
BEE501- CONTROL SYSTEM   

UNIT 1 

SYSTEMS AND THEIR REPRESENTATION 

Definition of Control System 
A control system is a system of devices or set of devices, that manages 
commands, directs or regulates the behavior of other device(s) or system(s) 
to achieve desire results. In other words the definition of control system can 
be rewritten as A control system is a system, which controls other system. 
As the human civilization is being modernized day by day the demand of 
automation is increasing accordingly. Automation highly requires control of 
devices. 

Requirement of Good Control System 
Accuracy: Accuracy is the measurement tolerance of the instrument and 
defines the limits of the errors made when the instrument is used in normal 
operating conditions. Accuracy can be improved by using feedback elements. 
To increase accuracy of any control system error detector should be present 
in control system. 
Sensitivity : The parameters of control system are always changing with 
change in surrounding conditions, internal disturbance or any other 
parameters. This change can be expressed in terms of sensitivity. Any control 
system should be insensitive to such parameters but sensitive to input signals 
only. 
Noise : An undesired input signal is known as noise. A good control system 
should be able to reduce the noise effect for better performance. 
Stability : It is an important characteristic of control system. For the bounded 
input signal, the output must be bounded and if input is zero then output must 
be zero then such a control system is said to be stable system. 
Bandwidth : An operating frequency range decides the bandwidth of control 
system. Bandwidth should be large as possible for frequency response of good 
controlsystem. 
Speed : It is the time taken by control system to achieve its stable output. A 
good control system possesses high speed. The transient period for such 
system is very small. 
Oscillation : A small numbers of oscillation or constant oscillation of output 
tend to system to be stable. 

 



 

 

 

Basic elements of control system: 

 In recent years, control systems have gained an increasingly importance in 
the development and advancement of the modern civilization and technology. 
Figure shows the basic components of a control system. Disregard the 
complexity of the system; it consists of an input (objective), the control system 
and its output (result). Practically our day-to-day activities are affected by 
some type of control systems. There are two main branches of control 
systems: 

  

1) Open-loop systems and 

2) Closed-loop systems. 

 

  

1. Open-loop systems: 

 The open-loop system is also called the non-feedback system. This is the 
simpler of the two systems. A simple example is illustrated by the speed 
control of an automobile as shown in Figure 1-2. In this open-loop system, 
there is no way to ensure the actual speed is close to the desired speed 
automatically. The actual speed might be way off the desired speed because of 
the wind speed and/or road conditions, such as uphill or downhill etc. 



 

Practical Examples of Open Loop Control System 
1. Electric Hand Drier - Hot air (output) comes out as long as you keep your 

hand under the machine, irrespective of how much your hand is dried. 
2. Automatic Washing Machine - This machine runs according to the pre-set 

time irrespective of washing is completed or not. 
3. Bread Toaster - This machine runs as per adjusted time irrespective of 

toasting is completed or not. 
4. Automatic Tea/Coffee Maker - These machines also function for pre 

adjusted time only. 
5. Timer Based Clothes Drier - This machine dries wet clothes for pre-

adjusted time, it does not matter how much the clothes are dried. 
6. Light Switch - Lamps glow whenever light switch is on irrespective of light 

is required or not. 
7. Volume on Stereo System - Volume is adjusted manually irrespective of 

output volume level. 

Advantages of Open Loop Control System 
1. Simple in construction and design. 
2. Economical. 
3. Easy to maintain. 
4. Generally stable. 
5. Convenient to use as output is difficult to measure. 

Disadvantages of Open Loop Control System 
1. They are inaccurate. 
2. They are unreliable. 
3. Any change in output cannot be corrected automatically. 
 

2. Closed-loop systems: 

 The closed-loop system is also called the feedback system. A simple closed-
system is shown in Figure 1-3. It has a mechanism to ensure the actual speed 
is close to the desired speed automatically. 



 

 

 

 

 

Practical Examples of Closed Loop Control System 
1. Automatic Electric Iron - Heating elements are controlled by output 

temperature of the iron. 
2. Servo Voltage Stabilizer - Voltage controller operates depending upon 

output voltage of the system. 
3. Water Level Controller - Input water is controlled by water level of the 

reservoir. 
4. Missile Launched and Auto Tracked by Radar - The direction of missile is 

controlled by comparing the target and position of the missile. 
5. An Air Conditioner - An air conditioner functions depending upon the 

temperature of the room. 
6. Cooling System in Car - It operates depending upon the temperature which 

it controls. 

Advantages of Closed Loop Control System 
1. Closed loop control systems are more accurate even in the presence of non-

linearity. 
2. Highly accurate as any error arising is corrected due to presence of 

feedback signal. 
3. Bandwidth range is large. 
4. Facilitates automation. 
5. The sensitivity of system may be made small to make system more stable. 
6. This system is less affected by noise. 
 

https://www.electrical4u.com/voltage-or-electric-potential-difference/


 

Disadvantages of Closed Loop Control System 
1. They are costlier. 
2. They are complicated to design. 
3. Required more maintenance. 
4. Feedback leads to oscillatory response. 
5. Overall gain is reduced due to presence of feedback. 
6. Stability is the major problem and more care is needed to design a stable 

closed loop system. 
 

 

Comparison of Closed Loop And Open Loop Control System 
 



 

 

Electrical Analogies of Mechanical Systems 
Two systems are said to be analogous to each other if the following two 

conditions are satisfied. 

 The two systems are physically different 

 Differential equation modelling of these two systems are same 

Electrical systems and mechanical systems are two physically different 

systems. There are two types of electrical analogies of translational 



mechanical systems. Those are force voltage analogy and force current 

analogy. 

Force Voltage Analogy 

In force voltage analogy, the mathematical equations of translational 

mechanical system are compared with mesh equations of the electrical 

system. 

Consider the following translational mechanical system as shown in the 

following figure. 

 
 

The force balanced equation for this system is 

                                               (Equation 1) 

Consider the following electrical system as shown in the following figure. 

This circuit consists of a resistor, an inductor and a capacitor. All these 

electrical elements are connected in a series. The input voltage applied to this 

circuit is VV volts and the current flowing through the circuit is ii Amps. 



                            
Mesh equation for this circuit is 

                                 (Equation 2) 

 

                      Substitute,          in Equation 2. 

 

 

                                                    
                                                                                                                           (Equation 3) 

 

By comparing Equation 1 and Equation 3, we will get the analogous 

quantities of the translational mechanical system and electrical system. The 

following table shows these analogous quantities. 

 

Rotational Mechanical System Electrical System 

Torque(T) Voltage(V) 



Moment of Inertia(J) Inductance(L) 

Rotational friction coefficient(B) Resistance(R) 

Torsional spring constant(K) Reciprocal of Capacitance (1c)(1c) 

Angular Displacement(θ) Charge(q) 

Angular Velocity(ω) Current(i) 

 

Torque Voltage Analogy: 

In this analogy, the mathematical equations of rotational mechanical 

system are compared with mesh equations of the electrical system. 

Rotational mechanical system is shown in the following figure. 

                               

The torque balanced equation is 

                                                  (Equation 4) 

By comparing Equation 4 and Equation 3, we will get the analogous 

quantities of rotational mechanical system and electrical system. The 

following table shows these analogous quantities. 



Rotational Mechanical System Electrical System 

Torque(T) Voltage(V) 

Moment of Inertia(J) Inductance(L) 

Rotational friction coefficient(B) Resistance(R) 

Torsional spring constant(K) Reciprocal of Capacitance (1c)(1c) 

Angular Displacement(θ) Charge(q) 

Angular Velocity(ω) Current(i) 

Force Current Analogy: 

In force current analogy, the mathematical equations of the translational 

mechanical system are compared with the nodal equations of the electrical 

system. 

Consider the following electrical system as shown in the following figure. 

This circuit consists of current source, resistor, inductor and capacitor. All 

these electrical elements are connected in parallel. 

 
 

The nodal equation is 



  (Equation 5) 

Substitute,   in Equation 5. 

  (Equation 6) 

By comparing Equation 1 and Equation 6, we will get the analogous 

quantities of the translational mechanical system and electrical system. The 

following table shows these analogous quantities. 

Translational Mechanical System Electrical System 

Force(F) Current(i) 

Mass(M) Capacitance(C) 

Frictional coefficient(B) Reciprocal of Resistance(1R)(1R) 

Spring constant(K) Reciprocal of Inductance(1L)(1L) 

Displacement(x) Magnetic Flux(ψ) 

Velocity(v) Voltage(V) 

 

Similarly, there is a torque current analogy for rotational mechanical 

systems.  

 

 

Torque Current Analogy: 



In this analogy, the mathematical equations of the rotational mechanical 

system are compared with the nodal mesh equations of the electrical system. 

By comparing Equation 4 and Equation 6, we will get the analogous 

quantities of rotational mechanical system and electrical system. The 

following table shows these analogous quantities. 

Rotational Mechanical System Electrical System 

Torque(T) Current(i) 

Moment of inertia(J) Capacitance(C) 

Rotational friction coefficient(B) Reciprocal of Resistance(1R)(1R) 

Torsion spring constant(K) Reciprocal of Inductance(1L)(1L) 

Angular displacement(θ) Magnetic flux(ψ) 

Angular velocity(ω) Voltage(V) 

 

Transfer Function of Control System 

A control system consists of an output as well as an input signal. The output 
is related to the input through a function call transfer function. 

Definition of Transfer Function 
The transfer function of a control system is defined as the ration of the 
Laplace transform of the output variable to Laplace transform of the input 
variable assuming all initial conditions to be zero. 
 

                                
 

https://www.electrical4u.com/control-system-closed-loop-open-loop-control-system/


For any control system there exists a reference input termed as excitation 
or cause which operates through a transfer operation termed as transfer 
function and produces an effect resulting in controlled output or response. 
Thus the cause and effect relationship between the output and input is 
related to each other through a transfer function. 
  

                                                       
 
In Laplace Transform, if the input is represented by R(s) and output is 
represented by C(s), then the transfer function will be

 
That is, transfer function of the system multiplied by input function gives 
the output function of the system. 
 
 

 Synchro : 

 
A synchro is, in effect, a transformer whose primary-to-secondary coupling 
may be varied by physically changing the relative orientation of the two 
windings. Synchros are often used for measuring the angle of a rotating 
machine such as an antenna platform. In its general physical construction, it is 
much like an electric motor. The primary winding of the transformer, fixed to 
the rotor, is excited by an alternating current, which by electromagnetic 
induction, causes currents to flow in three Y-connected secondary windings 
fixed at 120 degrees to each other on the stator. The relative magnitudes of 
secondary currents are measured and used to determine the angle of the rotor 
relative to the stator, or the currents can be used to directly drive a receiver 
synchro that will rotate in unison with the synchro transmitter. In the latter 
case, the whole device may be called a selsyn (a portmanteau 
of self and synchronizing). 

https://www.electrical4u.com/laplace-transformation/
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https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Electromagnetic_induction
https://en.wikipedia.org/wiki/Electromagnetic_induction
https://en.wikipedia.org/wiki/Electromagnetic_induction
https://en.wikipedia.org/wiki/Stator


  

There are two types of synchros systems: Torque systems and control 
systems. 

In a torque system, synchros will provide a low-power mechanical output 
sufficient to position an indicating device, actuate a sensitive switch or move 
light loads without power amplification. In simpler terms, a torque synchros 
system is a system in which the transmitted signal does the usable work. In 
such a system, accuracy on the order of one degree is attainable. 

Servo Motor: 
Servo Motor is also called Control motors. They are used in feedback control 
systems as output actuators and does not use for continuous energy 
conversion. The principle of the Servomotor is similar to that of the other 
electromagnetic motor, but the construction and the operation are different. 
Their power rating varies from a fraction of a watt to a few hundred watts.The 
rotor inertia of the motors is low and have a high speed of response. The rotor 
of the Motor has the long length and smaller diameter. They operate at very 
low speed and sometimes even at the zero speed.The servo motor is widely 
used in radar and computers, robot, machine tool, tracking and guidance 
systems, processing controlling. 

Classification of Servo Motor: 

They are classified as AC and DC Servo Motor. The AC servomotor is further 
divided into two types. 

Two Phase AC Servo Motor 

Three Phase AC Servo Motor 

DC Servo Motor: 

http://circuitglobe.com/two-phase-ac-servo-motor.html


DC Servo Motors are separately excited DC motor or permanent magnet DC 
motors. The figure (a) shows the connection of Separately Excited DC Servo 
motor and the figure (b) shows the armature MMF and the excitation field 
MMF in quadrature in a DC machine. 

 

This provides a fast torque response because torque and flux are decoupled. 
Therefore, a small change in the armature voltage or current brings a 
significant shift in the position or speed of the rotor. Most of the high power 
servo motors are mainly DC. 

The Torque-Speed Characteristics of the Motor is shown below. 

http://circuitglobe.com/wp-content/uploads/2016/02/Servo-motor-figure-1.jpg


 

As from the above characteristics, it is seen that the slope is negative. Thus, a 
negative slope provides viscous damping for the servo drive system. 

AC Servo Motor 
 
Servo motors are generally an assembly of four things: a DC motor, a gearing 
set, a control circuit and a position-sensor (usually a potentiometer). The 
position ofservo motors can be controlled more precisely than those of 
standard DC motors, and they usually have three wires (power, ground & 
control).The AC Servo Motors are divided into two types 2 and 3 Phase AC 
servomotor. Most of the AC servomotor are of the two-phase squirrel cage 
induction motor type. They are used for low power applications. The three 
phase squirrel cage induction motor is now utilized for the applications where 
high power system is required. 
 

BLOCK DIAGRAM 

A control system may consist of a number of components. A block diagram of 

a system is a pictorial representation of the function performed by each 

component and of the flow of signals. Such a diagram depicts the inter-

relationships which exists between the various components. A block diagram 

has the advantage of indicating more realistically the signal flows of the 

http://circuitglobe.com/wp-content/uploads/2016/02/Servo-motor-figure-2.jpg


actual system. In a block diagram all system variables are linked to each 

other through functional blocks. The ―Functional Block‖ or simply ―Block‖ 

is a symbol for the mathematical operation on the input signal to the block 

which produces the output. The transfer functions of the components are 

usually entered in the corresponding blocks, which are connected by arrows 

to indicate the direction of flow of signals. Note that signal can pass only in 

the direction of arrows. Thus a block diagram of a control system explicitly 

shows a unilateral property. 

 

Below Fig  shows an element of the block diagram. The arrow head pointing 

towards the block indicates the input and the arrow head away from the 

block represents the output. Such arrows are entered as signals. 

 

 

Block 

The transfer function of a component is represented by a block. Block has 

single input and single output. 

The following figure shows a block having input X(s), output Y(s) and the 

transfer function G(s). 

 



 

Transfer Function, 

 
 

Output of the block is obtained by multiplying transfer function of the block 

with input. 

Summing Point 

The summing point is represented with a circle having cross (X) inside it. It 

has two or more inputs and single output. It produces the algebraic sum of 

the inputs. It also performs the summation or subtraction or combination of 

summation and subtraction of the inputs based on the polarity of the 

inputs. Let us see these three operations one by one. 

The following figure shows the summing point with two inputs (A, B) and 

one output (Y). Here, the inputs A and B have a positive sign. So, the 

summing point produces the output, Y as sum of A and B. 

i.e.,Y = A + B. 

 

 

Take-off Point 



The take-off point is a point from which the same input signal can be 

passed through more than one branch. That means with the help of take-off 

point, we can apply the same input to one or more blocks, summing points. 

In the following figure, the take-off point is used to connect the same input, 

R(s) to two more blocks. 

 
 

 

Block Diagram Reduction Rules 
 

Follow these rules for simplifying (reducing) the block diagram, which is 

having many blocks, summing points and take-off points. 

 Rule 1 − Check for the blocks connected in series and simplify. 

 Rule 2 − Check for the blocks connected in parallel and simplify. 

 Rule 3 − Check for the blocks connected in feedback loop and simplify. 

 Rule 4 − If there is difficulty with take-off point while simplifying, shift 

it towards right. 

 Rule 5 − If there is difficulty with summing point while simplifying, 

shift it towards left. 

 Rule 6 − Repeat the above steps till you get the simplified form, i.e., 

single block. 

Note − The transfer function present in this single block is the transfer 

function of the overall block diagram. 



Example 

Consider the block diagram shown in the following figure. Let us simplify 

(reduce) this block diagram using the block diagram reduction rules. 

 

Step 1 − Use Rule 1 for blocks G1 and G2. Use Rule 2 for blocks G3 and G4. 

The modified block diagram is shown in the following figure. 
 

 

Step 2 − Use Rule 3 for blocks G1G2 and H1. Use Rule 4 for shifting take-off 

point after the block G5. The modified block diagram is shown in the 

following figure. 



 

Step 3 − Use Rule 1 for blocks (G3+G4) and G5. The modified block diagram 

is shown in the following figure. 

 

Step 4 − Use Rule 3 for blocks (G3+G4)G5 and H3. The modified block 

diagram is shown in the following figure. 



 

Step 5 − Use Rule 1 for blocks connected in series. The modified block 

diagram is shown in the following figure. 

 

Step 6 − Use Rule 3 for blocks connected in feedback loop. The modified 

block diagram is shown in the following figure. This is the simplified block 

diagram. 

 

Therefore, the transfer function of the system is 



Y(s)R(s)=G1G2G25(G3+G4)(1+G1G2H1){1+(G3+G4)G5H3}G5−G1G2G5(G3+G
4)H2Y(s)R(s)=G1G2G52(G3+G4)(1+G1G2H1){1+(G3+G4)G5H3}G5−G1G2G5(

G3+G4)H2 

Note − Follow these steps in order to calculate the transfer function of the 

block diagram having multiple inputs. 

 Step 1 − Find the transfer function of block diagram by considering one 

input at a time and make the remaining inputs as zero. 

 Step 2 − Repeat step 1 for remaining inputs. 

 Step 3 − Get the overall transfer function by adding all those transfer 

functions. 

Signal Flow Graph of Control System 

 

The block diagram reduction process takes more time for complicated 

systems. Because, we have to draw the (partially simplified) block diagram 

after each step. So, to overcome this drawback, use signal flow graphs 

(representation). 

In the next two chapters, we will discuss about the concepts related to signal 

flow graphs, i.e., how to represent signal flow graph from a given block 

diagram and calculation of transfer function just by using a gain formula 

without doing any reduction process. 

Signal flow graph of control system is further simplification of block diagram 

of control system. Here, the blocks of transfer function, summing symbols 

and take off points are eliminated by branches and nodes.The transfer 

function is referred as transmittance in signal flow graph. Let us take an 

example of equation y = Kx. This equation can be represented with block 

diagram as below. 

                                             

https://www.electrical4u.com/transmittance-and-reflectance/


The same equation can be represented by signal flow graph, where x is input 

variable node, y is output variable node and a is the transmittance of the 

branch connecting directly these two nodes. 

Key Definitions: 

 Input Node: Node with only outgoing branches;  

 Output Node: Node with incoming branches. Note: Any non-input node can be made an 

output node by adding a branch with gain= 1. 

 Path: Collection of branches linked together in same direction.  

 Forward Path: Path from input node to output node where node is visited more than 

once.  

 Gain of Forward Path: Product of all gains of branches in the forward path.  

 Loop: Path that originates and terminates at the same node. No other node is visited 

more than once.  

  Loop Gain: Product of branch gains in a loop.  

 Non-Touching: Two parts of a SFG are non-touching if they do not share at least one 

node 

      Mason’s gain formula is 

 

Where, 

 C(s) is the output node 

 R(s) is the input node 

 T is the transfer function or gain between R(s)R(s) and C(s)C(s) 

 Pi is the ith forward path gain 



Δ=1−(sum of all individual loop gains) +(sum of gain products of all 

possible two nontouching loops) −(sum of gain products of all possible three 

nontouching loops)+... 

Δi is obtained from Δ by removing the loops which are touching the 

ith forward path. 

calculation of Transfer Function using Mason’s Gain Formula 

Let us consider the same signal flow graph for finding transfer function. 

 

 

 

 

 Number of forward paths, N = 2. 

 First forward path is - y1→y2→y3→y4→y5→y6 

 First forward path gain, p1=abcde 

 Second forward path is - y1→y2→y3→y5→y6. 

 Second forward path gain, p2=abge 

 Number of individual loops, L = 5. 

 Loops are - y2→y3→y2, y3→y5→y3, y3→y4→y5→y3, y4→y5→y4 

and y5→y5. 



 Loop gains are - l1=bj, l2=gh,  l3=cd h,  l4=di and  l5=f. 

 Number of two non-touching loops = 2. 

 First non-touching loops pair is - y2→y3→y2  , y4→y5→y4. 

 Gain product of first non-touching loops pair, l1l4=bjdil1l4=bjdi 

 Second non-touching loops pair is - y2→y3→y2, y5→y5. 

 Gain product of second non-touching loops pair is - l1l5=bjf  

Higher number of (more than two) non-touching loops are not present in 

this signal flow graph. 

We know, 

Δ=1−(sum of all individual loop gains)+(sum of gain products of all possible 

two non touching loops)−(sum of gain products of all possible three non 

touching loops)+... 

Substitute the values in the above equation, 

Δ=1−(bj+gh+cdh+di+f)+(bjdi+bjf)−(0)  

⇒Δ=1−(bj+gh+cdh+di+f)+bjdi+bjf 

There is no loop which is non-touching to the first forward path. 

So, Δ1=1. 

Similarly, Δ2=1. Since, no loop which is non-touching to the second forward 

path. 

Substitute, N = 2 in Mason’s gain formula 



 

 

 

  
 

 

 

 
 

 



 

 
UNIT 2 

TIME RESPONSE ANALYSIS 

Time Response: 

If the output of control system for an input varies with respect to time, then it 

is called the time response of the control system. The time response consists 

of two parts. 

 Transient response 

 Steady state response 

The response of control system in time domain is shown in the following 

figure. 

 
Here, both the transient and the steady states are indicated in the figure. The 

responses corresponding to these states are known as transient and steady 

state responses. 

Mathematically, we can write the time response c(t) as 

c(t)=ctr(t)+css(t)c(t) 

Where, 

 ctr(t) is the transient response 

 css(t) is the steady state response 

  



 

 

Response of the First Order System 

 

Time response of the first order system. Consider the following block 

diagram of the closed loop control system. Here, an open loop transfer 

function, 1sT1sT is connected with a unity negative feedback. 

 
We know that the transfer function of the closed loop control system has 

unity negative feedback as, 

C(s)/R(s)=G(s)/1+G(s) 

Substitute, G(s)=1sT in the above equation. 
C(s)/R(s)=1sT1+1sT=1sT+1 

The power of s is one in the denominator term. Hence, the above transfer 

function is of the first order and the system is said to be the first order 

system.We can re-write the above equation as 

C(s)=(1sT+1)R(s) 

Where, 

 C(s) is the Laplace transform of the output signal c(t), 

 R(s) is the Laplace transform of the input signal r(t), and 

 T is the time constant. 

Follow these steps to get the response (output) of the first order system in 

the time domain. 



 Take the Laplace transform of the input signal r(t)r(t). 

 Consider the equation, C(s)=(1sT+1)R(s)C(s)=(1sT+1)R(s) 

 Substitute R(s)R(s) value in the above equation. 

 Do partial fractions of C(s)C(s) if required. 

 Apply inverse Laplace transform to C(s)C(s). 

 

Step Response of First Order System 

 Consider the unit step signal as an input to first order system. 

 



 

        



 The value of the unit step response, c(t) is zero at t = 0 and for all 

negative values of t. It is gradually increasing from zero value and 

finally reaches to one in steady state. So, the steady state value depends 

on the magnitude of the input. 

 

Response of Second Order System 

 

Consider the following block diagram of closed loop control system. Here, an 

open loop transfer function,  is connected with a unity negative 

feedback. 

 

We know that the transfer function of the closed loop control system having 

unity negative feedback as 

                                         

Substitute,   in the above equation. 

 



The power of ‘s’ is two in the denominator term. Hence, the above transfer 

function is of the second order and the system is said to be the second order 

system. 

The characteristic equation is – 

                                  

The roots of characteristic equation are – 

 

 The two roots are imaginary when δ = 0. 

 The two roots are real and equal when δ = 1. 

 The two roots are real but not equal when δ > 1. 

 The two roots are complex conjugate when 0 < δ < 1. 

We can write C(s)C(s) equation as, 

                           
. 

Where, 

 C(s) is the Laplace transform of the output signal, c(t) 

 R(s) is the Laplace transform of the input signal, r(t) 

 ωn is the natural frequency 

 δ is the damping ratio. 



Follow these steps to get the response (output) of the second order system in 

the time domain. 

 Take Laplace transform of the input signal, r(t) 

 Consider the equation,   

                            
 Substitute R(s)R(s) value in the above equation. 

 Do partial fractions of C(s)C(s) if required. 

 Apply inverse Laplace transform to C(s)C(s). 

 

Step Response of Second Order System 

Consider the unit step signal as an input to the second order system. 

Laplace transform of the unit step signal is, 

R(s)=1sR(s)=1s 

We know the transfer function of the second order closed loop control 

system is, 

 



 

 

So, the unit step response of the second order system will try to reach the 

step input in steady state. 



So, the unit step response of the second order system is having damped 

oscillations (decreasing amplitude) when ‘δ’ lies between zero and one. 

 



 

So, the unit step response of the second order system is having damped 

oscillations (decreasing amplitude) when ‘δ’ lies between zero and one. 

Time Domain Specifications 

The time domain specifications of the second order system. The step 

response of the second order system for the underdamped case is shown in 

the following figure. 



 
All the time domain specifications are represented in this figure. The 

response up to the settling time is known as transient response and the 

response after the settling time is known as steady state response. 

Delay Time 

It is the time required for the response to reach half of its final value from 

the zero instant. It is denoted by tdtd. 

Consider the step response of the second order system for t ≥ 0, when ‘δ’ lies 

between zero and one. 

 



Rise Time 

It is the time required for the response to rise from 0% to 100% of its final 

value. This is applicable for the under-damped systems. For the over-

damped systems, consider the duration from 10% to 90% of the final value. 

Rise time is denoted by tr. 

At t = t1 = 0, c(t) = 0. 

We know that the final value of the step response is one. 

Therefore, at t=t2, the value of step response is one. Substitute, these values 

in the following equation. 

 
3. Peak time tp: It is the time required for the response to reach the 
maximum or Peak value of the response. 



                                        
  

4. Peak overshoot M : It is defined as the difference between the peak 
value of the response and the steady state value. It is usually expressed in 
percent of the steady state value. If the time for the peak is tp’ percent peak 
overshoot is given by, 
 

                                           
 
5.Settling time ts : It is the time required for the response to reach and 
remain within a specified tolerance limits (usually ± 2% or ± 5%) around the 
steady state value.  
 

                                      
  

6. Steady state error ess : It is the error between the desired output and 
the actual output as t ~ 00 or under steady state conditions. The desired 
output is given by the reference input r (t) and c(t). 
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P, PI and PID Controllers 

 The controller (an analogue/digital circuit, and software), is trying 

to keep the controlled variable such as temperature, liquid level, 

motor velocity, robot joint angle, at a certain value called the set 

point (SP). 

 A feedback control system does this by looking at the error 

(E) signal, which is the difference between where the controlled 

variable (called the process variable (PV)) is, and where it should 

be. 

 Based upon the error signal, the controller decides the magnitude 

and the direction of the signal to the actuator. 

The proportional (P), the integral (I), and the derivative (D), are all basic 

controllers. 

Types of controllers: P, I, D, PI, PD, and PID controllers 

 Proportional Control 

With proportional control, the actuator applies a corrective force that is 

proportional to the amount of error: 

Outputp = Kp × E 

Outputp = system output due to proportional control 

Kp = proportional constant for the system called gain 

E = error, the difference between where the controlled variable should be 

and where it is. E = SP – PV. 

 

 
 
 
 



UNIT 3 

FREQUENCY  RESPONSE  ANALYSIS 

Frequency response: 

Frequency response is the quantitative measure of the output spectrum of a 
system or device in response to a stimulus, and is used to characterize the 
dynamics of the system. It is a measure of magnitude and phase of the output 
as a function of frequency, in comparison to the input. 

Frequency domain specification: 

(i)Resonant peak (Mr): Maximum value of M (jw) when w is varied from 0 to 
infinite. The magnitude of resonant peak gives the information about the 
relative stability of the system. A large value of resonant peak implies 
undesirable transient response. 

(ii) Resonant frequency (wr) : The frequency at which resonant peak (Mr) 
occurs. If resonant frequency is large, then the time response is fast. 

(iii) Cut-off frequency (wc) : The frequency at which M (jw) has a value (1/2) 
^1/2. It is the frequency at which the magnitude is 3dB below its zero 
frequency value. 

(iv) Band-width (wb) : It is the range of frequencies in which the magnitude of 
a closed-loop 
the system is (1/2) ^1/2 times of Mr or the magnitude of the closed loop 
doesn’t drop -3 dB. 

(v) Cut-off rate: It is the slope of the log magnitude curve near cut-off 
frequency. 

 

 

 

 



Different terms that reflect the frequency domain specification are 

elaborate below: 

 

Response of Second-Order Control System 

Consider the second-order system shown in Figure 3.10 where the system 
transfer function is written in the 

 
The system gain is 1, but any other value of the gain will change only the 
magnitude of the system response, 
All coefficients of the polynomial in the denominator are positive. The special 
case when some of them have negative values will be discussed in the section 
presenting the problem of system stability. 
The dynamic behaviour of the second-order system can be described in terms 
of two parameters: the natural frequency ωn, and the damping factor ζ.The 
order of a control system is determined by the power of s in the denominator 
of its transfer function. If the power of s in the denominator of transfer 
function of a control system is 2, then the system is said to be second-order 
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control system. The general expression of transfer function of a second order 
control system is given as 

                                          
 
Here, ζ and ωn are damping ratio and natural frequency of the system 

respectively and we will learn about these two terms in detail later on. 

Therefore, the output of the system is given as 

                                                            
In the following we shall obtain the rise time, peak time, maximum overshoot 

and settling time of the step response of an under damped second-order 

system. The values will be obtained in terms of an under damped second-

order system. The values will be obtained in terms of ζ and ωn. 

BODE PLOT: 

A Bode plot is a standard format for plotting frequency response of LTI 
systems. Becoming familiar with this format is useful because: 
1. It is a standard format, so using that format facilitates communication 
between engineers. 
2. Many common system behaviours produce simple shapes (e.g. straight 
lines) on a Bode plot, 
so it is easy to either look at a plot and recognize the system behaviour, or to 
sketch a plot 
from what you know about the system behaviour. 
The format is a log frequency scale on the horizontal axis and, on the vertical 
axis, phase in Degrees and magnitude in decibels. Thus, we begin with a 
review of decibels 
 



 

 



 

     
 
 



 

Control Systems - Polar Plots 

We have two separate plots for both magnitude and phase as the function of 
frequency. Let us now discuss about polar plots. Polar plot is a plot which can 
be drawn between magnitude and phase. Here, the magnitudes are 
represented by normal values only. 
 

 



        
This graph sheet consists of concentric circles and radial lines. The concentric 
circles and the radial lines represent the magnitudes and phase anssgles 
respectively. These angles are represented by positive values in anti-clock 
wise direction. Similarly, we can represent angles with negative values in 
clockwise direction. For example, the angle 2700 in anti-clock wise direction is 
equal to the angle −900 in clockwise direction. 

 

Rules for Drawing Polar Plots 

Follow these rules for plotting the polar plots. 

 



 

Example 

Consider the open loop transfer function of a closed loop control system.      

                          

Let us draw the polar plot for this control system using the above rules. 

                The 

magnitude of the open loop transfer function is          



The phase angle of the open loop 

transfer function isϕ=−900−tan−1ω−tan−1ω2ϕ=−900−tan−1ω−tan−1ω2 

Step 2 − The following table shows the magnitude and the phase angle of the 

open loop transfer function at ω=0ω=0 rad/sec and ω=∞ω=∞ rad/sec. 

Frequency (rad/sec) Magnitude Phase angle(degrees) 

0 ∞ -90 or 270 

∞ 0 -270 or 90 

So, the polar plot starts at (∞,−900) and ends at (0,−2700). The first and the 

second terms within the brackets indicate the magnitude and phase angle 

respectively. 

Step 3 − Based on the starting and the ending polar co-ordinates, this polar 

plot will intersect the negative real axis. The phase angle corresponding to 

the negative real axis is −1800 or 1800. So, by equating the phase angle of the 

open loop transfer function to either −1800 or 1800, we will get the ωω value 

as 2–√2. 

By substituting ω=2–√ω=2 in the magnitude of the open loop transfer 

function, we will get M=0.83M=0.83. Therefore, the polar plot intersects the 

negative real axis when ω=2–√ω=2 and the polar coordinate is (0.83,−1800). 

 

 

 

 

 

 

 

 



      UNIT 4 
 

STABILITY AND COMPENSATOR DESIGN 
 

Stability Definition: 
      The stability of a system relates to its response to inputs or 
disturbances. A system which remains in a constant state unless affected 
by an external action and which returns to a constant state when the 
external action is removed can be considered to be stable. 
 
Characteristics equation 
The local behaviour of a system of differential equations, 

 
 If the real parts of all the roots are negative, the system returns to 
equilibrium after a small perturbation. If the real parts of all the roots are 
positive, the system moves away from equilibrium (is locally unstable). If 
some roots have positive and some negative real parts, the behaviour of 
the system depends on how it is perturbed; it sometimes returns to 
equilibrium but for other displacements moves away. In biological 
systems we usually assume the perturbations to be unconstrained so 
that eventually the system will be displaced in a direction which allows 
the positive root to lead the system away from equilibrium. A single zero 
real part gives a neutral or passive equilibrium, but multiple zero roots 
can give unbounded solutions (unstable equilibrium). If a root is complex 
the system oscillates at a frequency given by the imaginary part while 
the amplitude behaves according to the real part of the root.  
     



 

 

Routh Hurwitz Stability Criterion: 

Any pole of the system lies on the right hand side of the origin of the s 
plane, it makes the system unstable. On the basis of this condition A. 
Hurwitz and E.J. Routh started investigating the necessary and sufficient 
conditions of stability of a system. We will discuss two criteria for 
stability of the system. 
 A first criterion is given by A. Hurwitz and this criterion is also known 
as Hurwitz Criterion for stability or Routh Hurwitz Stability Criterion. 

Hurwitz Criterion 
With the help of characteristic equation, we will make a number of 
Hurwitz determinants in order to find out the stability of the system. We 
define characteristic equation of the system as, now there are n 
determinants for nth order characteristic equation. Determinants from 
the coefficients of the characteristic equation. The step by step 
procedure for kth order characteristic equation is written below: 
Determinant one : The value of this determinant is given by |a1| where 
a1 is the coefficient of sn-1 in the characteristic equation. 



 

 

 

 



 
 
 
Phase Margin 
The Phase Margin is the amount of phase that needs to be added to a 
system such that the magnitude will be just unity while the phase is 
1800. The figure below is showing ‘theta’ to be the phase margin 
Often control engineers consider a system to be adequately stable if it 
has a phase margin of at least 300. 
 
The root locus technique in control system was first introduced in the 
year 1948 by Evans. Any physical system is represented by a transfer 
function in the form of 

                             
We can find poles and zeros from G(s). The location of poles and zeros 
are crucial keeping view stability, relative stability, transient response 
and error analysis. When the system put to service 
stray inductance and capacitance get into the system, thus changes the 
location of poles and zeros. In root locus technique in control system we 
will evaluate the position of the roots, their locus of movement and 
associated information. These information will be used to comment upon 
the system performance. 

Advantages of Root Locus Technique 

1. Root locus technique in control system is easy to implement as 
compared to other methods. 

2. With the help of root locus we can easily predict the performance of 
the whole system. 

3. Root locus provides the better way to indicate the parameters. 
Now there are various terms related to root locus technique that we will 
use frequently in this article. 
 
1. Characteristic Equation Related to Root Locus Technique: 1 + 

G(s)H(s) = 0 is known as characteristic equation. Now on 
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differentiating the characteristic equation and on equating dk/ds 
equals to zero, we can get break away points. 

2. Break away Points: Suppose two root loci which start from pole and 
moves in opposite direction collide with each other such that after 
collision they start moving in different directions in the symmetrical 
way. Or the break away points at which multiple roots of the 
characteristic equation 1 + G(s)H(s)= 0 occur. The value of K is 
maximum at the points where the branches of root loci break away. 
Break away points may be real, imaginary or complex. 

3. Break in Point : Condition of break in to be there on the plot is 
written below : Root locus must be present between two adjacent 
zeros on the real axis. 

4. Centre of Gravity : It is also known centroid and is defined as the 
point on the plot from where all the asymptotes start. Mathematically, 
it is calculated by the difference of summation of poles and zeros in the 
transfer function when divided by the difference of total number of 
poles and total number of zeros. Centre of gravity is always real and it 
is denoted by σA. 

 
 
Where, N is number of poles and M is number of zeros. 
 

5. Asymptotes of Root Loci : Asymptote originates from the center of 
gravity or centroid and goes to infinity at definite some angle. 
Asymptotes provide direction to the root locus when they depart 
break away points. 
 

6. Angle of Asymptotes: Asymptotes makes some angle with the real 
axis and this angle can be calculated from the given formula, Where, p 
= 0, 1, 2 ..(N-M-1)N is the total number of poles 
M is the total number of zeros. 
 

7. Angle of Arrival or Departure: We calculate angle of departure when 
there exists complex poles in the system. Angle of departure can be 



calculated as 180-{(sum of angles to a complex pole from the other 
poles)-(sum of angle to a complex pole from the zeros)}. 

  

 Where, p = 0, 1, 2 ....... (N-M-1) 

N is the total number of poles 

M is the total number of zeros. 

 
8. Intersection of Root Locus with the Imaginary Axis: In order to find 

out the point of intersection root locus with imaginary axis, we have to 
use Routh Hurwitz criterion. First, we find the auxiliary equation then 
the corresponding value of K will give the value of the point of 
intersection. 

9. Gain Margin: We define gain margin as a by which the design value of 
the gain factor can be multiplied before the system becomes unstable. 
Mathematically it is given by the formula. 

 
10. Phase Margin : Phase margin can be calculated from the given 

formula. 

 

11. Symmetry of Root Locus: Root locus is symmetric about the x axis or 
the real axis. 

o Magnitude Criteria : At any points on the root locus we can 
apply magnitude criteria as, 

 
Using this formula we can calculate the value of K at any 
desired point. 

 
 Using Root Locus Plot : The value of K at any s on the 

root locus is given by 



 
 

Procedure to Plot Root Locus 
Keeping all these points in mind we are able to draw the root locus 
plot for any kind of system. Now let us discuss the procedure of making a 
root locus. 
1. Find out all the roots and poles from the open loop transfer function 

and then plot them on the complex plane. 
2. All the root loci starts from the poles where k = 0 and terminates at 

the zeros where K tends to infinity. The number of branches 
terminating at infinity equals to the difference between the number 
of poles & number of zeros of G(s)H(s). 

3. Find the region of existence of the root loci from the method 
described above after finding the values of M and N. 

4. Calculate break away points and break in points if any. 
5. Plot the asymptotes and centroid point on the complex plane for the 

root loci by calculating the slope of the asymptotes. 
6. Now calculate angle of departure and the intersection of root loci 

with imaginary axis. 
7. Now determine the value of K by using any one method that I have 

described above. 
By following above procedure you can easily draw the root locus 
plot for any open loop transfer function. 

8. Calculate the gain margin. 
9. Calculate the phase margin. 
10. You can easily comment on the stability of the system by using 

Routh array. 
 

Sketch the root locus for the system shown in figure. 



 

 

Solution : Begin by calculating the asymptotes : 

 

 
If the values for k continued to increase, the angels would begin repeat. 
The number of lines obtained equals the difference between the number 
of finite poles and the number of finite zeros. Rule 4 states that the root 
locus begins at the open loop poles and ends at the open loop zeros. For 
the example, there are more open loop poles than open loop zeros. Thus, 
there must be zeros at infinity. The asymptotes tell us how we get to 
these zeros at infinity.  
 



 

 

Compensation 
A closed-loop system is usually an unstable system.Hence, because it is 
unstable, there must be some kind of compensators than can compensate 
the stability of a closed loop system. 
 
Compensators are used to alter the output response of a system in order 
to accommodate to the set of desired criteria. This is achieved by 
introducing additional poles and/or zeros to the system transfer 
function. 
 
The introduction of additional zeros and/or poles will speed-up the 
response of the system. 
 
• When we introduce additional poles/zeros, we areactually improving 
the transient response of the system,as well as reducing the steady-state 
errors. 
 
• Additional poles will eventually improve the steady-state 
characteristics, while additional zeros will improve the transient 
response. 



 
• Recall that poles are also called integrators in s-domain while zeros are 
called differentiators. 
 

Compensation Configuration 

Two configuration of compensation are commonly used: 
– (a) cascade compensation. 
– (b) feedback compensation. 
 

 

 

 

  

Design of Lag Compensation 

 



We note that the design of ideal integral compensation involves the use 
of pure integrator. Now, this time, we will not use pure integrator. We 
will use poles and zeros that are close to the origin, but not necessarily 
on the origin. 
 
• Let us consider a type 1 uncompensated system which is shown below: 
 

 

 

The above system can be improved by adding a compensator transfer 
function in the feed-forward section of the loop: 

 

 
 

 

 

• The pole-zero plot of this compensator is shown below: 

 

 



 

 

     

UNIT V 

STATE VARIABLE ANALYSIS 

Concept of state variables:       

A state variable is one of the set of variables that are used to describe the 
mathematical "state" of a dynamical system. Intuitively, the state of 
a system describes enough about the system to determine its future 
behavior in the absence of any external forces affecting the system.The 
state variables of a dynamic system are the variables making up the 
smallest set of variables that determine the state of the dynamic system. 
The State Variables of a Dynamic System 
 • The state of a system is a set of variables such that the knowledge of 
these variables and the input functions will, with the equations 
describing the dynamics, provide the future state and output of the 
system.  
• For a dynamic system, the state of a system is described in terms of a 
set of state variables. 

                      

State Variables of a Dynamic System: 

            



The state variables describe the future response of a system, given the 
present state, the excitation inputs, and the equations describing the 
dynamics. 
State models for linear and time invariant Systems: 

State model: 

In control engineering, a state-space representation is a 
mathematical model of a physical system as a set of input, output 
and state variables related by first-order differential equations. 
"State space" refers to the Euclidean space in which the variables on the 
axes are the state variables. 
 

Linear Time Invariant Systems: 

Linear Time Invariant Systems (LTI systems) are a class of systems used 
in signals and systems that are both linear and time invariant. Linear 
systems are systems whose outputs for a linear combination of inputs 
are the same as a linear combination of individual responses to those 
inputs. Time invariant systems are systems where the output does not 
depend on when an input was applied. These properties make LTI 
systems easy to represent and understand graphically. 
LTI systems are superior to simple state machines for representation 
because they have more memory. LTI systems, unlike state machines, 
have memory of past states and have to ability predicted the future. LTI 
systems are used to predict long-term behavior in a system. So, they are 
often used to model systems like power plants. Another important 
application of LTI systems is electrical circuits. These circuits, made up of 
inductors, transistors, and resistors, are the basis upon which modern 
technology is built. 
Time invariant systems are systems where the output for a particular 
input does not change depending on when that input was applied. A time 
invariant systems that takes in signal and produces output  will also, 
when excited by signal , produce the time shifted output .Thus, the 
entirety of an LTI system can be described by a single function called 
its impulse response. This function exists in the time domain of the 
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system. For an arbitrary input, the output of an LTI system is 
the convolution of the input signal with the system's impulse response. 
Conversely, the LTI system can also be described by its transfer function. 
The transfer function is the Laplace transform of the impulse response. 
This transformation changes the function from the time domain to the 
frequency domain. This transformation is important because it 
turns differential equations into algebraic equations, and 
turns convolution into multiplication. In the frequency domain, the 
output is the product of the transfer function with the transformed input. 
The shift from time to frequency is illustrated in the following image. 

 

Shifting from the time to the frequency domain[1] 

In addition to linear and time invariant, LTI systems are also memory 
systems, invertible, causal, real, and stable. That means they have 
memory, they can be inverted, they depend only on current and past 
events, they have fully real inputs and outputs, and they produce 
bounded output for bounded input. 
Solution of state and output equation in controllable canonical form: 

State-Space Canonical Forms For any given system, there are essentially 
an infinite number of possible state space models that will give the 
identical input/output dynamics. Thus, it is desirable to have certain 
standardized state space model structures: these are the so-called 
canonical forms. Given a system transfer function, it is possible to obtain 
each of the canonical models. And, given any particular canonical form it 
is possible to transform it to another form. Consider the system defined 
by 
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Controllable Canonical Form: 
 The controllable canonical form arranges the coefficients of the transfer 
function denominator across one row of the A matrix: 

       

The controllable canonical from is useful for the pole placement 
controller design technique. 
 Example1.1. Consider the system given by 



      

 

Observable Canonical Form: 

The observable canonical form is defined in terms of the transfer 
function coefficients of (1) as follows: 

 

 

 



Example1.2. Given the system transfer function of example 1.1, find the 
observable canonical form state space model. Recall that by inspection, 
we have n = 2 (the highest exponent of s), and therefore a1 = 3, a2 = 2, b0 
= 0, b1 = 1 and b2 = 3. Thus, we can write the observable canonical form 
model as follows: 

 

 

Diagonal Canonical Form  

The diagonal canonical form is a state space model in which the poles of 
the transfer function are arranged diagonally in the A matrix. Given the 
system transfer function having a denominator polynomial that can be 
factored into distinct (p1 6= p2 6= . . . 6= pn) roots as follows: 

 

 



 

 

 

Example1.3. 

   Given the system transfer function of example 1.1, find the diagonal 
canonical form state space model. 3 The transfer function of the system 
can be re-written with the denominator factored as follows: 

 

 



Jordan Form: 

The Jordan form is a type of diagonal form canonical model in which the 
poles of the transfer function are arranged diagonally in the A matrix. 
Consider the case in which the denominator polynomial of the transfer 
function involves multiple repeated roots: 

                                  

 

Concepts of controllability and observability: 

Controllability: In the world of control engineering, there are a slew of 
systems available that need to be controlled. The task of a control 
engineer is to design controller and compensator units to interact with 
these pre-existing systems. However, some systems simply cannot be 
controlled (or, more often, cannot be controlled in specific ways). The 
concept of controllability refers to the ability of a controller to arbitrarily 
alter the functionality of the system plant. Complete state controllability 
(or simply controllability if no other context is given) describes the 
ability of an external input to move the internal state of a system from 
any initial state to any other final state in a finite time interval 



We will start off with the definitions of the term controllability, and the 
related term reachability 

Controllability 

A system with internal state vector x is called controllable if and only if 
the system states can be changed by changing the system input. 

 

Reachability 

A particular state x1 is called reachable if there exists an input that 
transfers the state of the system from the initial state x0 to x1 in some 
finite time interval [t0, t). 

Controllability Matrix 

For LTI (linear time-invariant) systems, a system is reachable if and only 
if its controllability matrix, ζ, has a full row rank of p, where p is the 
dimension of the matrix A, and p × q is the dimension of matrix B. 

                          

A system is controllable or "Controllable to the origin" when any state x1 can be driven to 
the zero state x = 0 in a finite number of steps. 

A system is controllable when the rank of the system matrix A is p, and the rank of the 
controllability matrix is equal to: 

                                     

Observability: 

The state-variables of a system might not be able to be measured for any 
of the following reasons: 

The location of the particular state variable might not be physically 
accessible (a capacitor or a spring, for instance). 

There are no appropriate instruments to measure the state variable, or 
the state-variable might be measured in units for which there does not 
exist any measurement device. 

The state-variable is a derived "dummy" variable that has no physical 
meaning. 



If things cannot be directly observed, for any of the reasons above, it can 
be necessary to calculate or estimate the values of the internal state 
variables, using only the input/output relation of the system, and the 
output history of the system from the starting time. In other words, we 
must ask whether or not it is possible to determine what the inside of the 
system (the internal system states) is like, by only observing the outside 
performance of the system (input and output)? We can provide the 
following formal definition of mathematical observability 

Observability 

A system with an initial state, {\displaystyle x(t_{0})} 
 is observable if and only if the value of the initial state can be 
determined from the system output y(t) that has been observed through 

the time interval {\displaystyle t_{0}<t<t_{f}} . If the initial 
state cannot be so determined, the system is unobservable. 

Complete Observability 

A system is said to be completely observable if all the possible initial 
states of the system can be observed. Systems that fail these criteria are 
said to be unobservable. 

Detectability: 

A system is Detectable if all states that cannot be observed decay to zero 
asymptotically. 

Constructability: 

A system is constructible if the present state of the system can be 
determined from the present and past outputs and inputs to the system. 
If a system is observable, then it is also constructible. The relationship 
does not work the other way around. 

 

Constructability 

A state x is unconstructable at a time t1 if for every finite time t < t1 the 
zero input response of the system is zero for all time t. 

A system is completely state constructible at time t1 if the only 
state x that is unconstructable at t0 is x = 0. 



If a system is observable at an initial time t0, then it is constructible at 
some time t > t0, if it is constructible at t1. 

Observability Matrix 

The observability of the system is dependent only on the system states 
and the system output, so we can simplify our state equations to remove 
the input terms: 

 

Therefore, we can show that the observability of the system is dependent 
only on the coefficient matrices A and C. We can show precisely how to 
determine whether a system is observable, using only these two 
matrices. If we have the observability matrix Q: 

                           

Example 5.1:  

Consider the following system with measurements  

 

Observability matrix : 
The observability matrix for this second-order system is given by  

                                       

 

Since the rows of the matrix Q are linearly independent, then 

 i.e. the system under consideration is observable. 



Another way to test the completeness of the rank of square matrices is to 
find their determinants. In this case 

                  

 

Effect of state feedback: 

In state feedback, the value of the state vector is fed back to the input of 
the system. We define a new input, r, and define the following 
relationship: 

 

K is a constant matrix that is external to the system, and therefore can be 
modified to adjust the locations of the poles of the system. This 
technique can only work if the system is controllable. 

 

Closed-Loop System 

If we have an external feedback element K, the system is said to be 
a closed-loop system. Without this feedback element, the system is said 
to be an open-loop system. Using the relationship we've outlined above 
between r and u, we can write the equations for the closed-loop system: 

 

             

 



 

Now, our closed-loop state equation appears to have the same form as 
our open loop state equation, except that the sum (A + BK) replaces the 
matrix A. We can define the closed-loop state matrix as: 

              

Acl is the closed-loop state matrix, and Aol is the open-loop state matrix. 
By altering K, we can change the Eigen values of this matrix, and 
therefore change the locations of the poles of the system. If the system is 
controllable, we can find the characteristic equation of this system as: 

 

Computing the determinant is not a trivial task, the determinant of that 
matrix can be very complicated, especially for larger systems. However, 
if we transform the system into controllable canonical form, the 
calculations become much easier. Another alternative to compute K is 
by Ackerman's Formula. 

 

 

Ackerman's Formula 



 

Effects of the Addition of an Observer to State Feedback  

In the pole placement design process, it is assumed that the actual state 

is available for feedback. In practice, the actual state may not be 

measurable, so it is necessary to design a state observer. Therefore the 

design process involves a two stage process. First stage includes 

determination of the feedback gain matrix to yield the desired 

characteristic equation and the second stage involves the determination 

of the observer gain matrix to yield the desired observer characteristic 

equation. The closed loop poles of the observed-state feedback control 

system consist of the poles due to the poleplacement design and the 

poles due to the observer design. If the order of the plant is n, then the 

observer is also nth order and the resulting characteristic equation for the 

entire closed-loop system becomes the order of 2n. The desired closed-

loop poles to be generated by state feedback are chosen in such a way 

that the system satisfies the performance requirements. The poles of the 

observer are usually chosen so that the observer response is much faster 

than system response. A rule of thumb is to choose an observer response 

at least two to five times faster than system response. The maximum 

speed of the observer is limited only by the noise and sensitivity 



problem involved in the control system. Since the observer poles are 

placed left of the desired closed loop poles in the pole placement 

process, the closed loop poles will dominate the response. 
 


