNIT III THE EARTH SEGMENT AND ANTENNAS

Transmit receive earth station subsystems, up-converters-High Power Amplifier-Receive chain-LNA&LNB.TVRO earth station, The isotropic radiator and antenna gain, Horn antenna, The Parabolic reflector, Double reflector antenna-Cassie grain antenna-Gregorian antenna.

#### UNIT IV THE SPACE LINK & SATELLITE ACCESS

EIRP, Transmission losses The Link budget equation, System noise, Effects of rain, up link and down link C/N ratio. Multiple access techniques-Concepts and types of TDMA, FDMA and CDMA-Comparison and contrast of TDMA, FDMA and CDMA.

#### UNIT V SATELLITE APPPLICATIONS

Satellite Mobile services, DBS, VSAT, Remote sensing, GPS, INTELSAT, INMARSAT, SARSAT, Video Conferencing and Internet connectivity

#### **TEXT BOOKS:**

1. Dennis Roddy, "Satellite Communication", 4thEdition, McGraw Hill International,2006.

#### 133

9

9

## 9

9

#### **REFERENCE BOOKS:**

- 1.Wilbur L.Pritchard, Hendri G.Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", PrenticeHall/Pearson, 2007.
- 2. N.Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.
- 3. Bruce R. Elbert, "The Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997.
- 4. Tri T. Ha, "Digital Satellite Communication", IIndedition,1990.
- 5. Emanuel Fthenakis, "Manual of Satellite Communications", McGraw Hill BookCo., 1984.
- 6. Robert G.Winch, "Telecommunication Transmission Systems", McGraw-Hill Book Co., 1983.
- 7.BrianAckroyd, "World Satellite Communication and earth station Design", BSP professional Books, 1990.
- 8. G.B. Bleazard, "Introducing Satellite communications", NCC Publication, 1985.
- 9. <u>www.sac.gov.in/SACSITE/Satcom_Overview.doc</u>

#### NON MAJOR ELECTIVE-I

B	BM054			I	BIOIN	FOF	RMATI	CS			L	Т	Р	С
		To	otal Cont	act Ho	ours -	45					3	0	0	3
		Pr	erequisit	e –Bi	ology	for E	ngineer	s.						
		Co	ourse De	signed	l by –	Dept	. of Bio	Med	ical Eng	gineering	g.			
			~											
0	BJECTI	IVE	S											_
	• To	int	roduce I	Bioinf	ormati	cs-El	ementa	ry co	mmand	ls and P	rotoc	ols, ftp	o, telne	et, http.
	Pri	Primer on information theory												
C	OURSE	00	TCOM	ES (C	Os)									
	CO1	То	learn bio	oinfor	matics	and	the prot	ocols	•					
	CO2	То	learn St	rings-	Edit d	listan	ces two	strin	gs-strin	g simila	rity lo	ocal al	ignmer	nt gaps-
		par	ametric	sequei	nce ali	gnme	ents.							
	CO3	То	have a c	lear v	iew or	n Am	ino acid	subs	titution	matrices	s PAN	1 and I	BLOSS	UM.
	CO4	То	Fo learn Ultrasonic trees-parsimony-Ultrametric problem-perfect phylogeny-											
		phy	logeneti	ic alig	nment	•								
	CO5	To	DNA M	lappir	ig and	sequ	encing-	Map	alignme	ent-Large	e scale	e seque	encing.	
	CO6	DN	IA Map	ping	and	seque	encing-N	Лар	alignm	ent-Larg	je sca	ale se	quenci	ng and
		alig	gnment.											
			Mappi	ing of	Cours	e Ou	tcomes	with	Progran	n outcoi	nes (I	POs)		
		(H	/M/L inc	licates	stren	gth o	f correla	tion)	H-Hig	gh, M-M	lediun	n, L-Lo	OW	
1	COs/Po	Os	а	a b c d e f g h i j k										
2	CO1													
	CO2				Η	Η		Μ						
	CO3			Μ		Η		Η						
	CO4		Н	Μ		Η								
	CO5				Η		Н							
	CO6													

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
4	Approval	37 th Meetin	g of Acad	emic Cou	incil, May	y 2015			

#### **UNIT – I BIOINFORMATICS**

Scope of Bioinformatics-Elementary commands and Protocols, ftp, telnet, http.Primer on information theory.

#### UNIT – II SEQUENCING ALIGNMENT AND DYNAMIC PROGRAMMING

Introduction-Strings-Edit distance two strings-string similarity local alignment gaps-parametric sequence alignments-suboptimal alignments-multiple alignment-common multiple alignment methods.

9

9

9

9

#### UNIT – III SEQUENCE DATABASE AND THEIR USE

Introduction to databases-database search-Algorithms issues in database search-sequence database search FASTA-BLAST-Amino acid substitution matrices PAM and BLOSSUM.

#### UNIT – IV EVOLUTIONARY TREES AND PHYLOGENY

Ultrasonic trees-parsimony-Ultrametric problem-perfect phylogeny-phylogenetic alignmentconnection between multiple alignment and tree construction.

#### **UNIT – V SPECIAL TOPICS IN BIOINFORMATICS**

DNA Mapping and sequencing-Map alignment-Large scale sequencing and alignment-Shotgun-DNA sequencing-Sequence assembly-Gene predictions-Molecular predictions with DNA strings.

#### **TEXT BOOKS:**

1.R.D.Lele "Computer in Medicine" Tata McGraw Hill, Newyork, 1999.

#### **REFERENCE BOOKS:**

1.S.K.Chauhan "PC Organisation", S.K.Kataria and Sons, Delhi 2000.

2. Harold Sackamn "Bio Medical Information Technology", Academic Press, New York.

3.https://www.lehigh.edu/~inbios21/PDF/Fall2008/Lopresti_11142008.pdf

<b>BEI605</b>	EMBEDDED SYSTEM DESIGNLTPC									
	Total Contact Hours - 45300									
	Prerequisite – Microprocessor and Microcontroller									
	Course Designed by - Dept of Electronics & Instrumentation	n Engi	neering							
OBJECTIV	ES									
• To in	oduce the Building Blocks of Embedded System									
	ducate in Various Embedded Development Strategies									

• To Educate in Various Embedded Development Strategies

• 7	To Introduce	<b>Bus Communication</b>	in processors,	Input/output in	nterfacing.
-----	--------------	--------------------------	----------------	-----------------	-------------

- To impart knowledge in various processor scheduling algorithms.
- To introduce Basics of Real time operating system and example tutorials to discuss on one real time operating system tool

CO	COURSE OUTCOMES (COs)														
CC	D1 Acquire	a basic	knowled	lge abo	out fu	ndamenta	als of	micro	000	ntrollers					
CC	D2 Acquire	a basic	knowled	lge abo	out pr	ogrammi	ng an	d syst	tem	control to	o perfoi	m a sp	ecific	task	•
CC	D3 Acquire	knowle	dge abou	ıt devi	ces a	nd buses	used i	n em	bed	ded netwo	orking				
CC	D4 Develop	prograi	mming s	kills in	emb	edded sy	stems	for v	aric	ous applic	ations.				
CC	05 Acquire	knowle	dge abou	ıt basio	c con	cepts of c	circuit	emu	lato	rs.					
CC	06 Acquire	knowle	dge abou	ıt Life	cycle	e of embe	dded	desig	n ai	nd its test	ing				
	<b>^</b>	Mapping of Course Outcomes with Program outcomes (POs)													
		(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
1	COs/POs	a	b	с	d	e	f	g		h	i	j	k		
2	CO1	М	М	М	Η	М		Μ				L	L		
	CO2	Н	М	М	Η	Н		Μ				L	L		
	CO3	Н	М		Η	Н		Μ				L	L		
	CO4	Н	М		Η	Н		Μ				L	L		
	CO5	Н	М	М	Η	Н		Μ				L	L		
	CO6	Н			Η	Н		Μ				L	L		
3	Category	es & Social IS)		ences (BS)		ences (ES)	aal Core		ctive (CE)	nr Flactive		ctive (OE)	ct/Term aner/	ninar/	ip (PR)
		Humaniti Studies (F		Basic Scie		Basic Scie	Profession (PC)		Core Ele	v Non-Maic	(NE)	Open Elec	Proje	Ser	Internsh
4	Approval	37 th 1	Meeting	of Aca	dem	ic Counci	 1, Ma	y 201	5				<u> </u>		

#### UNIT-I EMBEDDED DESIGN WITH MICROCONTROLLERS

Product specification – Hardware / Software partitioning – Detailed hardware and software design – Integration – Product testing – Microprocessor Vs Micro Controller – Performance tools– RTOS Micro Controller - issues in selection of processors.

9

9

9

### UNIT-II PARTITIONING DECISION

Hardware / Software duality – Hardware-Software portioning- coding for Hardware- software development – ASIC revolution – Managing the Risk – Co-verification – execution environment – memory organization –memory enhancement – Firmware-speed and code density -System startup.

### UNIT-III FUNCTIONALITIES FOR SYSTEM DESIGN

Timers, Watch dog timers – RAM, Flash Memory basic toolset – Integration of Hardware & Firmware- in System Programming, in Application Programming, IDE-Target Configuration-Host based debugging – Remote debugging – ROM emulators – Logic analyzer.

#### UNIT-IV CIRCUIT EMULATORS

Buller proof run control – Real time trace – Hardware break points – Overlay memory – Timing constraints – Usage issues – Triggers.

#### UNIT-V EMBEDDED DESIGN LIFE CYCLE & TESTING

Objective, Need, different Phases & Modeling of the EDLC, choice of Target Architectures for Embedded Application Development-for Control Dominated-Data Dominated Systems-Software &Hardware Design, PCB Design, Manufacturing & PCB Assembly-Bug tracking – reduction of risks & costs – Performance – Unit testing – Regression testing – Choosing test cases – Functional tests – Coverage tests – Testing embedded software – Performance testing – Maintenance.

#### TEXT BOOKS:

1. James K.Peckol, "Embedded system Design", John Wiley & Sons, 2010

#### **Reference:**

- 1. Elicia White, "Making Embedded Systems", O'Reilly Series, SPD, 2011
- 2. Rajkamal,"Embedded Systems", TMH, 2009.
- 3. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson2013 5. Arnold S. Berger –"Embedded System Design", CMP books, USA 2002

002		Ν	EUR	AL N	ETWO	RKS			L	Т	Р	C
r	Fotal Con	tact Ho	urs – 4	5					3	0	0	3
]	Prerequisi	te –Ma	themat	tics-I,	Mathem	natics-	-II, Num	erical Me	ethods			
(	Course De	esigned	by – I	Dept.	of Comp	outer S	Science a	nd Engir	neering	<b>5</b> .		
ECTIVE	S											
• Basic neuron models: McCulloch-Pitts model and the generalized one, distance or similarity												
based neuron model, radial basis function model, etc.												
Basic neural network models: multilayer perceptron, distance or similarity based neural												
networks, associative memory and self-organizing feature map, radial basis function based												
multilaver perceptron, neural network decision trees, etc.												
RSE OUTCOMES (COs)												
<b>INSE OUTCOMES (COS)</b> Be able to analyze a problem for NN solution in terms of these methods												
Have ar	awarene	ss of th	e com	outati	onal the	orv ur	derlving	nose mea	10451			
Have a	working l	cnowled	lge of	a typi	cal neur	al net	work sin	nulation				
Experie	nce in pro	ogramm	ing N	N app	lications	s from	scratch					
Have ki	nowledge	of suff	icient	theor	etical ba	ckgro	und to b	e able to	reaso	n abou	t the be	ehaviour
of neura	al network	ks.				U						
Have ki	nowledge	of suff	ïcient	theor	etical ba	ckgro	ound to b	be able to	reaso	n abou	t the be	ehaviour
of neura	al network	ks.										
	Maj	pping o	f Cour	se Ou	itcomes	with H	Program	outcome	es (PO	s)		
	(H/M/L	indicate	es strer	ngth o	of correla	tion)	H-High	n, M-Meo	lium, l	L-Low	1	
Os/POs	a	b	С	d	e	f	g	h	i	j	k	
01	м	н		н								
CO2 H H H												
	CCTIVE Basic r based n Basic r based n Basic r networl multila RSE OU Be able Have ar Have a Experie Have kr of neura Have kr of neura	02       Total Con         Prerequisi       Course Date         COURSE Date       Date         ECTIVES       Basic neuron mode         Basic neuron mode       Basic neural networks, associa         multilayer perce       RSE OUTCOME         Be able to analyz       Have an awarenet         Have an awarenet       Have aworking I         Experience in product       Mate         Have knowledge       of neural network         Mate       Mate         (H/M/L)       Os/POs       a         O1       M       O2	02       N         Total Contact Ho         Prerequisite –Max         Course Designed         ECTIVES         Basic neuron models: N         based neuron model, rac         Basic neural network         networks, associative n         multilayer perceptron, n         RSE OUTCOMES (COs         Be able to analyze a prol         Have an awareness of th         Have a working knowled         Experience in programm         Have knowledge of suff         of neural networks.         Have knowledge of suff         of neural networks.         Mapping o         (H/M/L indicate         Os/POs       a         D1       M         Mapping       H	02       NEUR         Total Contact Hours – 4         Prerequisite –Mathemat         Course Designed by – I         ECTIVES         Basic neuron models: McCull         based neuron model, radial bas         Basic neural network model         networks, associative memory         multilayer perceptron, neural r         RSE OUTCOMES (COs)         Be able to analyze a problem fe         Have an awareness of the comp         Have a working knowledge of         Experience in programming NI         Have knowledge of sufficient         of neural networks.         Have knowledge of sufficient         of neural networks.         Mapping of Cour         (H/M/L indicates street)         Os/POs       a       b         O1       M         Mapping       C	<b>NEURAL N</b> Total Contact Hours – 45         Prerequisite –Mathematics-I,         Course Designed by – Dept. <b>ECTIVES</b> Basic neuron models: McCulloch-I         based neuron model, radial basis fur         Basic neural network models: m         networks, associative memory and         multilayer perceptron, neural network <b>RSE OUTCOMES (COs)</b> Be able to analyze a problem for NN         Have an awareness of the computati         Have a working knowledge of a typi         Experience in programming NN app         Have knowledge of sufficient theor         of neural networks.         Mapping of Course Out         (H/M/L indicates strength of         Os/POs       a         b       c         O1       M         M       H	NEURAL NETWO           Total Contact Hours – 45           Prerequisite –Mathematics-I, Mathem           Course Designed by – Dept. of Comp           ECTIVES           Basic neuron models: McCulloch-Pitts models           based neuron model, radial basis function m           Basic neural network models: multilayer           networks, associative memory and self-org           multilayer perceptron, neural network decisis           RSE OUTCOMES (COs)           Be able to analyze a problem for NN solution           Have an awareness of the computational theoretical bas           Have a working knowledge of a typical neur           Experience in programming NN applications           Have knowledge of sufficient theoretical bas           of neural networks.           Mapping of Course Outcomes           (H/M/L indicates strength of correla           Os/POs         a         b         c         d         e	OO2         NEURAL NETWORKS           Total Contact Hours – 45         Total Contact Hours – 45           Prerequisite –Mathematics-I, Mathematics-Course Designed by – Dept. of Computer S         Course Designed by – Dept. of Computer S           ECTIVES         Basic neuron models: McCulloch-Pitts model ar based neuron model, radial basis function model, Basic neural network models: multilayer percenteworks, associative memory and self-organizi multilayer perceptron, neural network decision tree           RSE OUTCOMES (COs)         Be able to analyze a problem for NN solution in the Have an awareness of the computational theory ur Have a working knowledge of a typical neural net           Experience in programming NN applications from Have knowledge of sufficient theoretical backgrout of neural networks.           Have knowledge of sufficient theoretical backgrout of neural networks.           Mapping of Course Outcomes with H (H/M/L indicates strength of correlation)           Os/POs         a         b         c         d         e         f	D02         NEURAL NETWORKS           Total Contact Hours – 45         Prerequisite –Mathematics-I, Mathematics-II, Num           Course Designed by – Dept. of Computer Science a           CTIVES           Basic neuron models: McCulloch-Pitts model and the ge based neuron model, radial basis function model, etc.           Basic neural network models: multilayer perceptron, networks, associative memory and self-organizing featu multilayer perceptron, neural network decision trees, etc.           RSE OUTCOMES (COs)           Be able to analyze a problem for NN solution in terms of t           Have an awareness of the computational theory underlying           Have a working knowledge of a typical neural network sin           Experience in programming NN applications from scratch.           Have knowledge of sufficient theoretical background to to of neural networks.           Mapping of Course Outcomes with Program (H/M/L indicates strength of correlation)           OS/POS         a         b         c         d         e         f         g           O1         M         H         H         H         H         H         H	D02         NEURAL NETWORKS           Total Contact Hours – 45         Prerequisite –Mathematics-I, Mathematics-II, Numerical Meterequisite –Mathematics-I, Mathematics-II, Numerical Meterepresente and the generalized based neuron model, radial basis function model, etc.           Basic neural network models:         McCulloch-Pitts model and the generalized based neuron model, radial basis function model, etc.           Basic neural network models:         multilayer perceptron, distance networks, associative memory and self-organizing feature map, multilayer perceptron, neural network decision trees, etc.           RSE OUTCOMES (COs)         Be able to analyze a problem for NN solution in terms of these meterementere in programming NN applications from scratch.           Have a working knowledge of a typical neural network simulation         Experience in programming NN applications from scratch.           Have knowledge of sufficient theoretical background to be able to of neural networks.         Mapping of Course Outcomes with Program outcome (H/M/L indicates strength of correlation)           Os/POs         a         b         c         d         e         f         g         h<	D02         NEURAL NETWORKS         L           Total Contact Hours – 45         3           Prerequisite –Mathematics-I, Mathematics-II, Numerical Methods           Course Designed by – Dept. of Computer Science and Engineering           CTIVES           Basic neuron models: McCulloch-Pitts model and the generalized one, based neuron model, radial basis function model, etc.           Basic neural network models: multilayer perceptron, distance or sin networks, associative memory and self-organizing feature map, radial multilayer perceptron, neural network decision trees, etc.           RSE OUTCOMES (COs)           Be able to analyze a problem for NN solution in terms of these methods.           Have an awareness of the computational theory underlying NN.           Have a working knowledge of a typical neural network simulation           Experience in programming NN applications from scratch.           Have knowledge of sufficient theoretical background to be able to reaso of neural networks.           Mapping of Course Outcomes with Program outcomes (PO (H/M/L indicates strength of correlation)           H-High, M-Medium, I           OS/POs         a           b         c           01         M           M         H           O1         M	D02         NEURAL NETWORKS         L         T           Total Contact Hours – 45         3         0           Prerequisite –Mathematics-I, Mathematics-II, Numerical Methods           Course Designed by – Dept. of Computer Science and Engineering.           Basic neuron models: McCulloch-Pitts model and the generalized one, distance based neuron model, radial basis function model, etc.           Basic neural network models: multilayer perceptron, distance or similarity networks, associative memory and self-organizing feature map, radial basis multilayer perceptron, neural network decision trees, etc.           RSE OUTCOMES (COS)           Be able to analyze a problem for NN solution in terms of these methods.           Have an awareness of the computational theory underlying NN.           Have a working knowledge of a typical neural network simulation           Experience in programming NN applications from scratch.           Have knowledge of sufficient theoretical background to be able to reason abou of neural networks.           Mapping of Course Outcomes with Program outcomes (POs)           (H/M/L indicates strength of correlation)           H-HH           O1         M           M         H           O2         H	D02         NEURAL NETWORKS         L         T         P           Total Contact Hours – 45         3         0         0           Prerequisite –Mathematics-I, Mathematics-II, Numerical Methods         Course Designed by – Dept. of Computer Science and Engineering.           COUrse Designed by – Dept. of Computer Science and Engineering.         Course Designed by – Dept. of Computer Science and Engineering.           Sectives         Basic neuron models: McCulloch-Pitts model and the generalized one, distance or si based neuron model, radial basis function model, etc.         Basic neural network models: multilayer perceptron, distance or similarity based networks, associative memory and self-organizing feature map, radial basis functio multilayer perceptron, neural network decision trees, etc.           RECOUTCOMES (COS)         Be able to analyze a problem for NN solution in terms of these methods.           Have an awareness of the computational theory underlying NN.         Have a working knowledge of a typical neural network simulation           Experience in programming NN applications from scratch.         Have knowledge of sufficient theoretical background to be able to reason about the be of neural networks.           Mapping of Course Outcomes with Program outcomes (POS)         (H/M/L indicates strength of correlation)           Mapping of Course Outcomes with Program outcomes (POS)         (H/M/L indicates strength of correlation)           Mapping of Course Outcomes with Program outcomes (POS)         (H/M/L indicates strength of correlation)

9

	CO3	М	Н		Η								
	CO4		Н	Н	Η								
	CO5	L	Н		Η		Μ						
	CO6												
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)		Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term	Paper/ Seminar/ Internship (PR)
4	Approval	37 th M	eeting	of Aca	demi	c Counci	l, Ma	y 201	5		1	<b>I</b>	

#### UNIT-I BACK PROPAGATION

Introduction to Artificial Neural systems - Perception - Representation - Linear Separability - Learning - Training algorithm - The back propagation network - The generalized data rule - Practical considerations - BPN applications.

9

9

9

9

#### UNIT-II STATISTICAL METHODS

Hopfield nets - Cauchy training - Simulated annealing-The Boltzmann machine. Associative memory - Bidirectional associative memory - Applications.

#### UNIT-III COUNTER PROPAGATION NETWORK & SELF ORGANISATION MAPS 9

CRN building blocks - CPN data processing. SQM data processing - Applications

#### UNIT-IV ART AND SPATIO TEMPORAL PATTERN CLASSIFICATION

ART network description - ART1 -ART2-Application. The formal avalanche -Architecture of station temporal networks - The sequential competitive avalanche field - Applications of STNs.

#### UNIT-V NEO-CONGNITRON

Cognitron - Structure & training - The neocognitron architecture - Data processing - Performance - Addition of lateral inhibition and feedback to the neocognitron. Optical neural networks - Holographic correlators.

#### **TEXT BOOKS:**

- 1. James Freeman A and David Skapura M. "Neural Networks Algorithms, Applications & Programming Techniques", Pearson Education, 2005.
- 2. Yegnanarayana B., "Artificial Neural Networks", Prentice Hall of India Private Ltd, 2003

#### **REFERENCE BOOKS:**

- 1. Neural Network Design, Martin T Hagan, 2nd edition, 2014.
- 2. Principle of neural science, Eric R.Kandel, 5th edition, 2012.
- 3. http://hagan.okstate.edu/NNDesign.pdf

BC	CS702		MOB	ILI	E AND	) PE	RVAS	IVE CO	MP	UTI	NG		L	Т	P	)	С
			Total	Co	ntact H	lours	s - 45						3	0	0		3
			Prere	quis	ite –C	omn	nunicati	on Engi	neeri	ing I							
			Cours	se D	esigne	d by	v – Dept	. of Cor	npute	er So	cience	and	Engin	eering	<b>.</b>		
OF	<b>BJEC</b>	TIVES	5														
Th	is cou	rse dis	cuss a	bou	t know	ledg	ge and s	kills abo	out a	new	r trend	in m	nobile	Comp	uting	•	
CC	DURS	E OU	TCON	<b>AES</b>	6 (COs	s)											
CC	<b>)</b> 1	Explai	n the c	conc	epts ar	nd fe	eatures of	of mobil	e net	wor	ks.						
CC	)2	Expla	in the	wor	king o	f wii	reless co	ommuni	catio	n pr	otoco	ls.					
CC	)3	Comp	are the	e roi	uting p	roto	cols of :	mobile 1	netwo	orks	•						
CC	)4	Expla	in the	tran	sport a	ind a	pplicati	ion layer	r prot	toco	ls of r	nobil	le netv	vorks.			
CC	)5	Outlin	the	Concept of GSM GPRS													
CC	)6	Learn	the Co	e Concept of GSM,GPRS.													
		/Τ	Mapping of Course Outcomes with Program outcomes (POs)														
1	COa	1) /DOa	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low														
1	COS	POS	а	D	С	a	e	I	g		n	1	1	J	K		
2	CO1		Μ		Н												
	CO2		Μ		Н												
	CO3				Н						Μ						
	CO4				Н												
	CO5		Μ		Μ												
	CO6									r	Μ						
3	Cate	gory	al			4						Ø				$\mathbf{r}'$	
			oci		x	Ę	л Н	ore		СE		tiv		OE		ape	
			k S		es e		es	ŭ		e C	/	llec		e (i		n P	R) ar/
			es d	(CL	enc (S		enc	nal		Ctiv		or E		ctiv		ern	E C
			niti	5	Scie B		SC	sion		E e		Iajc		Elec		t/T	Sen hip
			nar	me	ic S		ວ້າ	()		e I		N-L	<u>.</u>	n H		jec	ins.
			Hun	) M	Bas Mai	ſ	សីម្នា	Pro		Cor		Noi	Z	ope		Prc	Inte
						<u> </u>	-	+					-				
												N					
4	Appi	roval	37 th	Μ	eeting	of A	cademi	c Counc	il, M	lay 2	2015						

#### UNIT I MOBILE NETWORKS

Cellular Wireless Networks – GSM – Architecture – Protocols – connection establishment – Frequency Allocation – Routing – Mobility Management – Security – GPRS.

#### UNIT II WIRELESS NETWORKS

Wireless LANs and PANs – IEEE 802.11 Standard – Architecture – Services –Network – HiperLAN – BlueTooth-Wi-Fi – WiMAX.

#### UNIT III ROUTING

Mobile IP – DHCP – AdHoc– Proactive and Reactive Routing Protocols – MulticastRouting.

#### UNIT IV TRANSPORT AND APPLICATION LAYERS

9

9

9

Mobile TCP– WAP – Architecture – WWW Programming Model– WDP – WTLS – WTP – WSP – WAE – WTAArchitecture – WML – WMLScripts.

#### UNIT V PERVASIVE COMPUTING

9

Pervasive computing infrastructure applications- Device Technology - Hardware, Human machine Interfaces, Biometrics, and Operating systems– Device Connectivity – Protocols, Security, and Device Management- pervasive Web Application architecture Access from PCs and PDAs - Access via WAP.

#### **TEXT BOOKS:**

- 1. Jochen Schiller, "Mobile Communications", PHI, Second Edition, 2003.
- 2. Jochen Burkhardt, Pervasive Computing: Technology and Architecture of MobileInternet Applications, Addison Wesley Professional; 3rd edition 2007.

#### **REFERENCE BOOKS:**

- 1.Frank Adelstein, Sandeep KS Gupta, Golden Richard, Fundamentals of Mobile and Pervasive Computing, McGraw-Hill 2005
- 2. Debashis Saha, Networking Infrastructure for Pervasive Computing: EnablingTechnologies, Kluwer Academic Publisher, Springer; 1st edition, 2002
- 3. Introduction to Wireless and Mobile Systems by Agrawal and Zeng, Brooks/ Cole(Thomson Learning),1st edition, 2002
- 4. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, Principles of Mobile Computing, Springer, New York, 2003.

5.http://media.techtarget.com/searchMobileComputing/downloads/Mobile_and_pervasive_comp uting_Ch06.pdf

#### NON MAJOR ELECTIVE-II

BCS701	GRID AND CLOUD COMPUTING	L	Т	P	C
	Total Contact Hours – 45	3	0	0	3
	Prerequisite –Computer Communication & Networks.				
	Course Designed by – Dept. of Computer Science and	Enginee	ring.		
OBJEC	TIVES				
• I	dentify the technical foundations of cloud systems archite	ctures.			
• 1	Analyze the problems and solutions to cloud application provide the problem of th	oblems.			
• 1	Apply principles of best practice in cloud application desig	gn and m	nanagem	ent.	
• I	dentify and define technical challenges for cloud applicati	ons and	assess t	heir	
i	mportance.				
COURS	E OUTCOMES (COs)				
CO1	Understand the fundamental principles of distributed com	puting.			
CO2	Understand how the distributed computing environment	s know	n as Gri	ids can	be built
	from lower level services.				
CO3	Understand the importance of virtualization in distribute	ed comp	outing ar	nd how t	this has
	enabled the development of Cloud Computing.				
CO4	Analyze the performance of Cloud Computing.				
CO5	Understand the concept of Cloud Security.				
CO6	Learn the Concept of Cloud Infrastructure Model.				

	Mapping of Course Outcomes with Program outcomes (POs)													
	(H	I/M/L	indi	cates s	treng	th of co	orrelatio	on)	H-H	ligh, N	/I-Mediun	n, L-Lo	W	
1	COs/POs	а	b	С	d	e	f	g	5	h	i	j	k	
2	CO1		Η	Μ	М	Μ							Η	
	CO2			Η						М	Μ			
	CO3	Μ												
	CO4		Μ	М									Η	
	CO5				Μ	Μ								
	CO6	Μ	Μ	Н						М			Μ	
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Enoo Sciences	(ES)	Professional Core (PC)		Core Elective	(CE)	<ul> <li>Non-Major</li> <li>Elective (NE)</li> </ul>	Open Elective (OF)	Project/Term	Paper/ Seminar/ Internship (PR)
											v			
4	Approval	37 th	¹ Me	eting o	of Aca	ademic	Counci	il, M	ay 2	2015				

#### UNIT I GRID COMPUTING

Introduction - Definition and Scope of grid computing, Computational and Data Grids, Current Grid Activities – Overview of Grid Business Areas, Grid Applications, Grid Computing Anatomy- Concept of Virtual Organization, Grid Architecture- Fabric layer, Connectivity layer, Resource Layer, Collective Layer, Application Layer, Layered Grid Architecture

#### UNIT II CLOUD ARCHITECTURE AND MODEL

Technologies for Network Based system-System Models for Distributed and Cloud Computing-NIST Cloud Computing Reference ArchitectureCloud models: Characteristics-Cloud Services-Cloud Models (IaaS, PaaS, SaaS)-Public vs. Private Cloud-Cloud Solutions-Cloud ecosystem-Service Management-Computing on demand.

#### UNIT III CLOUD INFRASTRUCTURE

Architectural Design of compute and Storage Clouds-Layered Cloud Architecture Development-Design Challenges-Inter Cloud Resource Management-Resource Provisioning and Platform Deployment-Global Exchange of Cloud Resources.

#### UNIT IV PROGRAMMING MODEL

Parallel and Distributed Programming Paradigms-Map Reduce-Twister and Iterative Map Reduce-Hadoop Library from Apache-Mapping Applications-Programming Support-Google App Engine, Amazon AWS-Cloud Software Environments-Eucalyptus, Open Nebula, Open Stack, Aneka, CloudSim.

#### UNIT V SECURITY IN THE CLOUD

Security Overview-Cloud Security Challenges and Risks-Software-as-a-Service-Security Security Governance-Risk Management-Security Monitoring-Security Architecture Design-Data Security-Application Security-Virtual Machine Security-Identity Management and Access Control-Autonomic Security.

# 9

9

#### 9 100

#### 9

#### **TEXT BOOKS:**

1. Joshy Joseph & Craig Fellenstein, "Grid Computing", PHI, PTR-2003(UNIT I)

2.Kai Hwang, Geoffrey C Fox,Jack G Dongarra "Distributed and Cloud Computing ,From parallel processing to the Internet of Things" Morgan Kaufmann Publishers,2012(Unit-II to Unit-V)

#### **REFERENCE BOOKS:**

- 1. John W.Rittinghouse and James F.Ransome, "Cloud Computing Implementation, Management and Security", CRC Press, 2010
- 2. Toby Velte, Anthony Velte, Robert Elsenpeter,"Cloud Computing, A Practical Approach", TMH, 2009.
- 3. Kumar Saurabh,"Cloud Computing –Insights into New-Era Infrastructure ", Wiley India, 2011
- 4. George Reese, "Cloud Applications Architectures: Building Applications and Infrastructure in the Cloud" O'Reilly.

5. https://benzology.files.wordpress.com/2013/05/grid-computing-joshy-joseph-ebook.pdf

6.http://cloudipedia.com/files/2009/11/cloud_computing_made_easy.pdf

BCS0	B DISTRIBUTED OPERATING SYSTEMS	L	Т	P	С
	Total Contact Hours – 45	3	0	0	3
	Prerequisite -Nil				
	Course Designed by – Dept. of Computer Science and E	ngineerin	g.		
OBJE	TIVES				
•	Γο provide hardware and software issues in modern distributed	ystems.			
•	Го get knowledge in distributed architecture, naming, syn	chronizat	ion, co	nsistenc	y and
	replication, fault tolerance, security, and distributed file systems				
•	Fo analyze the current popular distributed systems such as peer-	to-peer (I	P2P) sys	stems w	ill also
	be analyzed.				
COUR	E OUTCOMES (COs)				
CO1	To provide hardware and software issues in modern distributed	systems.			
CO2	To get knowledge in distributed architecture, naming, syn	chronizat	ion, co	nsistenc	y and
	replication, fault tolerance, security, and distributed file systems	•			
CO3	To analyze the current popular distributed systems such as p	er-to-pe	er (P2P	) system	ns will
	also be analyzed.				
CO4	To know about Shared Memory Techniques.				
CO5	Have Sufficient knowledge about file access.				
CO6	Have knowledge of Synchronization and Deadlock.				
	Mapping of Course Outcomes with Program outco	mes (PO	s)		
	(H/M/L indicates strength of correlation) H-High, M-M	ledium, l	L-Low		

1	COs/POs	a	b	с	d	e	f	g		h		i	j	k	
2	CO1	Μ		Н											
	CO2		Н	Н	М										
	CO3	L	Μ	Н											
	CO4														
	CO5		Μ	М	Η										
	CO6	Μ	М	Н	Μ										
3	Category	Humanities & Social Studies (HS)		Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)		Core Elective (CE)		Non-Major Elective	(NE)	Open Elective (OE)	Project/Term	Paper/ Seminar/ Internship (PR)
											γ				
4	Approval	37 th N	Aeeting	g of A	cadem	nic Cou	incil, M	lay 20	)15	·				•	

#### **MODES OF COMMUNICATION** UNIT I

System Process, Interrupt Handling, Handling Systems calls, Protection of resources & Resources Management Micro-Kernel Operating System.

#### **UNIT II REVIEW OF NETWORK OPERATING SYSTEM**

Distributed Operating System, Issue in the design of Distributed Operating System, Overview of Computer Networks. Inter process communication, Linux, IPC Mechanism, Remote Procedure calls, RPC exception handling, Security issues, RPC in Heterogeneous Environment (case study Linux RPC)

#### UNIT III **RESOURCE MANAGEMENT**

Clock Synchronization, Logical clocks, Physical clocks, clock synchronization algorithms, Mutual Exclusion, Election Algorithms, Dead locks in Distributed Systems. Thrashing, Heterogeneous DSM, Resource Management (Load Balancing approach, Load Sharing approach), Process Management: process Migration, Thread.

#### **UNIT IV OVERVIEW OF SHARED MEMORY**

Consistency model, Page based Distributed Shared Memory, Shared -variable Distributed Memory, Object -based Distributed Memory.

#### **FILE MODELS** UNIT V

File access, File sharing, file-caching, File Replication, fault Tolerance, Network File System, (Case study, 8NFS on Linux Directory Services, Security in Distributed File system).

#### **TEXT BOOKS:**

- 1. M. Beck et al," Linux Kernel Programming", 3rd edition, 2002.
- 2. B.W. Kernighan and R Pide, "The Unix Programming Environment", Prentice Hall of India-2000.

#### **REFERENCE BOOKS:**

9

9

9

9

- 1. Silberschatz, P.B. Garvin, Gagne," Operating System Concepts", 2009.
- 2. https://www.cs.columbia.edu/~smb/classes/s06-4118/l26.pdf

BC	CS603		ART EXP	IFIC ERT	CIAL ' SYS	INT TEM	ELLIG IS	ENCE &	;		L	Т	P	C	
			Total	Con	tact I	Iours	- 45				3	0	0	3	
			Prere	quisi	te – ľ	Nil					•	•			
			Cours	se De	esigne	ed by	– Dept.	. of Comp	outer Sc	ience a	nd Eng	ineerir	ıg.		
OF	BJEC	TIVE	S												
Th	e purp	pose of	f this c	ours	e is to	o imp	art conc	epts of A	rtificial	Intellig	gence a	nd Exp	pert S	ystem.	
CC	OURS	E OU	TCO	MES	(CO	s)									
C	D1	Descr	ribe th	e mo	odern	view	of AI a	s the stud	y of ag	ents tha	t receiv	ve perc	epts	from the	
		Enviro	onmen	t and	perfe	orm a	ctions.								
C	D2	Demo	onstrat	e awa	arene	ss of	informe	ed search	and exp	oloration	n metho	ods.			
C	03	Expla	in abo	ut A	I tech	nique	es for 1	knowledg	e repres	sentatio	n, plan	ning a	nd un	certainty	
C	D4	Devel	op kno	wlec	lge of	f deci	sion ma	king and	learnin	g metho	ods.				
C	CO5 Describe the use of AI to solve English Communication problems.														
C	D6   Explain the concept Knowledge Representation.														
	Mapping of Course Outcomes with Program outcomes (POs)														
	90	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
1	COs	/POs	a	b	с	d	e	f	g	h	1	j	k		
2	C01			Η		H								_	
	CO2		M			H		M	м					_	
	$CO_3$			м		н ц		IVI	IVI						
	CO5		М	111		H		Н						_	
	CO6	,	L	М		Μ		М							
3	Categ	gory					·							r/	
			ocial		(BS		ES)	(PC	CE)	tive		JE)		ape R)	
			& Sc HS)		s &		ces (	lore	ve ((	LIPC		ve ((		n P ar/ ) (P	
			ies d ies (		ence		vien (	al C	ecti	ior	NE	ecti		Terr min shif	
			anit Stud		Sci		м м	sions	e El	-Ma		n El		ct/J Sei ern:	
			Hum		asic		Eng	ofes	Core	NoN		Ope		roje Int	
					В			Pn						Ρ	
										$\checkmark$					
4	App	roval	37 th	Mee	eting	of Ac	ademic	Council,	May 20	)15					

### UNIT I PROBLEMS AND SEARCH

9

Searching strategies- Uninformed Search- breadth first search, depth first search, uniform cost seart, depth limited search, iterative deepening search, bidirectional search - Informed Search-
Best first search , Greedy Best first search , A* search – Constraint satisfaction problem , Local searching strategies.

### UNIT II REASONING

Symbolic Reasoning Under Uncertainty- Statistical Reasoning - Weak Slot-And-Filler-Structure - Semantic nets – Frames- Strong Slot-And-Filler Structure-Conceptual Dependency-Scripts-CYC.

#### UNIT III KNOWLEDGE REPRESENTATION

Knowledge Representation - Knowledge representation issues - Using predicate logic - Representing Knowledge Using Rules. Syntactic- Semantic of Representation – Logic & slot and filler - Game Playing – Minimal search- Alpha beta cutoffs –Iteratic deepening planning – component of planning system – Goal stack planning.

#### UNIT IV NATURAL LANGUAGE PROCESSING

Natural Language Processing –Syntactic processing, semantic analysis-Parallel and Distributed AI-Psychological modeling- parallelism and distributed in reasoning systems – Learning - Connectionist Models – Hopfield networks, neural networks

#### UNIT V EXPERT SYSTEMS

Common Sense –qualitative physics, commonsense ontologies- memory organization -Expert systems –Expert system shells- explanation – Knowledge acquisition -Perception and Action – Real time search- robot architecture.

#### **TEXT BOOKS:**

Elaine Rich, Kevin Knight, "Artificial Intelligence", 3/e, Tata McGraw Hill, 2009.
 Russell, "Artificial intelligence : A modern Approach, Pearson Education, 3rd edition, 2013

#### **REFERENCE BOOKS:**

1. Artificial Intelligence and Expert system by V.Daniel hunt, Springer press, 2011.

2. Nilsson N.J.,"Principles of Artificial Intelligence", Morgan Kaufmann.1998.

3. http://www.ggu.ac.in/download/Class-Note13/Artificial%20Intelligence

%20and%20Expert%20System24.10.13.pdf

# NON MAJOR ELECTIVE-III

BBM	405	<b>BIOSENSORS AND TRANSDUCER</b>	L	Т	Р	С								
		Total Contact Hours – 45	3	0	0	3								
		Prerequisite –Biology for Engineers.												
		Course Designed by – Dept. of Bio Medical Engineering.												
OBJE	ECTIV Und	<b>ES</b> erstand the purpose of measurement, the methods of measu	iremen	ts erro	ors asso	ciated								
	with	Understand the purpose of measurement, the methods of measurements, errors associated with measurements.												
•	Kno	w the principle of transduction, classifications and the c	haract	eristics	of dif	ferent								
	trans	transducers and study its biomedical applications.												
COU	RSE (	OUTCOMES (COs)												
CO1	Desc	ribe the purpose and methods of measurements.												

9

9

9

CC	02 Explain differ	ent di	ispla	y and	recor	ding c	levices	for v	ario	ous app	pli	cations			
CC	03 Know the pr	incip	le o	f tran	sduct	ion, c	lassific	atior	ns a	and the	e	charact	eristic	s of	different
	transducers ar	nd stu	dy 11	ts bion	nedic	al app	lication	S							
CC	04 Remember a	nd ur	nders	stand	the c	concep	ots, typ	es,	wor	king a	anc	l pract	ical a	pplica	tions of
	important bio	senso	rs.												
CC	05 Know some o	f the	com	monly	used	biom	edical t	rans	duc	ers.					
CC	06 Know the diff	erent	disp	olay an	d rec	ording	g device	es.							
	Μ	appin	g of	Cours	e Ou	tcome	s with H	Prog	ram	outco	m	es (PO	s)		
	(H/M/L	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
1	COs/POs     a     b     c     d     e     f     g     h     i     j     k														
2	CO1 M H M H H M H L M														
	CO2	Μ	Η	Μ	Η	Η	Μ	Η					L	М	
	CO3	Μ	Η	Μ	Η	Η	Μ	Η					L	М	
	CO4	Μ	Η	Μ	Η	Н	Μ	Η					L	Μ	
	CO5	Μ	Η	Μ	Η	Η	Μ	Η					L	Μ	
	CO6	Μ	Η	М	Н	Н	Μ	Н					L	М	
3	3 Category		(HS)	Basic Sciences (BS)	Engg Sciences	(ES)	Professional Core (PC)		Core Elective	(CE)	Non-Major	<ul> <li>Elective (NE)</li> </ul>	Open Elective (OE)	Project/Term	Seminar/ Internship
												N			
4	Approval	37 ^{tl}	ⁿ M	eeting	of A	cadem	ic Cou	ncil,	Ma	y 2015	5				

#### UNIT I SCIENCE OF MEASUREMENT

Units and Standards - calibration methods - statics calibration - classification of errors, error analysis - statistical methods - odds and uncertainity.

#### UNIT II CHARACTERISTICS OF TRANSDUCERS

Static characteristics - accuracy, precision, sensitivity, linearity etc - mathematical model of transducers - zero first - order and second - order transducers - response to impulse step, ramp and sinusoidal inputs.

#### UNIT III VARIABLE RESISTANCE TRANSDUCERS

Principle of operation, construction details, characteristics and applications of resistance potentiometers, strain gauges, resistance thermometers, thermistors, hot-wire aneometer, piezoresistive sensors and humidity sensors.

#### UNIT IV BIOSENSORS - PHYSIOLOGICAL RECEPTORS - J RECEPTORS 9

Chemoreceptors, Baroreceptors, Touch receptors, Biosensors - Working Principle and Types, Applications.

#### UNIT V OTHER TRANSDUCERS

Piezoelectric tranducers, magnetostrictive transducer, IC sensor digital transducers - smart sensor - fibre optic transducers.

9

9

9

### **TEXT BOOKS:**

1. Doeblin. E. O, Measurment Systems, McGraw Hill Book Co. 1998

### **REFERENCE BOOKS:**

- 1. Renganathan S, Transducer Engineering, Allied Publishers, Chennai, 2000.
- 2. https://www1.ethz.ch/lbb/Education/Biosensors/Lecture_1_overview.pdf

BF	EI704	VIR	TUA	L IN	STRU	JME	NTA	ΓΙΟΝ					L	Т	P		С
		Tota	l Con	tact ]	Hours	- 45							3	0	0		3
		Prere	quisi	te –	Electro	onic	Instru	nentati	on								
		Cour	se De	esign	ed by	– De	pt. of	Electro	nics	& Iı	nstrur	nentatio	on En	gine	ering	7	
O	BJECTIV	ES															
	• To p	rovide	know	ledg	ge on	desig	gn of	process	s coi	ntrol	l by	using v	irtua	l ins	trum	enta	ation
	techn	iques															
	• To pr	ovide k	nowl	edge	e in pro	ocess	analy	sis by V	/I to	ols.							
	• To gi	ve basi	c kno	wled	lge in	desci	ribing	functio	n ana	alysi	is.						
	• Get a	dequate	e knov	wled	ge VI	tool	sets			•							
C	DURSE O	UTCO	MES	(C(	<u>)</u> ()												
C	01 To d	escribe	abou	t vir	tual in	strun	nentati	ion.									
CC	D2 Get	Get adequate knowledge VI tool sets															
CC	D3 To d	describe data acquisition															
CC	D4 Tog	To get introduced to VI programming techniques															
CC	5 To understand VI programming techniques																
CC	06 To g	et an ac	lequa	te kr	nowled	lge a	pplica	tion of	virtu	al ir	nstrur	nentatio	n				
Ma	apping of (	Course	Outco	omes	s with	Prog	ram o	utcome	s (P	Os)							
(H	/M/L indic	cates sti	ength	n of o	correla	tion)	H-H	ligh, M	-Mee	diun	n, L-I	LOW					
1	COs/POs		a	b	c	d	e	f	g		h	i	j	k	C C		
2	CO1		Μ	Μ	Μ	Η	Μ		Μ				L	Ι			
	CO2		Η	Μ	Μ	Η	Η		Μ				L	Ι			
	CO3		H	M		H	H		M				L	I			
	<u>CO4</u>		H	M		H	H		M					I			
	<u>CO5</u>		H	M	M	H	H		M								
3	Cotogory		н			н	н		IVI						-		
5	Calegory		l &	(cH	nces	lces		Core		CE)		tive	OE)	`	Ш		R)
			J ae	S	cie	ciel				ve (		Elec	ve (I	·	ſen	r/ 9r/	(D)
			ties	Inni	01	0	l	onal		ecti		jor	ecti		ct/	ape	hip
			iani S I S	6 10	<u>с</u>	<u>ں</u>	,	essi		E		-Ma	пЕI		.oje	E P	SUT
	Profession PC) PC													Inte			
				4			- <u> </u>			<u> </u>			+				
												۷					
4	Approval		37 ^{tl}	h Mo	eeting	of A	cadem	ic Cou	ncil,	May	y 201	5					

### UNIT I INTRODUCTION

Virtual Instrumentation: Historical perspective - advantages - block diagram andArchitecture of a virtual instrument - Conventional Instruments versus TraditionalInstruments - data-flow techniques, graphical programming in data flow, comparison with conventional programming.

#### UNIT II VI PROGRAMMING TECHNIQUES

VIs and sub-VIs, loops and charts, arrays, clusters and graphs, case and sequenceStructures, formula nodes, local and global variables, State machine, string and file I/O,Instrument Drivers, Publishing measurement data in the web.

#### UNIT III DATA ACQUISITION

Introduction to data acquisition on PC, Sampling fundamentals, Input/output techniquesAnd buses. Latest ADCs, DACs, Digital I/O, counters and timers, DMA, Software andHardware installation, Calibration, Resolution, Data acquisition interface requirements –Issues involved in selection of Data acquisition cards – Data acquisition cards with serialCommunication - VI Chassis requirements. SCSI, PCI, PXI system controllers, EthernetControl of PXI. Networking basics for office & Industrial applications, VISA and IVI.

#### UNIT IV VI TOOLSETS

Use of Analysis tools, Fourier transforms, power spectrum, correlation methods, Windowing and filtering. Application of VI in process control designing of equipments like oscilloscope, Digital multimeter, Design of digital Voltmeters with transducer input Virtual Laboratory, Web based Laboratory

#### UNIT V APPLICATIONS

Distributed I/O modules- Application of Virtual Instrumentation: Instrument Control,Development of process database management system, Simulation of systems using VI, Development of Control system, Industrial Communication, Image acquisition and processing, Motion control. Development of Virtual Instrument using GUI, Real-time systems, Embedded Controller, OPC, HMI / SCADA software, Active X programming.

#### **TEXT BOOKS:**

- 1. Gary Johnson, Lab VIEW Graphical Programming, Second edition, McGraw Hill, Newyork, 1997.
- 2. Lisa K. wells & Jeffrey Travis, Lab VIEW for everyone, Prentice Hall, New Jersey, 1997.

#### **REFERENCE BOOKS:**

1. Kevin James, PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Newness, 2000.

<b>BET603</b>	TELECOMMUNICATION SWITCHING SYSTEMS	L	Т	Р	С								
	Total Contact Hours – 45	3	0	0	3								
	Prerequisite –Computer Communication & Networks												
	Course Designed by – Dept. of Electronics and Telecommunication Engineering.												
OBJECTIV	BJECTIVES												
• To l	earn about the concepts of switching system and networks in de	tail.											
COURSE O	OURSE OUTCOMES (COs)												
CO1	To learn about the various switching systems												

#### 9

9

9

	CO2	To	o learn in de	etail a	bout	time (	division s	switch	ning.							
	CO3	To	o know abo	ut tra	ffic m	anag	ement.									
	CO4	To	o understand	d abo	ut var	ious	signaling	g in tel	econ	nmu	inicatio	on s	ystems	5		
	CO5	To	o analyse va	rious	telec	omm	unicatior	n netw	orks							
	CO6	To	o estimate tl	ne pe	rform	ance	of teleco	mmur	nicati	on r	networ	ks.				
		(1	Mapping	g of C	Course	e Out	comes w	ith Pr	ograi	m o	utcom	es (	POs)			
-	<b>GO</b> ( <b>D</b> O	()	H/M/L indic	cates	streng	gth of	correlati	on)	H-H1	gh,	M-Me	diu	<u>m, L-L</u>	ow ·		1
1	COs/POs	5	а	b	с	d	e	t	g	5	h		1	J	k	
2	CO1		<u>M M M</u> <u>M</u>													
	CO2		M         M         M           H         H         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L													
	CO3		М	Μ	Η	Μ	М							Μ		
	CO4		М		L								М		Μ	
	CO5		Η	Μ					Μ				Μ			
	CO6		М		Μ		Μ	Μ			Η		Μ	Μ		
3	CO6 M 3 Category Social Studies (HS) Amount is a second state of the second state o				Basic Sciences (BS)		Engg Sciences (ES)	Professional Core		Core Elective (CE)		✓ Non-Maior Elective	(NE)	Open Elective (OE)	Project/Term Paper/	Seminar/ Internship (PR)
			ogth be	•		<u> </u>			0.01			'				
4	Approva	l	3/ ^m Meet	ting c	of Aca	demi	c Counci	I, Ma	y 201	15						

#### UNIT I SWITCHING SYSTEMS

Introduction-Message switching-Circuit switching-Manual switching-Functions of switching system- Strowger step by step system-Register translator-Senders-Distribution frames-Cross bar systems-General trunking-Electronic switching-Reed electronic systems-Digital switching systems.

#### UNIT II TIME DIVISION SWITCHING

Introduction-Space and time switching-Time division switching networks-grades of services-Time division switching networks-non blocking networks-synchronization.

#### UNIT III TELECOMMUNICATION TRAFFIC

Introduction-Unit of traffic-Congestion-Traffic measurement-A mathematical model-Local calls systems-Queuing systems.

#### UNIT IV TELECOMMUNICATION SIGNALLING

Introduction-Customer line signaling- Audio frequency junction and trunk circuits-FDM carrier systems-PCM signaling- Inter register signaling- Common channel signaling principles-CCITT signaling, CCITT signaling, Digital customer line signaling.

#### UNIT V TELECOMMUNICATION NETWORKS

9

9

9

9

Introduction-Analog networks-Integrated digital networks-Integrated service digital networks-Cellular radio networks-Intelligent networks-Private networks-numbering-charging-Routing-Network management.

#### **TEXT BOOKS:**

1. J.E FLOOD, "telecommunication switching, traffic and networks" Pearson education.

#### **REFERENCE BOOKS:**

1. T.V.SWAMINATHAN, telecommunication switching system & networks, PHI. 2.http://www.newagepublishers.com/samplechapter/000969.pdf

# **OPEN ELECTIVE-I**

	TOTAL QUALITY MANAGEMENT	L	Т	P	С									
BBA008	Total Contact Hours – 45	3	0	0	3									
	Prerequisite – Professional Courses		•		•									
	Course Designed by – Dept. of Management stud	lies												
OBJEC	ΓΙVES													
• T	o introduce to the student about the basic terms related to	quality	and co	ncepts o	of quality									
n	nanagement													
• T	o familiarize the student about the basic principles of tota	quality	manag	gement										
• T	To acquaint the student with the basic statistical tools used in process control													
• T	<ul> <li>To introduce to the student about the various tools used in implementing and checking</li> </ul>													
te	tal quality management	P		-8										
COURS	F OUTCOMES (COs)													
CO1	By understanding about various quality terms it will	be hel	oful fo	r the s	tudent to									
001	maintain quality in his/her organization		<b>10</b>	i une s										
CO2	The student will be able to formulate new plans/pro	cedures	to be	implen	nented to									
	achieve the desired quality status by knowing about the	e variou	ıs prin	ciples o	of quality									
	management													
CO3	The student will be able to analyze the periodical data in	quality	contro	l using										
	statistical tools													
CO4	The total quality management tools will help the studen	it to unc	lerstan	d the pr	ocedures									
	in measuring the quality of the organization/process a	nd will	also er	hable h	im/her to									
	identify the parameters that are improving/depriving the quality													
CO5	By knowing about the quality ISO systems, the student	vill be n	naintaii	1										
	processes/documentation properly so that the quality ma	intained	by his	/her										

		orga	nizati	on g	gets reco	ogniz	zed										
(	CO6	To f	famili ity of	ariz a co	e the storm of the storm of the store of the	tudeı /indu	nt abou 1stry/org	t the ganiza	diffe tion	erent qu	uality syst	ems u	sed in	auditing the			
		1	M	appi	ing of C	lours	e Outco	mes v	with	Program	n outcome	es (PO	s)				
	-	(H	H/M/I	_ inc	licates s	stren	gth of c	orrela	tion)	H-Hi	gh, M-Me	<u>dium, I</u>	L-Low				
1	COs/F	POs	а	b	с	d	e	f	g	h	i	j	k				
2	CO1		M H M L L														
	CO2		M H M H L L														
	CO3		M     H     M     H     L     L       M     H     M     H     M     L     L														
	CO4			$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
	CO5			H     H     M     H     M     L     L       H     H     M     H     M     L     L													
	CO6		H         H         M         H         M         L         L           H         H         H         M         H         L         L														
3	CO6HHumanities & Social Studies (HS)Social Studies (HS)Basic Sciences & Maths (BS)Maths (BS)						Engg Sciences (ES)	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective	(OE) Droiaot/Tarm	Paper/ Paper/ Seminar/ Internship (PR)			
4	Appro	oval	37 th	M	eeting o	f Ac	ademic	Coun	cil, N	Aay 20	15						

#### UNIT I INTRODUCTION

Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs – Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation

#### UNIT II TQM PRINCIPLES

Customer satisfaction – Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures – Basic Concepts, Strategy, Performance Measure.

#### UNIT III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

#### UNIT IV TQM TOOLS

Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) – Concept, Improvement Needs, and FMEA –Stages of FMEA.

#### UNIT V QUALITY SYSTEMS

9

#### 9 .

9

#### .

9

Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System –Elements, Implementation of Quality System, Documentation, Quality Auditing, TS16949, ISO 14000 – Concept, Requirements and Benefits

#### **TEXT BOOKS:**

1. Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education, Inc.2003. (Indian reprint 2004). ISBN 81-297-0260-6.

#### **REFERENCE BOOKS:**

- 1. Evans. J. R. & Lindsay. W,M "The Management and Control of Quality", (5th Edition), South Western (Thomson Learning), 2002 (ISBN 0-324-06680-5).
- 2. Feigenbaum.A.V. "Total Quality Management", McGraw-Hill, 1991.
- 3. Oakland.J.S. "Total Quality Management", Butterworth Heinemann Ltd., Oxford, 1989.
- 4. Narayana V. and Sreenivasan, N.S. "Quality Management Concepts and Tasks", New Age International 1996.
- 5. Zeiri. "Total Quality Management for Engineers", Wood Head Publishers, 1991.

		]	PRINC	CIPL	ES OF	MANA	GE	MEN	T AND		L	Т	P		С
BI	BA001	. (	ORGA	NIZ	ATION	ALBE	HA	VIOU	R						
		r	Total C	ontac	et Hours	5 – 45					3	0	0	3	
		]	Prerequ	iisite	– Profe	essional	l Co	urses							
		(	Course	Desi	gned by	– Dep	artm	nent of	Manag	ement	Studie	es			
0	<b>BJEC</b>	TIVI	ES												
	•	Fan	niliariz	e the	e studei	nts wit	h th	ne fun	dament	al con	cepts	of M	anage	ment	and to
		hig	hlight t	he ap	proache	es in or	gani	zation	behavio	or					
C	OURS	E O	UTCO	MES	(COs)										
C	201	Understanding the concepts of Management													
C	CO2	2 Knowledge on Management Functions													
0	203	03 Understanding the Organization Theory & Approach.													
C	204	Kno	wledge	e on t	he Conc	epts of	f Mo	otivatio	on						
C	205	Clea	ar insig	ht on	the fact	ors cor	ntrib	uting t	to discip	oline					
C	CO6	In-c	lepth U	Inder	standing	g about	the	conce	pts of G	roup B	Behavi	or			
			Ma	pping	g of Cou	irse Ou	tcon	nes wi	th Prog	ram ou	itcome	es (PO	s)		
		(]	H/M/L	indic	ates stre	ength o	f coi	rrelatio	on) H-1	High, I	M-Mee	lium, I	L-Lov	V	-
1	COs/	'PΟ	а	b	с	d	e	f	g	h	i		j	k	
	S														
2	CO1		Η					Н					]	H	-
	CO2 H					Μ					Н				-
	CO3 M									М		]	H		-
	CO4 M				М	Н							]	H	-
	CO5								Μ						-
	CO5         H           CO6         H														

3	Categor y	Humanities & Sciences(HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Project/Term Paper/ Seminar/ Internship (PR)
								N	
4	Approva 1	37 th Meet	ing of Ac	ademic C	ouncil, Ma	ay 2015	•		

#### UNIT -I NATURE OF MANAGEMENT

Definition – theory and practice – effective management – Management : Science of Art – Management in India. Development of Management thoughts – Taylor's – Henry Fayol – Hawthrone experiment – Barnard & Social system – Herbert Simon – Peter Drucker – Various approaches – Management thoughts.

#### UNIT- II MANAGEMENT PROCESS

Co-ordination – Functions of management – Managers and environment – External and internal Business Ethics – Planning – Fundamentals – Definitions & Features – Steps in planning – types of planning – Objectives – Concepts and features – Hierarchy of objectives – role – Process of MBO – Policy & Strategy – Decision making process – Individual Vs Group Decisions.

#### UNIT- III ORGANIZATION STRUCTURE

Organizing – Theory & Approach –Authority & Responsibility – Delegation – Centralization & Decentralization – Line & Staff Relationship – Staffing – Fundamentals – System approach – Manpower Planning – Recruitment & Selection – Training and development – Performance appraisal – Direction – Fundamentals Motivation – Theories of Motivation-Maslow's Hersberg's MaClelland's theory X,Y & Z leadership – Theories and Styles – Communication – Type – Controlling – System and Process.

#### UNIT- IV ORGANIZATIONAL BEHAVIOUR

Definition – Organization – Managerial Role and Functions – Organizational Approaches, Individual behaviour – Causes – Environmental effect – Behaviour and performance, perception – Organizational implications, Personality – Contributing factors – Dimension, Motivation – Need Theories – Process Theories – Job satisfaction, Learning and Behaviour – Learning Curves, Work Design and Approaches.

#### UNIT -V GROUP BEHAVIOUR

Groups – Contributing factors –Group Norms, types – Causes – Intergroup relations – Conflict and Resolution – Change Process –Resistance to change.

#### **TEXT BOOKS:**

- 1. Herald Knootz and Heinz weihrich, 'Essentials of Management', McGraw Hill Publishing Company, Singapore International Edition, 2004.
- 2. Ties AF, Stoner and R. Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd., New Delhi -110011, 1995.

#### **REFERENCE BOOKS :**

9

9

9

9

- 1. Joseph I. Massie 'Essentials of Management', Prentice Hall of India Pvt. Ltd, New Delhi 110011, 2004.
- 2. L.M. Prasad "Principles and Practice of Management", Sultan Chand & Sons.2001
- 3. Uma Sekaran, "Organizational Behaviour", Tata McGraw Hill, 2007.

BI	3A004	ENGIN	IEER	RIN	G EC	ONC	OMIC	S AND	)			Ι		Т	P	•	С
		FINAN	[CIA]	LM	IANA	GEN	<b>AEN</b> T	[									
		Total C	ontac	t Ho	ours -	45						3		0	0		3
		Prerequ	isite -	-Pro	ofessi	onal (	Course	es									
		Course	Desig	gnec	l by –	Dept	t. of M	lanage	ment	t Stu	udies						
0	BJECT	IVES															
•	Ac	quire kn	owlee	dge	of e	cono	mics	to fac	ilitat	e tł	ne pro	ocess	of	econ	omic	de de	ecision
		ma	king														
•	Ac	quire kno	wled	lge o	on bas	sic fir	nancia	l mana	geme	ent a	aspect	S					
•	De	velop the	skill	s to	analy	ze fii	nancia	l stater	nent	s	-						
C	OURSE	OUTCO	OME	<b>S (C</b>	COs)												
C	D1 Ev	aluate the	e ecor	nom	ic the	ories	, cost	concep	ts an	d p	ricing	polic	ies				
C	D2 Un	derstand	the m	nark	et stru	ucture	es and	integra	ation	con	ncepts						
C	O3 Un glo	derstand balizatio	the m n	neas	ures o	of nat	ional	income	e, the	fur	octions	s of b	ank	and	conc	epts	s of
C	<ul> <li>Apply the concepts of financial management for project appraisal</li> <li>Understand accounting systems and analyze financial statements using ratio analysis</li> </ul>																
C	O5 Understand accounting systems and analyze financial statements using ratio analysis																
C	CO6 Understand the impact of inflation, taxation, depreciation. Financial planning,																
	economic basis for replacement, project scheduling, and legal and regulatory issues are																
	inu	roduced a	ind ap	pile g of	$\frac{20100}{Cour}$		tcom	nvestm	Pro	ana	projec	come	nag	$\frac{\text{ement}}{2}$	. prot	blen	ns.
		(H/M/L	indic	ates	s strer	igth c	of corr	elation	) H	-Hi	gh. M	-Med	iun	03) 1. L-L	ow		
1	COs/P	Os	a	b	с	d	e	f	ģ	5	h	i	i	j	k		
2	CO1		Η					Μ	Ĩ					M			
	CO2		Μ	L	Η						L						
	CO3		Η			Η						Η					
	CO4		Μ	-			Η		Μ						Μ	_	
	CO5			L				TT									
3	Cotego	rv						п									
5	Calego	ı y	al					$\widehat{\mathbf{G}}$				NE)		$\odot$		er/	_
			Soci	ò	(BS	(F	į	(PC		(CE		ve (		(OE		Pap	PR
			8	Ë)	lces	seu	2	Core		ive		lecti		ive		m]	nar, ip (
	T I er El cien al cien ities													imi Ishi			
	mani Stur Sic S Sic S Sud Majic Se E F													Set			
	rojć Op on-Mars Bass Bass													In			
	Ă Z H																
														$\checkmark$			
4	Approv	val	37 ^t	h M	leetin	g of A	Acade	mic Co	unci	1, N	lay 20	)15		1			
						-					-						

#### UNIT I ECONOMICS, COST AND PRICING CONCEPTS

Economic theories – Demand analysis – Determinants of demand – Demand forecasting – Supply – Actual cost and opportunity cost – Incremental cost and sunk cost – Fixed and variable cost – Marginal costing – Total cost – Elements of cost – Cost curves – Breakeven point and breakeven chart – Limitations of break even chart – Interpretation of break even chart – Contribution – P/V-ratio, profit-volume ratio or relationship – Price fixation – Pricing policies – Pricing methods.

#### UNIT II CONCEPTS ON FIRMS AND MANUFACTURING PRACTICES 9

Firm – Industry – Market – Market structure – Diversification – Vertical integration – Merger – Horizontal integration

#### UNIT III NATIONAL INCOME, MONEY AND BANKING, ECONOMIC ENVIRONMENT 9

National income concepts – GNP – NNP – Methods of measuring national income – Inflation – Deflation – Kinds of money – Value of money – Functions of bank – Types of bank – Economic liberalization – Privatization – Globalization

#### UNITIV CONCEPTS OF FINANCIAL MANAGEMENT 9

Financial management – Scope – Objectives – Time value of money – Methods of appraising project profitability – Sources of finance – Working capital and management of working capital

#### UNITV ACCOUNTING SYSTEM, STATEMENT AND FINANCIAL ANALYSIS 9

Accounting system – Systems of book-keeping – Journal – Ledger – Trail balance – Financial statements – Ratio analysis – Types of ratios – Significance – Limitations

#### **TEXT BOOKS:**

- 1. Prasanna Chandra, Financial Management (Theory & Practice) TMH
- 2. Weston & Brigham, Essentials of Managerial Finance

#### **REFERENCE BOOKS:**

1.Pandey, I. M., —Financial Management

2.Fundamentals of Financial Management - James C. Van Horne.

3. http://stanford.edu/dept/MSandE

#### **OPEN ELECTIVE-II**

<b>BEI701</b>	LOGIC AND DISTRIBUTED CONTROL SYSTEM	L	Т	Р	С							
	Total Contact Hours - 45	3	0	0	3							
	Prerequisite –Control Systems											
	Course Designed by – Dept of Electronics & Instrumentation Engineering											

#### **OBJECTIVES**

- To give an introductory knowledge on Programmable Logic Controller (PLC) and their Programming languages
- To give adequate knowledge about applications of PLC
- To give basic knowledge about Computer Controlled Systems
- To give basic knowledge on the architecture and local control unit of Distributed Control System(DCS)
- To give adequate information with respect to interfaces used in DCS

C	OUR	SE OUI	COMES	6 (CC	Ds)										
CC	D1	To get a	an introdu	ictor	y kno	wledg	ge on l	PLC an	d Pr	ogramr	ning	g Lang	uages		
CC	D2	To get A	Adequate	knov	wledg	e abo	ut app	olicatio	n of I	PLC					
CC	03	To get b	oasic kno	wlea	lge ab	out c	ompu	ter con	trolle	d syste	ms				
CO	D4	To get b	basic kno	wled	ge on	the a	rchite	cture a	nd lo	cal con	trol	unit of	Dist	ribute	ed Control
	25	System	(DCS)	<u> </u>	1	1	1.	·· · · ·	DI C						
	)5 )6	To get a	an adequa	ite Kr	nowle	dge a	pplica	tion of	PLC	tenal area	tam	~			
		10 unde		e sys	stems	used	in ais	Induted		uroi sys	tem	S			
M	appir	ng of Cou	Irse Outc	omes	s with	Prog	ram (	outcom	es (P	Os)	<i></i>	1.	т т		
1	CO	(H/)	M/L indic	tates	stren	gth of	t corre	fation)	H-I	High, $\mathbb{N}$	1-M	edium	, L-L(	DW 1-	
1	CO	s/POs	а	D	с	a	e	Ι	g	n		1	J	К	
2	CO	M M M H M L L													
	CO	2	Н	Μ	Μ	Η	Н		Μ				L	L	
	CO	3	Н	Μ		Η	Η		Μ				L	L	
	CO	4	Н	Μ		Η	Н		Μ				L	L	
	CO	5	Н	Μ	Μ	Η	Η		Μ				L	L	
	CO	6	Н			Η	Η		Μ				L	L	М
3	Cat	egory	tial		ths			Û							er/
			Soc		Ma	ŝ		e (PC		(II)	1001	ומרו	Ê		ape
			æ		s &	s (E	/	Core		<u>(C</u>	Ľ	1	Ō		m F lar/ PR
			$\mathbf{S}$		nce	nce		al (		tive		-	tive		ler min p (
		initial     initial       initial     initial													
			man		sic (	sic 5		ofes		re l	4	E E	en I		oje tern
			HumStudStudStudBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasiBasi												
													$\checkmark$		
4	App	proval			37 ^t	^h Me	eting	of Aca	demi	c Coun	cil, I	May 2	015		

# UNIT I PROGRAMMABLE LOGIC CONTROLLER

9

9

Evolution of PLCs – Components of PLC – Architecture of PLC – Discrete and analog I/O modules – Programming languages -Ladder diagram – Function block diagram (FBD) - Programming timers and counters

# UNITII APPLICATIONS OF PLC

Instructions in PLC – Program control instructions, math instructions, data manipulation Instructions, sequencer and shift register instructions – Case studies in PLC



- 2. Krishna Kant, Computer Based Industrial Control, Second edition, Prentice Hall of India,New Delhi, 2010.
- 3. John W. Webb and Ronald A. Reis, 'Programmable Logic Controllers, Fifth edition, Prentice Hall of India, New Delhi, 2010.
- 4. John R. Hackworth and Frederick D. Hackworth Jr, Programmable Logic Controllers, Pearson, New Delhi, 2004.
- 5. Clarke, G., Reynders, D. and Wright, E., "Practical Modern SCADA Protocols: DNP3,4. 60870.5 and Related Systems", Newnes, 1st Edition, 2004.
- 6.E.A.Parr, Programmable Controllers, An Engineer's Guide, Elsevier, 2013.

BEI012		ANALOG INTEGRATED CIRCUIT DESIGN	L	Τ	P	С					
		Total Contact Hours – 45	3	0	0	3					
		Prerequisite – Linear Integrated Circuits									
		Course Designed by - Dept of Electronics & Instrumentation	n En	gineer	ring						
OBJE	OBJECTIVES										
	To have an adequate knowledge in the measurement techniques for power and energy										
	power and introduce the meters used to measure current & voltage.										
COUR	COURSE OUTCOMES (COs)										
CO1	To describe about single stage amplifier.										
CO2	To analyse high frequency and noise characteristics of amplifiers										
CO3	To analyse about feedback circuits and about Op-Amp performance characteristics.										
CO4	To learn about frequency compensation techniques										
CO5	To understand the stability of an Op-Amp										
CO6	To analyse Band gap references										

UNIT VINTERFACES IN DCS9Operator interfaces - Low level and high level operator interfaces - Displays - Engineeringinterfaces - Low level and high level engineering interfaces - Factors to be considered inselecting DCS - Case studies in DCS

DCS - Various Architectures - Comparison - Local control unit - Process interfacing issues -

#### **TEXT BOOKS:**

Communication facilities

UNIT IV

- 1. F.D. Petruzella, Programmable Logic Controllers, Tata Mc-Graw Hill, Third edition, 2010
- 2. Michael P. Lukas, Distributed Control Systems: Their Evaluation and Design, Van Nostrand Reinhold Co., 1986
- D. Popovic and V.P.Bhatkar,' Distributed computer control for industrial Automation'Marcel Dekker, Inc., Newyork, 1990.

#### UNIT III COMPUTER CONTROLLED SYSTEMS

DISTRIBUTED CONTROL SYSTEM

Basic building blocks of computer controlled systems – Data acquisition system – Supervisory control – Direct digital control- SCADA: - Hardware and software, Remote terminal units, MasterStation and Communication architectures.

9

Mapping of Course Outcomes with Program outcomes (POs)													
(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
1	COs/POs	a	b	с	d	e	f	g	h	i	j	k	
	<b></b>										_	_	-
2	CO1	M	Μ	М	Н	Μ		Μ			L	L	
	CO2	Н	Μ	Μ	Η	Η		Μ			L	L	
	CO3	Н	Μ		Η	Η		Μ			L	L	
	CO4	Н	Μ		Η	Η		М			L	L	
	CO5	Н	Μ	Μ	Η	Н		М			L	L	
	CO6	Н			Η	Н		Μ			L	L	
3	Category	Humanities & Social Studies (HS)		Basic Sciences & Maths (BS)	Basic Sciences (ES)	~	Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	✓ Open Elective (OE)	Project/Term Paper/ Seminar/	Internship (PR)
4	Approval	37 th Meeting of Academic Council, May 2015											

#### UNIT I SINGLE STAGE AMPLIFIERS

Basic MOS physics and equivalent circuits and models, CS, CG and Source Follower cascade and folded cascade configurations, differential amplifiers and current mirror configurations.

#### **UNIT II HIGH FREQUENCY AND NOISE OF CHARACTERISTICS AMPLIFIERS 9**

Current mirrors, cascade stages for current mirrors, current mirror loads for differential pairs. Miller effect, association of poles with nodes, frequency response of CS, CG and source follower, cascade and differential pair stages Statistical characteristics of noise, noise in single stage amplifiers, noise in differential amplifiers.

#### UNIT III FEEDBACK AND OPERATIONAL AMPLIFIERS

Properties and types of negative feedback circuits, effect of loading in feedback networks, operational amplifier performance parameters, One-stage Op Amps, Two-stage Op Amps, Input range limitations, Gain boosting, slew rate, power supply rejection, noise in Op Amps.

#### STABILITY AND FREQUENCY COMPENSATION UNIT IV

General considerations, multiple systems, Phase Margin, Frequency Compensation, and Compensation of two stage Op Amps, Slewing in two stage Op Amps, and Other compensation techniques.

#### **UNIT V BANDGAP REFERENCES**

Supply independent biasing, temperature independent references, PTAT current generation, Constant-Gm Biasing.

158

9

9

#### **TEXT BOOKS:**

- 1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 2001
- 2. Willey M.C. Sansen, "Analog Design Essentials", Springer, 2006.

#### **REFERENCE BOOKS:**

1. Grebene, "Bipolar and MOS Analog Integrated circuit design", John Wiley & sons, Inc., 2003.

- 2.Phillip E.Allen, DouglasR.Holberg, "CMOS Analog Circuit Design", Second edition, OxfordUniversity Press, 2002
- 3.Recorded lecture available at <u>http://www.ee.iitm.ac.in/~ani/ee5390/index.html</u>
- 4.Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEEPress 2010 3rd Edition

BET008			INTEGRATED SERVICES DIGITAL NETWORK								L	Т	Р	С	
			Tota	al Cont	act Hours	5 - 45						3	0	0	3
			Prer	equisit	e –Comp	uter (	Comm	unicati	on ar	nd I	Networl	٢S			
			Cou	rse De	signed by	– De	ept. of	Electro	onics	&	Tele Co	ommun	ication	Engin	eering
0	OBJECTIVES														
	• To Study basic concepts of ISDN standards and services.														
	• To develop knowledge in ISDN protocol Architecture and Signaling.														
	• To	o Stu	dy co	ncepts	of Broad	band	ISDN	[			-	_			
	• To	hav	e kno	wledge	e in Netw	ork p	erforn	nance N	Лode	ling	g and E	stimatio	on		
C	OURSE	τοι	JTCO	MES	(COs)						<i>.</i>				
	CO1	То	know	the bas	sics of ISI	DN,									
	CO2	Pro	tocols	involv	ed in ISD	N									
	CO3	To learn about Broad Band ISDN													
	CO4 To understand about network Management														
	CO5	То	Empo	wer kr	nowledge	in No	etwork	x Traffi	c Ma	inag	gement				
	CO6	То	Estim	ate the	Network	Perfo	rmanc	æ.							
			Μ	apping	of Cours	e Ou	tcome	s with l	Prog	am	outco	mes (P	Os)		
		(]	H/M/I	_ indica	ates stren	gth of	f corre	lation)	H-]	Hig	h, M-M	Iedium	, L-Lo	W	
1	COs/P	Os	a	b	с	d	e	f	g		h	1	j	k	
2	C01		H	14		Μ		М			т		M		
	C02		M	M	H U	ц	Ц		М		L	Ц			
	C03		M		п	п	п		IVI			п		М	
	C04		IVI	М			М		L			М		IVI	
	CO6			M	Н			Н				111	Μ		
3	Catego	Category _													
			Humanities & Socia Studies (HS)		Basic Sciences	Engg Sciences (ES)	)	Professional Core (PC)	Core Elective (CE)			Non-Major Elective (NE)		Project/Term	raper/ Seminar/ Internship (PR)

							$\checkmark$	
4	Approval	37 th Meetin	ng of Acad	emic Cou	incil, May 2	2015		

#### UNIT I ISDN – STANDARDS AND SERVICES:

Review of switching technologies and OSI protocol architecture, ISDN channels, access interfaces, functional devices and standards, ISDN bearer services and teleservice attribute, Broadband services.

9

9

9

9

#### UNIT II ISDN PROTOCOL ARCHITECTURE AND SIGNALI NG

Physical layer protocol, D-channel data link layer and layer 3 protocols, Network signaling systems, SS7 protocol overview and services, ISDN products, Switches, Multiplexers, Terminal adapters, ISDN chip sets.

#### UNIT III BROAD BAND ISDN

Frame Relay – concepts, protocols, applications and products, asynchronous transfer mode – concepts, protocols, application and products, switched multi megabit data service, Internetprotocol over ISDN frame relay and ATM.

#### UNIT IV NETWORK TRAFFIC MANAGEMENT

ATM traffic and congestion control, Traffic management framework, control mechanism and attributes, ABR traffic management

#### UNIT V NETWORK PERFORMANCE MODELING AND ESTIMATION 9

Queueing analysis, single server and multi server queues, Networks of Queues, Estimating model parameters, Self-similar traffic – performance implication, modeling and estimation

#### **TEXT BOOKS:**

- 1.Gary C. Kesslar and Peter Southwick, "ISDN concepts, facilities and services", McGraw Hill, 3rd Edition, 1997.
- 2.William Stallings, "High Speed Networks-TCP/IP and ATM Design Principles", Prentice Hall Inc., 1998.

#### **REFERENCE BOOKS:**

- 1. William Stallings, "High-Speed Networks and Internets: Performance and quality of Service" (2nd Edition), 2002
- 2. Balaji Kumar, "Broad Band Communications" McGraw-Hill, 1995
- 3. www.faadooengineers.com