Course Number and Name

BEE401 & Electrical Machines-II

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Mrs.Anitha Sampathkumar

Text Books and References

Text Books:

- 1. D.P. Kothari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2002.
- 2. P.S. Bhimbra, 'Electrical Machinery', Khanna Publishers, 7th Edition, 2011.
- 3. B.R Gupta," Fundamentals of Electric Machines ". New Age International (P) Limited 3rd Edition 2005

References:

- 1. A.E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill publishing Company Ltd, 2003.
- 2. J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons, 2002.
- 3. K. Murugesh Kumar, 'Electric Machines', VikasPublishing House Pvt Ltd, 2002.

Course Description

To give the students a fair knowledge on the working of various AC machines and the characteristics.

Prerequisites							Co-requisites							
Electrical Machines-I							Nil							
required, elective, or selected elective (as per Table 5-1)														
Required														
Course Outcomes (COs)														
CO1: To impart knowledge on Construction and performance of salient and non – salient														
type synchronous generators.														
CO2:To impart knowledge on Principle of operation and performance of synchronous														
motor.														
CO3:To impart knowledge on Construction, principle of operation and performance of														
induction machines.														
CO4:To impart knowledge on Starting and speed control of three-phase induction motors.														
CO5:To impart knowledge on Construction, principle of operation and performance of														
single phase induction motors and special machines.														
Student Outcomes (SOs) from Criterion 3 covered by this Course														
COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1		
CO1	Н	Н	М	L	L	Н	Μ	М	L	L	L	L		
	TT	м	м	т	т	TT	м	м	т	т	т	т		
02	Н	M	М	L	L	Н	M	M	L	L	L	L		
CO3	Н	М	М	L	L	Н	М	М	L	L	L	L		
CO4	Н	М	М	L	L	М	М	М	L	L	L	L		

	CO5	Н	Μ	Μ	L	L	L	Μ	Μ	L	L	L	L	ſ
														L
List of Topics Covered														
UNIT I SYNCHRONOUS GENERATOR										9				
Constructional details – Types of rotors – emf equation – Synchronous reactance – Armature														
reaction – Voltage regulation – EMF, MMF, ZPF – Synchronizing and parallel operation –														

reaction – Voltage regulation – EMF, MMF, ZPF –Synchronizing and parallel operation – Synchronizing torque - Change of excitation and mechanical input – Two reaction theory – Determination of direct and quadrature axis synchronous reactance using slip test – Operating characteristics.

UNIT II SYNCHRONOUS MOTOR

Principle of operation – Torque equation – Operation on infinite bus bars - V-curves – Power input and power developed equations – Starting methods – Current loci for Constant power input, constant excitation and constant power developed.

UNIT III THREE PHASE INDUCTION MOTOR

Constructional details – Types of rotors – Principle of operation – Slip – Equivalent circuit – Slip-torque characteristics - Condition for maximum torque – Losses and efficiency – Load test - No load and blocked rotor tests -Separation of no load losses – Double cage rotors – Induction generator – Synchronous induction motor.

UNIT IV SINGLE PHASE INDUCTION MOTOR AND STARTING METHOD 9

Constructional details of single phase induction motor – Double revolving field theory and operation – Equivalent circuit – No load and blocked rotor test – Performance analysis – Starting methods of single-phase induction motors .Need for starting – Types of starters – Rotor resistance, Autotransformer and Star-delta starters – Speed control method

UNIT V FRACTIONAL HORSE POWER MOTOR

Shaded pole induction motor - Linear reluctance motor - Repulsion motor - Hysteresis motor - AC series motor-variable reluctance motor -permanent magnet stepper motor –hybrid stepper motor - permanent magnet D.C motor- permanent magnet A.C motor .

9

9

9