POWER ELECTRONICS

UNIT I POWER SEMICONDUCTOR DEVICES :

Construction, Principle of operation Power diodes , power transistors SCR, TRIAC, GTO, MOSFET, IGBT – driver circuit, turn – on method – commutation series and parallel connections

UNIT II PHASE CONTROLLED CONVERTERS :

Converter inverters operation – Single phase and three phase controlled rectifiers(half and full converters) with R,RL and RLE load effect of source inductance and firing circuits – Dual converters – single phase & three phase dual converters

UNIT III DC TO DC CHOPPER :

Voltage, current load commutated chopper – step-up chopper and firing circuits – one, two and four quadrant chopper application to DC driving control

UNIT IV INVERTERS :

Series inverter – parallel inverter – current source inverter – voltage source inverter - Modified McMurray, auto sequential inverter – PWM inverter – UPS.

UNIT V AC CHOPPER, CYCLOCONVERTER & VOLTAGE CONTROLER :

Single phase AC chopper, multistage sequence control – step up and step down cyclo-converter – three phase to single phase and single phase to three phase cycloconverter – triggering circuit based on micro controller – single phase AC voltage controller with R, RL, RLE.

UNIT I POWER SEMICONDUCTOR DEVICES

CONSTRUCTION OF POWER DIODES:

Diodes are the simplest semiconductor device having only two layers, two terminals and one junction. The ordinary signal diodes have a junction formed by p type semiconductor and n type semiconductor, the lead joining p type is called anode and the other side lead joining the n type is called cathode. The figure below depicts the structure of an ordinary diode and its symbol.

Power diodes are also similar to signal diodes but have a little difference in its construction.

DIODE BIASED VOLTAGE:

ZERO BIAS:

When a diode is zero biased, that is has no bias, it just stays. Almost no current passes through the diode. However if you connect the anode and cathode of the diode you might be able to observe small voltage or current that is insignificant. This is because the electromagnetic spectrum that's present in our environment by default (microwave background, heat, light, radio waves) knocks off electrons in the semiconductor lattice that constitutes current. For practical reasons this current can be considered zero.

Reverse Bias:

In reverse bias the P-type region is connected to negative voltage and N-type is connected to positive terminal as shown above. In this condition the holes in P-type gets filled by electrons from the battery / cell (in other words the holes get sucked out of the diode). The electrons in N-type material is sucked out of the diode by the positive terminal of the battery. So the diode gets depleted of charge. So initially the depletion layer widens (see image above) and it occupies the entire diode. The resistance offered by the diode is very huge. The current that flows in reverse bias is only due to minority charge which is in nano amperes in silicon and micro amperes in high power silicon and germanium diodes.

Forward Bias:

In forward bias the P-Region of the diode is connected with the positive terminal of the battery and N-region is connected with the negative region. During the forward bias the following process occurs. The positive of the battery pumps more holes into the P-region of the diode. The negative terminal pumps electrons into the N-region. The excess of charge in P and N region will apply pressure on the depletion region and will make it shrink. As the voltage increases the depletion layer will become thinner and thinner and hence diode will offer lesser and lesser resistance. Since the resistance decreases the current will increase (though not proportional) to the voltage.

At one particular voltage level V_f called the threshold / firing / cut-off voltage the depletion layer disappears (overwhelmed by the charge) and hence from this point on the diode starts to conduct very easily. From this point on the diode current increases exponentially to the voltage applied.

V-I Characteristics of Power Diodes

The figure below shows the **v-i characteristics of a power diode** which is almost similar to that of a signal diode.

In signal diodes for forward biased region the current increases exponentially however in **power diodes** high forward current leads to high ohmic drop which dominates the exponential growth and the curve increases almost linearly. The maximum reverse voltage that the diode can withstand is depicted by V_{RRM} , i.e. peak reverse repetitive voltage. Above this voltage the reverse current becomes very high abruptly and as the diode is not designed to dissipate such high amount of heat, it may get destroyed. This voltage may also be called as peak inverse voltage (PIV).

SILICON CONTROLLED RECTIFIER:

A **silicon controlled rectifier** or **semiconductor-controlled rectifier** is a four-layer solidstate current-controlling device. SCRs are unidirectional devices (i.e. can conduct current only in one direction) as opposed to TRIACs, which are bidirectional (i.e. current can flow through them in either direction). SCRs can be triggered normally only by currents going into the gate as opposed to TRIACs, which can be triggered normally by either a positive or a negative current applied to its gate electrode.

CONSTRUCTION:

The silicon control rectifier (SCR) consists of four layers of semiconductors, which form **NPNP** or **PNPN** structures have three P-N junctions labeled **J1**, **J2** and **J3**, and three terminals. The anode terminal of an SCR is connected to the p-type material of a PNPN structure, and the cathode terminal is connected to the n-type layer, while the gate of the SCR is connected to the p-type material nearest to the cathode.^[9]

An SCR consists of four layers of alternating p- and n-type semiconductor materials. Silicon is used as the intrinsic semiconductor, to which the proper dopants are added. The junctions are either diffused or alloyed (alloy is a mixed semiconductor or a mixed metal). The planar construction is used for low-power SCRs (and all the junctions are diffused). The mesa-type construction is used for high-power SCRs. In this case, junction J2 is obtained by the diffusion method, and then the outer two layers are alloyed to it, since the PNPN pellet is required to handle large currents. It is properly braced with tungsten or molybdenum plates to provide greater mechanical strength. One of these plates is hard-soldered to a copper stud, which is threaded for attachment of heat sink. The doping of PNPN depends on the application of SCR, since its characteristics are similar to those of the thyristor. Today, the term "thyristor" applies to the larger family of multilayer devices that exhibit bistable state-change behaviour, that is, switching either on or off.

The operation of an SCR and other thyristors can be understood in terms of a pair of tightly coupled bipolar junction transistors, arranged to cause the self-latching action:

MODES OF OPERATION:

There are three modes of operation for an SCR depending upon the biasing given to it:

1. Forward blocking mode (off state)

2. Forward conduction mode (on state)

3. Reverse blocking mode (off state)

Forward blocking mode:

In this mode of operation, the anode is given a positive voltage while the cathode is given a negative voltage, keeping the gate at zero potential i.e. disconnected. In this case junction **J1** and **J3** are forward-biased, while **J2** is reverse-biased, due to which only a small leakage current exists from the anode to the cathode until the applied voltage reaches its breakover value, at which **J2** undergoes avalanche breakdown, and at this breakover voltage it starts conducting, but below breakover voltage it offers very high resistance to the current and is said to be in the off state.

Forward conduction mode:

SCR can be brought from blocking mode to conduction mode in two ways: either by increasing the voltage across anode to cathode beyond breakover voltage or by applying positive pulse at gate. Once SCR starts conducting, no more gate voltage is required to maintain it in the on state. There are two ways to turn it off: 1. Reduce the current through it below a minimum value called the holding current and 2. With the gate turned off, short out the anode and cathode momentarily with a push-button switch or transistor across the junction.

Reverse blocking mode:

SCRs are available with reverse blocking capability, which adds to the forward voltage drop because of the need to have a long, low-doped P1 region. (If one cannot determine which region is P1, a labeled diagram of layers and junctions can help). Usually, the reverse blocking voltage rating and forward blocking voltage rating are the same. The typical application for reverse blocking SCR is in current-source inverters.

SCRs incapable of blocking reverse voltage are known as **asymmetrical SCR**, abbreviated **ASCR**. They typically have a reverse breakdown rating in the tens of volts. ASCRs are used where either a reverse conducting diode is applied in parallel (for example, in voltage-source inverters) or where reverse voltage would never occur (for example, in switching power supplies or DC traction choppers).

Asymmetrical SCRs can be fabricated with a reverse conducting diode in the same package. These are known as RCTs, for reverse conducting thyristors.

THYRISTOR TURN ON METHODS:

- 1. forward-voltage triggering
- 2. gate triggering
- 3. *dv/dt* triggering
- 4. temperature triggering
- 5. light triggering

Forward-voltage triggering occurs when the anode–cathode forward voltage is increased with the gate circuit opened. This is known as avalanche breakdown, during which junction J2 will break down. At sufficient voltages, the thyristor changes to its on state with low voltage drop and large forward current. In this case, J1 and J3 are already forward-biased

V-I Characteristics of SCR

In his article we will draw and explain the V-I characteristics of SCR in detail. It is the curve between anode-cathode voltage (V) and anode current (I) of an SCR at constant gate current.

V-I characteristics of a typical SCR.

Important Points About The V-I Characteristics of SCR

Forward Characteristics

When anode is positive w.r.t. cathode, the curve between V and I is called the forward characteristics.

In fig.1, OABC is the forward characteristics of SCR at $I_G=0$.

If the supply voltage is increased from zero, a point reached (point A) when the SCR starts conducting.

Under this condition, the voltage across SCR suddenly drops as shown by dotted curve AB and most of supply voltage appears across the load resistance $R_{L_{\perp}}$

If proper gate current is made to flow, SCR can close at much smaller supply voltage.

Reverse Characteristics

When anode is negative w.r.t. cathode, the curve between V and I is known as reverse characteristics.

The reverse voltage does come across SCR when it is operated with a.c. supply.

If the reverse voltage is gradually increased, at first the anode current remains small (i.e. leakage current) and at some reverse voltage, avalanche breakdown occurs and the SCR starts conducting heavily in the reverse direction as shown by the curve DE.

This maximum reverse voltage at which SCR starts conducting heavily is known as reverse breakdown voltage.

SCR in Normal Operation

In order to operate the SCR in normal operation, the following points are kept in view:

- 1. The supply voltage is generally much less than breakover voltage.
- 2. The SCR is turned on by passing appropriate amount of gate current (a few mA) and not by breakover voltage.
- 3. When SCR is operated from a.c. supply, the peak reverse voltage which comes during negative half-cycle should not exceed the reverse breakdown voltage.
- 4. When SCR is to be turned OFF from the ON state, anode current should be reduced to holding current.
- 5. If gate current is increased above the required value, the SCRwill close at much reduced supply voltage.

Important Terms In The V-I Characteristics of SCR

The following terms are much used in the study of SCR :

- 1. Breakover voltage
- 2. Peak reverse voltage
- 3. Holding current
- 4. Forward current rating
- 5. Circuit fusing rating

1. Breakover Voltage

It is the minimum forward voltage, gate being open, at which SCR starts conducting heavily i.e. turned on.

Thus, if the breakover voltage of an SCR is 200 V, it means that it can block a forward voltage (i.e. SCR remains open) as long as the supply voltage is less than 200 V. If the supply voltage is more than this value, then SCR will be turned on.

In practice, the SCR is operated with supply voltage less than breakover voltage and it is then turned on by means of a small voltage applied to the gate.

Commercially available SCRs have breakover voltages from about 50 V to 500 V.

2. Peak Reverse Voltage (PRV)

It is the maximum reverse voltage (cathode positive w.r.t. anode) that can be applied to an SCR without conducting in the reverse direction.

PRV is an important consideration while connecting an SCR in an a.c. circuit. During the negative half of a.c. supply, reverse voltage is applied across SCR. If PRV is exceeded, there

may be avalanche breakdown and the SCR will be damaged if the external ciruit does not limit the current.

Commercially available SCRS have PRV ratings upto 2.5 kV.

3. Holding Current

It is the maximum anode current, gate being open, at which SCR is turned OFF from ON condition.

When SCR is in the conducting state, it can not be turned OFF even if gate voltage is removed.

The only way to turn off or open the SCR is to reduce the supply voltage to almost zero at which point the internal transistor comes out of saturation and opens the SCR.

The anode current under this condition is very small (a few mA) and is called holding current.

Thus, if an SCR has a holding current of 5mA, it means that if anode current is made less than 5 mA, then SCR will be turned off.

4. Forward Current Rating

It is the maximum anode current that an SCR is capable of passing without destruction.

Every SCR has a safe value of forward current which it can conduct. If the value of current exceeds this value, the SCR may be destroyed due to intensive heating at the junction.

For example, if an SCR has a forward current rating of 40 A, it means that the SCR can safely carry only 40 A. Any attempt to exceed this value will result in the destruction of the SCR.

Commercially available SCRs have forward current ratings from about 30A to 100A.

5. Circuit Fusing (I^2t) Rating

It is the product of square forward surge current and the time of duration of the surge i.e.,

Circuit fusing rating $=I^2t$

The circuit fusing rating indicates the maximum forward surge current capability of SCR.

For example, consider an SCR having circuit fusing rating of 90 A^2 s. If this rating is exceeded in the SCR circuit, the device will be destroyed by excessive powerdissipation.

APPLICATIONS:

SCRs are mainly used in devices where the control of high power, possibly coupled with high voltage, is demanded. Their operation makes them suitable for use in medium- to high-voltage AC power control applications, such as lamp dimming, power regulators and motor control.

SCRs and similar devices are used for rectification of high-power AC in high-voltage direct-current power transmission. They are also used in the control of welding machines, mainly MTAW (metal tungsten arc welding) and GTAW (gas tungsten arc welding) processes similar.

TRIAC

Construction And Operation

The triac is another three-terminal ac switch that is triggered into conduction when a low-energy signal is applied to its gate terminal. Unlike the SCR, the triac conducts in either direction when turned on. The triac also differs from the SCR in that either a positive or negative gate signal triggers it into conduction. Thus the triac is a three terminal, four layer bidirectional semiconductor device that controls ac power whereas an **SCR controls** dc power or forward biased half cycles of ac in a load. Because of its bidirectional conduction property, the triac is widely used in the field of power electronics for control purposes. Triacs of 16 kW rating are readily available in the market.

"Triac" is an abbreviation for three terminal ac switch. 'Tri'-indicates that the device has three terminals and 'ac' indicates that the device controls alternating current or can conduct in either direction.

Construction of a Triac

As mentioned above, triac is a three terminal, four layer bilateral semiconductor device. It incorporates two SCRs connected in inverse parallel with a common gate terminal in a single chip device. The arrangement of the triac is shown in figure. As seen, it has six doped regions. The gate terminal G makes ohmic contacts with both the N and P materials. This permits trigger

pulse of either polarity to start conduction. Electrical equivalent circuit and schematic symbol are shown in figure.b and figure.c respectively. Since the triac is a bilateral device, the term "anode" and "cathode" has no meaning, and therefore, terminals are designated as main terminal 1. (MT_1) , main terminal 2 (MT_2) and gate G. To avoid confusion, it has become common practice to specify all voltages and currents using MT_1 as the reference.

Triac Basic Structure

Operation and Working of a Triac

Though the triac can be turned on without any gate current provided the supply voltage becomes equal to the breakover voltage of the triac but the normal way to turn on the triac is by applying a proper gate current. As in case of SCR, here too, the larger the gate current, the smaller the supply voltage at which the triac is turned on. Triac can conduct current irrespective of the voltage polarity of terminals MT_1 and MT_2 with respect to each other and that of gate and terminal MT_2 . Consequently four different possibilities of operation of triac exists. They are:

1. Terminal MT₂ and gate are positive with respect to terminal MT₁

When terminal MT_2 is positive with respect to terminal MT_1 current flows through path P_1 - N_1 - P_2 - N_2 . The two junctions P_1 - N_1 and P_2 - N_2 are forward biased whereas junction N_1 P_2 is blocked. The triac is now said to be positively biased.

A positive gate with respect to terminal MT_1 forward biases the junction P_2 - N_2 and the breakdown occurs as in a normal SCR.

2. Terminal MT_2 is positive but gate is negative with respect to terminal MT_1

Though the flow path of current remains the same as in mode 1 but now junction P_2 - N_3 is forward biased and current carriers injected into P_2 turn on the triac.

3. Terminal MT_2 and gate are negative with respect to terminal MT_1

When terminal MT_2 is negative with respect to terminal MT_1 , the current flow path is $P_2-N_1-P_1-N_4$. The two junctions P_2-N_1 and $P_1 - N_4$ are forward biased whereas junction N_1-P_1 is blocked. The triac is now said to be negatively biased.

A negative gate with respect to terminal MT_1 injects current carriers by forward biasing junction P_2 - N_3 and thus initiates the conduction.

4. Terminal MT₂ is negative but gate is positive with respect to terminal MT₁

Though the flow path of current remains the same as in mode 3 but now junction P_2 - N_2 is forward biased, current carriers are injected and therefore, the triac is turned on.

Generally, trigger mode 4 should be avoided especially in circuits where high di/dt may occur. The sensitivity of triggering modes 2 and 3 is high and in case of marginal triggering capability negative gate pulses should be used. Though the triggering mode 1 is more sensitive compared to modes 2 and 3, it requires a positive gate trigger. However, for bidirectional control and uniform gate trigger modes 2 and 3 are preferred.

Gate turn-off thyristor :

A gate turn-off thyristor (GTO) is a special type of thyristor, which is a highpower semiconductor device. It was invented at General Electric.^[1] GTOs, as opposed to normal thyristors, are fully controllable switches which can be turned on and off by their third lead, the gate lead.

REVERSE BIAS:

GTO thyristors are available with or without reverse blocking capability. Reverse blocking capability adds to the forward voltage drop because of the need to have a long, low doped P1 region.

GTO thyristors capable of blocking reverse voltage are known as Symmetrical GTO thyristors, abbreviated S-GTO. Usually, the reverse blocking voltage rating and forward blocking voltage rating are the same. The typical application for symmetrical GTO thyristors is in current source inverters.

GTO thyristors incapable of blocking reverse voltage are known as asymmetrical GTO thyristors, abbreviated A-GTO, and are generally more common than Symmetrical GTO thyristors. They typically have a reverse breakdown rating in the tens of volts. A-GTO thyristors are used where either a reverse conducting diode is applied in parallel (for example, in voltage source inverters) or where reverse voltage would never occur (for example, in switching power supplies or DC traction choppers).

GTO thyristors can be fabricated with a reverse conducting diode in the same package. These are known as RCGTO, for Reverse Conducting GTO thyristor.

Safe Operating Area:

GTO thyristor requires external devices ("snubber circuits") to shape the turn on and turn off currents to prevent device destruction.

During turn on, the device has a maximum dI/dt rating limiting the rise of current. This is to allow the entire bulk of the device to reach turn on before full current is reached. If this rating is exceeded, the area of the device nearest the gate contacts will overheat and melt from over current. The rate of dI/dt is usually controlled by adding a saturable reactor (turn-on snubber), although turn-on dI/dt is a less serious constraint with GTO thyristors than it is with normal thyristors, because of the way the GTO is constructed from many small thyristor cells in parallel. Reset of the saturable reactor usually places a minimum off time requirement on GTO based circuits.

During turn off, the forward voltage of the device must be limited until the current tails off. The limit is usually around 20% of the forward blocking voltage rating. If the voltage rises too fast at turn off, not all of the device will turn off and the GTO will fail, often explosively, due to the high voltage and current focused on a small portion of the device. Substantial snubber circuits are added around the device to limit the rise of voltage at turn off. Reseting the snubber circuit usually places a minimum on time requirement on GTO based circuits.

The minimum on and off time is handled in DC motor chopper circuits by using a variable switching frequency at the lowest and highest duty cycle. This is observable in traction applications where the frequency will ramp up as the motor starts, then the frequency stays constant over most of the speed ranges, then the frequency drops back down to zero at full speed.

MOSFET **stands for** metal-oxide semiconductor field-effect transistor. **It is a special type of field-effect transistor (FET).**

Unlike BJT which is 'current controlled', the MOSFET is a voltage controlled device. The MOSFET has "**gate**", "**Drain**" and "**Source**" terminals instead of a "base", "collector", and "emitter" terminals in a bipolar transistor. By applying voltage at the gate, it generates an electrical field to control the current flow through the channel between drain and source, and there is no current flow from the gate into the MOSFET.

N-channel P-channel

A MOSFET may be thought of as a variable resistor, where the Gate-Source voltage difference can control the Drain-Source Resistance. When there is no applying voltage between the Gate-Source , the Drain-Source resistance is very high, which is almost like a open circuit, so no current may flow through the Drain-Source. When Gate-Source potential difference is applied, the Drain-Source resistance is reduced, and there will be current flowing through Drain-Source, which is now a closed circuit.

In a nutshell, a FET is controlled by the Gate-Source voltage applied (which regulates the electrical field across a channel), like pinching or opening a straw and stopping or allowing

current flowing. Because of this property, FETs are great for large current flow, and the

MOSFET is commonly used as a switch.

Differences between BJT and MOSFET.

- Unlike bipolar transistors, MOSFET is voltage controlled. While BJT is current controlled, the base resistor needs to be carefully calculated according to the amount of current being switched. Not so with a MOSFET. Just apply enough voltage to the gate and the switch operates.
- Because they are voltage controlled, MOSFET have a very high input impedance, so just about anything can drive them.
- MOSFET has high input impedence
- working
- MOSFET is a voltage controlled field effect transistor that differs from a JFET. The Gate electrode is electrically insulated from the main semiconductor by a thin layer of insulating material (glass, seriously!). This insulated metal gate is like a plate of a capacitor which has an extremely high input resistance (as high as almost infinite!). Because of the isolation of the Gate there is no current flow into the MOSFET from Gate.
- When voltage is applied at the gate, it changes the width of the Drain-Source channel along which charge carriers flow (electron or hole). The wider the channel, the better the device conducts.

IGBT:

The IGBT (insulated gate bipolar transistor) is a three-terminal electronic component, and these terminals are termed as emitter, collector and gate. Two of its terminals namely collector and emitter are associated with a conductance path and the remaining terminal 'G' is associated with its control. The sum of amplification is achieved by the IGBT is a radio between its input and output signal. For a conventional BJT, the amount of gain is almost equal to the radio to the o/p current to the i/p current that is called a beta.

IGBT Symbol

Basic Structure of IGBT

The basic structure of the N-channel IGBT is shown below. This structure is plain that the IGBTs silicon cross section is almost equal to that of a vertical power MOSFET except P+ injecting layer. It shares the same structure of MOS gate & P-wells with N+ source regions. In the following structure, the N+ layer is located at the top is called as the source and the bottom layer is called as a drain or collector.

Basic Structure of N-Channel IGBT

IGBT takes a parasitic thyristor includes the 4-layer NPN structures. There are some IGBs that are fabricated without the N+ buffer layer is called as NPT IGBTS non punch through), whereas some IGBTs are fabricated with the N+ buffer layer called as PT IGBTs (punch through). The performance of the device can considerably increase by existing the buffer layer. The operation of an IGBT is faster to that of power BJT than a power MOSFET.

The basic structure of the N-channel IGBT is shown below. This structure is plain that the IGBTs silicon cross section is almost equal to that of a vertical power MOSFET except P+ injecting layer. It shares the same structure of MOS gate & P-wells with N+ source regions. In the following structure, the N+ layer is located at the top is called as the source and the bottom layer is called as a drain or collector.

Circuit Diagram of a IGBT

NATURAL COMMUTATION:

Generally, if we consider AC supply, the current will flow through the zero crossing line while going from positive peak to negative peak. Thus, a reverse voltage will appear across the device simultaneously, which will turn off the thyristor immediately. This process is called as natural commutation as thyristor is turned off naturally without using any external components or circuit or supply for commutation purpose.

Natural Commutation

Natural commutation can be observed in AC voltage controllers, phase controlled rectifiers

and cyclo converters

Forced Commutation Methods

- Class A: Self commutated by a resonating load
- Class B: Self commutated by an LC circuit
- Class C: C or L-C switched by another load carrying SCR
- Class D: C or L-C switched by an auxiliary SCR
- Class E: An external pulse source for commutation
- Class F: AC line commutation

Class A: Self Commutated by a Resonating Load

Class A is one of frequently used thyristor commutation techniques. If thyristor is triggered or turned on, then anode current will flow by charging capacitor C with dot as positive. The second order under-damped circuit is formed by the inductor or AC resistor, capacitor and resistor. If the current builds up through SCR and completes the half cycle, then the inductor current will flow through the SCR in the reverse direction which will turn off thyristor.

Class A-Commutation

Class B: Self Commutated by an L-C Circuit

The major difference between the class A and class B thyristor commutation techniques is that the LC is connected in series with thyristor in class A, whereas in parallel with thyristor in class B. Before triggering on the SCR, the capacitor is charged up (dot indicates positive). If the SCR is triggered or given triggering pulse, then the resulting current has two components. The constant load current flowing through the R-L load is ensured by the large reactance connected in series with the load which is clamped with freewheeling diode. If sinusoidal current flows through the resonant L-C circuit, then the capacitor C is charged up with dot as negative at the end of the half cycle.

Class B-Commutation

The total current flowing through the SCR becomes zero with the reverse current flowing through the SCR opposing the load current for a small a small fraction of the negative swing. If the resonant circuit current or reverse current becomes just greater than the load current, then the SCR will be turned OFF.

Class C: C or L-C Switched by another Load Carrying SCR

In the above thyristor commutation techniques we observed only one SCR but in these class C commutation techniques of thyristor there will be two SCRs. One SCR is considered as main thyristor and the other as auxiliary thyristor. In this classification both may act as main SCRs carrying load current and they can be designed with four SCRs with load across the capacitor by using a current source for supplying an integral converter.

Class C-Commutation

If the thyristor T2 is triggered, then the capacitor will be charged up. If the thyristor T1 is triggered, then the capacitor will discharge and this discharge current of C will oppose the flow of load current in T2 as the capacitor is switched across T2 via T1.

Class D: L-C or C Switched by an Auxiliary SCR

The class C and class D thyristor commutation techniques can be differentiated with the load current in class D: only one of the SCR's will carry the load current while the other acts as an auxiliary thyristor whereas in class C both SCRs will carry load current. The auxiliary thyristor consists of resistor in its anode which is having resistance of approximately ten times the load resistance.

Class D-Commutation

By triggering the Ta (auxiliary thyristor) the capacitor is charged up to supply voltage and then the Ta will turn OFF. The extra voltage if any, due to substantial inductance in the input lines will be discharged through the diode-inductor-load circuit. If the Tm (main thyristor) is triggered, then the current will flow in two paths: commutating current will flow through the C-Tm-L-D path and load current will flow through the load. If the charge on the capacitor is reversed and held at that level using the diode and if Ta is re-triggered, then the voltage across the capacitor will appear across the Tm via Ta. Thus, the main thyristor Tm will be turned off.

Class E: External Pulse Source for Commutation

For the class E thyristor commutation techniques, a transformer which can not saturate (as it is having a sufficient iron and air gap) and capable to carry the load current with small voltage drop compared with the supply voltage. If the thyristor T is triggered, then the current will flow through the load and pulse transformer

Class E-Commutation

An external pulse generator is used to generate a positive pulse which is supplied to the cathode of the thyristor through pulse transformer. The capacitor C is charged to around 1v and it is considered to have zero impedance for the turn off pulse duration. The voltage across the thyristor is reversed by the pulse from the electrical transformer which supplies the reverse recovery current, and for the required turn off time it holds the negative voltage.

Class F: AC Line Commutated

In class F thyristor commutation techniques, an alternating voltage is used for supply and, during the positive half cycle of this supply, load current will flow. If the load is highly inductive, then the current will remain until the energy stored in the inductive load is dissipated. During the

negative half cycle as the load current becomes zero, then thyristor will turn off. If voltage exists for a period of rated turn off time of the device, then the negative polarity of the voltage across the outgoing thyristor will turn it off.

Class F-Commutation

Here, the duration of the half cycle must be greater than the turn off time of thyristor. This commutation process is similar to the concept of three phase converter. Let us consider, primarily T1 and T11 are conducting with the triggering angle of the converter, which is equal to 60 degrees, and is operating in continuous conduction mode with highly inductive load. If the thyristors T2 and T22 are triggered, then instantaneously the current through the incoming devices will not rise to the load current level. If the current through the incoming thyristors reaches the load current level, then the commutation process of outgoing thyristors will be initiated. This reverse biasing voltage of thyristor should be continued until the forward blocking state is reached. Thyristor can be simply called as a controlled rectifier. There are different types of thyristors, which are used for designing power electronics based innovative electrical projects. The process of turning on thyristor by providing triggering pulses to gate terminal is called as triggering. Similarly, the process of turning off thyristor is called as commutation. Hope this article give brief information about different commutation techniques of the thyristor. Further technical assistance will be provided based on your comments and queries in the comments section below.

UNIT-2

PHASE CONTROLLED CONVERTERS

INTRODUCTION:

Unlike diode rectifiers, phase controlled rectifiers has and advantage of controlling the output voltage. The diode rectifiers are called uncontrolled rectifiers. When these diodes are replaced with thyristors, then in becomes phase controlled rectifiers. The output voltagecan be controlled by varying the firing angle of the thyristors. These phase controlled rectifiers has its main application in speed control of DC motors.

APPLICATIONS

- Steel rolling mills, paper mills, textile mills where speed control of DC motors are necessary.
- Electric traction.
- High voltage DC transmission
- Electromagnet power supplies

In this unit, the following categories of phase controlled rectifiers will be studied in detail.

- 1. Single Phase Half Wave Controlled Rectifier with R Load.
- 2. Single Phase Half Wave Controlled Rectifier with RL Load.
- 3. Single Phase Half Wave Controlled Rectifier with RL Load and Freewheeling Diode.
- 4. Single Phase Full Wave Controlled Rectifier with R Load.
- 5. Single Phase Full Wave Controlled Rectifier with RL Load.
- 6. Single Phase Full Wave Controlled Rectifier with RL Load and Freewheeling Diode.
- 7. Single Phase Full Wave Half Controlled Rectifier (Semi Converter).
- 8. Three Phase Half Wave Controlled Rectifier.
- 9. Three Phase Full Wave Controlled Rectifier

Single Phase Half Wave Controlled Rectifier with R Load:

• The circuit consist of a thyristor T, a voltage source Vs and a resistive load R.

• During the positive half cycle of the input voltage, the thyristor T is forward biased but it does not conduct until a gate signal is applied to it.

- When a gate pulse is given to the thyristor T at $\omega t = \alpha$, it gets turned ON and begins to conduct.
- When the thyristor is ON, the input voltage is applied to the load.
- During the negative half cycle, the thyristor T gets reverse biased and gets tuned OFF.
- So the load receives voltage only during the positive half cycle only.
- The average value of output voltage can be varied by varying the firing angle α .

• The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor.

R-LOAD 6 ZR-Lood = Vm Sin wt

Single Phase Half Wave Controlled Rectifier with RL Load

• The circuit consist of a thyristor T, a voltage source Vs, an inductive load L and a resistive load R.

• During the positive half cycle of the input voltage, the thyristor T is forward biased but it does not conduct until a gate signal is applied to it.

• When a gate pulse is given to the thyristor T at $\omega t = \alpha$, it gets turned ON and begins to conduct.

• When the thyristor is ON, the input voltage is applied to the load but due to the inductor present in the load, the current through the load builds up slowly.

• During the negative half cycle, the thyristor T gets reverse biased but the current through the thyristors is not zero due to the inductor.

• The current through the inductor slowly decays to zero and when the load current (i.e the current through the thyristor) falls below holding current, it gets turned off.

• So here the thyristor will conduct for a few duration in the negative half cycle and turns off at $\omega t = \beta$. The angle β is called extinction angle.

• The duration from α to β is called conduction angle.

• So the load receives voltage only during the positive half cycle and for a small duration in negative half cycle.

• The average value of output voltage can be varied by varying the firing angle α .

• The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor.

Single Phase Half Wave Controlled Rectifier with RL Load and Freewheeling Diode

• The circuit consist of a thyristor T, a voltage source Vs, a diode FD across the RL load, an inductive load L and a resistive load R.

• During the positive half cycle of the input voltage, the thyristor T is forward biased but it does not conduct until a gate signal is applied to it.

• When a gate pulse is given to the thyristor T at $\omega t = \alpha$, it gets turned ON and begins to conduct.

• When the thyristor is ON, the input voltage is applied to the load but due to the inductor present in the load, the current through the load builds up slowly.

• During the negative half cycle, the thyristor T gets reverse biased. At this instant i.e at $\omega t = \pi$, the load current shift its path from the thyristor to the freewheeling diode.

- When the current is shifted from thyristor to freewheeling diode, the thyristor turns OFF.
- The current through the inductor slowly decays to zero through the loop Rfreewheeling diode-L.
- So here the thyristor will not conduct in the negative half cycle and turns off at $\omega t = \pi$.
- So the load receives voltage only during the positive half cycle.
- The average value of output voltage can be varied by varying the firing angle α .

• The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor.

Single Phase Full Wave Controlled Rectifier with R Load

- The circuit consist of four thyristors T1, T2, T3 and T4, a voltage source Vs and a R Load.
- During the positive half cycle of the input voltage, the thyristors T1 & T2 is forward biased but it does not conduct until a gate signal is applied to it.
- When a gate pulse is given to the thyristors T1 & T2 at $\omega t = \alpha$, it gets turned ON and begins to conduct.
- When the T1 & T2 is ON, the input voltage is applied to the load through the path VsT1-Load-T2-Vs.

• During the negative half cycle, T3 & T4 is forward biased, the thyristor T1 & T2 gets reverse biased and turns OFF

• When a gate pulse is given to the thyristor T3 & T4 at $\omega t = \pi + \alpha$, it gets turned ON and begins to conduct.

- When T3 & T4 is ON, the input voltage is applied to the load Vs-T3-Load-T4-Vs.
- Here the load receives voltage during both the half cycles.
- The average value of output voltage can be varied by varying the firing angle α .

• The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor.

Single Phase Full Wave Controlled Rectifier with RL Load

A. MID POINT CONVERTER

• The circuit consist of two thyristors T1 and T2, a center tap transformer, a voltage source Vs and a RL Load.

• During the positive half cycle of the input voltage, the thyristor T1 is forward biased but it does not conduct until a gate signal is applied to it.

• When a gate pulse is given to the thyristor T1 at $\omega t = \alpha$, it gets turned ON and begins to conduct.

• When the thyristor T1 is ON, the input voltage is applied to the load but due to the inductor present in the load, the current through the load builds up slowly through the path A-T1-Load-N-A.

• During the negative half cycle, T2 is forward biased, the thyristor T1 gets reverse biased but the current through the thyristor T1 is not zero due to the inductor and T1 does not turns OFF

• The current through the inductor begins to decay to zero and T1 conducts for a small duration in negative half cycle.

• When a gate pulse is given to the thyristor T2 at $\omega t = \pi + \alpha$, it gets turned ON and begins to conduct.

• When the thyristor T2 is ON, the load current shifts its path from the T1 to T2 and thyristor T1 turns OFF at $\omega t = \pi + \alpha$.

• When T2 is ON, the current through the load builds up slowly through the path B-T2- Load-N-B.

- So here both the thyristor will conduct for a few duration in the negative half cycle.
- The load receives voltage during both the half cycles.
- The average value of output voltage can be varied by varying the firing angle α .

• The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor

B. BRIDGE CONVERTER

• The circuit consist of four thyristors T1, T2, T3 and T4, a voltage source Vs and a RL Load.

• During the positive half cycle of the input voltage, the thyristors T1 & T2 is forward biased but it does not conduct until a gate signal is applied to it.

• When a gate pulse is given to the thyristors T1 & T2 at $\omega t = \alpha$, it gets turned ON and begins to conduct.

• When the T1 & T2 is ON, the input voltage is applied to the load but due to the inductor present in the load, the current through the load builds up slowly through the path Vs-T1-Load-T2-Vs.

• During the negative half cycle, T3 & T4 is forward biased, the thyristor T1 & T2 gets reverse biased but the current through them is not zero due to the inductor and does not turns OFF

• The current through the inductor begins to decay to zero and T1 & T2 conducts for a small duration in negative half cycle.

• When a gate pulse is given to the thyristor T3 & T4 at $\omega t = \pi + \alpha$, it gets turned ON and begins to conduct.

• When the thyristor T3 & T4 is ON, the load current shifts its path to T3 & T4 and turns OFF T1 & T2 at $\omega t = \pi + \alpha$.

• When T3 & T4 is ON, the current through the load builds up slowly through the path Vs-T3-Load-T4-Vs.

• So here all the thyristor will conduct for a few duration in the negative half cycle.

- The load receives voltage during both the half cycles.
- The average value of output voltage can be varied by varying the firing angle α .

• The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor.

Single Phase Full Wave Controlled Rectifier with RL Load and Freewheeling Diode.

• The circuit consist of four thyristors T1, T2, T3 and T4, a voltage source Vs, a RL Load and a freewheeling diode across the load.

• During the positive half cycle of the input voltage, the thyristors T1 & T2 is forward biased but it does not conduct until a gate signal is applied to it.

• When a gate pulse is given to the thyristors T1 & T2 at $\omega t = \alpha$, it gets turned ON and begins to conduct.

• When the T1 & T2 is ON, the input voltage is applied to the load but due to the inductor present in the load, the current through the load builds up slowly through the path Vs-T1-Load-T2-Vs.
• During the negative half cycle (at $\omega t = \pi$), T3 & T4 is forward biased, the thyristor T1 & T2 gets reverse biased.

• The current shifts its path to the freewheeling diode and circulates through the loop FD-R-L-FD. • Thus T1 & T2 turns off at $\omega t = \pi$

• When a gate pulse is given to the thyristor T3 & T4 at $\omega t = \pi + \alpha$, it gets turned ON and begins to conduct.

• When T3 & T4 is ON, the current through the load builds up slowly through the path Vs-T3-Load-T4-Vs.

• During the next positive half cycle (at $\omega t = 2\pi$), T1 & T2 is forward biased, the thyristor T3 & T4 gets reverse biased.

• The current shifts its path to the freewheeling diode and circulates through the loop FD-R-L-FD. • Thus T3 & T4 turns off at $\omega t = 2\pi$

• So here all the thyristor will conduct only in the positive half cycle.

- The load receives voltage during both the half cycles.
- The average value of output voltage can be varied by varying the firing angle α .

• The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor.

Single Phase Full Wave Half Controlled Rectifier (Semi Converter)

• The circuit consist of two thyristors T1 & T2, two diodes D1 and D2, a voltage source Vs, a RL Load.

• During the positive half cycle of the input voltage, the thyristors T1 & D1 is forward biased but it does not conduct until a gate signal is applied to T1.

• When a gate pulse is given to the thyristors T1 at $\omega t = \alpha$, it gets turned ON and begins to conduct.

• When the T1 & D1 is ON, the input voltage is applied to the load but due to the inductor present in the load, the current through the load builds up.

• During the negative half cycle (at $\omega t = \pi$), T2 & D2 is forward biased, the thyristor T1 & D1 gets reverse biased.

• The current shifts its path to D2 and T1 in case of symmetrical converter (D1 & D2 in case of asymmetical converter) and circulates through the load.

- When a gate pulse is given to the thyristor T2 at $\omega t = \pi + \alpha$, it gets turned ON and begins to conduct.
- When T2 & D2 is ON, the current through the load builds up.

• During the next positive half cycle (at $\omega t = 2\pi$), T1 & D1 is forward biased, the thyristor T2 & D2 gets reverse biased.

• The current shifts its path to D1 and T2 in case of symmetrical converter (D1 & D2 in case of asymmetical converter) and circulates through the load.

- The load receives voltage during both the half cycles.
- The average value of output voltage can be varied by varying the firing angle α .
- The waveform shows the plot of input voltage, gate current, output voltage, output current and voltage across thyristor.

Single Phase Semi Converter (symmetical semi converter)

Single Phase Semi Converter (asymmetical semi converter)

Ellect of source impedance on 14 bull converter

So for we have studied the effect of Inductive local on old current, one voltage + biring of Anymikar. In those cases, the impedance of source was taken to be 0. Now we will consider the working of 19 built wave converter with RL local, along with an inductive impedance at source side.

Consider a 14 bull convete as shown below. Let the 1/1p inductions he Ls. The load current is assumed to be continuous due to large inductive local.

Let us consider the case when is not present is when the source inductions is zero. Here the scre annihight out TI + TZ an

bird at di So from d to (174d) the off current is is some as aument through TI + TZ is is is from d to 174d; is = i,

AL THAD; T31T4 is find. Now the load current shifts its path from T1 1T2 to T31T4. At this time, is is some as current through T31T4 N iz

is from Tital to 2TT+d; is = 12

Here we can see a sudden decreases increase in it is is at the d, that at the d, that at the decrease in a sudden decrease / increase

in load current will not take place, intered a greadual document for take place. As shown belows In the waveform shown below, the themitar TI at an triggered at (2). So the current i, bruilds up gradually + attains monimum value Igat on Angle (2+11). Next the thymitars T3 + T4 and triggered at (17+2). At this time, the current i, (through TI + T2) decrease gradually from To to 0 at (17+2+14) and current in through T3 + T4 hiereases from 0 to To at (17+2+14) and this process repeats at each firing. Here we can see that during the period 'u', all thymitar T', T2, T3 + T4 are conducting ' ie during the period 'u', the off voltage will be 0.

from bigure, we can see that, Vo is a for
$$\frac{d}{dt} \frac{d}{dt} \frac{d}{dt}$$

So the alp voltage is available only for $\omega t = (t+4)$ to $(t+1)$.
 \therefore Vo = Vin \int_{T} Sin ωt dut
 $\frac{d}{dt}$
 $= V_{t+4}$
 $= V_{t+4}$
 $Vo = V_{t+4}$
 $Vo = V_{t+4}$
 $Vo = V_{t+4}$
 $Term \left[\cos d + \cos (t+4) \right] \longrightarrow 0$.
Now load current To intersection voltage time on of T1+T2 is
gen at $d' + builds up to To at $dt = dt$
Looleing to equivalent circuit, Apply Kul to the lap ABCOA.$

$$= V_1 - L_s \frac{di_1}{dt} = V_2 - L_s \frac{di_2}{dt}$$

$$i \quad V_1 - V_2 = L_s \left(\frac{di_1}{dt} - \frac{di_2}{dt} \right) \quad (tor \quad V_1 = V_2).$$

$$i \quad 2V_1 = L_s \left(\frac{di_1}{dt} - \frac{di_2}{dt} \right) \quad (tor \quad V_1 = V_2).$$

$$i \quad 2V_1 = L_s \left(\frac{di_1}{dt} - \frac{di_2}{dt} \right)$$

$$i \quad 2V_1 = L_s \left(\frac{di_1}{dt} - \frac{di_2}{dt} \right)$$

$$i \quad \frac{di_1}{dt} - \frac{di_2}{dt} = \frac{2}{L_s} \quad (tor \quad V_1 = V_2).$$

Since load current is obscure to be contrast is $i_1+i_2=T_0$, $\frac{di_1}{dt} + \frac{di_2}{dt} = 0 \longrightarrow 3$

Circuit Diagram and Waveform of 3 Phase Half Controlled Rectifier with RL Load:

Circuit Diagram and Waveform of 3 Phase Half Controlled Rectifier with RL Load

• The circuit consist of a delta star transformer and 3 thyristors T1, T2, T3 which are connected on the secondary star connected winding and a RL load.

• When Va is positive, T1 becomes forward biased and conducts. During the negative cycle of Va, the current through T1 is not zero due to inductor present in the load.

- So T1 will remain ON during the negative cycle of Va
- When Vb is positive, T2 is triggered and the load current gets transferred from T1 to T2. At this instant, T1 turns OFF.
- During the negative cycle of Vb, the current through T2 is not zero due to inductor present in the load.
- So T2 will remain ON during the negative cycle of Vb

• When T3 is triggered during positive cycle of Vc, the load current is transferred from T2 to T3. At this instant, T2 turns OFF

- Similarly T3 conducts during the negative cycle of Vc and turns OFF when T1 is triggered.
- The average output voltage can be varied by varying the firing angles of the thyristors.
- The waveforms shows the output voltage for various firing angles.
- In the waveform, Va is denoted as Van, Vb as Vbn, Vc as Vcn.

Circuit Diagram and Waveform of 3 Phase Half Controlled Rectifier with RL Load

• The circuit consist of a delta star transformer and 3 thyristors T1, T2, T3 which are connected on the secondary star connected winding and a RL load.

• When Va is positive, T1 becomes forward biased and conducts. During the negative cycle of Va, the current through T1 is not zero due to inductor present in the load.

• So T1 will remain ON during the negative cycle of Va • When Vb is positive, T2 is triggered and the load current gets transferred from T1 to T2. At this instant, T1 turns OFF.

- During the negative cycle of Vb, the current through T2 is not zero due to inductor present in the load.
- So T2 will remain ON during the negative cycle of Vb

• When T3 is triggered during positive cycle of Vc, the load current is transferred from T2 to T3. At this instant, T2 turns OFF

- Similarly T3 conducts during the negative cycle of Vc and turns OFF when T1 is triggered.
- The average output voltage can be varied by varying the firing angles of the thyristors.

• The waveforms shows the output voltage for various firing angles. • In the waveform, Va is denoted as Van, Vb as Vbn, Vc as Vcn.

Circuit Diagram and Waveform of 3 Phase Full Controlled Rectifier with RL Load

• The circuit consist of 6 thyristors, T1, T2, T3, T4, T5, T6, a three phase supply and a RL load.

- The thyristors T1, T3, T5 form the positive group.
- The thyristors T4, T6, T2 form the negative group.
- Thyristors T1, T3, T4, T6 produces the full wave recitified output of Vab across the load.
- Thyristors T3, T5, T6, T2 produces the full wave recitified output of Vbc across the load.
- Thyristors T1, T5, T4, T2 produces the full wave recitified output of Vca across the load.

• All these 3 outputs are given simultaneously to the same RL load. The effect is that all the 3 individual output mentioned above gets superimposed on each other to get the final output.

- The waveform of the output for different firing angles are shown below.
- The average output voltage can be varied by varying the firing angle.
- For firing angle < 90, the circuit works as rectifier.
- For firing angle > 90, the circuit works as Line commutated inverter.

Dual Converter

Dual converter, the name itself says two converters. It is really an electronic converter or circuit which comprises of two converters. One will perform as rectifier and the other will perform as inverter. Therefore, we can say that double processes will occur at a moment. Here, two full converters are arranged in anti-parallel pattern and linked to the same dc load. These converters can provide four quadrant operations. The basic block diagram is shown below.

Modes of Operation of Dual Converter NON – CIRCULATING CURRENT MODE

- One converter will perform at a time. So there is no circulating current between the converters.
- During the converter 1 operation, firing angle (α_1) will be $0 < \alpha_1 < 90^\circ$; V_{dc} and I_{dc} are positive.
- During the converter 2 operation, firing angle (α_2) will be $0 < \alpha_2 < 90^\circ$; V_{dc} and I_{dc} are negative.

Circulating Current Mode

- Two converters will be in the ON condition at the same time. So circulating current is present.
- The firing angles are adjusted such that firing angle of converter 1 (α_1) + firing angle of converter 2 (α_2) = 180°.
- Converter 1 performs as a controlled rectifier when firing angle be $0 < \alpha_1 < 90^\circ$ and Converter 2 performs as an inverter when the firing angle be $90^\circ < \alpha_2 < 180^\circ$. In this condition, V_{dc} and I_{dc} are positive.
- Converter 1 performs as an inverter when firing angle be $90^{\circ} < \alpha_1 < 180^{\circ}$ and Converter 2 performs as a controlled rectifier when the firing angle be $0 < \alpha_2 < 90^{\circ}$ In this condition, V_{dc} and I_{dc} are negative.
- The four quadrant operation is shown below.

Ideal Dual Converter

The term 'ideal' refers to the ripple free output voltage. For the purpose of unidirectional flow of DC current, two diodes (D_1 and D_2) are incorporated between the converters. However, the direction of current can be in any way. The average output voltage of the converter 1 is V_{01} and converter 2 is V_{02} . To make the output voltage of the two converters in same polarity and magnitude, the firing angles of the thyristors have to be controlled.

Single Phase Dual Converter

The source of this type of converter will be single-phase supply. Consider, the converter is in non-circulating mode of operation. The input is given to the converter 1 which converts the AC to DC by the method of rectification. It is then given to the load after filtering. Then, this DC is provided to the converter 2 as input. This converter performs as inverter and converts this DC to AC. Thus, we get AC as output. The circuit diagram is shown below.

Three Phase Dual Converter

Here, three-phase rectifier and three-phase inverter are used. The processes are similar to singlephase dual converter. The three-phase rectifier will do the conversion of the three-phase AC supply to the DC. This DC is filtered and given to the input of the second converter. It will do the DC to AC conversion and the output that we get is the three-phase AC. Applications where the output is up to 2 megawatts. The circuit is shown below.

UNIT -3

DC TO DC CHOPPER

Voltage Commutated Chopper

• Similar to step down chopper.

• T1 = Main thyristor, TA = Auxiliary thyristor, L,C = commutating components, Rc = charging resistor

- Assume output current is constant.
- Close the switch, initially capacitor short circuited, after 4 5 time constants, Vc = Vs.
- At t = 0, T1 is on, load is connected across the supply Vo = Vs.
- Tank circuit starts conduction (diode forward bias).
- After conduction polarities across capacitor are changed.
- D is reverse biased polarities across capacitor are changed.
- Upto t2 we completed now we have to turn off the main thyristor.

- Make TA on, T1 to be off (applying reverse voltage).
- To make the conduction continues use free wheeling diode.

• In order to make the output continuous, the existing path will be changed as Vs, C, TA and the load.

- Voltage across the capacitor changes.
- Now make the voltage across capacitor > Vs.
- Free wheeling diode conducts, output voltage becomes zero.
- To start next cycle, no need to close switch 's'.

• A reverse voltage is applied across conducting SCR due to which current through SCR becomes zero and it is getting off. Hence it is called voltage commutation.

• Other name of this is impulse commutation. It is because a high reverse voltage will turn off the SCR.

Limitations of voltage commutated chopper:

1. A starting circuit is required.

2. load voltage at once rises to 2Vs at the instant commutation of main SCR is initiated.

3. It can't work at no load. It is because at no load, capacitor would not get charged frm -Vs to Vs when auxiliary SCR is triggered for commutating the main SCr.

4. Main thyristor is required to carry current more than load current. So, it is to be over rated.

• The values of commutating components C and L can be obtained.

• The values depend upon turn off time of main thyristor T1. during tc capacitor voltage changes from -Vs to zero linearly.

ic = C dV / dt for a constant load current Io. Io = C . Vs / tc C = Io . tc / Vs

• The commutation circuit turn off time tc must be greater than thyristor turn off time.

• Load current should not be too large.

$$T_{om} = T_{ON} + \frac{2CV_s}{I_o}$$

Current Commutated Chopper:

Capacitor is charged to Vs, main thyristor T1 is fired at t = 0. So that load voltage Vo =

- Vs.
- At t = t1, auxiliary thyristor is turned on to commutate main thyristor.
- With turning on of TA, an oscillatory current ic is set up in the circuit.

$$i_c = \frac{V_s}{\omega_o L} \sin \omega_o t = V_s \sqrt{\frac{C}{L}} \sin \omega_o t.$$

• At t2, Vc = -Vs and ic tends to reverse in the auxiliary thyristor TA, it gets naturally commutated.

• As TA is reverse biased and turned off at t2. Oscillatory current ic begins to flow through C, L, D2 and T1.

• At t3 ic rises to io so that iT1 = 0. As a result main SCR T1 is turned off at t3. Since oscillating current through T1 turns it off it is called current commutated chopper.

• After t3 ic supplies load current io and the excess current. iD1 = ic - Io is conducted through diode D1.

- Afetr t4, a constant current equal to Io flows through Vs, C, L, D2 and load.
- Capacitor c is charged linearly to source voltage Vs at t5, so during time (t5 t4) ic= Io.

• In this commutation an opposite current pulse will be injected through SCR. As a result currents decreases and finally comes to zero if both the currents would be equal and opposite.

• Anti parallel diode is useful to apply the reverse voltage after current through SCR becomes to zero. The value of reverse voltage is low. So

- 1. Turn off time increases.
- 2. Turn off power loss increases.

$$L = \frac{V_{s} t_{c}}{(x I_{0}) \left[\pi - 2 \sin^{-1} \left(\frac{1}{x} \right) \right]} \qquad \text{where } x = \frac{I_{cp}}{I_{o}}$$
$$C = \frac{(x I_{o}) t_{c}}{V_{s} \left[\pi - 2 \sin^{-1} \left(\frac{1}{x} \right) \right]}$$

- Jones chopper employes the principle of voltage commutation.
- Morgan's chopper based on the principle of current commutation.

UNIT - 3 DC TO DC CHOPPER * Many Industrial Applas. Require power from de voltage source. => Subway cars, trolley buses Two types of dc to dc converters :-(i) Ac Link chopper Triverter AC DC -> dc is first convorted to ac by an inverter (dc to ac converter) -> Ac is then stepped-up or stepped-dour by a transformor which is convolted back to de by a diode rectifier * Conversion takes place in two steps so this ac link choppor is -> Costly → bulky →less efficient

(I)

(ii) DC CHOPPER :- DC DC -> Direct Conversion (one stage Conversion) * Fixed de input voltage to a variable de ofp vollage durectly. -> POWER BJT, POWER MASFET, GITO OF IGO STEP DOWN CHOPPERS CHOPPER 2 SW 1 1+ LOAD Vc >E Īo, H Vo/ > 6

- * A chopper is a high speed on /off Semiconductor switch.
- * It connects source to load & disconnects the load from source at a fast speed.
- * Chopper (Switch) may be turned on or UFF as desired.
- * During the period Ton, the chopper is ON and the load vge is equal to the source volbage Vs.
- * During the porciod TOFF, the chopper is OFF & the load current flows through the freewheeling diade FD.
- * During TOFF, the load terminals are short circuited by FD & load vge is therefore zoro.

> During Ton -> load covort rises ToFF -> load covort decays

Avg. Load Valtage, Vo = Ton Vs Ton + TOFF $V_{c} = \frac{T_{on}}{T} V_{s} = \alpha V_{s}$

$$\begin{array}{l} \text{Ion} \rightarrow \text{ on-time.} \\ T_{OFF} \rightarrow \text{ OFF-time.} \\ T = T_{on} + T_{OFF} \quad (\text{chopping Period.}) \\ \mathcal{X} = \frac{T_{on}}{T} \quad (\text{Duty cycle.}) \end{array}$$

3 STEP UP CHOPPERS L m CH Vo TOAD TOAD Vs CH (a) Step-up chopper (b) hi stores charge DYOI S >t 51 112 Lati is added to Vs. JI TON TOFF. \rightarrow_t Vo * Avg. of P Voltage Vo t greater than the isput In 12 Voltage Vs. Ton I, St $V_{0} > V_{S}$. > Called as step_up chopper. * Inductor 'L' in series with source vge Vs. When CH is ON, the inductor stores the × energy. * During Ton -> L stores the energy.

- * When Chopper CH is off inductor current cann't die down instantaneously, the current is forced to flow through the divide f load for a time Toff.
- * As a repult the current tends to decrease, polarity of the eng induced in L is revenced.
- * Voltage across the load, Vo = Vs + 4(di) exceeds the source voltage.
- => when CH is ON, the current them. the inductance is would the from I, to I2.
- \Rightarrow when CH is OFF, coverent would fall from I_2 to I_1 .

 \Rightarrow $CH \rightarrow ON \rightarrow V_{S} = V_{L}$

CH -> OFF -> VL = Vo - VS

VL -> Vge across L

Avg. ofp vge, Vo = Vs(KoFF) $V_o = V_s \left(\frac{1}{1-\alpha}\right)$

lypes Of CHOPPERS (is First quadrant (or) Type-A chopper (ii) Second quadrant (or) Type-B chopper (iii) Two quadrant type A chopper (or) Type c chopper (iv) Two-quadrant Type B chapper (or) ype D chopper (V) Four quadrant chopper (or) Type Echopper. Four Ouddrant Chopper (0) Type E chopper:--> 4 Semiconductor switches CH, to CH4 -> 4 Diodes D, to Dq is antiparallel. CH2/ TYPE-ECHOPPER Load empE

First Quadrant :-For first quadrant operation, CHq kept on & CH, is operated CH3 kept OFF * CH, & CHq -> ON -> Vo = Vs; Wad covorant is begins to plow. * Vo & Io are the (I quadrant) > when CH, is turned off, positive current freewheels through CH4, D2. Second Quadrant :-* CH2 is operated * CH, , CH3 & CH4 kept off. * With CH2 ON several (or negative) account flows through Li, CH2 , Pq & E * I stores energy during the time chills ON * when CH2 is turned OFF, current is fed back to sources thru. diades Di, Dg * (E+1, di) is more than source vollage Vs.

(5)

* hoad Voltage Vo is positive Io is negative > Second quadrant operation of chopper Power is good back from load to source. * "Slep_up chopper" Third Quadrant ;-* CH, is kept off, CH2 is kept on & CH3 is operated. ¥ CH3 is ON, load gets connected to source Vs, Both Vo, Io are negative => Third Quadrant operation. * CH3 -> turned off, negative current freewheels through CH2, Dq. * hood Voltage Vo is negative Io is negative Step- down chopper".

1 Chopper on 2 Choppens on Step-up chopper Step_down Chopper CH2 operated CH2-Dq: LStores CH, operated energy CHI-CH4 ON CH2-OFF : then Di-Dq CH, -OFF : then CH4-D2 Conduct Conduct 2 chopper on step-down chopper CH4 operated CH4-D2: L Stores energy CH3 - Operated

No

CH3-CH2:00 CH3-OFF: then CH2-D4 conduct E severned

1 chopper on step-up chopper CH4 - OFF : then D2, D3 conduct E several

Fourth Quadrant :-

- CHq is operated of other devices are OFF * * CH4 is ON, Pasitive avoiant flows through CH4, D2, L& G
- * 1 stores energy during the time CH4 is ON.
- * When CH4 -> turned OFF, Current is fed back to source through diades D2, D3
- * Vo -> negative & Io -> Positive
- * Power is god back from Lood to Source
- => Chopper Operates ous "Step Up Chopper"

Load Commutated Chopper :-* It consists of 4 thyristors T, T2 T3 & T4 * One commutating capacitor c. * TITZ => ONE PAIR T3, T4 => ANOTHER PAIR * * When T, Tz are conducting they are main thyristors, whereas T3 T4 & C act as commutating components. * FD is the freewheeling diade across the load. * Intially capacitor 'c' is charged to a voltage Vs with uppor plate regative of lower plate positive FD, Load Commutated Chopper

Working Of hoad commutated chopper can be explained in various modes.

Mode I :-

* C' charged with lower plate p. the load commutated chopper is seady for operation.

* At t = 0, the thyristor pair T_1, T_2 is triggered. the load current plows through V_s, T_1, C, T_2 & load, so the load voltage atome shoots to $V_0 = V_s + V_c = 2V_s$.

* Load current now flows from source to load.

* The capacitor c' is charged linearly by constant word current Is from Vs at t=0 to (-Vs) at t,.

* When the capacitor voltage becomes (-Vs), the load voltage falls from 2Vs to $V_0 = V_5 - V_5 = 0$ * At t=0, when T_1 , T_2 are turned on, $T_3 \notin T_4$. are severce biased by capacitor voltage. ie) at t=0, $V_{T_3} = V_{T_4} = -V_5$. at t=t1, $V_{T_3} = V_{T_4} = V_5$ (T_3/T_4 Forwoord biased at ti).

Mode II :-

* At t_1 , Capacitor C is slightly overcharge as a sepult frequiteding diade gets powerd biased & lead avoient is transported from T_1, T_2 to FD.

* From E, onwords load current free wheels through FD.

* During $(t_2 - t_1)$, $V_c = -V_s$, $V_0 = 0$, $i_c = 0$, $i_{fd} = I_0$, $i_{T_1} = i_{T_2} = 0$; $V_{T_3} = V_{T_4} = V_s$ f $V_{T_1} = V_{T_2} = -\Delta V_s$ as capacitor is overcharged by a small volbage ΔV_s .

Mode III :-

- * At t_2 , $T_3 \notin T_4$ is triggered load voltage $V_0 = V_S + V_c = 2V_S$.
- * $T_1 \notin T_2 \Rightarrow$ severse biased by V_c , this pair is turned off at t_2 .
- * load Current flows through Vs, T4, C, T3 & load charges capacitor linearly from (-V3) at t2 to Vs at t3.
- \Rightarrow load voltage falls from aV_s at $b_{z=0}$ at $t_{z=0}$ at $t_{z=0}$ at $t_{z=0}$ at $t_{z=0}$ at $t_{z=0}$

$$L_{T_3} = L_{T_4} = I_0$$

But $V_{1} = V_{12} = -V_{5}$ at $t_{2} \notin V_{5}$ at t_{3} T_{1}, T_{2} gets forward biased at t_{3} . * At t_{3} capacitor c' is overcharged, FD gets forward biased of therefore after t_{3} , load current free wheels through FD of load.

=> when T, T2 are turned on out ty mode I separts.

$$T_{4}$$

$$T_{4}$$

$$T_{4}$$

$$T_{4}$$

$$T_{4}$$

$$T_{4}$$

$$T_{4}$$

$$T_{4}$$

$$T_{4}$$

$$T_{5}$$

Sub
$$T_{zn} = \frac{2V_Sc}{I_0}$$
 is eqn (2)
 $V_0 = V_S f + \frac{2cV_S}{I_0}$
 $V_0 = \frac{2V_S^2 c f}{I_0}$
Min. chopping period, $T_{min} = T_{on}$
... Max. chopping freq,
 $f_{max} = \frac{1}{T_{min}} = \frac{1}{T_{on}}$
From agn (1) => $C = \frac{I_0}{2V_S} \cdot \frac{1}{f_{max}}$
The circuit turn of p time
 $t_c = \frac{1}{2}T_{on} = \frac{1}{2}c\frac{2V_S}{T_0}$
 $t_c = \frac{cV_S}{I_0}$
Total commutation interval, $T_{on} = \frac{2cV_S}{I_0}$

. ?

Fig. 7.33. Voltage and current waveforms for a load-commutated chopper.

Merits :-

- (i) Capable of commutating any amount of load current.
- (ii) No commutating inductor is sequired (iii) Can work at high propuoncy so filtering sequirements are minimal.

Demerite :-

- (i) Peak lood Voltage is equal is twice the supply voltage. This can be set in by filtoning.
- (11) For high power applications, efficiency may become Low becaz- of higher switching losses at high operating freq.
- (iii) Freewheeling diade is subjected to twice the supply voltage.
- (1V) Commutating capacitor has to carry full load covent at a freq. of half the Chopping freq.
- (V) One pair of SCRs should be turned on only when the other pair is commutated.

(rc

PROBLEM :-

For a type A chopper a de vge source= 230V, load sesistance =10.52. Take avolloge drop of 2V across chopper when it is on. For a duty aple of 0.4. Calculati a) Avorage & rms values of off vge b) chopper efficiency.

Soln:-

* When chopper is on, STP voltage is $(v_s - 2)$ volts & during the time chopper is OFF, O/P vge = 0. $(V_s - 2)T_{s}$

Avg. otp vge = $\frac{(V_s - 2)T_{on}}{T} = \alpha(V_s - 2)$

RMS Value of of PVollage, $V_{rms} = \left[(V_s - a)^2 \frac{T_{on}}{T} \right]_{=}^{1/2} = \sqrt{x} (V_s - a)$ $= \sqrt{0.4} (230 - a)$ = 144.2 V

(b) Power of (or) Power delivered to load,

$$P_{o} = \frac{V_{rms}^{2}}{R} = \frac{(14.4.2)^{2}}{10} = 2079.36466$$

Power if to chopper, $P_{i} = V_{s} I_{o}$
 $= 230 \times \frac{91.2}{10}$
 $P_{i} = 2097.660$
Chopper efficiency $= \frac{P_{o}}{P_{i}} = \frac{2079.364}{2097.6} \times 100$
 $= 99.13\%$

(11)

UNIT - 4 INVERTERS

A device that converts de power into ac power at desired strage & freq. is called as an INVERTER.

Classification (i) Bridge Invertor (2) Series Inverter (3) Parallel Priverter

1, (1) Single-Phase Vge Source Proverters;_

* 19 Half-bridge inverters * 19 Full bridge invortes.

Single Phase Half-bridge Enverter :-

* 2 SCRs, 2 diades of three wire supply

- * 0 < t < T/2 => T, conductro & load is subjected to a vge Vs/2 due to the upper vge source Vs/2.
- * At t = T/2 thyristor T, is commutated & T_2 gated on.
- * IZ< EST, T2 conducts & the load is subjected to a vge (-vs/2) due to lower vge source.

Disaduantage :-

-> sequires 3-wire duc supply.

Vo = VS/2 Oct cc T/2 -VS/2 T/2 C t <T

2, Voltage Control In Single Phase Inverters: -

(a) External Control of AC of Mge (i) Ac vge control (ii) Sories _ invertes Control.

* An ac uge antroller is inserted b/w the ofp terminals of invertor & the load terminals.

* The upe i/p to the ac load is segulated three the piring angle control of ac vge controllor.

* This method gives rise to higher harmonic contint is the strye; particularly when she uge from the ac vge controllor is at low level. -> Lately employed except for low power applas. (ii) Series_invertes Controf :-* Prudves the use of two or more invortres in series Constant Involtor -I - all - voltoge Jo * The above digg. shows how the offer vge of two involtors can be summed up with the help of transformors whose ofp vge can be adjusted. => Invorter of is god to 2 transformors whose secondaries are connected is sories * Phasor sum of the two fardamental Vge Voi, Voz. gives the secultant fundamental vge Vo. Vo = [Voi2 + Vo2 + 2 Voi Vo2 Cos 0] 1/2

Advantages :-

(i) of p vge wif & its harmonic content are not affected appreciably as the invortes of p vge is controlled them. the adjustment of dc i/p vge to the invorter

Disaduantages :-

U

(i) The no. of power converting wood for the control of invertis of ryge varies from two of three. More power handling stages secult is more losses of reduced D of the entire scheme

(ii) Filtor circuit is sequired in ally types of schemes, which These the cost, weight of size of at the same time reduces the of of makes the transient response sluggish.

(iii) As the dc i/p is Used, the commutating capacitor vge also Uses. This has the effect of sectucing the cht turn-off time $(t = c \bigvee_{I})$ for the sce for a constant load current. * Control of dc c/p vge is not conductive for a longe variation of the vge for a constant load current.

* Freq. of oth vges Voi, V2 from the two invorters is the same. => when 0 = 0 ; Vo = Vo1 + Voz 4 O = T Vo = O incase Voi = Voz * Angle & can be varied by the firing angle control of 2 invortors. (D'External Control of DC i/p vge:constant Fully controlled Filton Invoter > Vge and Start Uncontrolled schoppen Filter Envertes Constant Ac Vollage Uncontrolled Filter Principal Controller Sectifier

* Available vge source is ac, then dc vge ilp to the invorter is controlled thru. a fully controlled sectifier

(c) Intimal Control of Envortes:-

-> The most efficient method of . doing this is by pulse_width models. control used within an invortes,

4)

Pube Width moden Control

0

→ In this method, a fixed de i/p vge is given to the invortes & a controlled ac off vge is obtained by adjusting the on & off possides of the invorter components.

* Most popular mathed of controlling the stip vge of termsdas pwm.control

Advantages:--> ofp control can be obtained without any additional components. -> Lower order hormonics can be eliminate of minimised along with its stp ye control. -> As higher order hormonics can be eliminated or minimised of filtered easily. Disadvantage:-* SCRS are expensive as they must

* SCRS are expensive as they must

3,

Current Source Privorters :-* i/p current -> constant but adjustable * Amp. of ofp awarent from CSI is independent of the word. * mag. of otp vge is dependent upon the nature of Wood. => CSI converts the i/p de avoient to an ac avoient at its off trininals. * OIP froz. depends apon the rate of triggering the scr Applno :-(i) Speed control of ac motors (ii) Induction healing (iii) Lagging Var compensation (iv) Synchronous motor starting

Single - phase CSI with Ideal Switches; -

-> A thyrister is assumed as an ideal switch with zoro commutation time. * Source consits of a Vge Source & & large inductionce 'L' in service with its, * Function of high-impedance seaster in sories with vge source is to maintain a constant current source at the i/p turminals of csI.

* $T_1 T_2 \rightarrow ON$, is is $+V_2$ is = I. $T_3 T_4 \rightarrow ON$, is is $-V_2$ & is = -I

* all automate is is a squate with a
r of and a co a co course for of
amplitude equal to de i/p current I.
* Assume load consists of a capacitos c
$i_0 = C \frac{dv_0}{dt}$
is -> combant & slope must be
constant avoir every half agele.
* This slope is + Ve from 0 to T/2 & - Ve from T/2 to T.
* de avoient I, i/p to esi is always unidirectional.
* Avg. value of Vin is + Ve, Power flows from source to Load.
* Avg. Value og Vin is -Ve. Power plaws
from load to source ii) segenoration
of power bakes place.
=> CSI may be load of force commutated

* Load commutation possible when load of is leading.

* Forced commutation for load Pf lody

4, Series Envortors 1-

* Envortors is which commutating components are permanently connected is sories with the load are called Series covertors.

- * The series cht should be underdamped
- * Self commutated (or) Load Commutated invertors.
- * Operate at HF (200 Hz to 100 kHz).

Basic Series Privorter ;-

* Consists of Load Sepistance R in Sources with components in) Comutating components L & C.

* Values of L & c are chosen so that it forms under damped cht.

* T, Tz turned on appropriately so that ofp vge, of desired prog- can be obtained.

* After instant a, some min time typis must clapse for T, to segais its fld blocking capability.

 $tqimin = \frac{\pi}{\omega} - \frac{\pi}{\omega_Y} = \frac{1}{2} \left(\frac{1}{F} - \frac{1}{F_Y} \right)$

Wr-) of p froq. is rod lsec Wr-) ckt ringing froq. is rod /sec.

* time interval blue Tz turned off & f T, turned off is indicated by Toff z ab Topp >tymis. * After T, has commutated, upper plate of capacitor attains the polarity. * When Tz is turned on at instart b, capacitor begins to discharge & load current is the seversed direction builds up to some peak regative value I then decay to zero at instant c. * Apter this time Topp = cd must elopse for T2 to secover * At d, T, is again turned on of the process seperts. => In this way, dc is converted to ac with the help of series in voites * C stores charge is one halfagele of salasses the same ant during next half cycle.

UNIT-V

Single Phase full wave Ac voltage controller with R-Load.

⇒. In a single phase full wave Ac. Voltage controller, two thyristors are connected. in antiparallel.

⇒ Thyristors T, and T2 are forward. biased during positive and negative half cycles respectively.

=> During Positive half cycle, Ti is triggered at a firing angle &. Ti Starts conducting and Source voltage is applied to load from & to

=) At π, both Vo, io falls to Zero Just After π, Ti is subjected to reverse bias, it is therefore turned Off. ⇒ During negative half cycle, T_2 is triggered at (TI+ α). T_2 conducts from TI+ α to 2TI. Soon after 2TI, T_2 is subjected to a reverse bias, it is therefore turned off.

⇒ From TT+a to 2TT, T2 conducts; T1 is therefore reverse biased by voltage drop across T2 Which is about 1v. The variation of voltage V_{T2} across T2 is same as that of voltage variation V_{T1} across T1.

⇒ If $V_S = \sqrt{2} \sqrt{3} \sin \omega t$ is the input voltage, and the firing angles of thyristons T₁ and T₂ are equal $(\alpha_1 = \alpha_2 = \alpha)$, the RMS output voltage 1s,

$$V_{0} = \begin{bmatrix} \frac{2}{2\pi} & \int 2 \sqrt[4]{s^{2}} \sin^{2} \omega t \ d\omega t \end{bmatrix}^{\frac{1}{2}} \\ = \begin{bmatrix} \frac{4}{2\pi\pi} & V_{s}^{2} & \int ^{\pi} [1 - \cos 2\omega t] \ d\omega t \end{bmatrix}^{\frac{1}{2}} \\ = \begin{bmatrix} \frac{4}{4\pi\pi} & \chi \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} 1 - \cos 2\omega t \end{bmatrix} \ d\omega t \end{bmatrix}^{\frac{1}{2}} \\ = V_{s} \begin{bmatrix} \frac{1}{\pi} & [\omega t - \frac{3\ln 2\omega t}{2}]_{\alpha} \end{bmatrix}^{\frac{\pi}{2}} \end{bmatrix}^{\frac{1}{2}} \\ = V_{s} \begin{bmatrix} \frac{1}{\pi} & [\pi - \frac{3\ln 2\omega t}{2}]_{\alpha} \end{bmatrix}^{\frac{\pi}{2}} \\ = V_{s} \begin{bmatrix} \frac{1}{\pi} & [\pi - \frac{3\ln 2\omega t}{2}]_{\alpha} \end{bmatrix}^{\frac{1}{2}} \\ = V_{s} \begin{bmatrix} \frac{1}{\pi} & [\pi - \frac{3\ln 2\omega t}{2}]_{\alpha} \end{bmatrix}^{\frac{1}{2}} \\ = V_{s} \begin{bmatrix} \frac{1}{\pi} & [\pi - \frac{3\ln 2\omega t}{2}]_{\alpha} \end{bmatrix}^{\frac{1}{2}} \end{bmatrix}$$

2

Two stage sequence control of voltage controller with R-Load.

⇒ A two Stage Sequence control of. ac voltage controller employs two Stages in parallel as Shown in fig. The turns ratio from primary to each secondary is taken as unity. This means that for Source. voltage Vs = Vm sinwt, $V_1 = V_2 = Vm Sinwt$ and Sum of two Secondary voltage is 2Vm Sinwt. T

⇒ For obtaining output Voltage. Nontrol from zero to rms value. V, use only thyristor pair T3, T4.

=> For zero output voltage., & is 180' for T3, T4 and For V, & is zero. \Rightarrow For output voltage control from V to 2V, \propto for thyristor pair T3, T4 is always zero and for thyristor pair T1, T2; \propto is varied from zero to 180

 \Rightarrow when both Pairs, T_1 , T_2 and T_3 , T_4 are in operation, then firing angle for T_3 , T_4 is always zero whereas firing angle for pair T_1 , T_2 is varies from 180° to zero for obtaining output Voltage from V to 2V

 \Rightarrow The output voltage, when thyristor T3 is triggered at $\omega t = 0$, follows $V_2 = Vm$ struct curve when T₁ is triggered at $\omega t = d$, voltage. V₁ reverse biases T₃, it is therefore turned aff. After this. To begins conduction and the output voltage jumps from V2 to (V1+V2) and follows 2Vm sinut curve.

> ⇒ At wt= TT, output voltage and current are zero. At this instant, T4 is triggered and output voltage follows vmsinwt curve.

⇒ At wt= πta, when forward biased SCR T2 is triggered, T4 is reverse biased, it is therefore turned off.

> when T2 begins conduction, output Voltage follows 2 vm sinut curve by the negative half cycle.

>> The main advantage of two Stage Sequence. control of Ac Voltage controller over Single Phase full wave ac voltage controller is the reduction of harmonics in the load and line currents.

, sitte attaine

Single Phase mid Point Step down Cycloconverter:-

4

⇒ A Step down Cycloconverter does not require forced commutation. These converters need Only line, or natural commutation which is. provided by ac. Supply. Pi

=> This type of cycloconverter will be. described both for discontinuous as well as continuous load current.

Discontinuous load current:-

 \Rightarrow . When α is positive with respect to 0, forward biased SCR Pi is triggered at alt= a. who with this, load current to starts building up in the positive direction A to 0. >- Load current to becomes zero at

Wt=B>n but less than (nta). Thus Pis. naturally commutated at wt=17 which is already Roverse biased after T.

⇒ After half cycle., b is positive with respect to o. Now forward biased thyristor P_2 is triggered at wt = π + d. Load current is again Positive. from A to o and builds up from zero.

=> At $wt = \pi + B$, to decays to zero and B_ is naturally commutated.

⇒ After four positive half cucles of Load voltage and load current, thyristor N2 is gated at (471+a) when D is piDsitive with respect to b. AS N2 is forward biased, it starts conducting but load current direction is reverse

⇒ After N2 is triggered, Load Current builds up in the negative direction.

=> In the next half cycle, o is positive with respect to a but before N1 is fired to decays to zero and N2 is naturally commutated

⇒ Now when N1 is gated (517 + a), io again builds up but it decays to zero before. N2. in Sequence. is again gated. ⇒ In this manner, four negative half cycles of load voltage and load current equal to number of four Positive half cycles are generated.

> In is seen from this, that frequency of o/p voltage 2 current is to= 1/4 fs.

continuous load current:

 \Rightarrow when a is positive with respect to 0, Pi is triggered at wt=d, positive output voltage appears across lead and load current Starts building up.

⇒ At wt= π , Supply and load voltages are zero. After wt= π , Pi is reverse biased. ⇒ As load current is continuous, P. is not turned off at wt= π . when P2 is triggered in sequence at π +a, reverse voltage driggered in sequence at π +a, reverse voltage appears across Pi, therefore turned it off by natural commutation. ⇒ with the turning on of P2 at (11td), output voltage is again Positive as it was with P1 on.

⇒ At wts 2πtd), when Pi is again turned on, P2 is naturally. commutated and load current through Pi builds up beyond Rs.

⇒ At the end of four Positive half. Cycles of output voltage, , load current is Ru.

=> When N2 is now triggered after P2 load is subjected to a hegative voltage cycle and load current to decreases from Positive Ru to hegative. AB.

=> NOW N2 is commutated and Ni is gated at $(5\pi + a)$. Load current to becomes more negative than AB at $(6\pi + a)$, this is because, with Ni on, load voltage is negative.

⇒ The Positive group of voltage group and current wave. consists of four pulses and same is true for negative group.

=> The Supply voltage has, however, gone through four cycles. The output frequency is, therefore. fo = 1/4 fs.

Three Phase to Single Phase cycloconverter:.

⇒ For converting three. Phase Supply at one frequency to single Phase Supply at lower ∞ frequency, the basic principle is to vary progressively the firing angle of the three thyristors of a 3-phase half-wave circuit. ⇒ In figure, firing angle at A to 90°, at B firing angle is somewhat less than 90°, at c firing angle is still further reduced than it is at B and so on.

 \Rightarrow In this manner, a Small delay in firing angle is introduced at C, D, E, F and G. At G, the firing angle is zero and the mean output voltage, given by Vo = Vdo casa is maximum at G.

 \Rightarrow At A, the mean output voltage is zero as $d = 90^{\circ}$. After Point G, a small dolay in Aring is further introduced progressively at points H_{1I}, J, K, L and M. At M, the firing angle is again 90° and the value of mean output voltage is zero. ⇒ The Single Phase Output voltage fabricated from 3-phase input voltage is shown by thick Curve.

 \Rightarrow For one half cycle. of fundamental frequency output voltage, there are eight half cycles of supply frequency voltage. This shows that output frequency fo = $\frac{1}{5}$ fs where fs is the Supply frequency.

⇒ For obtaining one cycle. of Low frequence output voltage, the firing angle. Should be Varied from 90° to zero clegree to 90° for positive halt cycle and from 90° to 160° and back to 90° for negative half cycle

⇒ In a Hyristor converter Circuit, Current can only flow in one direction. For allowing the flow of current in both the directions during one complete cycle of load current, # two three phase, half-coave Converters connected in anti-parallel.

⇒ The converter circuits that permits the flow of current during one positive halt cycle of low frequency output current is called Positive converter group.

⇒ The other group. Presemitting the flow of current during the negative half cycle at Output current is called negative converter group.

⇒ For a three Phase to single Phase. Cycloconverter, schematic diagram and basic circuit configuration is shown in below.

When output current is positive., Positive. Converter conducts. Under this condition, positive Converter acts as a rectifier when output voltage is positive and as an inverter when output Voltage hegative.

=> when output current is negative, the negative converter conducts; under this condition, negative converter acts as a rectifier when output voltage is negative and as an inverter when output voltage is positive.

The output voltages of the two converters in the same phase sold have the same average value, their output voltage waveforms as a function of time, there will be a net Potential difference across the two converters.

⇒ This het voltage would Cause a Circulating current in the two converters. This circulating current can be avoided by Memoving the gating signals from idle. Converter or can be limited to a low value by inserting an intergroup reactor between. Positive and hegative group converters.
\Rightarrow If dp and dn are the firing angles for Positive and negative group converters Respectively, then these firing angles Should be so controlled as to satisfy the relation dp + dn = 180.

A Single Phase voltage controller is employed for controlling the Power flow from 230V, Sottz Source into a load circuit consisting OFR=3-2and WL=4-2. calculate.

(a) The control range of firing angle.
(b) The maximum value (or) rms load current
(c) The maximum power and power factor.
(d) The maximum values of average and rms thyristor currents.

Griven.

VS= 230V; R=3-2; WL=4-2

Solution:

(a) The maximum value of firing angle. d = loadPhase angle, $\varphi = tan^{-1} \frac{\omega L}{R}$. $\varphi = tan^{-1} \left(\frac{4}{3}\right) = 53.13^{-1}$

The maximum value of firing angle. is 180. . The Aring angle control Range is 53.13 4 × 4 180 (b) The manimum value of rms load current is $T_0 = \frac{V_S}{\sqrt{R^2 + (\omega_L)^2}} = \frac{230}{\sqrt{3^2 + 4^2}}$ IO = 46A (c) The maximum power = $Io^2 R$. = 46° × 3. Po = 6348W Power factor, $Pf = Io^2 R$ VSID $= 46^2 \times 3$ 230×46 Pf. = 0.6

(d) Average thyristor current,

$$T_{TAVM} = \frac{V_{m}}{\pi z} = \frac{V_{2} \times 230}{\pi \times \sqrt{3^{2}+4^{2}}}$$

$$T_{TAV} = 20.707 A$$

10.

Maximum value of RMs thyristor current is

$$T_{TM} = \frac{V_{m}}{2z} = \frac{\sqrt{2} \times 230}{2\sqrt{3^{2}+4^{2}}}$$