
UNIT I 

NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 

 

We are all familiar with the common base 10 (decimal) number system.  It’s the one we use to 

balance our checkbook and calculate the gas mileage of our automobiles.  Obviously, this base is 

predicated on the fact that we have ten fingers or digits.  Even the word digit is synonymous with 

a member of a number.  Perhaps if we had evolved with eight fingers on each hand, we would all 

be using a base built upon sixteen digits instead of ten.  Such a number base is termed 

hexadecimal.  Did you realize that to add any two decimal numbers, you had to memorize 100 

rules?  Hundreds more are required for subtraction, multiplication, and division.  Although they 

are simple (e.g. 1+2=3; 4+2=6, 2x5=10,4/2=2, etc), is it any wonder that they require several 

years to master?  It is readily apparent that the larger the number base, the more rules you have to 

learn. 

 

The simplest number system uses base 2 arithmetic and is termed the binary system.  This 

scheme has only two digits or “bits” to work with, 0 and 1.  The rules are few as shown by the 

addition examples in Table 1. 

Table 1. Binary Addition Rules. 

 
 

Multiplications and division are accomplished trough repeated additions, and 

subtractions.  Counting is merely another form of addition.  By starting with zero and 

successively adding one, it is a simple matter to generate the following sixteen binary 

numbers:  0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 

1111.  Binary patterns such as these are often referred to as bit patterns.  Each one or zero is a 

single bit, four bits are termed a nibble, and eight bits are a byte.  Most microprocessors operate 

with 8 bits of data, and for these devices, a byte and a word are synonomous.  The latest PCs 

have a 64-bit data pathway, and for these a word is 8 bytes.  The smallest value bit is termed the 

Least Significant Bit (LSB) and the highest is the Most Significant Bit (MSB). 

 

Although binary arithmetic is simple and easy to learn, it is cumbersome to use.  The numbers 

tend to be lengthy and hard to remember, prone to transpositional errors, and difficult to 

vocalize.  As an example, the number 98 is easy to pronounce and remember.  Its binary 

representation is 1100010, and awkward number at best.  Because computers use the binary 

number system, we must become familiar with binary and even hexadecimal numbers.  The 

bases used most frequently are shown in Table 2. 

 



 

 

Table 2.  Common number base systems. 

 
 

Converting Binary to Decimal 
Converting numbers to their decimal equivalents is easy, once you know how to expand an 

ordinary decimal number into its component parts.  For example, 653 is  600 + 50 + 3.  The 

position of the digits in a number like 653 determines the power of ten by which each digit is 

multiplied.  Thus, 

6 x 102 = 600 

5 x 101 =  50 

3 x 100 =   3 

----- 

653 

Binary numbers can be expanded in an identical manner, and then converted to their decimal 

counterparts.  Again taking the binary number 1001, 

1 x 23 = 1000 

0 x 22 = 0000 

0 x 21 = 0000 

1 x 20 = 0001 

------ 

1001 

If we now carry this one step further and covert the multipliers into their decimal equivalents, we 

obtain 

1 x 23 = 1 x 8 = 8 

0 x 22 = 0 x 4 = 0 

0 x 21 = 0 x 2 = 0 

1 x 20 = 1 x 1 = 1 

----------- 

1001 = 9 

A method I prefer is to list the ascending powers of two over the binary digit and add those 

which have a one and ignore those numbers with a zero.  Thus, to convert 1100110 to decimal, 

we get: 

64  32  16   8   4   2   1 

1    1    0   0   1   1   0 

64 + 32 + 4 + 2 = 102 

Or, written in another manner, (1100110)2 = (102)10 

 

 



Converting Decimal Numbers to Binary 
A quick way to convert decimal numbers into their binary counterparts is to repeatedly divide the 

decimal number by two.  The remainders of each division (always a 1 or 0) will be the binary 

number.  As an example, we will convert 102 into decimal.  In Table 3, we repeatedly divide the 

left number by 2 and insert the remainder in the right column.  We do this until we get zero in all 

columns. 

Table 3. Algorithm for decimal to binary conversion. 

 
The result is that (102)10 = (1100110)2.   It is left to you to verify that this works (i.e. – try other 

numbers to test the method). 

 

Hexadecimal Numbers 
Occasionally we find a need in microprocessor applications to use hexadecimal numbers.  This is 

a numbering system using a base of 16.  In order to do this, we have to invent new symbols for 

quantities whose value exceeds 9 as shown in Table 4. 

Table 4. Decimal and Hexadecimal number comparisons. 

 



Hexadecimal numbers are especially useful when we want to describe large binary numbers.   As 

an example, consider the binary number 1111 0101 1011 0001 which we have grouped in nibbles 

(4-bits).  Each nibble converts to a single hexadecimal number.  Our large 16-digit binary 

number is written in hex as  a 4-digit number, F5B1. 

 

Binary codes 

 

 

Hamming code 

 Hamming codes are a family of linear error-correcting codes that generalize the Hamming(7,4)-

code, and were invented by Richard Hamming in 1950. Hamming codes can detect up to two-bit 

errors or correct one-bit errors without detection of uncorrected errors. By contrast, the 

simple parity code cannot correct errors, and can detect only an odd number of bits in error. 

Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with 

their block length and minimum distance of three.[1] 

In mathematical terms, Hamming codes are a class of binary linear codes. For each integer r ≥ 

2 there is a code with block lengthn = 2r − 1 and message length k = 2r − r − 1. Hence the rate of 

Hamming codes is R = k / n = 1 − r / (2r − 1), which is the highest possible for codes with 

minimum distance of three (i.e., the minimal number of bit changes needed to go from any code 

word to any other code word is three) and block length 2r − 1. The parity-check matrix of a 

Hamming code is constructed by listing all columns of length r that are non-zero, which means 

that the dual code of the Hamming code is the shortened Hadamard code. The parity-check 

matrix has the property that any two columns are pairwise linearly independent. 

Due to the limited redundancy that Hamming codes add to the data, they can only detect and 

correct errors when the error rate is low. This is the case in computer memory (ECC memory), 

where bit errors are extremely rare and Hamming codes are widely used. In this context, an 

extended Hamming code having one extra parity bit is often used. Extended Hamming codes 

achieve a Hamming distance of four, which allows the decoder to distinguish between when at 
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most one one-bit error occurs and when any two-bit errors occur. In this sense, extended 

Hamming codes are single-error correcting and double-error detecting, abbreviated as SECDED 

 

 

The Hamming(7,4)-code (with r = 3) 

Named after Richard W. Hamming  

Classification 

Type Linear block code  

Block length 
2r − 1 where r ≥ 2 

Message length  
2r − r − 1 

Rate  

1 − r/(2r − 1) 

Distance  
3 

Alphabet size 
2 

Notation 
[2r − 1, 2r − r − 1, 3]2-code 

Properties 

perfect code  

 v 

 t 

 e 

In telecommunication, Hamming codes are a family of linear error-correcting codes that 

generalize the Hamming(7,4)-code, and were 
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[7,4] Hamming code[edit] 

 

Graphical depiction of the four data bits and three parity bits and which parity bits apply to 

which data bits 

In 1950, Hamming introduced the [7,4] Hamming code. It encodes four data bits into seven bits 

by adding three parity bits. It can detect and correct single-bit errors. With the addition of an 

overall parity bit, it can also detect (but not correct) double-bit errors. 

Construction of G and H 

The matrix  is called a (canonical) generator matrix of a linear (n,k) code, 

and  is called a parity-check matrix. 

This is the construction of G and H in standard (or systematic) form. Regardless of 

form, G and H for linear block codes must satisfy 

, an all-zeros matrix.[3] 

Since [7, 4, 3] = [n, k, d] = [2m − 1, 2m−1−m, m]. The parity-check matrix H of a Hamming code 

is constructed by listing all columns of length m that are pair-wise independent. 

Thus H is a matrix whose left side is all of the nonzero n-tuples where order of the n-tuples in the 

columns of matrix does not matter. The right hand side is just the (n − k)-identity matrix. 

So G can be obtained from H by taking the transpose of the left hand side of H with the identity 

k-identity matrix on the left hand side of G. 

The code generator matrix  and the parity-check matrix  are: 

 

and 
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Finally, these matrices can be mutated into equivalent non-systematic codes by the following 

operations:  

 Column permutations (swapping columns) 

 Elementary row operations (replacing a row with a linear combination of rows) 

Encoding 

Example 

From the above matrix we have 2k = 24 = 16 codewords. Let  be a row vector of binary data 

bits, . The codeword  for any of the 16 possible data vectors  is given by the 

standard matrix product  where the summing operation is done modulo-2. 

For example, let . Using the generator matrix  from above, we have (after applying 

modulo 2, to the sum), 

 

[7,4] Hamming code with an additional parity bit

 

The same [7,4] example from above with an extra parity bit. This diagram is not meant to 

correspond to the matrix H for this example. 

The [7,4] Hamming code can easily be extended to an [8,4] code by adding an extra parity bit on 

top of the (7,4) encoded word (see Hamming(7,4)). This can be summed up with the revised 

matrices: 
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and 

 

 

Note that H is not in standard form. To obtain G, elementary row operations can be used 

to obtain an equivalent matrix to H in systematic form: 

 

For example, the first row in this matrix is the sum of the second and third rows of H 

in non-systematic form. Using the systematic construction for Hamming codes from 

above, the matrix A is apparent and the systematic form of G is written as 

 

The non-systematic form of G can be row reduced (using elementary row 

operations) to match this matrix. 

The addition of the fourth row effectively computes the sum of all the codeword 

bits (data and parity) as the fourth parity bit. 

For example, 1011 is encoded (using the non-systematic form of G at the start of 

this section) into 01100110 where blue digits are data; red digits are parity bits 

from the [7,4] Hamming code; and the green digit is the parity bit added by the 

[8,4] code. The green digit makes the parity of the [7,4] codewords even. 

Finally, it can be shown that the minimum distance has increased from 3, in the 

[7,4] code, to 4 in the [8,4] code. Therefore, the code can be defined as [8,4] 

Hamming code. 

 

 

DIGITAL LOGIC FAMILIES 

 

In Digital Designs, our primary aim is to create an Integrated Circuit (IC). A Circuit 

configuration or arrangement of the circuit elements in a special manner will result in a particular 

Logic Family. Electrical Characteristics of the IC will be identical. In other words, the different 

parameters like Noise Margin, Fan In, Fan Out etc will be identical. 

Different ICs belonging to the same logic families will be compatible with each other. 

The basic Classification of the Logic Families are as follows: 

A) Bipolar Families 

B) MOS Families 

C) Hybrid Devices 



A) Bipolar Families: 

1. Diode Logic (DL) 

2. Resistor Transistor Logic (RTL) 

3. Diode Transistor Logic (DTL) 

4. Transistor- Transistor Logic (TTL) 

5. Emitter Coupled Logic (ECL) or Current Mode Logic (CML) 

6. Integrated Injection Logic (IIL) 

B) MOS Families: 

1. P-MOS Family 

2. N-MOS Family 

3. Complementary-MOS Family 

• Standard C-MOS 

• Clocked C-MOS 

• Bi-CMOS 

• Pseudo N-MOS 

• C-MOS Domino Logic 

• Pass Transistor Logic 

C) Hybrid Family: 

Bi-CMOS Family 

Diode Logic 
In DL (diode logic), only Diode and Resistors are used for implementing a particular Logic. 

Remember that the Diode conducts only when it is Forward Biased. 

Disadvantages of Diode Logic. 

• Diode Logic suffers from voltage degradation from one stage to the next. 

• Diode Logic only permits OR and AND functions. 

Resistor Transistor Logic 
In RTL (resistor transistor logic), all the logic are implemented using resistors and transistors. 

One basic thing about the transistor (NPN), is that HIGH at input causes output to be LOW (i.e. 

like a inverter). In the case of PNP transistor, the LOW at input causes output to be HIGH. 

 
Advantage: 

 Less number of Transistors 
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Disadvantage: 

 High Power Dissipation 

 Low Fan In 

Diode Transistor Logic 
In DTL (Diode transistor logic), all the logic is implemented using diodes and transistors. 

 
Disadvantage: 

• Propagation Delay is Larger 

Transistor Transistor Logic 
In Transistor Transistor logic or just TTL, logic gates are built only around transistors. 

TTL Logic has the following sub-families: 

• Standard TTL. 

• High Speed TTL 

• Low Power TTL. 

• Schhottky TTL. 

• Low Power Schottky TTL 

• Advanced Schottky TTL 

• Advanced Low Power Schottky TTL 

• Fast Schottky 

 

Emitter Coupled Logic 

The main specialty of ECL is that it is operating in Active Region than the Saturation Region. 

That is the reason for its high speed operation. As you can see in the figure, the Emitters of the 

Transistors Q1 and Q2 are coupled together. 

 

Disadvantage: 

• Large Silicon Area 

• Large Power Consumption 
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Some Characteristics we consider for the selection of a particular Logic Family are: 

• Supply voltage range 

• Speed of response 

• Power dissipation 

• Input and output logic levels 

• Current sourcing and sinking capability 

• Fan in 

• Fan-out 

• Noise margin 

 

Introduction of Digital logic families 
Miniature, low-cost electronics circuits whose components are fabricated on a single, continuous 

piece of semiconductor material to perform a high-level function.  This IC is usually referred to 

as a monolithic IC first introduced in 1958. The digital ICs are categorized as, 

1. Small scale integration SSI <12 no of gates 

2. Medium scale integration MSI 12 to 99 no of gates 

3. Large scale integration LSI 100 to 9999 no of gates 

4. Very large scale integration VLSI 10,000 or more 

In this section, we will be concern only with the digital IC. Digital IC can be further categorized 

into bipolar or unipolar IC. 

Bipolar ICs are devices whose active components are current controlled while unipolar ICs are 

devices whose active components are voltage controlled. 

 

IC Packaging 
1. IC packaging Protect the chip from mechanical damage and chemical contamination. 

2. Provides a completed unit large enough to handle. 

3. So that it is large enough for electrical connections to be made. 

4. Material is molded plastic, epoxy, resin, or silicone. Ceramic used if higher thermal 

dissipation capabilities required. Metal/glass used in special cases. 

Three most common packages for ICs are 

a) dual-in-line (DIPS) (most common) 

b) flat pack 

c) axial lead (TO5) 

 
Characteristics of Digital ICs 

Input /Output voltage level: 
The following currents and voltages are specified which are very useful in the design of digital 

systems. 
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High-level input voltage, VIH : This is the minimum input voltage which is recognized by the 

gate as logic 1. 

Low-level input voltage, VIL: This is the maximum input voltage which is recognized by the 

gate as logic 0. 

High-level output voltage, VOH: This is the minimum voltage available at the output 

corresponding to logic 1. 

Low-level output voltage, VOL: This is the maximum voltage available at the output 

corresponding to logic 0. 

High-level input current, IIH : This is the minimum current which must be supplied by a 

driving source corresponding to 1 level voltage. 

Low-level input current, IIL: This is the minimum current which must be supplied by a driving 

source corresponding to 0 level voltage. 

High-level output current, IOH: This is the maximum current which the gate can sink in 1 

level. 

Low-level output current, IOL: This is the maximum current which the gate can sink in 0 

level. 

High-level supply current, ICC (1): This is the supply current when the output of the gate is at 

logic 1. 

Low-level supply current, ICC (0): This is the supply current when the output of the gate is at 

logic (0). 

Propagation Delay: 
Definition: The time required for the output of a digital circuit to change states after a change at 

one or more of its inputs. The speed of a digital circuit is specified in terms of the propagation 

delay time. The delay times are measured between the 50 percent voltage levels of input and 

output waveforms. There are two delay times, tpHL: when the output goes from the HIGH state 

to the LOW state and tpLH, corresponding to the output making a transition from the LOW state 

to the HIGH state. The propagation delay time of the logic gate is taken as the average of these 

two delay times. 

Fan-in 
Defination: Fan-in (input load factor is the number of input signals that can be connected to a 

gate without causing it to operate outside its intended operating range. expressed in terms of 

standard inputs or units loads (ULs). 

Fan-out 
Defination:Fan-out (output load factor) is the maximum number of inputs that can be driven by 

a logic gate. A fanout of 10 means that 10 unit loads can be driven by the gate while still 

maintaining the output voltage within specifications for logic levels 0 and 1. 

Digital IC gates are classified not only by their logic operation, but also by the specific logic 

circuit family to which it belongs. Each logic family has its own basic electronic circuit upon 

which more complex digital circuits and functions are developed. 

Different types of logic gate families : 

RTL : Resistor Transistor Logic gate family 

DCTL : Direct Coupled Transistor Logic gate family 

RCTL : Resistor Capacitor Transistor Logic gate family 

DTL : Diode Transistor Logic gate family 

TTL : Transistor Transistor logic gate family 

IIL : Integraeted Injection gate family 



 

 

 CMOS and TTL Interfaces 

 CMOS Logic family 

 Noise Margin 

 TTL Logic family 

 

 

Comparison of RTL, DTL, TTL, ECL and MOS families –operation 

 

 

General characteristics of the TTL families (HC, HCT, LS...)  

First there was normal TTL (Transistor Transistor Logic). There were also things like DTL 

(Diode Transistor Logic). 

TTL became very popular, very soon, although CMOS was also already used by many other 

people.  

CMOS and TTL were quite different in handling and levels. CMOS was 3V to 15V. TTL was 

4.75V to 5.25V. CMOS used much less energy because it was high-impedance.  

In CMOS every connection between the power lines, always has two transistors in it's path of 

which one is always closed. 
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Comment by Ian Cox of the UK: 

CMOS doesn't have NPN & PNP transistors but CMOS N-channel and P-Channel FETS and it 

is actually in CMOS that BOTH devices turn on and short out the supply for micro-moment 

during switching. I am not aware of this phonomenom in TTL logic (even old stuff). 

CMOS was much more sensitive to static electricity. 

After a while LS (Low Power Schottky) TTL was invented, probably by Schottky. It used much 

less energy and was as fast as normal TTL.  

Everybody started using LS. (Except for the fast versions: S and FACT and FAST.)  

These chips were for example used for a single critical chip on a board, like a (primitive) 

MMU which would otherwise slow down the memory access to much. 

TTL with it's higher power usage, had always been faster than CMOS. Therefore CMOS was 

more used for analogue and TTL for digital circuits, but after some time, they invented HC (High 

speed CMOS) and made (High speed CMOS, TTL-compatible) with it.  

This means, that internally a HCT chip is completely High speed CMOS and at the in and 

outputs are converters, that convert the levels to TTL. 

Comment by Ian Cox of the UK: 

You advise the use of HC, but AC (Advanced CMOS) or ACT (same again but it's input levels 

have been doctored to be compatible with old-fashioned TTL) has higher current drive capability 

(24mA!) and is generally faster still! 

HCT is mostly compatible with TTL, except: 

 You should never leave an input open, because the circuit can start to oscillate, which 

costs a lot of energy and can disturb the working of the rest of the circuit. 

 You can't use the 74HCT04 as an oscillator (with a crystal), as was often done. But they 

designed a special version of the 74HCT04 for this: The 74HCU04! 

Conclusion: 

 Normally use HCT. 

 If you want faster chips, use FACT/FAST or whatever. 

 You can replace TTL-chips on old boards generally with HCT, unless it's an 7404 near a 

crystal or the designer of the board relies on the (slow) speed of certain components, 

which he should never have done! 

What is the difference between the 54 and 74 family? 

The 54 family is meant for military purposes.  

This means it is guaranteed over a larger temperature range and is more expensive. But civilians 

may also buy it... (When you want to make something that can also be used in cold or hot 



climates for example.)  

 

Is the power supply of CMOS only 5V? 

Yes, but real CMOS generally can work over a great range of voltages.  

 

In earlier days, chips needed all kinds of weird voltages. Now they generate their own (low 

current) voltage internally by way of a charge pump, if necessary. 

Why would you mix TTL and CMOS devices? 

In earlier days not all functions were available in both TTL and CMOS.  

Now you can get most of the CMOS 4000 series also in TTL. Type numbers are 74HCT4...  

 

Why did TTL-to-CMOS and CMOS-to-TTL require interfacing devices 

TTL worked at 0 to 5 volt and CMOS allowed/needed all kinds of strange voltages, but was less 

critical about these voltages. But there are a lot of different ways that CMOS can be used to 

implement designs!  

 

Currently even 'TTL' is done in CMOS. HCT means 'High speed CMOS TTL compatible'. 

What is ECL? 

It means Emittor Coupled Logic and it is extensively used in high speed digital data handling 

systems. Some NASA sites use ECL to handle baseband data up to 300mbps. TTL just won't 

perform at that data rate.  

 

J.R. "Zeke" Walton from NASA. 

What is BiCMOS? 

Bipolar CMOS? Bipolar is generally very fast. But lately CMOS is also very fast...  

I assume you know that CMOS always has two transistors (an NPN and PNP one) between any 

connection between the 0 and 5 volt power supplies of which always one is not conducting. 

Early TTL had very short moments in which the single transistor switched and shorted the 0 and 

5 volt which used a lot of energy. DRAM (which had much more gates than TTL became so hot 

that they warned you never to check with your finger if they were getting hot... It was safer to 

moisten your finger first so the temperature would stay below 100 degrees C.  



CMOS has been 'round for about as long as TTL was always much more careful with energy 

usage, but it's much harder to produce since it requires those PNP and NPN transistors on the 

same chip which is a very complicated process and CMOS used to be very slow. The current 

VLSI however is so dense that when it would have to be done in TTL that it would burn up 

immediately because of heat problems. That's why CMOS had to be gotten under control and all 

VLSI is done in CMOS by now. They even had to lower the power voltages to keep the heat 

production down.  

GaAs was also considered or even used for very fast chips.  

You probably also know that IBM had a couple of water cooled mainframe computers in a 

period that their processors couldn't be cooled well enough with air.  

 

What to use in the daily practice? 

Just use HCT (and NMOS if must be) components and other TTL-like stuff unless you know 

why you would want to use anything else... And try to find MCU's with as many peripherals 

already integrated to save on part costs, board space, CAD, debug and programming time and 

increase product reliability etc. 

Additional question 

From:    ganswijk@xs4all.nl 

To:      Chipdir Mailing List 

Subject: Re: Two Queries 

At 11:54 19990217 -0800, Declan Moriarty wrote:  

> I have one out of two queries on topic...above average perhaps ;-)  

>  

>1. Can anyone point me to a reference that tells me the difference  

>between all the 74xx series logic families? I am finding it difficult  

>to get some 7400 series chips locally, like today I had problems  

>with the 74LS01. I need to know could I shove in a 74ALS01, or 74F01,  

>or 74L01. What is the difference between 74HC and 74HCT...that sort of  

>thing.  

 

I have written a page about it:  

http://www.chipdir.com/chipdir/ttl.htm 

The generations of the most economical types were: 

74  

74LS  

74HCT  

 

mailto:ganswijk@xs4all.nl
http://www.xs4all.nl/~ganswijk/chipdir/ml/chipdir.htm
https://ganswijk.home.xs4all.nl/chipdir/f/index.htm#logic
http://www.chipdir.com/chipdir/ttl.htm


These are basically compatible but every generation is faster than the last and uses much less 

energy. HCT is CMOS, so you need to connect all the inputs which was not needed with parts of 

the other generations. Also the 74ls04 that was often used in an oscillator circuit couldn't be 

replaced by the 74HCT04, but they produce a special version, the 74HCU04 that can be used in 

this special way. 

All other types of 74 chips were faster or used less energy or whatever. They would have been 

more expensive, but if that is no problem I don't see a reason not to use them as drop-in 

replacements. 

Beware that the 74HC's may be real CMOS and not TTL compatible as the HCT (=High Speed 

CMOS TTL compatible). HCT is CMOS that has been made to act as TTL, so 0 and 

5V power and probably levels of 0.8 and 2.7 V for low and high. 

When a design is really critical I'd check the datasheets, but I'd even do that with HCT... 

 

Example 

Since a lot of people seem to have trouble choosing, here a more practical example. Suppose you 

would like to build a 6809 Unix computer. This would have to involve a simple MMU (Memory 

Management Unit) which dynamically translates the upper 4 address lines of the 16 logical 

address to say 8 address lines to form a 20 bit physical address. The translation is called 

dynamical since it has to be done at every read/write to memory. This way the OS can assign 

every 4K physical page to every 4K logical page of any task as it chooses.  

The 6809 is a traditional processor which can't add wait states in his read and writes, so the time 

from address available to data read is fixed and limited. Normally there is enough time to select 

the correct chip from the address given en produce the data on the data lines, but with the added 

time required by the address translation mechanism the complete design can't be done in HCT. 

The translation mechanism consisting of two 164 bit chips has to be done in a faster technology 

like 74S. Most of the rest can be done in HCT. Just some components in the timing's most 

critical path will need to be done in faster technology. This only doubles (?) the cost of a few 

components, but only ups the cost of the total design a few procents considering the total number 

of chips involved.  

By the way, we have built such a 6809 Unix computer around 1984 and used a couple of them 

for many years since then, both for database, accounting and embedded software writing. We 

never built a successor both because it was hard to find a good 16/32 bits processor and because 

the 80286 was already then a viable similarly functional system with MMU on-board and could 

run Xenix quite well. With the arrival of the 80386 there was absolutely no incentive to build our 

own computers anymore. Motherboards were getting cheaper and cheaper. Xenix was still 

expensive though. Linux changed this of course. MS Windows also became more and more a 

serious platform. 
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Overview 

Bipolar Technology: 

74 Standard TTL 
This was the original series. Was superseded by 74LS and later 

74HCT for general usage. 

74L 
Low power and lower 

speed. 
Probably for portable applications. 

74LS 
Low power Schottky 

TTLI/O. 

Uses Schottky barrier diodes (from memory between the base 

and collector) to prevent the transistors saturating, hence 

improving speed when they turn off. Probably about as fast as 

standard TTL. 

74ALS Advanced LS TTL Faster than LS and higher output current . 

74F Fast TTL I/O. 
Uses lots of current to achieve high speed. Probably not that fast 

any more. 

CMOS Technology: 

74C CMOS 

Uses CMOS transistors and hence has switching levels set 

at half supply unlike all of the above. These can usually be 

run of supplies from about 3 to 15V. 

74AC High speed TTL I/O 
 

74ACT 

High speed 

TTL/CMOS Input 

CMOSOutput 
 

74FC 

High speed 

TTL/CMOS Input 

CMOSOutput 
 

74HC High speed CMOS 
Faster using CMOS transistors, half supply switching. 5v 

only. 

74HCT 
High speed CMOS with 

TTL switching levels 

Uses CMOS but designed to switch at TTL levels (ie low = 

<0.6V, high = >2V) 

74AHC Advanced HC? Faster than HC? 

74AHCT Advanced HCT? Faster than AHCT? 

 

More subtle differences 

By Andrew Ingraham 

 

1. Can anyone point me to a reference that tells me the difference between all the 74xx 

series logic families? I am finding it difficult to get some 7400 series chips locally, like today I 
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had problems with the 74LS01. I need to know could I shove in a 74ALS01, or 74F01, or 74L01. 

What is the difference between 74HC and 74HCT...that sort of thing. 

There are many subtle differences that might come into play when you go between families. 

Depends on your circuits. 

In my opinion, the major differences from the user's perspective, are speed, and input thresholds. 

Some CMOS families use optimized "CMOS" levels while others use "TTL" or perhaps 

"LVTTL" levels. TTL's input threshold is around 1.4V, versus 2.5V (Vdd/2) for 5V-CMOS. 

TTL accepts 2.0V as "high"; CMOS would call this marginally "low" and needs a much higher 

voltage to be considered "high". 

But when you come down to using them in your circuits, you also need to think about things 

like: 

 Input current , in both high and low states. If you substitute a 74HCT with a 74F, 

the current (i.e., loading) is a lot higher. 

 Output drive capability. 

 Output drive symmetry. Is it suitable for driving long bus wires, or will pulsewidths 

suffer? 

 Signal integrity. Faster gates make faster output edges. 74F is fast, but watch it if you 

need to drive more than a few inches (depending on what it drives). 

 Power dissipation, if you have a lot of them. 

 Clamping at inputs, I/Os, and tri-state outputs. If you use a 3.3V family, will it clamp 

above 3.3V, or is it 5V-tolerant? You can get both. 

 Can unused inputs float? Some are OK with that, others aren't. 

 Noise immunity. Faster gates will see noise glitches on their inputs that slower gates 

miss. 

Get as many data books as you can and study them until you familiarize yourself with all these 

differences. What may be an acceptable substitute in one case, may be a flop in another. 

Regards,  

Andy 

 

See also 

NS's "High-Performance Logic Selection Guide".  

TI's TTL databook. It gives a guite good overview of these logic-IC families, with properties, 

differences, etc...   
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Difference between 54 and 74 family 

By Greg Smith  

The specs for 54xx usually show them as being slower than 74xx, although in fact this is 

probably just a derating for the extended temp range. 

ECL 

By Greg Smith  

(Read this in the voice of Grandpa Simpson:) 

Back in the 70's, you had 7400 and 74S00. Maybe you were just getting 74LS00. If you wanted 

things to run at, say, 300 MHz, you could do it with ECL. ECL logic uses a -5.2 V supply, and 

switches above and below a certain threshold voltage, I think it's -1.2V. A lot of the devices had 

+ and - outputs for the same function, or differential inputs. You could apply + and - 

ECL outputs to a twisted pair cable, run it a few feet to a different board, and apply the cable to a 

differential ECL input, and it would work at very high speeds. Since it switches current from one 

side to the other, rather than turning it on and off, and since the voltage swings are very small, 

ECL had far less noise problems than TTL and would run at high speeds on wire-wrapped 

boards. You needed to use terminating resistors on every signal, though. Lots of power. 

I encountered stuff like this inside a 70's era Control Data disk drive. This thing had a 60 MB 

removable pack about 12" in dia and 6" thick. The entire unit was about the size of a modern 

office photocopier, and weighed more. The backplane was connected with wire-wrap. The 

termination resistors in the interface cable used more power than an entire modern HDD. 

ECL is not really used any more. 

74H00 - higher power, faster than 7400  

74L00 - low power, slower than 7400.  

These were used before 74S and 74LS, and were a direct power/speed tradeoff. They were 

already obsolete in the late 70's when I started tinkering with this stuff. 

ECL, reaction 

By Allan Warrington  

 

Regarding the comment about ECL not being much use for anything. 

ECL was quite important in the 1970s, 1980s and early 1990s. It was used for very high speed 

circuits. Early supercomputers e.g. Cray's were made with it. However, it was very power 

hungry. I think that it isn't much used nowadays. If you try to use any old ECL chips, the logic 



levels are typically around 0.9V below VCC for logic high and 1.8V below supply for logic low. 

Supply is generally 0V and -5V, rather than 5V and 0V. 

Propagation 

It means transmission in this case and the propagation time or propagation delay is the time in 

which a signal travels through a gate. It's typically 4 ns for LS TTL, I think. A simple 

NAND consists of a single gate. An AND of two gates and for example a 74LS138 has usually 

several gates from input to output so it takes say 6 times 4 ns. 

In serious PCB-designs you need to calculate how long it takes for signals to go from serious 

chip A to serious chip B through all the intermediate TTL-chips. If the signal takes too long the 

circuit may start to behave badly (at first at higher temperatures etc.) 

First you try to calculate everything exactly and then at an extra proof you can put the finished 

product in an oven and heat it up to check if it still works. This will give a clear indication of 

how reliable it is. 

Some more info ... 

TTL normally uses only NPN transistors (although newer derivatives As a result, TTL can sink 

much better than it can source, whereas CMOS can do both fairly well and has "rail-to-rail" 

output voltage.  

 

Joe da Silva 

Z-state (high impedance) 

A digital output is internally usually connected with one transistor to the 5V and one transistor to 

the 0V. Only one of those is normally conducting electrical current at a certain moment pulling 

the output pin either to the 0V or the 5V. When none of the two transistors is conducting, the 

output is in the Z-state (high impedance state). 

The different logic families use different technology to implement the transistors, but the 

principle is probably the same. 

Buy the way early chips were made in a technique whereby both of the transistors would conduct 

current for a short time during transitions. This made them actually short the 5V to the 0V for a 

very short time. Therefore these parts would use a lot of energy and become very hot. 

DRAM from around the time that about 16kbit per chip was producable could easily burn your 

finger so feeling the chip to debug the hardware was not and advisable idea. You should at least 

wet your finger first. If you like to repair old computers like the TRS-80, Apple2, Commodore 

PET, BBC etc. it's wise to remember this... 



Open inputs 

Specifically at this time I'm looking at a 74HC14 hex inverter, but would also like to know if 

there's a rule of thumb to follow i.e. drive inputs such that the output is always high, or low, or 

either of the two is OK. 

It's not easy to determine what the optimal solution is. 

The problem with CMOS inputs is that they are very high impedance and may pick up signals 

from the surrounding environment and the air and may start to oscillate. This may not only cause 

highly increased power usage but also other undesired effects. 

So as long as you tie the inputs to a signal with well defined value at each point of time, like a 

neighboring data pin, either in- or output or 0V or 5V this problem will be prevented. For some 

technologies it seems to be recommended to connect the 5V via a relatively low-R resistor (4k7 

for example). Power inputs of a chip can normally withstand a power surge, but inputs may not. 

What the optimal solution is depends on all kinds of factors: Does the technology draw more 

current with a low or high input?  

When connecting the input to a neighboring pin, you'll have to consider the load on the given 

signal. But all this is in most cases not very important. It's only relevant when for example 

battery life must optimal or signal speed is crucial. In practical cases I'd just solder it to the 0V or 

5V if any is available on the next pin, or in case of a two-input (N)AND or (N)OR which is just 

used as an invertor, I'd solder both inputs together or otherwise it depends on which signals are 

available closeby and if they can drive an extra load (which they usually can) and if their 

reaction speed isn't crucial for the system (which it usally isn't). 

In case of your hex invertor you could consider feeding certain signals to two invertors parallel 

to each other and also tying the outputs together. It will double the load on the input signal, but 

will also double the drive of the output signal. It might however increase the power usage during 

the moment of switching when the two gates should have significantly different switching times, 

but that is of course very unlikely. ;-) 

 

 

 

 

  



UNIT II 

COMBINATIONAL CIRCUITS 

 

Introduction to Combinational Logic Functions 

 

The term “combinational” comes to us from mathematics. In mathematics a combination is an 

unordered set, which is a formal way to say that nobody cares which order the items came in. 

Most games work this way, if you rolled dice one at a time and get a 2 followed by a 3 it is the 

same as if you had rolled a 3 followed by a 2. With combinational logic, the circuit produces the 

same output regardless of the order the inputs are changed. 

There are circuits which depend on the when the inputs change, these circuits are called 

sequential logic. Even though you will not find the term “sequential logic” in the chapter titles, 

the next several chapters will discuss sequential logic. 

Practical circuits will have a mix of combinational and sequential logic, with sequential logic 

making sure everything happens in order and combinational logic performing functions like 

arithmetic, logic, or conversion. 

You have already used combinational circuits. Each logic gate discussed previously is a 

combinational logic function. Let’s follow how two NAND gate works if we provide them inputs 

in different orders. 

We begin with both inputs being 0. 

 

 

 

We then set one input high. 



 

 

 

We then set the other input high. 

 

 

 

So NAND gates do not care about the order of the inputs, and you will find the same true of all 

the other gates covered up to this point (AND, XOR, OR, NOR, XNOR, and NOT) 

SOP and POS form 

Introduction 

 

Let's set the stage for this discussion by defining a function with the following truth table. 

 

 

# 
 

A B C 
 

F 

0 
 

0 0 0 
 

0 

1 
 

0 0 1 
 

1 



# 
 

A B C 
 

F 

2 
 

0 1 0 
 

0 

3 
 

0 1 1 
 

1 

4 
 

1 0 0 
 

1 

5 
 

1 0 1 
 

0 

6 
 

1 1 0 
 

1 

7 
 

1 1 1 
 

1 

 

Table 1 - Arbitrary function defined via Truth Table 
 

 

The first column is merely a convenient label for each row obtained by interpreting the 

combination of inputs as a straight binary value.  

 

As we will see shortly, we can express this function in two equivalent ways:  

 

The first of these, Eqn (1), is the Standard Sum of Products, or Standard SOP, form while the 

second, Eqn (2), is the Standard Product of Sums, or Standard POS, form. 

 

The term "standard" here means that the expression consists exclusively of minterms (in the 

case of Standard SOP) or maxterms (in the case of Standard POS). What a minterm and 

maxterm are will be discussed shortly.  

 

As we can see, the names are quite descriptive -- the SOP form takes on the appearance of being 

a sum of several terms, each of which is the product of several factors while the POS form takes 

on the appearance of being a product of several factors, each of which is the sum of several 

terms. 

 

We should keep in mind that "products" and "sums" are concepts from normal algebra; while we 

borrow the terms and use them in Boolean algebra, we do not mean "multiplication" or 

"addition" -- a "product" in Boolean algebra is a logical AND operation while a "sum" is a 

logical OR operation.  

 

In this discussion, we are interested in how to go from a Truth Table to the SOP or POS forms 

and how to work with them, including translating between them, using Boolean algebraic 

manipulations only. So we will not be discussing topics such as Karnaugh maps except in 

passing. 

 

Before we can talk about constructing the SOP and POS forms from the Truth Table, we need to 

define a couple of more fundamental concepts, namely minterms and maxterms. 



 

Minterm 
 

A "minterm" is a Boolean expression that is True for the minimum number of combinations of 

inputs; this minimum number is exactly one (the case of a term being True for no combination of 

inputs is, of course, simply a hard False and is trivial and uninteresting). 

 

Because we want to minimize the coverage, we want to use the Boolean operation that is the 

most restrictive, which is the AND operation. Since the AND is true only if ALL of the inputs 

are True, we can craft an expression that is True for only a single combination of inputs by 

including each input in the product. If the input is uncomplemented, then we require that it be 

True, while if it is complemented, then we require it to be False. The minterm expression for 

each combination of inputs is therefore  

 

 

# 
 

A B C 
 

minterm 

0 
 

0 0 0 
  

1 
 

0 0 1 
  

2 
 

0 1 0 
  

3 
 

0 1 1 
  

4 
 

1 0 0 
  

5 
 

1 0 1 
  

6 
 

1 1 0 
  

7 
 

1 1 1 
  

 

Table 2 - Table of Minterms 
 

 

Keep in mind that each minterm is True only for the specific combination of inputs with which it 

is associated and is False for all others.  

In order to be a minterm, the product must cover exactly one of the possible combination of 

inputs. To do this, each input must be present in either uncomplemented or complemented form. 

Consider the system of three inputs in the table above. We can combine the last two minterms, 

namely ABC'+ABC, into a single product, namely AB. Using this "simplifies" the expression 

and it is still in SOP form, but it is not a minterm and the resulting expression is no longer in 

standard -- i.e., canonical -- SOP form. This may or may not be important. 

 



If we have an expression that is in SOP form but is not in standard form and we need it to be, 

then we can simply expand each product by ANDing it with products that are constructed by 

ORing one of the missing inputs and its complement. Thus, we can expand AB back to minterm 

form as follows:  

 
 

Maxterm 
 

A "maxterm" is a Boolean expression that is True for the maximun number of combinations of 

inputs; this maximum number is exactly one fewer than the total number of possibilities (the case 

of a term being True for all combinations is, of course, simply a hard True and is trivial and 

uninteresting). 

 

Because we want to maximize the coverage, we want to use the Boolean operation that is the 

most permissive, which is the OR operation. While the OR is True if ANY of its inputs is True, 

for our purposes it is more convenient to recognize that the OR is False only if ALL of its inputs 

are False; thus, we can craft an expression that is False for only a single combination of inputs by 

including each input in the sum. If the input is uncomplemented, then we require that it be False, 

while if it is complemented, then we require it to be True. The maxterm expression for each 

combination of inputs is therefore  

 

# 
 

A B C 
 

maxterm 

  
0 0 0 

  

  
0 0 1 

  

  
0 1 0 

  

  
0 1 1 

  

  
1 0 0 

  

  
1 0 1 

  

  
1 1 0 

  

  
1 1 1 

  

 

Table 3 - Table of Maxterms  

Keep in mind that each maxterm is False only for the specific combination of inputs with which 

it is associated and is True for all others.  

In order to be a maxterm, the sum must cover all but exactly one of the possible combination of 

inputs. To do this, each input must be present in either uncomplemented or complemented form. 



Consider the system of three inputs in the table above. We can combine the last two maxterms, 

namely (A'+B'+C)(A'+B'+C'), into a single sum, namely (A'+B'). Using this "simplifies" the 

expression and it is still in POS form, but it is not a maxterm and the resulting expression is no 

longer in standard -- i.e., canonical -- POS form. This may or may not be important. 

 

If we have an expression that is in POS form but is not in standard form and we need it to be, 

then we can simply expand each sum by ORing it with terms that are constructed by ANDing 

one of the missing inputs and its complement. Thus, we can expand (A'+B') back to maxterm 

form as follows:  

 

The above equation may look odd but that is because while we are used to multiplication being 

distributable over addition (and thus AND being distributable over OR looks natural), we are 

used to addition not being distributable over multiplication. However, OR is distributable over 

AND, hence 

 

 
 

In the above relation,  

 
 

Relationship between Labels, Minterms, and Maxterms 
 

Consider the minterm and maxterm for a particular row. Since the minterm is True ONLY when 

that input combination is asserted while the maxterm is False ONLY when that combination is 

asserted, it is clear that each minterm is the logical inverse of the corresponding maxterm (and 

vice versa, of course). 

 

This relationship is quite obvious if we look at a particular example, say Row 3, and apply 

DeMorgan's Theorem to it. 

 

The labels in Tables 2 are often used as a synonym for a minterm expression. This makes 

intuitive sense if we think of row N being "True" when the minterm associated with the row 

labeled N is True. 

In contrast, since a maxterm is the logical inverse of a minterm, we can use an inverted label to 

refer to a maxterm, as shown in Table 3. Therefore it should be clear how this labeling 

convention is consistent with, for instance, applying DeMorgan's theorems and other Boolean 

operations. 

 

Standard SOP (Sum of Products) 
 

As mentioned in the introduction, the SOP form takes on the appearance of being a sum of 

several terms, each of which is the product of several factors. 

 

To craft the SOP form of a Boolean logic function, we merely need to OR together the minterms 

associated with each combination of inputs for which the overall output should be True. 

 



By looking at Table 1 we see that we need to sum the minterms associated with rows {1,3,4,6,7}. 

This is often represented simply as 

 

 
 

By expanding the summation and replacing each label with the corresponding minterm, we 

immediately obtain Eqn 1, which is the canonical disjunctive form. Don't let the fancy words 

confuse you; the term "canonical" just means "standardized" while the term "disjunctive" merely 

means a logical union, which is the same thing as a logical ORing of sets. This form is more 

commonly known, particularly among the more application-oriented, simply as the Standard 

SOP form. 

 

Standard POS (Product of Sums) 
 

As mentioned in the introduction, the POS form takes on the appearance of being a product of 

several factors, each of which is the sum of several terms. 

 

To craft the POS form of a Boolean logic function, we merely need to AND together the 

maxterms associated with each combination of inputs for which the overall output should be 

False. 

 

This is not as obvious as the need to OR together the minterms to get the SOP, so let's consider it 

for a moment. If we AND together several factors, the output will be False as long as any one of 

the factors is False. A maxterm is False for exactly one combination of inputs, so using a 

maxterm for a combination for which we want the overall output to be False will achieve this 

goal and, since that maxterm is True for all other combinations, it will have no effect on the 

output for them. As long as we do not include the maxterms for any combinations that we do 

want the output to be True for, we are guaranteed that all of the other maxterms in the expression 

will be True and, hence, the overall product of them will be True. 

 

By looking at Table 1 we see that we need to take the product of the maxterms associated with 

rows {0',2',5'}. This is often represented simply as 

 

 
 

By expanding the product and replacing each label with the corresponding maxterm, we 

immediately obtain Eqn 2, which is the canonical conjunctive form. Don't let the fancy words 

confuse you; the term "canonical" just means "standardized" while the term "conjunctive" merely 

means a logical intersection, which is the same thing as a logical ANDing of sets. This form is 

more commonly known, particularly among the more application-oriented, simply as 

the Standard POS form. 

 

Converting Boolean Expressions into SOP/POS Form 
 

The process of converting any Boolean expression into either POS or SOP form (canonical or 



otherwise) is very straightforward. 

 

To get the expression in SOP form, you simply distribute all AND operations over any OR 

operations and continue doing this as long as possible. When finished, you will have an 

expression in SOP form. If you want it in canonical form, then you simply expand each term as 

necessary. 

 

To get the expression in POS form, you simply distribute all OR operations over any AND 

operations and continue doing this as long as possible. When finished, you will have an 

expression in POS form. If you want it in canonical form, then you simply exapnd each term as 

necessary. 

 

Most people have little problem getting an arbitrary expression into SOP form because the 

notation used for AND and OR are the same used for multiplication and addition in normal 

arithmetic and the notion of distributing multiplication over addition has long become 

internalized. But the fact that addition is not distributable over multiplication has also been 

internalized and hence doing something that looks the same does not come naturally. But just as 

AND can be distributed over OR, so too can OR be distributed over AND. 

Karnaugh Maps, Truth Tables, and Boolean Expressions 

aurice Karnaugh, a telecommunications engineer, developed the Karnaugh map at Bell Labs in 

1953 while designing digital logic based telephone switching circuits. 

Now that we have developed the Karnaugh map with the aid of Venn diagrams, let’s put it to 

use. Karnaugh maps reduce logic functions more quickly and easily compared to Boolean 

algebra. By reduce we mean simplify, reducing the number of gates and inputs. We like to 

simplify logic to a lowest cost form to save costs by elimination of components. We define 

lowest cost as being the lowest number of gates with the lowest number of inputs per gate. 

Given a choice, most students do logic simplification with Karnaugh maps rather than Boolean 

algebra once they learn this tool. 



 

 

 

We show five individual items above, which are just different ways of representing the same 

thing: an arbitrary 2-input digital logic function. First is relay ladder logic, then logic gates, a 

truth table, a Karnaugh map, and a Boolean equation. The point is that any of these are 

equivalent. Two inputs A and B can take on values of either 0 or 1, high or low, open or closed, 

True or False, as the case may be. There are 22 = 4 combinations of inputs producing an output. 

This is applicable to all five examples. 

These four outputs may be observed on a lamp in the relay ladder logic, on a logic probe on the 

gate diagram. These outputs may be recorded in the truth table, or in the Karnaugh map. Look at 

the Karnaugh map as being a rearranged truth table. The Output of the Boolean equation may be 

computed by the laws of Boolean algebra and transfered to the truth table or Karnaugh map. 

Which of the five equivalent logic descriptions should we use? The one which is most useful for 

the task to be accomplished. 



 

 

 

The outputs of a truth table correspond on a one-to-one basis to Karnaugh map entries. Starting 

at the top of the truth table, the A=0, B=0 inputs produce an output α. Note that this same output 

α is found in the Karnaugh map at the A=0, B=0 cell address, upper left corner of K-map where 

the A=0 row and B=0 column intersect. The other truth table outputs β, χ, δ from inputs AB=01, 

10, 11 are found at corresponding K-map locations. 

Below, we show the adjacent 2-cell regions in the 2-variable K-map with the aid of previous 

rectangular Venn diagram like Boolean regions. 

 

 

 

Cells α and χ are adjacent in the K-map as ellipses in the left most K-map below. Referring to the 

previous truth table, this is not the case. There is another truth table entry (β) between them. 

Which brings us to the whole point of the organizing the K-map into a square array, cells with 

any Boolean variables in common need to be close to one another so as to present a pattern that 

jumps out at us. For cells α and χ they have the Boolean variable B’ in common. We know this 

because B=0 (same as B’) for the column above cells α and χ. Compare this to the square Venn 

diagram above the K-map. 



A similar line of reasoning shows that β and δ have Boolean B (B=1) in common. Then, α and β 

have Boolean A’ (A=0) in common. Finally, χ and δ have Boolean A (A=1) in common. 

Compare the last two maps to the middle square Venn diagram. 

To summarize, we are looking for commonality of Boolean variables among cells. The Karnaugh 

map is organized so that we may see that commonality. Let’s try some examples. 

 

 
 

Example: 

Transfer the contents of the truth table to the Karnaugh map above. 

 

 

 

Solution: 

The truth table contains two 1s. the K- map must have both of them. locate the first 1 in the 2nd 

row of the truth table above. 

note the truth table AB address 

locate the cell in the K-map having the same address 

place a 1 in that cell 

Repeat the process for the 1 in the last line of the truth table. 

Example: 

For the Karnaugh map in the above problem, write the Boolean expression. Solution is below. 



 

 

 

Solution: 

Look for adjacent cells, that is, above or to the side of a cell. Diagonal cells are not adjacent. 

Adjacent cells will have one or more Boolean variables in common. 

Group (circle) the two 1s in the column 

Find the variable(s) top and/or side which are the same for the group, Write this as the Boolean 

result. It is B in our case. 

Ignore variable(s) which are not the same for a cell group. In our case A varies, is both 1 and 0, 

ignore Boolean A. 

Ignore any variable not associated with cells containing 1s. B’ has no ones under it. Ignore B’ 

Result Out = B 

This might be easier to see by comparing to the Venn diagrams to the right, specifically 

the B column. 

Example: 

Write the Boolean expression for the Karnaugh map below. 

 

 

 

Solution: (above) 

 Group (circle) the two 1’s in the row 

 Find the variable(s) which are the same for the group, Out = A’ 

Example: 



For the Truth table below, transfer the outputs to the Karnaugh, then write the Boolean 

expression for the result. 

 

 

 

Solution: 

Transfer the 1s from the locations in the Truth table to the corresponding locations in the K-

map. 

 Group (circle) the two 1’s in the column under B=1 

 Group (circle) the two 1’s in the row right of A=1 

 Write product term for first group = B 

 Write product term for second group = A 

 Write Sum-Of-Products of above two terms Output = A+B 

The solution of the K-map in the middle is the simplest or lowest cost solution. A less 

desirable solution is at far right. After grouping the two 1s, we make the mistake of forming a 

group of 1-cell. The reason that this is not desirable is that: 

 The single cell has a product term of AB’ 

 The corresponding solution is Output = AB’ + B 

 This is not the simplest solution 

The way to pick up this single 1 is to form a group of two with the 1 to the right of it as shown 

in the lower line of the middle K-map, even though this 1 has already been included in the 

column group (B). We are allowed to re-use cells in order to form larger groups. In fact, it is 

desirable because it leads to a simpler result. 

We need to point out that either of the above solutions, Output or Wrong Output, are logically 

correct. Both circuits yield the same output. It is a matter of the former circuit being the lowest 

cost solution. 

Example: 

Fill in the Karnaugh map for the Boolean expression below, then write the Boolean expression 

for the result. 



 

 

 

Solution: (above) 

The Boolean expression has three product terms. There will be a 1 entered for each product 

term. Though, in general, the number of 1s per product term varies with the number of 

variables in the product term compared to the size of the K-map. The product term is the 

address of the cell where the 1 is entered. The first product term, A’B, corresponds to 

the 01 cell in the map. A 1 is entered in this cell. The other two P-terms are entered for a total 

of three 1s 

Next, proceed with grouping and extracting the simplified result as in the previous truth table 

problem. 

Example: 

Simplify the logic diagram below. 

 

 

 

Solution: (Figure below) 

 Write the Boolean expression for the original logic diagram as shown below 

 Transfer the product terms to the Karnaugh map 

 Form groups of cells as in previous examples 

 Write Boolean expression for groups as in previous examples 

 Draw simplified logic diagram 



 

 

 

Example: 

Simplify the logic diagram below. 

 

 

 

Solution: 

 Write the Boolean expression for the original logic diagram shown above 

 Transfer the product terms to the Karnaugh map. 

 It is not possible to form groups. 

 No simplification is possible; leave it as it is. 

No logic simplification is possible for the above diagram. This sometimes happens. Neither 

the methods of Karnaugh maps nor Boolean algebra can simplify this logic further. We show 

an Exclusive-OR schematic symbol above; however, this is not a logical simplification. It just 

makes a schematic diagram look nicer. Since it is not possible to simplify the Exclusive-OR 

logic and it is widely used, it is provided by manufacturers as a basic integrated circuit (7486). 

 

 

Multiplexer and Demultiplexer 



A multiplexer is a circuit that accept many input but give only one output. A demultiplexer 

function exactly in the reverse of  a multiplexer, that is a demultiplexer accepts only one input 

and gives many outputs. Generally multiplexer and demultiplexer are used together, because of 

the communication systems are bi directional. 

Mutliplexer: 

Multiplexer means many into one. A multiplexer is a circuit used to select and route any one of 

the several input signals to a signal output. An simple example of an non electronic circuit of a 

multiplexer is a single pole multiposition switch. 

Multiposition switches are widely used in many electronics circuits. However circuits that 

operate at high speed require the multiplexer to be automatically selected. A mechanical switch 

cannot perform this task satisfactorily. Therefore, multiplexer used to perform high speed 

switching are constructed of electronic components. 

Multiplexer handle two type of data that is analog and digital. For analog application, 

multiplexer are built of relays and transistor switches. For digital application, they are built from 

standard logic gates. 

The multiplexer used for digital applications, also called digital multiplexer, is a circuit with 

many input but only one output. By applying control signals, we can steer any input to the 

output. Few types of multiplexer are 2-to-1, 4-to-1, 8-to-1, 16-to-1 multiplexer. 

Following figure shows the general idea of a multiplexer with n input signal, m control signals 

and one output signal. 

 
Multiplexer Pin Diagram 

Understanding 4-to-1 Multiplexer: 

The 4-to-1 multiplexer has 4 input bit, 2 control bits, and 1 output bit. The four input bits are 

D0,D1,D2 and D3. only one of this is transmitted to the output y. The output depends on the 

http://www.electronicshub.org/electronics-mini-project-circuits/
http://www.electronicshub.org/wp-content/uploads/2013/12/Multiplexer-Pin-Diagram.png


value of AB which is the control input. The control input determines which of the input data bit 

is transmitted to the output. 

For instance, as shown in fig. when AB = 00, the upper AND gate is enabled while all other 

AND gates are disabled. Therefore, data bit D0 is transmitted to the output, giving Y = Do. 

 
4 to 1 Multiplexer Circuit Diagram – ElectronicsHub.Org 

If the control input is changed to AB =11, all gates are disabled except the bottom AND gate. In 

this case, D3 is transmitted to the output and Y = D3. 

 An example of 4-to-1 multiplexer is IC 74153 in which the output is same as the input. 

 Another example of 4-to-1 multiplexer is 45352 in which the output is the compliment of 

the input. 

 Example of 16-to-1 line multiplexer is IC74150. 

Applications of Multiplexer: 

http://www.electronicshub.org/
http://www.electronicshub.org/wp-content/uploads/2013/12/4-to-1-Multiplexer-Circuit-Diagram.png


Multiplexer are used in various fields where multiple data need to be transmitted using a single 

line. Following are some of the applications of multiplexers – 

1. Communication system – Communication system is a set of system that enable 

communication like transmission system, relay and tributary station, and communication 

network. The efficiency of communication system can be increased considerably using 

multiplexer. Multiplexer allow the process of transmitting different type of data such as 

audio, video at the same time using a single transmission line. 

2. Telephone network – In telephone network, multiple audio signals are integrated on a 

single line for transmission with the help of multiplexers. In this way, multiple audio 

signals can be isolated and eventually, the desire audio signals reach the intended 

recipients. 

3. Computer memory – Multiplexers are used to implement huge amount of memory into 

the computer, at the same time reduces the number of copper lines required to connect the 

memory to other parts of the computer circuit. 

4. Transmission from the computer system of a satellite  – Multiplexer can be used for the 

transmission of data signals from the computer system of a satellite or spacecraft to the 

ground system using the GPS (Global Positioning System) satellites. 

Demultiplexer: 

Demultiplexer means one to many. A demultiplexer is a circuit with one input and many output. 

By applying control signal, we can steer any input to the output. Few types of demultiplexer are 

1-to 2, 1-to-4, 1-to-8 and 1-to 16 demultiplexer. 

Following figure illustrate the general idea of a demultiplexer with 1 input signal, m control 

signals, and n output signals. 

 
Demultiplexer Pin Diagram 

Understanding 1- to-4  Demultiplexer: 

The 1-to-4 demultiplexer has 1 input bit, 2 control bit, and 4 output bits. An example of 1-to-4 

demultiplexer is IC 74155. The 1-to-4 demultiplexer is shown in figure below- 

http://www.electronicshub.org/wp-content/uploads/2013/12/Demultiplexer-Pin-Diagram.png


 
1 to 4 Dempultiplexer Circuit Diagram – ElectronicsHub.Org 

The input bit is labelled as Data D. This data bit is transmitted to the data bit of the output lines. 

This depends on the value of AB, the control input. 

When AB = 01, the upper second AND gate is enabled while other AND gates are disabled. 

Therefore, only data bit D is transmitted to the output, giving Y1 = Data. 

If D is low, Y1 is low. IF D is high,Y1 is high. The value of Y1 depends upon the value of D. All 

other outputs are in low state. 

If the control input is changed to AB = 10, all the gates are disabled except the third AND gate 

from the top. Then, D is transmitted only to the Y2 output, and Y2 = Data. 

Example of 1-to-16 demultiplexer is IC 74154 it has 1 input bit, 4 control bits and 16 output bit. 

http://www.electronicshub.org/
http://www.electronicshub.org/wp-content/uploads/2013/12/1-to-4-Dempultiplexer-Circuit-Diagram.png


Applications of Demultiplexer: 

1. Demultiplexer  is used to connect a single source to multiple destinations. The main 

application area of demultiplexer is communication system where multiplexer are used. 

Most of the communication system are bidirectional  i.e. they function in both ways 

(transmitting and receiving signals). Hence, for most of the applications, the multiplexer 

and demultiplexer work in sync. Demultiplexer are also used for reconstruction  of parallel 

data and ALU circuits. 

2. Communication System – Communication system use multiplexer to carry multiple data 

like audio, video and other form of data using a single line for transmission. This process 

make the transmission easier.  The demultiplexer receive the output signals of the 

multiplexer and converts them back to the original form of the data at the receiving end. 

The multiplexer and demultiplexer work together to carry out the process of transmission 

and reception of data in communication system. 

3. ALU (Arithmetic Logic Unit) – In an ALU circuit, the output of ALU can be stored in 

multiple registers or storage units with the help of demultiplexer. The output of ALU is fed 

as the data input to the demultiplexer. Each output of demultiplexer is connected to 

multiple register which can be stored in the registers. 

4. Serial to parallel converter – A serial to parallel converter is used for reconstructing 

parallel data from incoming serial data stream.  In this technique, serial data from the 

incoming serial data stream is given as data input to the demultiplexer at the regular 

intervals. A counter is attach to the control input of the demultiplexer. This counter directs 

the data signal to the output of the demultiplexer where these data signals are stored. When 

all data signals have been stored, the output of the demultiplexer can be retrieved and read 

out in parallel. 

 

code converters, adders, subtractors 

The logical circuit which converts binary code to equivalent gray code is known as binary to 

gray code converter. The gray code is a non weighted code. The successive gray code differs in 

one bit position only that means it is a unit distance code. It is also referred as cyclic code. It is 

not suitable for arithmetic operations. It is the most popular of the unit distance codes. It is also a 

reflective code. An n-bit Gray code can be obtained by reflecting an n-1 bit code about an axis 

after 2n-1 rows, and putting the MSB of 0 above the axis and the MSB of 1 below the axis. 

Reflection of Gray codes is shown below. 

 

https://www.electrical4u.com/gray-code-binary-to-gray-code-and-that-to-binary-conversion/


The 4 bits binary to gray code conversion table is given below,

 
That means, in 4 bit gray code, (4-1) or 3 bit code is reflected against the axis drawn after (24-

1)th or 8th row. 

The bits of 4 bit gray code are considered as G4G3G2G1. Now from conversion table,

From above SOPs, let us draw K -maps for G4, G3, G2 and G1.







 

Grey to Binary Code Converter 

In gray to binary code converter, input is a multiplies gray code and output is its equivalent 

binary code. 

Let us consider a 4 bit gray to binary code converter. To design a 4 bit gray to binary code 

converter, we first have to draw a conversion table.







From above gray code we get,

 



 

Combinational Logic Circuits 

A combinational logic circuit implement logical functions where its outputs depend only on its 

current combination of input values. On the other hand sequential circuits, unlike combinational 

logic, have state or memory. 

The main difference between sequential circuits and combinational circuits is that sequential 

circuits compute their output based on input and state, and that the state is updated based on a 

clock. Combinational logic circuits implement Boolean functions and are functions only of their 

inputs. 

Representing Combinational Logic Functions 

There are 3 ways to represent combinational logic functions 

1. Logic gates - Logic gates are used as the building blocks in the design of combinational 

logic circuits. These gates are the AND, OR, NOT, NAND, NOR gates. 

2. Boolean Algebra - Boolean Algebra specifies the relationship between Boolean variables 

which is used to design digital circuits using Logic Gates. Every logic circuit can be 

completely described using the Boolean operations, because the OR, AND gate, and 

NOT gates are the basic building blocks of digital systems. 

3. Truth table - A truth table is used in logic to compute the functional values of logical 

expressions on each combination of values taken by their logical variables. If a 

combination logic block have more than one bit output, each single-bit output gets its 

own truth-table. Often they are combined into a single table with multiple output 

columns, one for each single-bit output. 

Combinational Logic Circuit Analysis 

To obtain the boolean expressions and truth tables from the combinational logic circuit, we need 

to analyse the circuit. First ensure that the circuit is combinational - that is there is no feedback 

of an output to an input that the output depends on. 

Boolean Expressions 

1. label all inputs -- input variables 

2. label all outputs -- output functions 

3. label all intermediate signals (outputs that feed inputs) 

http://electronics-course.com/logic-gates
http://electronics-course.com/boolean-algebra


 
For each output functions, write it in terms of its input variables and intermediate signals, and 

then expand intermediate signals until the outputs are expressed only in terms of the inputs. 

Truth tables 

The truth table can be derived from the Boolean expressions, or by directly working out from the 

circuit, the outputs for each possible combination of inputs. 

If there are n input variables 

 there are 2n possible binary input combinations 

 there are 2n entries in the truth table for each output 

From the examples below, change the inputs to observe the outputs 

 

 

 

  



UNIT III 

SYNCHRONOUS SEQUENTIAL CIRCUITS 

 

 

Sequential Logic Circuits 

Unlike Combinational Logic circuits that change state depending upon the actual signals being 

applied to their inputs at that time, Sequential Logic circuits have some form of inherent 

“Memory” built in 

This means that sequential logic circuits are able to take into account their previous input state as 

well as those actually present, a sort of  “before” and “after” effect is involved with sequential 

circuits. 

In other words, the output state of a “sequential logic circuit” is a function of the following three 

states, the “present input”, the “past input” and/or the “past output”. Sequential Logic 

circuits remember these conditions and stay fixed in their current state until the next clock signal 

changes one of the states, giving sequential logic circuits “Memory”. 

Sequential logic circuits are generally termed as two state or Bistable devices which can have 

their output or outputs set in one of two basic states, a logic level “1” or a logic level “0” and will 

remain “latched” (hence the name latch) indefinitely in this current state or condition until some 

other input trigger pulse or signal is applied which will cause the bistable to change its state once 

again. 

Sequential Logic Representation 

 
The word “Sequential” means that things happen in a “sequence”, one after another and 

in Sequential Logic circuits, the actual clock signal determines when things will happen next. 

http://www.electronics-tutorials.ws/combination/comb_1.html
http://www.electronics-tutorials.ws/waveforms/bistable.html


Simple sequential logic circuits can be constructed from standard Bistablecircuits such as: Flip-

flops, Latches and Counters and which themselves can be made by simply connecting together 

universal NAND Gates and/or NOR Gates in a particular combinational way to produce the 

required sequential circuit. 

Related Products: Direct Digital Synthesizer 

Classification of Sequential Logic 

As standard logic gates are the building blocks of combinational circuits, bistable latches and 

flip-flops are the basic building blocks of sequential logic circuits. Sequential logic circuits can 

be constructed to produce either simple edge-triggered flip-flops or more complex sequential 

circuits such as storage registers, shift registers, memory devices or counters. Either way 

sequential logic circuits can be divided into the following three main categories: 

 1. Event Driven – asynchronous circuits that change state immediately when enabled. 

 2. Clock Driven – synchronous circuits that are synchronised to a specific clock signal. 

 3. Pulse Driven – which is a combination of the two that responds to triggering pulses. 

 
As well as the two logic states mentioned above logic level “1” and logic level “0”, a third 

element is introduced that separates sequential logic circuits from their combinational 

logic counterparts, namely TIME. Sequential logic circuits return back to their original steady 

state once reset and sequential circuits with loops or feedback paths are said to be “cyclic” in 

nature. 

We now know that in sequential circuits changes occur only on the application of a clock signal 

making it synchronous, otherwise the circuit is asynchronous and depends upon an external 

input. To retain their current state, sequential circuits rely on feedback and this occurs when a 

fraction of the output is fed back to the input and this is demonstrated as: 

Sequential Feedback Loop 

http://www.electronics-tutorials.ws/logic/logic_5.html
http://www.electronics-tutorials.ws/logic/logic_6.html
https://www.arrow.com/en/products/clock-and-timing/direct-digital-synthesizers


 
The two inverters or NOT gates are connected in series with the output at Q fed back to the 

input. Unfortunately, this configuration never changes state because the output will always be the 

same, either a “1” or a “0”, it is permanently set. However, we can see how feedback works by 

examining the most basic sequential logic components, called the SR flip-flop. 

SR Flip-Flop 

The SR flip-flop, also known as a SR Latch, can be considered as one of the most basic 

sequential logic circuit possible. This simple flip-flop is basically a one-bit memory bistable 

device that has two inputs, one which will “SET” the device (meaning the output = “1”), and is 

labelled S and another which will “RESET” the device (meaning the output = “0”), labelled R. 

Then the SR description stands for “Set-Reset”. The reset input resets the flip-flop back to its 

original state with an output Q that will be either at a logic level “1” or logic “0” depending upon 

this set/reset condition. 

A basic NAND gate SR flip-flop circuit provides feedback from both of its outputs back to its 

opposing inputs and is commonly used in memory circuits to store a single data bit. Then the SR 

flip-flop actually has three inputs, Set, Reset and its current output Qrelating to it’s current state 

or history. The term “Flip-flop” relates to the actual operation of the device, as it can be 

“flipped” into one logic Set state or “flopped” back into the opposing logic Reset state. 

The NAND Gate SR Flip-Flop 

The simplest way to make any basic single bit set-reset SR flip-flop is to connect together a pair 

of cross-coupled 2-input NAND gates as shown, to form a Set-Reset Bistable also known as an 

active LOW SR NAND Gate Latch, so that there is feedback from each output to one of the 

other NAND gate inputs. This device consists of two inputs, one called the Set, S and the other 

called the Reset, R with two corresponding outputs Q and its inverse or complement Q (not-Q) as 

shown below. 

The Basic SR Flip-flop 



 

The Set State 

Consider the circuit shown above. If the input R is at logic level “0” (R = 0) and input S is at 

logic level “1” (S = 1), the NAND gate Y  has at least one of its inputs at logic “0” therefore, its 

output Q must be at a logic level “1” (NAND Gate principles). Output Q is also fed back to input 

“A” and so both inputs to NAND gate X are at logic level “1”, and therefore its output Q must be 

at logic level “0”. 

Again NAND gate principals. If the reset input R changes state, and goes HIGH to logic “1” 

with S remaining HIGH also at logic level “1”, NAND gate Y inputs are now R = “1” and B = 

“0”. Since one of its inputs is still at logic level “0” the output at Q still remains HIGH at logic 

level “1” and there is no change of state. Therefore, the flip-flop circuit is said to be “Latched” or 

“Set” with Q = “1” and Q = “0”. 

Reset State 

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse output at Q is at logic 

level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As gate X has one of its inputs at logic 

“0” its output Q must equal logic level “1” (again NAND gate principles). Output Q is fed back 

to input “B”, so both inputs to NAND gate Y are at logic “1”, therefore, Q = “0”. 

If the set input, S now changes state to logic “1” with input R remaining at logic “1”, 

output Q still remains LOW at logic level “0” and there is no change of state. Therefore, the flip-

flop circuits “Reset” state has also been latched and we can define this “set/reset” action in the 

following truth table. 

Truth Table for this Set-Reset Function 

State S R Q Q Description 



Set 

1 0 0 1 Set Q » 1 

1 1 0 1 no change 

Reset 

0 1 1 0 Reset Q » 0 

1 1 1 0 no change 

Invalid 0 0 1 1 Invalid Condition 

It can be seen that when both inputs S = “1” and R = “1” the outputs Q and Q can be at either 

logic level “1” or “0”, depending upon the state of the inputs S or R BEFORE this input 

condition existed. Therefore the condition of S = R = “1” does not change the state of the 

outputs Q and Q. 

However, the input state of S = “0” and R = “0” is an undesirable or invalid condition and must 

be avoided. The condition of S = R = “0” causes both outputs Q and Q to be HIGH together at 

logic level “1” when we would normally want Q to be the inverse of Q. The result is that the flip-

flop looses control of Q and Q, and if the two inputs are now switched “HIGH” again after this 

condition to logic “1”, the flip-flop becomes unstable and switches to an unknown data state 

based upon the unbalance as shown in the following switching diagram. 

S-R Flip-flop Switching Diagram 



 
This unbalance can cause one of the outputs to switch faster than the other resulting in the flip-

flop switching to one state or the other which may not be the required state and data corruption 

will exist. This unstable condition is generally known as its Meta-stablestate. 

Then, a simple NAND gate SR flip-flop or NAND gate SR latch can be set by applying a logic 

“0”, (LOW) condition to its Set input and reset again by then applying a logic “0” to 

its Reset input. The SR flip-flop is said to be in an “invalid” condition (Meta-stable) if both the 

set and reset inputs are activated simultaneously. 

As we have seen above, the basic NAND gate SR flip-flop requires logic “0” inputs to flip or 

change state from Q to Q and vice versa. We can however, change this basic flip-flop circuit to 

one that changes state by the application of positive going input signals with the addition of two 

extra NAND gates connected as inverters to the S and R inputs as shown. 

Positive NAND Gate SR Flip-flop 

 
As well as using NAND gates, it is also possible to construct simple one-bit SR Flip-flops using 

two cross-coupled NOR gates connected in the same configuration. The circuit will work in a 

similar way to the NAND gate circuit above, except that the inputs are active HIGH and the 

invalid condition exists when both its inputs are at logic level “1”, and this is shown below. 

The NOR Gate SR Flip-flop 



 

Switch Debounce Circuits 

Edge-triggered flip-flops require a nice clean signal transition, and one practical use of this type 

of set-reset circuit is as a latch used to help eliminate mechanical switch “bounce”. As its name 

implies, switch bounce occurs when the contacts of any mechanically operated switch, push-

button or keypad are operated and the internal switch contacts do not fully close cleanly, but 

bounce together first before closing (or opening) when the switch is pressed. 

This gives rise to a series of individual pulses which can be as long as tens of milliseconds that 

an electronic system or circuit such as a digital counter may see as a series of logic pulses instead 

of one long single pulse and behave incorrectly. For example, during this bounce period the 

output voltage can fluctuate wildly and may register multiple input counts instead of one single 

count. Then set-reset SR Flip-flops or Bistable Latch circuits can be used to eliminate this kind 

of problem and this is demonstrated below. 

SR Flip Flop Switch Debounce Circuit 



 
Depending upon the current state of the output, if the set or reset buttons are depressed the output 

will change over in the manner described above and any additional unwanted inputs (bounces) 

from the mechanical action of the switch will have no effect on the output at Q. 

When the other button is pressed, the very first contact will cause the latch to change state, but 

any additional mechanical switch bounces will also have no effect. The SR flip-flop can then be 

RESET automatically after a short period of time, for example 0.5 seconds, so as to register any 

additional and intentional repeat inputs from the same switch contacts, such as multiple inputs 

from a keyboards “RETURN” key. 

Commonly available IC’s specifically made to overcome the problem of switch bounce are the 

MAX6816, single input, MAX6817, dual input and the MAX6818 octal input switch debouncer 

IC’s. These chips contain the necessary flip-flop circuitry to provide clean interfacing of 

mechanical switches to digital systems. 

Set-Reset bistable latches can also be used as Monostable (one-shot) pulse generators to generate 

a single output pulse, either high or low, of some specified width or time period for timing or 

control purposes. The 74LS279 is a Quad SR Bistable Latch IC, which contains four 

individual NAND type bistable’s within a single chip enabling switch debounce or 

monostable/astable clock circuits to be easily constructed. 

Quad SR Bistable Latch 74LS279 



 

Gated or Clocked SR Flip-Flop 

It is sometimes desirable in sequential logic circuits to have a bistable SR flip-flop that only 

changes state when certain conditions are met regardless of the condition of either the Set or 

the Reset inputs. By connecting a 2-input AND gate in series with each input terminal of the SR 

Flip-flop a Gated SR Flip-flop can be created. This extra conditional input is called an “Enable” 

input and is given the prefix of “EN“. The addition of this input means that the output at Q only 

changes state when it is HIGH and can therefore be used as a clock (CLK) input making it level-

sensitive as shown below. 

Gated SR Flip-flop 

 
When the Enable input “EN” is at logic level “0”, the outputs of the two AND gates are also at 

logic level “0”, (AND Gate principles) regardless of the condition of the two inputs S and R, 

latching the two outputs Q and Q into their last known state. When the enable input “EN” 

changes to logic level “1” the circuit responds as a normal SR bistable flip-flop with the 

two AND gates becoming transparent to the Set and Reset signals. 

This additional enable input can also be connected to a clock timing signal (CLK) adding clock 

synchronisation to the flip-flop creating what is sometimes called a “Clocked SR Flip-flop“. So 

a Gated Bistable SR Flip-flop operates as a standard bistable latch but the outputs are only 

activated when a logic “1” is applied to its EN input and deactivated by a logic “0”. 

In the next tutorial about Sequential Logic Circuits, we will look at another type of simple 

edge-triggered flip-flop which is very similar to the RS flip-flop called a JK Flip-flop named 

http://www.electronics-tutorials.ws/sequential/seq_2.html


after its inventor, Jack Kilby. The JK flip-flop is the most widely used of all the flip-flop designs 

as it is considered to be a universal device. 

 

 

Difference between Level Triggered and Edge Triggered 

 

Level Trigger: 

1) The input signal is sampled when the clock signal is either HIGH or LOW.  

2) It is sensitive to Glitches. 

Example: Latch.  

 

Edge Trigger: 

1) The input signal is sampled at the RISING EDGE or FALLING EDGE of the clock signal.  

2) It is not-sensitive to Glitches. 

Example: Flipflop. 

 

I m sure the timing diagrams below is the best way of explanation. 

 

 

Synchronous Counter 

High-frequency operations require that all the FFs of a counter be triggered at the same time 

toprevent errors. We use a SYNCHRONOUS counter for this type of operation.The synchronous 

counter is similar to a ripple counter with two exceptions: The clock pulses areapplied to each 

FF, and additional gates are added to ensure that the FFs toggle in the proper sequence.A logic 

diagram of a three-state (modulo-8) synchronous counter is shown in figure 3-24, view A.The 

clock input is wired to each of the FFs to prevent possible errors in the count. A HIGH is wired 

to theJ and K inputs of FF1 to make the FF toggle. The output of FF1 is wired to the J and K 

inputs of FF2, oneinput of the AND gate, and indicator A. The output of FF2 is wired to the 

http://armyaviation.tpub.com/Av1959/Frequency-31.htm
http://electriciantraining.tpub.com/14185/The-And-Gate-88.htm
http://photos1.blogger.com/blogger/4922/868/400/latch.jpg


other input of the AND gateand indicator B. The AND output is connected to the J and K inputs 

of FF3. The C indicator is the onlyoutput of FF3. 

During the explanation of this circuit, you should follow the logic diagram, view A, and the 

pulsesequences, view B.Assume the following initial conditions: The outputs of all FFs, the 

clock, and the AND gate are 0;the J and K inputs to FF1 are HIGH. The negative-going portion 

of the clock pulse will be usedthroughout the explanation.Clock pulse 1 causes FF1 to set. This 

HIGH lights lamp A, indicating a binary count of 001. TheHIGH is also applied to the J and K 

inputs of FF2 and one input of the AND gate. Notice that FF2 and 

Modulo N Counter 

 

Frequency Divider 

On the rising edge of the clock pulse, D is copied to Q. 

Since NOT Q is connected to D, the data is inverted on each rising edge. 

This has the effect of dividing the frequency by two. 

 The D Type Flip Flop is used in Binary Counters. 

 Here is the circuit for a one bit counter. 

 This can also be used as a frequency divider. It divides the frequency by two. 

 The UP in Up Counter is because the counter counts normally with increasing numbers like 

0, 1, 2, 3 etc. 

 The output of this circuit is high for 50% of the time and low for 50% of the time. 

 This is a 1:1 mark space ratio. 

 This is true whatever the mark space ratio of the clock pulses. 

 

AS  A2  

b 

Three Bit Binary Up Counter 

This divides the frequency by 8 (or by two three times). 

On the rising edge of the clock pulse the counter output increases by one. 

http://electriciantraining.tpub.com/14185/The-And-Gate-88.htm
http://electriciantraining.tpub.com/14185/The-And-Gate-88.htm
https://reviseomatic.org/help/s-index/Index%20for%20AS%20ELEC1%20and%20ELEC2.php
https://reviseomatic.org/help/2-index/Index%20for%20A2%20ELEC4%20and%20ELEC5.php


 
The output from the left flip-flop is worth one (least significant bit LSB). 

The output from the middle flip-flop is worth two. 

The output from the right flip-flop is worth 4 (most significant bit MSB). 

Here is a timing diagram for the three bit counter. 

 
c 

Modulo N Up Counter 

This is a counter that resets at a chosen number. For example a two digit decimal counter, left to 

its own devices will count from 00 to 99. This is not much use for a clock unless you have 100 

second minutes. To fix the problem, the counter must go from 00 to 59. This is achieved by 

detecting a 6 in the left hand digit and using it to reset the counter to zero. This would be a 

Modulo 6 Counter or 60 if you included both digits. 

d 

Modulo 6 Counter - Counts from 0 to 5 

 
The circuit above detects a six or 0110 in binary. You could use the fool proof circuit but in fact 

the simpler circuit works too because the 0110 pattern only occurs once between 0 and 9 in 

decimal numbers. The output is used to reset the counter. 



 
Here is a timing diagram for the modulo 6 counter. It shows the count going from 0 to 5 in 

regular time steps. The counter reaches 6 but only for about a microsecond before it resets to 

zero. 

 
e 

Modulo 10 Counter - Counts from 0 to 9 

 

 

Introduction to Shift Registers 

 

 

Shift registers, like counters, are a form of sequential logic. Sequential logic, unlike 

combinational logic is not only affected by the present inputs, but also, by the prior history. In 

other words, sequential logic remembers past events. 

Shift registers produce a discrete delay of a digital signal or waveform. A waveform 

synchronized to a clock, a repeating square wave, is delayed by “n” discrete clock times, 

where “n” is the number of shift register stages. Thus, a four stage shift register delays “data 

in” by four clocks to “data out”. The stages in a shift register are delay stages, typically 

type “D” Flip-Flops or type “JK” Flip-flops. 

Formerly, very long (several hundred stages) shift registers served as digital memory. This 

obsolete application is reminiscent of the acoustic mercury delay lines used as early computer 

memory. 

Serial data transmission, over a distance of meters to kilometers, uses shift registers to convert 

parallel data to serial form. Serial data communications replaces many slow parallel data wires 

with a single serial high speed circuit. 



Serial data over shorter distances of tens of centimeters, uses shift registers to get data into and 

out of microprocessors. Numerous peripherals, including analog to digital converters, digital to 

analog converters, display drivers, and memory, use shift registers to reduce the amount of 

wiring in circuit boards. 

Some specialized counter circuits actually use shift registers to generate repeating waveforms. 

Longer shift registers, with the help of feedback generate patterns so long that they look like 

random noise, pseudo-noise 

 

 

Basic shift registers are classified by structure according to the following types: 

 Serial-in/serial-out 

 Parallel-in/serial-out 

 Serial-in/parallel-out 

 Universal parallel-in/parallel-out 

 Ring counter 



 

 

 

Above we show a block diagram of a serial-in/serial-out shift register, which is 4-stages long. 

Data at the input will be delayed by four clock periods from the input to the output of the shift 

register. 

Data at “data in”, above, will be present at the Stage A output after the first clock pulse. After 

the second pulse stage A data is transfered to stage B output, and “data in” is transfered to 

stage A output. After the third clock, stage C is replaced by stage B; stage B is replaced by 

stage A; and stage A is replaced by “data in”. After the fourth clock, the data originally present 

at “data in” is at stage D, “output”. The “first in” data is “first out” as it is shifted from “data 

in” to “data out”. 

 

 

 

Data is loaded into all stages at once of a parallel-in/serial-out shift register. The data is then 

shifted out via “data out” by clock pulses. Since a 4- stage shift register is shown above, four 

clock pulses are required to shift out all of the data. In the diagram above, stage D data will be 

present at the “data out” up until the first clock pulse; stage C data will be present at “data out” 

between the first clock and the second clock pulse; stage B data will be present between the 

second clock and the third clock; and stage A data will be present between the third and the 

fourth clock. After the fourth clock pulse and thereafter, successive bits of “data in” should 

appear at “data out” of the shift register after a delay of four clock pulses. 

If four switches were connected to DA through DD, the status could be read into a 

microprocessor using only one data pin and a clock pin. Since adding more switches would 

require no additional pins, this approach looks attractive for many inputs. 



 

 

 

Above, four data bits will be shifted in from “data in” by four clock pulses and be available at 

QA through QDfor driving external circuitry such as LEDs, lamps, relay drivers, and horns. 

After the first clock, the data at “data in” appears at QA. After the second clock, The old 

QA data appears at QB; QA receives next data from “data in”. After the third clock, QB data is 

at QC. After the fourth clock, QCdata is at QD. This stage contains the data first present at “data 

in”. The shift register should now contain four data bits. 

 

 

 

A parallel-in/parallel-out shift register combines the function of the parallel-in, serial-out shift 

register with the function of the serial-in, parallel-out shift register to yield the universal shift 

register. The “do anything” shifter comes at a price– the increased number of I/O 

(Input/Output) pins may reduce the number of stages which can be packaged. 

Data presented at DA through DD is parallel loaded into the registers. This data at QA through 

QD may be shifted by the number of pulses presented at the clock input. The shifted data is 

available at QA through QD. The “mode” input, which may be more than one input, controls 

parallel loading of data from DA through DD, shifting of data, and the direction of shifting. 

There are shift registers which will shift data either left or right. 



 

 

 

If the serial output of a shift register is connected to the serial input, data can be perpetually 

shifted around the ring as long as clock pulses are present. If the output is inverted before 

being fed back as shown above, we do not have to worry about loading the initial data into the 

“ring counter”. 

 

Design of Synchronous Sequential Circuits Objectives 1. Design of synchronous sequential 

circuits with an example. 2. Construction of state diagrams and state tables/ 3. Translation of 

State transition table into excitation table. 4. Logic diagram construction of a synchronous 

sequential circuit Sequential Circuit Design Steps ƒ The design of sequential circuit starts with 

verbal specifications of the problem (See Figure 1). Figure 1: Sequential Circuit Design Steps 

ƒ The next step is to derive the state table of the sequential circuit. A state table represents the 

verbal specifications in a tabular form. ƒ In certain cases state table can be derived directly 

from verbal description of the problem. ƒ In other cases, it is easier to first obtain a state 

diagram from the verbal description and then obtain the state table from the state diagram. ƒ A 

state diagram is a graphical representation of the sequential circuit. ƒ In the next step, we 

proceed by simplifying the state table by minimizing the number of states and obtain a reduced 

state table. 1 ƒ The states in the reduced state table are then assigned binary-codes. The 

resulting table is called output and state transition table. ƒ From the state transition table and 

using flip-flop’s excitation tables, flip-flops input equations are derived. Furthermore, the 

output equations can readily be derived as well. ƒ Finally, the logic diagram of the sequential 

circuit is constructed. ƒ An example will be used to illustrate all these concepts. Sequence 

Recognizer ƒ A sequence recognizer is to be designed to detect an input sequence of ‘1011’. 

The sequence recognizer outputs a ‘1’ on the detection of this input sequence. The sequential 

circuit is to be designed using JK and D type flip-flops. ƒ A sample input/output trace for the 

sequence detector is shown in Table 1. Table 1: Sample Input/Output Trace Input 0 1 1 0 1 0 1 

1 0 1 1 1 0 1 0 1 1 1 0 0 Output 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 ƒ We will begin solving 

the problem by first forming a state diagram from the verbal description. ƒ A state diagram 

consists of circles (which represent the states) and directed arcs that connect the circles and 

represent the transitions between states. ƒ In a state diagram: 1. The number of circles is equal 

to the number of states. Every state is given a label (or a binary encoding) written inside the 

corresponding circle. 2. The number of arcs leaving any circle is 2n , where n is the number of 

inputs of the sequential circuit. 3. The label of each arc has the notation x/y, where x is the 

input vector that causes the state transition, and y is the value of the output during that present 



state. 4. An arc may leave a state and end up in the same or any other state. 2 ƒ Before we 

begin our design, the following should be noted. 1. We do not have an idea about how many 

states the machine will have. 2. The states are used to “remember” something about the history 

of past inputs. For the sequence 1011, in order to be able to produce the output value 1 when 

the final 1 in the sequence is received, the circuit must be in a state that “remembers” that the 

previous three inputs were 101. 3. There can be more than one possible state machine with the 

same behavior. Deriving the State Diagram Let us begin with an initial state (since a state 

machine must have at least one state) and denote it with ‘S0’ as shown in Figure 2 (a). ƒ ƒ ƒ ƒ 

ƒ ƒ ƒ Two arcs leave state ‘S0’ depending on the input (being a 0 or a 1). If the input is a 0, 

then we return back to the same state. If the input is a 1, then we have to remember it (recall 

that we are trying to detect a sequence of 1011). We remember that the last input was a one by 

changing the state of the machine to a new state, say ‘S1’. This is illustrated in Figure 2 (b). 

‘S1’ represents a state when the last single bit of the sequence was one. Outputs for both 

transitions are zero, since we have not detected what we are looking for. Again in state ‘S1’, 

we have two outgoing arcs. If the input is a 1, then we return to the same state and if the input 

is a 0, then we have to remember it (second number in the sequence). We can do so by 

transiting to a new state, say ‘S2’. This is illustrated in Figure 2 (c). Note that if the input 

applied is ‘1’, the next state is still ‘S1’ and not the initial state ‘S0’. This is because we take 

this input 1 as the first digit of new sequence. The output still remains 0 as we have not 

detected the sequence yet. State ‘S2’ represents detection of ‘10’ as the last two bits of the 

sequence. If now the input is a ‘1’, we have detected the third bit in our sequence and need to 

remember it. We remember it by transiting to a new state, say ‘S3’ as shown in Figure 2 (d). If 

the input is ‘0’ in state ‘S2’ then it breaks the sequence and we need to start all over again. 

This is achieved by transiting to initial state ‘S0’. The outputs are still 0. In state ‘S3’, we have 

detected input sequence ‘101’. Another input 1 completes our detection sequence as shown in 

Figure 2 (e). This is signaled by an output 1. However we transit to state ‘S1’ instead of ‘S0’ 

since this input 1 can be counted as first 1 of a new sequence. Application of input 0 to state 

‘S3’ means an input sequence of 1010. This implies the last two bits in the sequence were 10 

and we transit to a state that remembers this input sequence, i.e. state ‘S2’. Output remains as 

zero. 3 Figure 2: Deriving the State Diagram of the Sequence Recognizer Deriving the State 

Table A state table represents time sequence of inputs, outputs, and states in a tabular form. 

The state table for the previous state diagram is shown in Table 2. ƒ ƒ ƒ ƒ The state table can 

also be represented in an alternate form as shown in Table 3. Here the present state and inputs 

are tabulated as inputs to the combinational circuit. For every combination of present state and 

input, next state column is filled from the state table. The number of flip-flops required is 

two flip- ƒ  Table 2: State Table of the 

Sequence Recognizer Present Next State Output State X=0 X=1 X=0 X=1 S0 S0 S1 0 0 S1 S2 

S1 0 0 S2 S0 S3 0 0 S3 S2 S1 0 1 Table 3: Alternative Format of Table 2 Inputs of 

Combinational Circuit Present State Input Next State Output S0 0 S0 0 S0 1 S1 0 S1 0 S2 0 S1 

1 S1 0 S2 0 S0 0 S2 1 S3 0 S3 0 S2 0 S3 1 S1 1 State Assignment The states in the constructed 

state diagram have been assigned symbolic names rather than binary codes. ƒ ƒ ƒ ƒ It is 

necessary to replace these symbolic names with binary codes in order to proceed with the 

design. In general, if there are m states, then the codes must contain n bits, where 2n ≥ m, and 

each state must be assigned a unique code. There can be many possible assignments for our 

state machine. One possible assignment is show in Table 4. Table 4: State Assignment State 



Assignment S0 00 S1 01 S2 10 S3 11 ƒ The assignment of state codes to states results in state 

transition table as shown. 5 It is important to mention here that the binary code of the present 

state at a given time t represents the values stored in the flip-flops; and the next-state 

represents the values of the flip-flops one clock period later, at time t+1. ƒ Table 5: State 

Transition Table Inputs of Combinational Circuit Present State Input Next State Output A B X 

A B Y 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 

1 General Structure of Sequence Recognizer ƒ The specifications required using JK and D 

type flip-flops. ƒ Referring to the general structure of sequential circuit shown in Figure 3, our 

synthesized circuit will look like that as shown in the figure. Observe the feedback paths. 

Figure 3: General Structure of the Sequenc Recognizer What remains to be determined is the 

combinational circuit which specifies the external outputs and the flip-flop inputs. ƒ ƒ The 

state transition table as shown can now be expanded to construct the excitation table for the 

circuit. 6 Since we are designing the sequential circuit using JK and D type flip-flops, we need 

to correlate the required transitions in state transition table with the excitation tables of JK and 

D type-flip-flops. ƒ ƒ ƒ The functionality of the required combinational logic is encapsulated 

in the excitation table. Thus, the excitation table is next simplified using map or other 

simplification methods to yield Boolean expressions for inputs of the used flip-flops as well as 

the circuit outputs. Deriving the Excitation Table The excitation table (See Table 6) describes 

the behavior of the combinational portion of sequential circuit. Table 6: Excitation Table of 

the Sequence Recognizer Present State Input Flip-flops Inputs A B X A B Y JA KA DB 0 0 0 

0 0 0 0 X 0 0 0 1 0 1 0 0 X 1 0 1 0 1 0 0 1 X 0 0 1 1 0 1 0 0 X 1 1 0 0 0 0 0 X 1 0 1 0 1 1 1 0 X 

0 1 1 1 0 1 0 0 X 0 0 1 1 1 0 1 1 X 1 1 For deriving the actual circuitry for the combinational 

circuit, we need to simplify the excitation table in a similar way we used to simplify truth 

tables for purely combinational circuits. ƒ ƒ ƒ ƒ Whereas in combinational circuits, our 

concern were only circuit outputs; in sequential circuits, the combinational circuitry is also 

feeding the flip-flops inputs. Thus, we need to simplify the excitation table for both outputs as 

well as flip-flops inputs. We can simplify flip-flop inputs and output using K-maps as shown 

in Figure 4. Finally the logic diagram of the sequential circuit can be made as shown in Figure 

5. 

Moore or Mealy model 

Finite automata may have outputs corresponding to each transition. There are two types of finite 

state machines that generate output − 

 Mealy Machine 

 Moore machine 

Mealy Machine 

A Mealy Machine is an FSM whose output depends on the present state as well as the present 

input. 

It can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where − 

 Q is a finite set of states. 



 ∑ is a finite set of symbols called the input alphabet. 

 O is a finite set of symbols called the output alphabet. 

 δ is the input transition function where δ: Q × ∑ → Q 

 X is the output transition function where X: Q × ∑ → O 

 q0 is the initial state from where any input is processed (q0 ∈ Q). 

The state table of a Mealy Machine is shown below − 

Present state 

Next state 

input = 0 input = 1 

State Output State Output 

→ a b x1 c x1 

b b x2 d x3 

c d x3 c x1 

d d x3 d x2 

The state diagram of the above Mealy Machine is − 



 

Moore Machine 

Moore machine is an FSM whose outputs depend on only the present state. 

A Moore machine can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where − 

 Q is a finite set of states. 

 ∑ is a finite set of symbols called the input alphabet. 

 O is a finite set of symbols called the output alphabet. 

 δ is the input transition function where δ: Q × ∑ → Q 

 X is the output transition function where X: Q → O 

 q0 is the initial state from where any input is processed (q0 ∈ Q). 

The state table of a Moore Machine is shown below − 

Present state 

Next State 

Output 

Input = 0 Input = 1 

→ a b c x2 



b b d x1 

c c d x2 

d d d x3 

The state diagram of the above Moore Machine is − 

 

Mealy Machine vs. Moore Machine 

The following table highlights the points that differentiate a Mealy Machine from a Moore 

Machine. 

Mealy Machine Moore Machine 

Output depends both upon present 

state and present input. 

Output depends only upon the present state. 

Generally, it has fewer states than 

Moore Machine. 

Generally, it has more states than Mealy Machine. 

Output changes at the clock edges. Input change can cause change in output change as 

soon as logic is done. 



Mealy machines react faster to 

inputs 

In Moore machines, more logic is needed to decode 

the outputs since it has more circuit delays. 

Moore Machine to Mealy Machine 

Algorithm 4 

Input − Moore Machine 

Output − Mealy Machine 

Step 1 − Take a blank Mealy Machine transition table format. 

Step 2 − Copy all the Moore Machine transition states into this table format. 

Step 3 − Check the present states and their corresponding outputs in the Moore Machine state 

table; if for a state Qi output is m, copy it into the output columns of the Mealy Machine state 

table wherever Qi appears in the next state. 

Example 

Let us consider the following Moore machine − 

Present State 

Next State 

Output 

a = 0 a = 1 

→ a d b 1 

b a d 0 

c c c 0 

d b a 1 

Now we apply Algorithm 4 to convert it to Mealy Machine. 

Step 1 & 2 − 



Present State 

Next State 

a = 0 a = 1 

State Output State Output 

→ a d  b  

b a  d  

c c  c  

d b  a  

Step 3 − 

Present State 

Next State 

a = 0 a = 1 

State Output State Output 

=> a d 1 b 0 

b a 1 d 1 

c c 0 c 0 

d b 0 a 1 

Mealy Machine to Moore Machine 



Algorithm 5 

Input − Mealy Machine 

Output − Moore Machine 

Step 1 − Calculate the number of different outputs for each state (Qi) that are available in the 

state table of the Mealy machine. 

Step 2 − If all the outputs of Qi are same, copy state Qi. If it has n distinct outputs, break Qi into 

n states as Qin where n = 0, 1, 2....... 

Step 3 − If the output of the initial state is 1, insert a new initial state at the beginning which 

gives 0 output. 

Example 

Let us consider the following Mealy Machine − 

Present State 

Next State 

a = 0 a = 1 

Next State Output Next State Output 

→ a d 0 b 1 

b a 1 d 0 

c c 1 c 0 

d b 0 a 1 

Here, states ‘a’ and ‘d’ give only 1 and 0 outputs respectively, so we retain states ‘a’ and ‘d’. 

But states ‘b’ and ‘c’ produce different outputs (1 and 0). So, we divide b into b0, 

b1 and c into c0, c1. 



Present State 

Next State 

Output 

a = 0 a = 1 

→ a d b1 1 

b0 a d 0 

b1 a d 1 

c0 c1 C0 0 

c1 c1 C0 1 

d b0 a 0 

 

 

 

MOD Counters 

The job of a counter is to count by advancing the contents of the counter by one count with each 

clock pulse. 

Counters which advance their sequence of numbers or states when activated by a clock input are 

said to operate in a “count-up” mode. Likewise, counters which decrease their sequence of 

numbers or states when activated by a clock input are said to operate in a “count-down” mode. 

Counters that operate in both the UP and DOWN modes, are called bidirectional counters. 

Counters are sequential logic devices that are activated or triggered by an external timing pulse 

or clock signal. A counter can be constructed to operate as a synchronous circuit or as an 

asynchronous circuit. With synchronous counters, all the data bits change synchronously with the 

application of a clock signal. Whereas an asynchronous counter circuit is independent of the 

input clock so the data bits change state at different times one after the other. 



Then counters are sequential logic devices that follow a predetermined sequence of counting 

states which are triggered by an external clock (CLK) signal. The number of states or counting 

sequences through which a particular counter advances before returning once again back to its 

original first state is called the modulus (MOD). In other words, the modulus (or just modulo) is 

the number of states the counter counts and is the dividing number of the counter. 

Modulus counters, or simply MOD counters, are defined based on the number of states that the 

counter will sequence through before returning back to its original value. For example, a 2-bit 

counter that counts from 002 to 112 in binary, that is 0 to 3 in decimal, has a modulus value of 4 

( 00 → 01 → 10 → 11 , return back to 00 ) so would therefore be called a modulo-4, or mod-4, 

counter. Note also that it has taken 4 clock pulses to get from 00 to 11. 

As in this simple example there are only two bits, ( n = 2 ) then the maximum number of possible 

output states (maximum modulus) for the counter is: 2n = 22 or 4. However, counters can be 

designed to count to any number of 2n states in their sequence by cascading together multiple 

counting stages to produce a single modulus or MOD-N counter. 

Therefore, a “Mod-N” counter will require “N” number of flip-flops connected together to count 

a single data bit while providing 2n different output states, (n is the number of bits). Note that N 

is always a whole integer value. 

The we can see that MOD counters have a modulus value that is an integral power of 2, that is, 2, 

4, 8, 16 and so on to produce an n-bit counter depending on the number of flip-flops used, and 

how they are connected, determining the type and modulus of the counter. 

D-type Flip-flops 

MOD counters are made using “flip-flops” and a single flip-flop can produce a count of 0 or 1, 

giving a maximum count of 2. There are different types of flip-flop designs we could use, the S-

R, the J-K, J-K Master-slave, the D-type or even the T-type flip-flop to construct a counter. But 

to keep things simple, we will use the D-type flip-flop, (DFF) also known as a Data Latch, 

because a single data input and external clock signal are used, and is also positive edge triggered. 

The D-type flip-flop, such as the TTL 74LS74, can be made from either S-R or J-K based edge-

triggered flip-flops depending on whether you want it to change state either on the positive or 

leading edge (0 to 1 transition) or on the negative or trailing edge (1 to 0 transition) of the clock 

pulse. Here we will assume a positive, leading-edge triggered flip-flop. You can find more 

information in the following link about D-type flip-flops. 

D-type Flip-flop and Truth Table 

 
 

http://www.electronics-tutorials.ws/sequential/seq_4.html


The operation of a D-type flip-flop, (DFF) is very simple as it only has a single data input, called 

“D”, and an additional clock “CLK” input. This allows a single data bit (0 or 1) to be stored 

under the control of the clock signal thus making the D-type flip-flop a synchronous device 

because the data on the inputs is transferred to the flip-flops output only on the triggering edge of 

the clock pulse. 

So from the truth table, if there is a logic “1” (HIGH) on the Data input when a positive clock 

pulse is applied, the flip-flop SET’s and stores a logic “1” at “Q”, and a complimentary “0” at Q. 

Likewise, if there is a LOW on the Data input when another positive clock pulse is applied, the 

flip-flop RESET’s and stores a “0” at “Q”, and a resulting “1” at Q. 

Then the output “Q” of the D-type flip-flop responds to the value of the input “D” when the 

clock (CLK) input is HIGH. When the clock input is LOW, the condition at “Q”, either “1” or 

“0” is held until the next time the clock signal goes HIGH to logic level “1”. Therefore the 

output at “Q” only changes state when the clock input changes from a “0” (LOW) value to a “1” 

(HIGH) making it a positive edge triggered D-type flip-flop. Note that negative edge-triggered 

flip-flops work in exactly the same way except that the falling edge of the clock pulse is the 

triggering edge. 

So now we know how an edge-triggered D-type flip-flop works, lets look at connecting some 

together to form a MOD counter. 

Divide-by-Two Counter 

The edge-triggered D-type flip-flop is a useful and versatile building block to construct a MOD 

counter or any other type of sequential logic circuit. By connecting the Q output back to the “D” 

input as shown, and creating a feedback loop, we can convert it into a binary divide-by-two 

counter using the clock input only as the Q output signal is always the inverse of the Q output 

signal. 

Divide-by-two Counter and Timing Diagram 

 
 

The timing diagrams show that the “Q” output waveform has a frequency exactly one-half that of 

the clock input, thus the flip-flop acts as a frequency divider. If we added another D-type flip-

flop so that the output at “Q” was the input to the second DFF, then the output signal from this 

second DFF would be one-quarter of the clock input frequency, and so on. So for an “n” number 

of flip-flops, the output frequency is divided by 2n, in steps of 2. 



Note that this method of frequency division is very handy for use in sequential counting circuits. 

For example, a 60Hz mains frequency signal could be reduced to a 1Hz timing signal by using a 

divide-by-60 counter. A divide-by-6 counter would divide the 60Hz down to 10Hz which is then 

feed to a divide-by-10 counter to divide the 10Hz down to a 1Hz timing signal or pulse, etc. 

MOD-4 Counter 

Technically as well as being a 1-bit storage device, a single flip-flop on its own could be thought 

of as a MOD-2 counter, as it has a single output resulting in a count of two, either a 0 or 1, on the 

application of the clock signal. But a single flip-flop on its own produces a limited counting 

sequence, so by connecting together more flip-flops to form a chain, we can increase the 

counting capacity and construct a MOD counter of any value. 

If a single flip-flop can be considered as a modulo-2 or MOD-2 counter, then adding a second 

flip-flop would give us a MOD-4 counter allowing it to count in four discrete steps. The overall 

effect would be to divide the original clock input signal by four. Then the binary sequence for 

this 2-bit MOD-4 counter would be: 00, 01, 10, and 11 as shown. 

MOD-4 Counter and Timing Diagram 

 
 

Note that for simplicity, the switching transitions of QA, QB and CLK in the above timing 

diagram are shown to be simultaneous even though this connection represents an asynchronous 

counter. In reality there would be a very small switching delay between the application of the 

positive going clock (CLK) signal, and the outputs at QA and QB. 

http://www.electronics-tutorials.ws/counter/count_1.html


We can show visually the operation of this 2-bit asynchronous counter using a truth table and 

state diagram. 

MOD-4 Counter State Diagram 

Clock 

Pulse 

Present 

State 

 

Next State State Diagram 

QB QA 

 

QB QA 

 

0 (start) 0 0 ⇒ 0 1 

1 0 1 ⇒ 1 0 

2 1 0 ⇒ 1 1 

3 1 1 ⇒ 0 0 

4 (repeat) 0 0 ⇒ 0 1 

 

We can see from the truth table of the counter, and by reading the values of QA and QB, when 

QA = 0 and QB = 0, the count is 00. After the application of the clock pulse, the values become 

QA = 1, QB = 0, giving a count of 01 and after the next clock pulse, the values become QA = 0, 

QB = 1, giving a count of 10. Finally the values become QA = 1, QB = 1, giving a count of 11. 

The application of the next clock pulse causes the count to return back to 00, and thereafter it 

counts continuously up in a binary sequence of: 00, 01, 10, 11, 00, 01 …etc. 

Then we have seen that a MOD-2 counter consists of a single flip-flop and a MOD-4 counter 

requires two flip-flops,allowing it to count in four discrete steps. We could easily add another 



flip-flop onto the end of a MOD-4 counter to produce a MOD-8 counter giving us a 23 binary 

sequence of counting from 000 up to 111, before resetting back to 000. A fourth flip-flop would 

make a MOD-16 counter and so on, in fact we could go on adding extra flip-flops for as long as 

we wanted. 

MOD-8 Counter and State Diagram 

 
 

We can therefore construct mod counters to have a natural count of 2n states giving counters with 

mod counts of 2, 4, 8, 16, and so on, before repeating itself. But sometimes it is necessary to 

have a modulus counter that resets its count back to zero during the normal counting process and 

does not have a modulo that is a power of 2. For example, a counter having a modulus of 3, 5, 6, 

or 10. 

Counters of Modulo “m” 

Counters, either synchronous or asynchronous progress one count at a time in a set binary 

progression and as a result an “n”-bit counter functions naturally as a modulo 2ncounter. But we 

can construct mod counters to count to any value we want by using one or more external logic 

gates causing it to skip a few output states and terminate at any count resetting the counter back 

to zero, that is all flip-flops have Q = 0. 

In the case of modulo “m” counters, they do not count to all their possible states, but instead 

count to the “m” value and then return to zero. Obviously, “m” is a number smaller than 2n, 

(m < 2n). So how do we get a binary counter to return to zero part way through its count. 

Fortunately, as well as counting, up or down, counters can also have additional inputs 

called CLEAR and PRESET which makes it possible to clear the count to zero, (all Q = 0) or to 

preset the counter to some initial value. The TTL 74LS74 has active-low Preset and Clear inputs. 

Let’s assume for simplicity that the CLEAR inputs are all connected together and are active-high 

inputs allowing the flip-flops to operate normally when the Clear input is equal to 0 (LOW). But 

if the Clear input is at logic level “1” (HIGH), then the next positive edge of the clock signal will 

reset all the flip-flops into the state Q = 0, regardless of the value of the next clock signal. 



Note also that as all the Clear inputs are connected together, a single pulse can also be used to 

clear the outputs (Q) of all the flip-flops to zero before counting starts to ensure that the count 

actually starts from zero. Also some larger bit counters have an additional ENABLE or INHIBIT 

input pin which allows the counter to stop the count at any point in the counting cycle and hold 

its present state, before being allowed to continue counting again. This means the counter can be 

stopped and started at will without resetting the outputs to zero. 

A Modulo-5 Counter 

Suppose we want to design a MOD-5 counter, how could we do that. First we know that 

“m = 5”, so 2n must be greater than 5. As 21 = 2, 22 = 4, 23 = 8, and 8 is greater than 5, then we 

need a counter with three flip-flops (N = 3) giving us a natural count of 000 to 111 in binary (0 to 

7 decimal). 

Taking the MOD-8 counter above, the truth table for the natural count is given as: 

MOD-8 Counter and Truth Table 

 
 

As we are constructing a MOD-5 counter, we want the counter to reset back to zero after a count 

of 5. However, we can see from the attached truth table that the count of six gives us the output 

condition of: QA = 0, QB = 1, and QC = 1. 

We can decode this output state of 011 (6) to give us a signal to clear (Clr) the counter back to 

zero with the help of a 3-input AND gate (TTL 74LS11) and an inverter or NOT gate, (TTL 

74LS04). 

 

The inputs of the combinational logic circuit of the inverter and AND gate are connected to QA, 

QB, and QC respectively with the output of the AND gate at logic level “0” (LOW) for any 

combinations of the input other than the one we want. 

In binary code, the output sequence count will look like this: 000, 001, 010, 011, 100, 101. But 

when it reaches the state of 011 (6), the combinational logic circuit will detect this 011 state and 

produce an output at logic level “1” (HIGH). 



We can then use the resulting HIGH output from the AND gate to reset the counter back to zero 

after its output of 5 (decimal) count giving us the required MOD-5 counter. When the output 

from the combinational circuit is LOW it has no effect on the counting sequence. 

MOD-5 Counter and Truth Table 

 
 

Then we can use combinational logic decoding circuits around a basic counter, either 

synchronous or asynchronous to produce any type of MOD Counter we require as each of the 

counters unique output states can be decoded to reset the counter at the desired count. 

In our simple example above, we have used a 3-input AND gate to decode the 011 state, but the 

first time that QA and QB are both at logic 1 is is when the count reaches six, so a 2-input AND 

gate connected to QA and QB could be used without the complication of the third input and the 

inverter. 

However, one of the disadvantages of using asynchronous counters for producing a MOD 

counter of a desired count is that undesired effects called “glitches” can occur when the counter 

reaches its reset condition. During this brief time the outputs of the counter may take on an 

incorrect value, so it is sometimes better to use synchronous counters as modulo-m counters as 

all the flip-flops are clocked by the same clock signal so change state at the same time. 



Modulus 10 Counter 

A good example of a modulo-m counter circuit which uses external combinational circuits to 

produce a counter with a modulus of 10 is the Decade Counter. Decade (divide-by-10) counters 

such as the TTL 74LS90, have 10 states in its counting sequence making it suitable for human 

interfacing where a digital display is required. 

The decade counter has four outputs producing a 4-bit binary number and by using external 

AND and OR gates we can detect the occurrence of the 9th counting state to reset the counter 

back to zero. As with other mod counters, it receives an input clock pulse, one by one, and 

counts up from 0 to 9 repeatedly. 

Once it reaches the count 9 (1001 in binary), the counter goes back to 0000 instead of continuing 

on to 1010. The basic circuit of a decade counter can be made from JK flip-flops (TTL 74LS73) 

that switch state on the negative trailing-edge of the clock signal as shown. 

MOD-10 Decade Counter 

 

MOD Counter Summary 

We have seen in this tutorial about MOD Counters that binary counters are sequential circuits 

that generate binary sequences of bits as a result of a clock signal and the state of a binary 

counter is determined by the specific combination formed by all the counters outputs together. 

The number of different output states a counter can produce is called the modulo or modulus of 

the counter. The Modulus (or MOD-number) of a counter is the total number of unique states it 

passes through in one complete counting cycle with a mod-n counter being described also as a 

divide-by-n counter. 

The modulus of a counter is given as: 2n where n = number of flip-flops. So a 3 flip-flop counter 

will have a maximum count of 23 = 8 counting states and would be called a MOD-8 counter. The 

maximum binary number that can be counted by the counter is 2n–1 giving a maximum count of 

(111)2 = 23–1 = 710. Then the counter counts from 0 to 7. 

Common MOD counters include those with MOD numbers of 2, 4, 8 and 16 and with the use of 

external combinational circuits can be configured to count to any predetermined value other than 



one with a maximum 2n modulus. In general, any arrangement of a “m” number of flip-flops can 

be used to construct any MOD counter. 

A common modulus for counters with truncated sequences is ten (1010), called MOD-10. A 

counter with ten states in its sequence is known as a decade counter. Decade counters are useful 

for interfacing to digital displays. Other MOD counters include the MOD-6 or MOD-12 counter 

which have applications in digital clocks to display the time of day 

 

 

State Reduction 

Any design process must consider the problem of minimising the cost of the final circuit. The 

two most obvious cost reductions are reductions in the number of flip-flops and the number of 

gates. 

The number of states in a sequential circuit is closely related to the complexity of the resulting 

circuit. It is therefore desirable to know when two or more states are equivalent in all aspects. 

The process of eliminating the equivalent or redundant states from a state table/diagram is known 

as state reduction. 

Example: Let us consider the state table of a sequential circuit shown in Table 6. 

Present State 
Next State 

x = 0 x = 1 
 

Output 

x = 0 x = 1 
 

A 

B 

C 

D 

E 

F 
 

B C 

F D 

D E 

F E 

A D 

B C 
 

1 0 

0 0 

1 1 

0 1 

0 0 

1 0 
 

Table 6. State table 

It can be seen from the table that the present state A and F both have the same next states, B 

(when x=0) and C (when x=1). They also produce the same output 1 (when x=0) and 0 (when 

x=1). Therefore states A and F are equivalent. Thus one of the states, A or F can be removed 

from the state table. For example, if we remove row F from the table and replace all F's by A's in 

the columns, the state table is modified as shown in Table 7. 

Present State 
Next State 

x = 0 x = 1 
 

Output 

x = 0 x = 1 
 



A 

B 

C 

D 

E 
 

B C 

A D 

D E 

A E 

A D 
 

1 0 

0 0 

1 1 

0 1 

0 0 
 

Table 7. State F removed 

It is apparent that states B and E are equivalent. Removing E and replacing E's by B's results in 

the reduce table shown in Table 8. 

Present State 
Next State 

x = 0 x = 1 
 

Output 

x = 0 x = 1 
 

A 

B 

C 

D 
 

B C 

A D 

D B 

A B 
 

1 0 

0 0 

1 1 

0 1 
 

Table 8. Reduced state table 

The removal of equivalent states has reduced the number of states in the circuit from six to four. 

Two states are considered to be equivalent if and only if for every input sequence the circuit 

produces the same output sequence irrespective of which one of the two states is the starting 

state. 

 

 

 

 

 

 

 

 

 

 



UNIT IV 

ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABLELOGIC 

DEVICES 

 

 

Asynchronous Sequential Circuits 

Asynchronous sequential circuits have state that is not synchronized with a clock. Like the 

synchronous sequential circuits we have studied up to this point they are realized by adding state 

feedback to combinational logic that implements a next-state function. Unlike synchronous 

circuits, the state variables of an asynchronous sequential circuit may change at any point in 

time. This asynchronous state update – from next state to current state – complicates the design 

process. We must be concerned with hazards in the next state function, as a momentary glitch 

may result in an incorrect final state. We must also be concerned with races between state 

variables on transitions between states whose encodings differ in more than one variable. In this 

chapter we look at the fundamentals of asynchronous sequential circuits. We start by showing 

how to analyze combinational logic with feedback by drawing a flow table. The flow table shows 

us which states are stable, which are transient, and which are oscillatory. We then show how to 

synthesize an asynchronous circuit from a specification by first writing a flow table and then 

reducing the flow table to logic equations. We see that state assignment is quite critical for 

asynchronous sequential machines as it determines when a potential race may occur. We show 

that some races can be eliminated by introducing transient states. After the introduction of this 

chapter, we continue our discussion of asynchronous circuits in Chapter 23 by looking at latches 

and flip-flops as examples of asynchronous circuits. 22.1 Flow Table Analysis Recall from 

Section 14.1 that an asynchronous sequential circuit is formed when a feedback path is placed 

around combinational logic as shown in Figure 22.1(a). To analyze such circuits, we break the 

feedback path as shown in Figure 22.1(b) 383 384 EE108A Class Notes C in L n out m state s (a) 

(b) C in L n out m current state s next state Figure 22.1: Asynchronous sequential circuit. (a) A 

sequential circuit is formed when a feedback path carrying state information is added to 

combinational logic. (b) To analyze an asynchronous sequential circuit, we break the feedback 

path and look at how the next state depends on the current state. and write the equations for the 

next state variables as a function of the current state variables and the inputs. We can then reason 

about the dynamics of the circuit by exploring what happens when the current state variables are 

updated, in arbitrary order if multiple bits change, with their new values. At first this may look 

just like the synchronous sequential circuits we discussed in Section 14.2. In both cases we 

compute a next state based on current state and input. What’s different is the dynamics of how 

the current state is updated with the next state. Without a clocked state register, the state of an 

asynchronous sequential circuit may change at any time (asynchronously). When multiple bits of 

state are changing at the same time (a condition called a race. The bits may change at different 

rates resulting in different end states. Also, a synchronous circuit will eventually reach a steady 

state where the next state and outputs will not change until the next clock cycle. An 



asynchronous circuit on the other hand may never reach a steady state. It is possible for it to 

oscillate indefinitely in the absence of input changes. We have already seen one example of 

analyzing an asynchronous circuit in this manner - the RS flip-flop of Section 14.1. In this 

section we look at some additional examples and introduce the flow table as a tool for the 

analysis and synthesis of asynchronous circuits. Consider the circuit shown in Figure 22.2(a). 

Each of the AND gates in the figure is labeled with the input state ab during which it is enabled. 

For example, the top gate, labeled 00, is enabled when a is high and b is low. To analyze the 

circuit we break the feedback loop as shown in Figure 22.2(b). At this point we can write down 

the next-state function in terms of the inputs, a and b, and the current state. This function is 

shown in tabular form in the flow table of Figure 22.2(c). Figure 22.2(c) shows the next state for 

each of the eight combinations of inputs and current state. Input states are shown horizontally in 

Gray-code order. Current states are shown vertically. If the next state is the same as the current 

state, this state is stable since updating the current state with the next Copyright (c) 2002-2007 

by W.J Dally, all rights reserved 385 out a b out a b state next (a) (b) State Next 00 01 11 10 0 1 

0 1 1 1 0 0 (c) 00 11 01 00 11 01 1 0 Figure 22.2: An example asynchronous sequential circuit. 

(a) The original circuit. (b) With feedback loop broken. (c) Flow table showing next-state 

function. Circled entries in the flow table are stable states. 386 EE108A Class Notes state doesn’t 

change anything. If the next state is different than the current state, this state is transient since as 

soon as the current state is updated with the next state, the circuit will change states. For 

example, suppose the circuit has inputs ab = 00 and the current state is 0. The next state is also 0, 

so this is a stable state - as shown by the circled 0 in the leftmost position of the top row of the 

table. If from this state input b goes high, making the input state ab = 01, we move one square to 

the right in the table. In this case, the 01 AND gate is enabled and the next-state is 1. This is an 

unstable or transient situation since the current state and next state are different. After some 

amount of time (for the change to propagate) the current state will become 1 and we move to the 

bottom row of the table. At this point we have reached a stable state since the current and next 

state are now both 1. If there is a cycle of transient states with no stable states we have an 

oscillation. For example, if the inputs to the circuit of Figure 22.2 are ab = 11, the next state is 

always the complement of the current state. With this input state, the circuit is never stable, but 

instead will oscillate indefinitely between the 0 and 1 states. This is almost never a desired 

behavior. An oscillation in an asynchronous circuit is almost always an error. So, what does the 

circuit of Figure 22.2 do? By this point the estute reader will have realized that its an RS flip-flop 

with an oscillation feature added. Input a is the reset input. When a is high and b is low, the state 

is made 0 when a is lowered the state remains 0. Similarly b is the set input. Making b high while 

a is low sets the state to 1 and it remains at 1 when b is lowered. The only difference between 

this flip-flop and the one of Figure 14.2 is that when both inputs are high the circuit of Figure 

22.2 oscillates while the circuit of Figure 14.2 resets. To simplify our analysis of asynchronous 

circuits we typically insist that the environment in which the circuits operate obey the 

fundamental mode restriction: Fundamental-Mode: Only one input bit may be changed at a time 

and the circuit must reach a stable state before another input bit is changed. A circuit operated in 

fundamental-mode need only worry about one input bit changing at a time. Multiple-bit input 

changes are not allowed. Our setupand hold-time restrictions on flip-flops are an example of a 

fundamental-mode restriction. The clock and data inputs of the flip flop are not allowed to 



change at the same time. After the data input changes, the circuit must be allowed to reach a 

steady-state (setup time) before the clock input can change. Similarly, after the clock input 

changes, the circuit must be allowed to reach a steadystate (hold time) before the data input can 

change. We will look at the relation of setup and hold time to the design of the asynchronous 

circuits that realize flip-flops in more detail in Chapter 23. In looking at a flow-table, like the one 

in Figure 22.2, operating in the fundamental mode means that we need only consider input 

transitions to adjacent Copyright (c) 2002-2007 by W.J Dally, all rights reserved 387 Toggle in a 

b in a b Figure 22.3: A toggle circuit alternates pulses on it input in between its two outputs a and 

b. squares (including wrapping from leftmost to rightmost). Thus, we don’t have to worry about 

what happens when the input changes from 11 (oscillating) to 00 (storing). This can’t happen. 

Since only one input can change at a time, we must first visit state 10 (reset) or 01 (set) before 

getting to 00. In some real world situations, it is not possible to restrict the inputs to operate in 

fundamental mode. In these cases we need consider multiple input changes. This topic is beyond 

the scope of this book and the interested reader is referred to some of the texts listed in Section 

22.4. 22.2 Flow-Table Synthesis: The Toggle Circuit We now understand how to use a flow-

table to analyze the behavior of an asynchronus circuit. That is, given a schematic, we can draw a 

flow table and understand the function of the circuit. In this section we will use a flow table in 

the other direction. We will see how to create a flow table from the specification of a circuit and 

then use that flow table to synthesize a schematic for a circuit that realizes the specification. 

Consider the specification of a toggle circuit - shown graphically in Figure 22.3. 

The toggle circuit has a single input in and two outputs a and b. 1 Whenever in is low, both 

outputs are low. The first time in goes high, output a goes high. On the next rising transition of 

in, output b goes high. On the third rising input, a goes high again. The circuit continues steering 

pulses on in alternately between a and b. The first step in synthesizing a toggle circuit is to write 

down its flow table. We can do this directly from the waveforms of Figure 22.3. Each transition 

of the input potentially takes us to a new state. Thus, we can partition the waveform into 

potential states as shown in Figure 22.4. We start in state A. When in rises we go to state B 

where output a is high. when in falls again we 1In practice a reset input rst is also required to 

initialize the state of the circuit. 388 EE108A Class Notes B C D A in a b A Next (in) 0 1 A C B 

B Out (a,b) C A D D 00 10 00 01 A B C D State Figure 22.4: 

A flow table is created from the specification of the toggle circuit by creating a new state for 

every input transition until the circuit is obviously back to the same state. go to state C. Even 

though C has the same output as A, we know its a different state because the next transition on in 

will cause a different output. The second rising edge on in takes us to state D with output b high. 

When in falls for the second time we go back to state A. We know that this state is the same as 

state A since the behavior of the circuit at this point under all possible inputs is indistinguishable 

from where we started. Once we have a flow table for the toggle circuit, the next step is to assign 

binary codes to each of the states. This state assignment is more critical than with synchronous 

machines. If two states X and Y differ in more than one state bit, a transition from X to Y 

requires first visiting a transient state with one state bit changed before arriving at Y. In some 

cases, a race between the two state bits may result. We discuss races in more detail in Section 



22.3. For now, we pick a state assignment (shown in Figure 22.5(a) where each state transition 

switches only a single bit. With the state assignment, realizing the logic for the toggle circuit is a 

simple matter of combinational logic synthesis. We redraw the flow table as a Karnaugh map in 

Figure 22.5(b). The Karnaugh map shows the symbolic next state function - i.e., each square 

shows the next state name (A through D) for that input and current state. The arrows show the 

path through the states followed during operation of the circuit. Understanding this path is 

important for avoiding races and hazards. We refer to this Karnaugh map showing the state 

transitions as a trajectory map since it shows the trajectory of the state variables. We redraw the 

Karnaugh map with state names replaced by their binary codes in Figure 22.5(c), and separate 

maps for the two state variables s0 and s1 Copyright (c) 2002-2007 by W.J Dally, all rights 

reserved 389 00 01 11 10 Code Next (in) 0 1 A C B B Out (a,b) C A D D 00 10 00 01 A B C D 

State A B C D D A in s0 s1 B C 01 11 11 10 00 in s0 s1 10 01 00 1 1 1 0 0 in s0 s1 0 1 0 in s0 s1 

1 1 1 0 0 0 1 0 (a) (b) (c) (d) (e) Figure 22.5: 

Implementing the toggle circuit from its flow table. (a) Flow table with state assignment. (b) 

Flow table mapped to Karnaugh map. (c) Next state codes mapped to Karnaugh map. (d) 

Karnaugh map for s0. (e) Karnaugh map for s1. 390 EE108A Class Notes are shown in Figure 

22.5(d) and (e) respectively. From these Karnaugh maps we write down the equations for s0 and 

s1: s0 = (s1 ∧ in) ∨ (s0 ∧ in) ∨ (s0 ∧ s1), (22.1) s1 = (s1 ∧ in) ∨ (s0 ∧ in) ∨ (s0 ∧ s1). (22.2) The 

last implicant in each expression is required to avoid a hazard that would otherwise occur. 

Asynchronous circuits must be hazard free along their path through the input/state space. 

Because the current state is being constantly fed back a glitch during a state transition can result 

in the circuit switching to a different state - and hence not implementing the desired function. For 

example, suppose we left the s0 ∧ s1 term out of (22.2). When in goes low in state B, s0 might 

go momentarily low before s1 comes high. At this point the middle term of both equations 

becomes false and s1 never goes high - the circuit goes to state A rather than C. All that remains 

to complete our synthesis is to write the output equations. Output a is true in state 01 and output 

b is true in state 10. The equations are thus: a = s1 ∧ s0, (22.3) b = s1 ∧ s0. (22.4) 22.3 Races and 

State Assignment To illustrate the problem of multiple state variables changing simultaneously, 

consider an alternate state assignment for the toggle circuit shown in Figure 22.6(a). Here we 

observe that the two outputs, a and b can also serve as state variables, so we can add to the 

outputs just one additional state variable c to distinguish between states A and C giving the codes 

shown in the figure.2 With this state assignment, the transition from state A (cab = 000) to state 

B (110) changes both c and a. If the logic is designed so that in going high in state A makes both 

c and a go high, they could change in an arbitrary order. Variable a could change first, variable c 

could change first, or they could change simultaneously. If they change simultaneously, we go 

from state A directly to state B with no intermediate stops. If a changes first, we go first to state 

010 which is not assigned and then, if the logic in state 010 does the right thing, to state 110. If c 

changes first, the machine will go to state C (100) where the high input will then drive it to state 

D. Clearly, we cannot allow c to change first. This situation where multiple state variables can 

change at the same time is called a race. The state variables are racing to see which one can 

change first. 2Note that the bit ordering of the codes is c,a,b. Copyright (c) 2002-2007 by W.J 

Dally, all rights reserved 391 000 110 100 001 Code (c,a,b) Next (in) 0 1 A C B B Out (a,b) C A 



D D 00 10 00 01 A B C D State A B1 B B C D1 C A D D in c a b (a) (b) Figure 22.6: An 

alternate state assignment for the toggle circuit requires multiple state variables to change on a 

single transition. (a) The flow table with the revised state assignment. (b) A trajectory map 

showing the introduction of transient states B1 = 010 and D1 = 101. When the outcome of the 

race affects the end state - as in this case - we call the race a critical race. To avoid the critical 

race that could occur if we allow both a and c to change at the same time, we specify the next-

state function so that only a can change in state A. This takes us to a transient state 010, which 

we will call B1. When the machine reaches state B1, the next state logic then enables c to 

change. The introduction of this transient state is illustrated in the trajectory map of Figure 

22.6(b). When the input goes high in state A, the next state function specifies B1 rather than B. 

This enables only a single transition, downward as shown by the blue arrow - which corresponds 

to a rising, to state B1. A change in c is not enabled in this state to avoid a horizontal transition 

into the square marked D1. Once the machine reaches state B1, the next state function becomes 

B which enables the change in c, a horizontal transition, to stable state B. A transient state is also 

required for the transition from state C 100 to state D 001. Both variables c and b change 

between these two states. An uncontrolled race in which variable c changes first could wind up 

in state A 000 which is not correct. To prevent this race, we enable only b to change when in 

rises in state C. This takes us to a transient state D1 (101). Once in state D1, c is allowed to fall, 

taking us to state D (001). Figure 22.7 illustrates the process of implementing the revised toggle 

circuit. Figure 22.7(a) shows a Karnaugh map of the next-state function. Each square of the 

Karnaugh map shows the code for the next state for that present state and input. Note that where 

the next state equals the present state the state is stable. Transient state B1 (at 010 - the second 

square along the diagonal) is not stable since it has a next state of 110. 392 EE108A Class Notes 

000 010 110 110 100 101 100 000 001 001 in c a b 0 x x x 1 1 0 0 1 3 2 4 5 7 6 8 9 11 10 12 13 

15 14 00 01 11 10 c in ba 00 01 11 10 in c a b 0 x x 1 0 0 x 0 0 0 x x x 0 0 0 0 1 3 2 4 5 7 6 8 9 

11 10 12 13 15 14 00 01 11 10 c in ba 00 01 11 10 in c a b 0 x x 0 1 1 x 1 0 0 x x x 1 1 1 0 1 3 2 

4 5 7 1 8 9 11 10 12 13 15 14 00 01 11 10 c in ba 00 01 11 10 in c a b 0 x x 0 0 0 x 1 1 (a) (b) abc 

(c) (d) Figure 22.7: Implementation of the toggle circuit with the alternate state assignment of 

Figure 22.6(a). (a) Karnaugh map showing 3-bit next state function c,a,b. (b) Karnaugh map for 

a. (c) Karnaugh map for b. (d) Karnaugh map for c. Copyright (c) 2002-2007 by W.J Dally, all 

rights reserved 393 From the next-state Karnaugh map we can write the individual Karnaugh 

maps for each state variable. Figure 22.7 (b) through (d) show the Karnaugh maps for the 

individual variables - a, b, and c respectively. Note that the states that are not visited along the 

state trajectory (the blank squares in Figure 22.7(a)) are don’t cares. The machine will never be 

in these states, thus we don’t care what the next state function is in an unvisited state. From these 

Karnaugh maps we write the state variable equations as: a = (in ∧ b ∧ c) ∨ (in ∧ a), (22.5) b = (in 

∧ a ∧ c) ∨ (in ∧ b), (22.6) c = a ∨ (b ∧ c). (22.7) Note that we don’t require separate equations for 

output variables since a and b are both state variables and output variables. 

 

 

Transition table 



Example Transition Table 

A transition table shows the transitions between states for each input character. Here is a 

finite automaton and a table that shows its transitions: 

 

States 

Inputs 

a b c all else 

q0 q1 - - - 

q1 - q0 q2 - 

q2 - - q2 - 

 

 

The column labeled States shows current states of the automaton, and the characters under the 

heading Inputs shows the labels of the transitions. The cell at row q0 column 'a' (for example) 

shows that when the automaton is in state q0, character 'a' causes a transition to state q1. 

When there is no transition out of the current state for the given character, the table contains a 

dash. You can think of this as representing the "reject state." The final column shows that 

characters other than 'a', 'b', or 'c' immediately lead to the reject state. 

Utomata theory and sequential logic, a state transition table is a table showing what state (or 

states in the case of a nondeterministic finite automaton) a finite semiautomaton or finite state 

machine will move to, based on the current state and other inputs. A state table is essentially 

a truth table in which some of the inputs are the current state, and the outputs include the next 

state, along with other outputs. 
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A state table is one of many ways to specify a state machine, other ways being a state diagram, 

and a characteristic equation. 

Common forms 

One-dimensional state tables 

Also called characteristic tables, single-dimension state tables are much more like truth tables 

than the two-dimensional versions. Inputs are usually placed on the left, and separated from the 

outputs, which are on the right. The outputs will represent the next state of the machine. A 

simple example of a state machine with two states and two combinational inputs follows: 

A B Current State Next State Output 

0 0 S1 S2 1 

0 0 S2 S1 0 

0 1 S1 S2 0 

0 1 S2 S2 1 

1 0 S1 S1 1 

1 0 S2 S1 1 

1 1 S1 S1 1 

1 1 S2 S2 0 

S1 and S2 would most likely represent the single bits 0 and 1, since a single bit can only have two 

states. 

Two-dimensional state tables 

State transition tables are typically two-dimensional tables. There are two common forms for 

arranging them. 

https://en.wikipedia.org/wiki/State_diagram


 One of the dimensions indicates current states, while the other indicates events. The 

row/column intersections indicate the next state for a particular event, and (optionally) an 

incidental action associated with this state transition. 

State Transition Table 

Event 

State 
E1 E2 … En 

S1 — Sy / Aj … — 

S2 — — … Sx / Ai 

… … … … … 

Sm Sz / Ak — … — 

(S: state, E: event, A: action, —: illegal transition) 

 One of the dimensions indicates current states, while the other indicates next states. The 

row/column intersections indicate the event which will lead to a particular next state. 

State Transition Table 

State 

(Next) 

State 

(Current) 

S1 S2 … Sm 

S1 — — … Ex / Ai 

S2 Ey / Aj — … — 



… … … … … 

Sm — Ez / Ak … — 

(S: state, E: event, A: action, —: impossible transition) 

Other forms 

Simultaneous transitions in multiple finite state machines can be shown in what is effectively an 

n-dimensional state transition table in which pairs of rows map (sets of) current states to next 

states.[1] This is an alternative to representing communication between separate, interdependent 

state machines. 

At the other extreme, separate tables have been used for each of the transitions within a single 

state machine: "AND/OR tables"[2] are similar to incomplete decision tables in which the 

decision for the rules which are present is implicitly the activation of the associated transition. 

Example 

An example of a state transition table for a machine M together with the corresponding state 

diagram is given below. 

State 

Transition 

Table 

Input 

State 
1 0 

S1 S1 S2 

S2 S2 S1 

 

 

State Diagram 

 

All the possible inputs to the machine are enumerated across the columns of the table. All the 

possible states are enumerated across the rows. From the state transition table given above, it is 

easy to see that if the machine is in S1 (the first row), and the next input is character 1, the 

machine will stay in S1. If a character 0 arrives, the machine will transition to S2as can be seen 

from the second column. In the diagram this is denoted by the arrow from S1 to S2 labeled with 

a 0. 
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For a nondeterministic finite automaton (NFA), a new input may cause the machine to be in 

more than one state, hence its non-determinism. This is denoted in a state transition table by a 

pair of curly braces { } with the set of all target states between them. An example is given below. 

State Transition Table for an NFA 

Input 

State 
1 0 ε 

S1 S1 { S2, S3 } Φ 

S2 S2 S1 Φ 

S3 S2 S1 S1 

Here, a nondeterministic machine in the state S1 reading an input of 0 will cause it to be in two 

states at the same time, the states S2 and S3. The last column defines the legal transition of states 

of the special character, ε. This special character allows the NFA to move to a different state 

when given no input. In state S3, the NFA may move to S1 without consuming an input character. 

The two cases above make the finite automaton described non-deterministic. 

Transformations from/to state diagram 

It is possible to draw a state diagram from the table. A sequence of easy to follow steps is given 

below: 

1. Draw the circles to represent the states given. 

2. For each of the states, scan across the corresponding row and draw an arrow to the 

destination state(s). There can be multiple arrows for an input character if the automaton 

is an NFA. 

3. Designate a state as the start state. The start state is given in the formal definition of the 

automaton. 

4. Designate one or more states as accept state. This is also given in the formal definition. 

 

 

Programmable logic device 
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A programmable logic device (PLD) is an electronic component used to 

build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD has 

an undefined function at the time of manufacture. Before the PLD can be used in a circuit it must 

be programmed, that is, reconfigured. 

   

A simplified PAL device. The programmable elements (shown as a fuse) connect both the true 

and complemented inputs to the AND gates. These AND gates, also known as product terms, are 

ORed together to form a sum-of-products logic array. 

 

Using a ROM as a PLD 

Before PLDs were invented, read-only memory (ROM) chips were used to 

create arbitrary combinational logic functions of a number of inputs. Consider a ROM 

with m inputs (the address lines) and n outputs (the data lines). When used as a memory, the 

ROM contains 2m words of n bits each. 

Now imagine that the inputs are driven not by an m-bit address, but by m independent logic 

signals. Theoretically, there are 22m possible Boolean functions of these m input signals. 

By Boolean function in this context is meant a single function that maps each of the 2m possible 

combinations of the m Boolean inputs to a single Boolean output. There are 22mpossible distinct 

ways to map each of 2m inputs to a Boolean value, which explains why there are 22m such 

Boolean functions of m inputs. 

Now, consider that each of the n output pins acts, independently, as a logic device that is 

specially selected to sample just one of the possible 22m such functions. At any given time, only 

one of the 2m possible input values can be present on the ROM, but over time, as the input values 

span their full possible domain, each output pin will map out its particular function of 

the 2m possible input values, from among the 22m possible such functions. Note that the structure 

of the ROM allows just n of the 22m possible such Boolean functions to be produced at the output 

pins. The ROM therefore becomes equivalent to n separate logic circuits, each of which 

generates a chosen function of the m inputs. 

The advantage of using a ROM in this way is that any conceivable function of all possible 

combinations of the m inputs can be made to appear at any of the n outputs, making this the most 

general-purpose combinational logic device available for m input pins and n output pins. 
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Also, PROMs (programmable ROMs), EPROMs (ultraviolet-erasable PROMs) 

and EEPROMs (electrically erasable PROMs) are available that can be programmed using a 

standard PROM programmer without requiring specialised hardware or software. However, there 

are several disadvantages: 

 they are usually much slower than dedicated logic circuits, 

 they cannot necessarily provide safe "covers" for asynchronous logic transitions so the 

PROM's outputs may glitch as the inputs switch, 

 they consume more power[clarification needed], 

 they are often more expensive than programmable logic, especially if high speed is required. 

Since most ROMs do not have input or output registers, they cannot be used stand-alone 

for sequential logic. An external TTL register was often used for sequential designs such as state 

machines. Common EPROMs, for example the 2716, are still sometimes used in this way by 

hobby circuit designers, who often have some lying around. This use is sometimes called a 'poor 

man's PAL'. 

Early programmable logic 

In 1969, Motorola offered the XC157, a mask-programmed gate array with 12 gates and 30 

uncommitted input/output pins.[1] 

In 1970, Texas Instruments developed a mask-programmable IC based on the IBM read-only 

associative memory or ROAM. This device, the TMS2000, was programmed by altering the 

metal layer during the production of the IC. The TMS2000 had up to 17 inputs and 18 outputs 

with 8 JK flip flop for memory. TI coined the term programmable logic array for this device.[2] 

In 1971, General Electric Company (GE) was developing a programmable logic device based on 

the new PROM technology. This experimental device improved on IBM's ROAM by allowing 

multilevel logic. Intel had just introduced the floating-gate UV erasable PROM so the researcher 

at GE incorporated that technology. The GE device was the first erasable PLD ever developed, 

predating the Altera EPLD by over a decade. GE obtained several early patents on 

programmable logic devices.[3][4][5] 

In 1973 National Semiconductor introduced a mask-programmable PLA device (DM7575) with 

14 inputs and 8 outputs with no memory registers. This was more popular than the TI part but 

cost of making the metal mask limited its use. The device is significant because it was the basis 

for the field programmable logic array produced by Signetics in 1975, the 82S100. 

(Intersil actually beat Signetics to market but poor yield doomed their part.)[6][7] 

In 1974 GE entered into an agreement with Monolithic Memories to develop a mask- 

programmable logic device incorporating the GE innovations. The device was named the 

'Programmable Associative Logic Array' or PALA. The MMI 5760 was completed in 1976 and 

could implement multilevel or sequential circuits of over 100 gates. The device was supported by 

a GE design environment where Boolean equations would be converted to mask patterns for 

configuring the device. The part was never brought to market.[8] 
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PLA 

In 1970, Texas Instruments developed a mask-programmable IC based on the IBM read-only 

associative memory or ROAM. This device, the TMS2000, was programmed by altering the 

metal layer during the production of the IC. The TMS2000 had up to 17 inputs and 18 outputs 

with 8 JK flip flop for memory. TI coined the term programmable logic array for this device.[2] 

A programmable logic array (PLA) has a programmable AND gate array, which links to a 

programmable OR gate array, which can then be conditionally complemented to produce an 

output. 

PAL] 

PAL devices have arrays of transistor cells arranged in a "fixed-OR, programmable-AND" plane 

used to implement "sum-of-products" binary logic equations for each of the outputs in terms of 

the inputs and either synchronous or asynchronous feedback from the outputs. 

MMI introduced a breakthrough device in 1978, the programmable array logic or PAL. The 

architecture was simpler than that of Signetics FPLA because it omitted the programmable OR 

array. This made the parts faster, smaller and cheaper. They were available in 20 pin 300 mil DIP 

packages while the FPLAs came in 28 pin 600 mil packages. The PAL Handbook demystified 

the design process. The PALASM design software (PAL assembler) converted the engineers' 

Boolean equations into the fuse pattern required to program the part. The PAL devices were 

soon second-sourced by National Semiconductor, Texas Instruments and AMD. 

After MMI succeeded with the 20-pin PAL parts, AMD introduced the 24-pin 22V10 PAL with 

additional features. After buying out MMI (1987), AMD spun off a consolidated operation 

as Vantis, and that business was acquired by Lattice Semiconductor in 1999. 

 

How PLDs retain their configuration 

A PLD is a combination of a logic device and a memory device. The memory is used to store the 

pattern that was given to the chip during programming. Most of the methods for storing data in 

an integrated circuit have been adapted for use in PLDs. These include: 

 Silicon antifuses 

 SRAM 

 EPROM or EEPROM cells 

 Flash memory 

Silicon antifuses are connections that are made by applying a voltage across a modified area of 

silicon inside the chip. They are called antifuses because they work in the opposite way to 

normal fuses, which begin life as connections until they are broken by an electric current. 

SRAM, or static RAM, is a volatile type of memory, meaning that its contents are lost each time 

the power is switched off. SRAM-based PLDs therefore have to be programmed every time the 

circuit is switched on. This is usually done automatically by another part of the circuit. 

An EPROM cell is a MOS (metal-oxide-semiconductor) transistor that can be switched on by 

trapping an electric charge permanently on its gate electrode. This is done by a PAL 
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programmer. The charge remains for many years and can only be removed by exposing the chip 

to strong ultraviolet light in a device called an EPROM eraser. 

Flash memory is non-volatile, retaining its contents even when the power is switched off. It can 

be erased and reprogrammed as required. This makes it useful for PLD memory. 

As of 2005, most CPLDs are electrically programmable and erasable, and non-volatile. This is 

because they are too small to justify the inconvenience of programming internal SRAM cells 

every time they start up, and EPROM cells are more expensive due to their ceramic package with 

a quartz window. 

PLD programming languages 

Many PAL programming devices accept input in a standard file format, commonly referred to as 

'JEDEC files'.They are analogous to software compilers. The languages used as source code for 

logic compilers are called hardware description languages, or HDLs. 

PALASM, ABEL and CUPL are frequently used for low-complexity devices, 

while Verilog and VHDL are popular higher-level description languages for more complex 

devices. The more limited ABEL is often used for historical reasons, but for new designs VHDL 

is more popular, even for low-complexity designs. 

For modern PLD programming languages, design flows, and tools, 

see FPGA and Reconfigurable computing. 

PLD programming devices 

A device programmer is used to transfer the boolean logic pattern into the programmable device. 

In the early days of programmable logic, every PLD manufacturer also produced a specialized 

device programmer for its family of logic devices. Later, universal device programmers came 

onto the market that supported several logic device families from different manufacturers. 

Today's device programmers usually can program common PLDs (mostly PAL/GAL 

equivalents) from all existing manufacturers. Common file formats used to store the boolean 

logic pattern (fuses) are JEDEC, Altera POF (programmable object file), or Xilinx BITstream.[ 
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UNIT V 

VHDL 

 

 

Register-transfer level 

Register-transfer-level abstraction is used in hardware description languages (HDLs) 

like Verilog and VHDL to create high-level representations of a circuit, from which lower-level 

representations and ultimately actual wiring can be derived. Design at the RTL level is typical 

practice in modern digital design 

RTL description 

 

Example of a simple circuit with the output toggling at each rising edge of the input. The inverter 

forms the combinational logic in this circuit, and the register holds the state. 

A synchronous circuit consists of two kinds of elements: registers and combinational logic. 

Registers (usually implemented as D flip-flops) synchronize the circuit's operation to the edges 

of the clock signal, and are the only elements in the circuit that have memory properties. 

Combinational logic performs all the logical functions in the circuit and it typically consists 

of logic gates. 

For example, a very simple synchronous circuit is shown in the figure. The inverter is connected 

from the output, Q, of a register to the register's input, D, to create a circuit that changes its state 

on each rising edge of the clock, clk. In this circuit, the combinational logic consists of the 

inverter. 

When designing digital integrated circuits with a hardware description language, the designs are 

usually engineered at a higher level of abstraction than transistor level (logic families) or logic 

gate level. In HDLs the designer declares the registers (which roughly correspond to variables in 

computer programming languages), and describes the combinational logic by using constructs 

that are familiar from programming languages such as if-then-else and arithmetic operations. 
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This level is called register-transfer level. The term refers to the fact that RTL focuses on 

describing the flow of signals between registers. 

Combinational Logic Circuits 

 

Unlike Sequential Logic Circuits whose outputs are dependant on both their present inputs and 

their previous output state giving them some form of Memory 

The outputs of Combinational Logic Circuits are only determined by the logical function of 

their current input state, logic “0” or logic “1”, at any given instant in time. 

The result is that combinational logic circuits have no feedback, and any changes to the signals 

being applied to their inputs will immediately have an effect at the output. In other words, in 

a Combinational Logic Circuit, the output is dependant at all times on the combination of its 

inputs. So if one of its inputs condition changes state, from 0-1or 1-0, so too will the resulting 

output as by default combinational logic circuits have “no memory”, “timing” or “feedback 

loops” within their design. 

Combinational Logic 

 
 

Combinational Logic Circuits are made up from basic logic NAND, NOR or NOT gates that 

are “combined” or connected together to produce more complicated switching circuits. These 

logic gates are the building blocks of combinational logic circuits. An example of a 

combinational circuit is a decoder, which converts the binary code data present at its input into a 

number of different output lines, one at a time producing an equivalent decimal code at its 

output. 

Combinational logic circuits can be very simple or very complicated and any combinational 

circuit can be implemented with only NAND and NOR gates as these are classed as “universal” 

gates. 
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The three main ways of specifying the function of a combinational logic circuit are: 

 1. Boolean Algebra – This forms the algebraic expression showing the operation of the 

logic circuit for each input variable either True or False that results in a logic “1” output. 

 2. Truth Table – A truth table defines the function of a logic gate by providing a concise 

list that shows all the output states in tabular form for each possible combination of input 

variable that the gate could encounter. 

 3. Logic Diagram – This is a graphical representation of a logic circuit that shows the 

wiring and connections of each individual logic gate, represented by a specific graphical 

symbol, that implements the logic circuit. 

and all three of these logic circuit representations are shown below. 

 
 

As combinational logic circuits are made up from individual logic gates only, they can also be 

considered as “decision making circuits” and combinational logic is about combining logic gates 

together to process two or more signals in order to produce at least one output signal according 

to the logical function of each logic gate. Common combinational circuits made up from 

individual logic gates that carry out a desired application include Multiplexers, De-

multiplexers, Encoders, Decoders, Full and Half Adders etc. 

Classification of Combinational Logic 



 
 

One of the most common uses of combinational logic is in Multiplexer and De-

multiplexer type circuits. Here, multiple inputs or outputs are connected to a common signal line 

and logic gates are used to decode an address to select a single data input or output switch. 

A multiplexer consist of two separate components, a logic decoder and some solid state switches, 

but before we can discuss multiplexers, decoders and de-multiplexers in more detail we first 

need to understand how these devices use these “solid state switches” in their design. 

Solid State Switches 

Standard TTL logic devices made up from Transistors can only pass signal currents in one 

direction only making them “uni-directional” devices and poor imitations of conventional 

electro-mechanical switches or relays. However, some CMOS switching devices made up 

from FET’s act as near perfect “bi-directional” switches making them ideal for use as solid state 

switches. 

Solid state switches come in a variety of different types and ratings, and there are many different 

applications for using solid state switches. They can basically be sub-divided into 3 different 

main groups for switching applications and in this combinational logic section we will only look 

at the Analogue type of switch but the principal is the same for all types including digital. 

Solid State Switch Applications 

 Analogue Switches – Used in Data Switching and Communications, Video and Audio 

Signal Switching, Instrumentation and Process Control Circuits …etc. 

 Digital Switches – High Speed Data Transmission, Switching and Signal Routing, 

Ethernet, LAN’s, USB and Serial Transmissions …etc. 

http://www.electronics-tutorials.ws/combination/comb_2.html
http://www.electronics-tutorials.ws/combination/comb_3.html
http://www.electronics-tutorials.ws/combination/comb_3.html
http://www.electronics-tutorials.ws/transistor/tran_1.html
http://www.electronics-tutorials.ws/transistor/tran_5.html


 Power Switches – Power Supplies and General “Standby Power” Switching Applications, 

Switching of Larger Voltages and Currents …etc. 

Analogue Bilateral Switches 

Analogue or “Analog” switches are those types that are used to switch data or signal currents 

when they are in their “ON” state and block them when they are in their “OFF” state. The rapid 

switching between the “ON” and the “OFF” state is usually controlled by a digital signal applied 

to the control gate of the switch. An ideal analogue switch has zero resistance when “ON” (or 

closed), and infinite resistance when “OFF” (or open) and switches with RON values of less 

than 1Ω are commonly available. 

Solid State Analogue Switch 

 
 

By connecting an N-channel MOSFET in parallel with a P-channel MOSFET allows signals to 

pass in either direction making it a Bi-directional switch and as to whether the N-channel or the 

P-channel device carries more signal current will depend upon the ratio between the input to the 

output voltage. The two MOSFET’s are switched “ON” or “OFF” by two internal non-inverting 

and inverting amplifiers. 

Contact Types 

Just like mechanical switches, analogue switches come in a variety of forms or contact types, 

depending on the number of “poles” and “throws” they offer. Thus, terms such as “SPST” 

(single-pole single throw) and “SPDT” (single-pole double-throw) also apply to solid state 

analogue switches with “make-before-break” and “break-before-make” configurations available. 

Analogue Switch Types 



 
 

Individual analogue switches can be grouped together into standard IC packages to form devices 

with multiple switching configurations of SPST (single-pole single-throw) and SPDT (single-

pole double-throw) as well as multi channel multiplexers. 

The most common and simplest analogue switch in a single IC package is the 74HC4066 which 

has 4 independent bi-directional “ON/OFF” Switches within a single package but the most 

widely used variants of the CMOS analogue switch are those described as “Multi-way Bilateral 

Switches” otherwise known as the “Multiplexer” and “De-multiplexer” IC´s and these are 

discussed in the next tutorial. 

Combinational Logic Summary 

Then to summarise, Combinational Logic Circuits consist of inputs, two or more basic logic 

gates and outputs. The logic gates are combined in such a way that the output state depends 

entirely on the input states. Combinational logic circuits have “no memory”, “timing” or 

“feedback loops”, there operation is instantaneous. A combinational logic circuit performs an 

operation assigned logically by a Boolean expression or truth table. 

Examples of common combinational logic circuits include: half adders, full adders, multiplexers, 

demultiplexers, encoders and decoders all of which we will look at in the next few tutorials. 

 

Sequential Logic Circuits 

 

This means that sequential logic circuits are able to take into account their previous input state as 

well as those actually present, a sort of  “before” and “after” effect is involved with sequential 

circuits. 

In other words, the output state of a “sequential logic circuit” is a function of the following three 

states, the “present input”, the “past input” and/or the “past output”. Sequential Logic 



circuits remember these conditions and stay fixed in their current state until the next clock signal 

changes one of the states, giving sequential logic circuits “Memory”. 

Sequential logic circuits are generally termed as two state or Bistable devices which can have 

their output or outputs set in one of two basic states, a logic level “1” or a logic level “0” and will 

remain “latched” (hence the name latch) indefinitely in this current state or condition until some 

other input trigger pulse or signal is applied which will cause the bistable to change its state once 

again. 

Sequential Logic Representation 

 
The word “Sequential” means that things happen in a “sequence”, one after another and 

in Sequential Logic circuits, the actual clock signal determines when things will happen next. 

Simple sequential logic circuits can be constructed from standard Bistablecircuits such as: Flip-

flops, Latches and Counters and which themselves can be made by simply connecting together 

universal NAND Gates and/or NOR Gates in a particular combinational way to produce the 

required sequential circuit. 

Related Products: Direct Digital Synthesizer 

Classification of Sequential Logic 

As standard logic gates are the building blocks of combinational circuits, bistable latches and 

flip-flops are the basic building blocks of sequential logic circuits. Sequential logic circuits can 

be constructed to produce either simple edge-triggered flip-flops or more complex sequential 

circuits such as storage registers, shift registers, memory devices or counters. Either way 

sequential logic circuits can be divided into the following three main categories: 

 1. Event Driven – asynchronous circuits that change state immediately when enabled. 

 2. Clock Driven – synchronous circuits that are synchronised to a specific clock signal. 

 3. Pulse Driven – which is a combination of the two that responds to triggering pulses. 

http://www.electronics-tutorials.ws/waveforms/bistable.html
http://www.electronics-tutorials.ws/logic/logic_5.html
http://www.electronics-tutorials.ws/logic/logic_6.html
https://www.arrow.com/en/products/clock-and-timing/direct-digital-synthesizers


 
As well as the two logic states mentioned above logic level “1” and logic level “0”, a third 

element is introduced that separates sequential logic circuits from their combinational 

logic counterparts, namely TIME. Sequential logic circuits return back to their original steady 

state once reset and sequential circuits with loops or feedback paths are said to be “cyclic” in 

nature. 

We now know that in sequential circuits changes occur only on the application of a clock signal 

making it synchronous, otherwise the circuit is asynchronous and depends upon an external 

input. To retain their current state, sequential circuits rely on feedback and this occurs when a 

fraction of the output is fed back to the input and this is demonstrated as: 

Sequential Feedback Loop 

 
The two inverters or NOT gates are connected in series with the output at Q fed back to the 

input. Unfortunately, this configuration never changes state because the output will always be the 

same, either a “1” or a “0”, it is permanently set. However, we can see how feedback works by 

examining the most basic sequential logic components, called the SR flip-flop. 

SR Flip-Flop 

The SR flip-flop, also known as a SR Latch, can be considered as one of the most basic 

sequential logic circuit possible. This simple flip-flop is basically a one-bit memory bistable 

device that has two inputs, one which will “SET” the device (meaning the output = “1”), and is 

labelled S and another which will “RESET” the device (meaning the output = “0”), labelled R. 



Then the SR description stands for “Set-Reset”. The reset input resets the flip-flop back to its 

original state with an output Q that will be either at a logic level “1” or logic “0” depending upon 

this set/reset condition. 

A basic NAND gate SR flip-flop circuit provides feedback from both of its outputs back to its 

opposing inputs and is commonly used in memory circuits to store a single data bit. Then the SR 

flip-flop actually has three inputs, Set, Reset and its current output Qrelating to it’s current state 

or history. The term “Flip-flop” relates to the actual operation of the device, as it can be 

“flipped” into one logic Set state or “flopped” back into the opposing logic Reset state. 

The NAND Gate SR Flip-Flop 

The simplest way to make any basic single bit set-reset SR flip-flop is to connect together a pair 

of cross-coupled 2-input NAND gates as shown, to form a Set-Reset Bistable also known as an 

active LOW SR NAND Gate Latch, so that there is feedback from each output to one of the 

other NAND gate inputs. This device consists of two inputs, one called the Set, S and the other 

called the Reset, R with two corresponding outputs Q and its inverse or complement Q (not-Q) as 

shown below. 

The Basic SR Flip-flop 

 

The Set State 

Consider the circuit shown above. If the input R is at logic level “0” (R = 0) and input S is at 

logic level “1” (S = 1), the NAND gate Y  has at least one of its inputs at logic “0” therefore, its 

output Q must be at a logic level “1” (NAND Gate principles). Output Q is also fed back to input 

“A” and so both inputs to NAND gate X are at logic level “1”, and therefore its output Q must be 

at logic level “0”. 

Again NAND gate principals. If the reset input R changes state, and goes HIGH to logic “1” 

with S remaining HIGH also at logic level “1”, NAND gate Y inputs are now R = “1” and B = 

“0”. Since one of its inputs is still at logic level “0” the output at Q still remains HIGH at logic 

level “1” and there is no change of state. Therefore, the flip-flop circuit is said to be “Latched” or 

“Set” with Q = “1” and Q = “0”. 



Reset State 

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse output at Q is at logic 

level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As gate X has one of its inputs at logic 

“0” its output Q must equal logic level “1” (again NAND gate principles). Output Q is fed back 

to input “B”, so both inputs to NAND gate Y are at logic “1”, therefore, Q = “0”. 

If the set input, S now changes state to logic “1” with input R remaining at logic “1”, 

output Q still remains LOW at logic level “0” and there is no change of state. Therefore, the flip-

flop circuits “Reset” state has also been latched and we can define this “set/reset” action in the 

following truth table. 

Truth Table for this Set-Reset Function 

State S R Q Q Description 

Set 

1 0 0 1 Set Q » 1 

1 1 0 1 no change 

Reset 

0 1 1 0 Reset Q » 0 

1 1 1 0 no change 

Invalid 0 0 1 1 Invalid Condition 

It can be seen that when both inputs S = “1” and R = “1” the outputs Q and Q can be at either 

logic level “1” or “0”, depending upon the state of the inputs S or R BEFORE this input 

condition existed. Therefore the condition of S = R = “1” does not change the state of the 

outputs Q and Q. 

However, the input state of S = “0” and R = “0” is an undesirable or invalid condition and must 

be avoided. The condition of S = R = “0” causes both outputs Q and Q to be HIGH together at 

logic level “1” when we would normally want Q to be the inverse of Q. The result is that the flip-



flop looses control of Q and Q, and if the two inputs are now switched “HIGH” again after this 

condition to logic “1”, the flip-flop becomes unstable and switches to an unknown data state 

based upon the unbalance as shown in the following switching diagram. 

S-R Flip-flop Switching Diagram 

 
This unbalance can cause one of the outputs to switch faster than the other resulting in the flip-

flop switching to one state or the other which may not be the required state and data corruption 

will exist. This unstable condition is generally known as its Meta-stablestate. 

Then, a simple NAND gate SR flip-flop or NAND gate SR latch can be set by applying a logic 

“0”, (LOW) condition to its Set input and reset again by then applying a logic “0” to 

its Reset input. The SR flip-flop is said to be in an “invalid” condition (Meta-stable) if both the 

set and reset inputs are activated simultaneously. 

As we have seen above, the basic NAND gate SR flip-flop requires logic “0” inputs to flip or 

change state from Q to Q and vice versa. We can however, change this basic flip-flop circuit to 

one that changes state by the application of positive going input signals with the addition of two 

extra NAND gates connected as inverters to the S and R inputs as shown. 

Positive NAND Gate SR Flip-flop 

 



As well as using NAND gates, it is also possible to construct simple one-bit SR Flip-flops using 

two cross-coupled NOR gates connected in the same configuration. The circuit will work in a 

similar way to the NAND gate circuit above, except that the inputs are active HIGH and the 

invalid condition exists when both its inputs are at logic level “1”, and this is shown below. 

The NOR Gate SR Flip-flop 

 

Switch Debounce Circuits 

Edge-triggered flip-flops require a nice clean signal transition, and one practical use of this type 

of set-reset circuit is as a latch used to help eliminate mechanical switch “bounce”. As its name 

implies, switch bounce occurs when the contacts of any mechanically operated switch, push-

button or keypad are operated and the internal switch contacts do not fully close cleanly, but 

bounce together first before closing (or opening) when the switch is pressed. 

This gives rise to a series of individual pulses which can be as long as tens of milliseconds that 

an electronic system or circuit such as a digital counter may see as a series of logic pulses instead 

of one long single pulse and behave incorrectly. For example, during this bounce period the 

output voltage can fluctuate wildly and may register multiple input counts instead of one single 

count. Then set-reset SR Flip-flops or Bistable Latch circuits can be used to eliminate this kind 

of problem and this is demonstrated below. 

SR Flip Flop Switch Debounce Circuit 



 
Depending upon the current state of the output, if the set or reset buttons are depressed the output 

will change over in the manner described above and any additional unwanted inputs (bounces) 

from the mechanical action of the switch will have no effect on the output at Q. 

When the other button is pressed, the very first contact will cause the latch to change state, but 

any additional mechanical switch bounces will also have no effect. The SR flip-flop can then be 

RESET automatically after a short period of time, for example 0.5 seconds, so as to register any 

additional and intentional repeat inputs from the same switch contacts, such as multiple inputs 

from a keyboards “RETURN” key. 

Commonly available IC’s specifically made to overcome the problem of switch bounce are the 

MAX6816, single input, MAX6817, dual input and the MAX6818 octal input switch debouncer 

IC’s. These chips contain the necessary flip-flop circuitry to provide clean interfacing of 

mechanical switches to digital systems. 

Set-Reset bistable latches can also be used as Monostable (one-shot) pulse generators to generate 

a single output pulse, either high or low, of some specified width or time period for timing or 

control purposes. The 74LS279 is a Quad SR Bistable Latch IC, which contains four 

individual NAND type bistable’s within a single chip enabling switch debounce or 

monostable/astable clock circuits to be easily constructed. 

Quad SR Bistable Latch 74LS279 



 

Gated or Clocked SR Flip-Flop 

It is sometimes desirable in sequential logic circuits to have a bistable SR flip-flop that only 

changes state when certain conditions are met regardless of the condition of either the Set or 

the Reset inputs. By connecting a 2-input AND gate in series with each input terminal of the SR 

Flip-flop a Gated SR Flip-flop can be created. This extra conditional input is called an “Enable” 

input and is given the prefix of “EN“. The addition of this input means that the output at Q only 

changes state when it is HIGH and can therefore be used as a clock (CLK) input making it level-

sensitive as shown below. 

Gated SR Flip-flop 

 
When the Enable input “EN” is at logic level “0”, the outputs of the two AND gates are also at 

logic level “0”, (AND Gate principles) regardless of the condition of the two inputs S and R, 

latching the two outputs Q and Q into their last known state. When the enable input “EN” 

changes to logic level “1” the circuit responds as a normal SR bistable flip-flop with the 

two AND gates becoming transparent to the Set and Reset signals. 

This additional enable input can also be connected to a clock timing signal (CLK) adding clock 

synchronisation to the flip-flop creating what is sometimes called a “Clocked SR Flip-flop“. So 

a Gated Bistable SR Flip-flop operates as a standard bistable latch but the outputs are only 

activated when a logic “1” is applied to its EN input and deactivated by a logic “0”. 

In the next tutorial about Sequential Logic Circuits, we will look at another type of simple 

edge-triggered flip-flop which is very similar to the RS flip-flop called a JK Flip-flop named 

http://www.electronics-tutorials.ws/sequential/seq_2.html


after its inventor, Jack Kilby. The JK flip-flop is the most widely used of all the flip-flop designs 

as it is considered to be a universal device. 

 

1 VHDL Sub-Programs, Packages, & Libraries EL 310 Erkay Savaş Sabancı University 2 

Motivation • Structuring VHDL programs – modularity • Design reuse • Manage the complexity 

• Available VHDL tools: – procedures, – functions, – packages, – libraries 3 Issues • VHDL 

programs model physical systems • There may have some issues we have to deal with such as: • 

Can wait statements be used in a procedure? • Can signals be passed to procedures and be 

modified within the procedure? • How are procedures synthesized? • Can functions operate on 

signals? 4 Packages & Libraries • Groups of procedures and functions that are related can be 

aggregated into a module that is called package. • A package can be shared across many VHDL 

models. • A package can also contains user defined data types and constants. • A library is a 

collection of related packages. • Packages and libraries serve as repositories for functions, 

procedures, and data types. 5 Functions • A function computes and returns a value of specified 

type using the input parameters. • Function declaration: – function rising_edge(signal clock: in 

std_logic) return Boolean; • Parameters are used but not modified within the function. – the 

mode of input parameters is in. – functions do not have parameters of mode out. – In fact, we do 

not have to specify the mode. 6 Function Definition function rising_edge(signal clock: std_logic) 

return Boolean is -- -- declarative region: declare variables local to the function -- begin -- -- 

body -- return (value); end function rising_edge; formal parameters – The function is called with 

the actual parameters. – Example: rising_edge(enable); – Types of formal and actual parameters 

must match. – Actual parameters could be variable, signal, constant or an expression. 7 

Functions • When no class is specified, parameters are by default constants. • wait statements 

cannot be used in functions’ body. – functions execute in zero simulation time. • Functions 

cannot call a procedure that has a wait statement in it. • Parameters have to be mode in. – signals 

passed as parameters cannot be assigned values in the function body. 8 Pure vs. Impure 

Functions • VHDL’93 supports two distinct types of functions: • Pure functions – always return 

the same value when called with the same parameter values. • Impure functions – may return 

different values even if they are called with the same parameter values at different times. – All 

the signals in the architecture is visible within the function body – Those signals may not appear 

in the function parameter list (e.g. ports of the entity) 9 Example library IEEE; use 

IEEE.std_logic_1164.all; entity dff is port(d, clock: in std_logic; q, qbar: out std_logic); end 

entity dff; architecture beh of dff is function rising_edge(signal clock:std_logic) return Boolean 

is variable edge: Boolean:=FALSE; begin edge:= (clock = ‘1’ and clock’event); return (edge); 

end function rising_edge; begin output: process is begin wait until (rising_edge(clock)); q <= d 

after 5 ns; qbar <= not d after 5 ns; end process output; end architecture beh; declarative region 

of architecture 10 Type Conversion Functions function to_bitvector(svalue: std_logic_vector) 

return bit_vector is variable outvalue: bit_vector(svalue’length-1 downto 0); begin for i in 

svalue’range loop –- scan all elements of the array case svalue(i) is when ‘0’ => outvalue(i) := 

‘0’; when ‘1’ => outvalue(i) := ‘1’; when others => outvalue(i) := ‘0’; end case; end loop; return 

outvalue; end function to_bitvector; Unconstrained array 11 std_logic_arith type UNSIGNED is 

array (NATURAL range <>) of STD_LOGIC; type tbl_type is array (STD_ULOGIC) of 

STD_ULOGIC; constant tbl_BINARY : tbl_type := ('X', 'X', '0', '1', 'X', 'X', '0', '1', 'X'); function 

CONV_INTEGER(ARG: UNSIGNED) return INTEGER is variable result: INTEGER; variable 

tmp: STD_ULOGIC; -- synopsys built_in SYN_UNSIGNED_TO_INTEGER -- synopsys 



subpgm_id 366 begin -- synopsys synthesis_off assert ARG'length <= 31 report "ARG is too 

large in CONV_INTEGER" severity FAILURE; result := 0; 12 std_logic_arith for i in 

ARG'range loop result := result  2; tmp := tbl_BINARY(ARG(i)); if tmp = '1' then result := result 

+ 1; elsif tmp = 'X' then assert false report "There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, 

the result will be 'X'(es)." severity warning; assert false report "CONV_INTEGER: There is an 

'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, and it has been converted to 0." severity WARNING; 

return 0; end if; end loop; return result; -- synopsys synthesis_on end; 13 std_logic_arith function 

CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT is variable tmp: STD_ULOGIC; 

-- synopsys built_in SYN_FEED_THRU -- synopsys subpgm_id 370 begin -- synopsys 

synthesis_off tmp := tbl_BINARY(ARG); if tmp = '1' then return 1; elsif tmp = 'X' then assert 

false report "CONV_INTEGER: There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, and it has 

been converted to 0." severity WARNING; return 0; else return 0; end if; -- synopsys 

synthesis_on end; 14 Resolution Functions • For system busses, we use resolved signals CPU 

MEM Disk I/O 15 Resolution Functions • Wired-logic implementations Z weak pull up device 

X1 0 X2 0 Xn 0 Any Xi = 0 turns the switch on driving Z=0 switch with active low input 16 

Resolution Functions entity wired_and is port( X1, X2, X3: in bit; Z : out resolved_bit); end 

entity; architecture beh of wired_and is begin x_process: process(X1) is begin Z <= X1; end 

process; y_process: process(X2) is begin Z <= X2; end process; z_process: process(X3) is begin 

Z <= X3; end process; end architecture beh; 17 Resolved Types in the IEEE 1164 Standard type 

std_ulogic is ( ‘U’, -- uninitialized ‘X’, -- forcing unknown ‘0’, -- forcing 0 ‘1’, -- forcing 1 ‘Z’, -

- high impedance ‘W’, -- weak unknown ‘L’, -- weak 0 ‘H’, -- weak 1 ‘-’, -- don’t care ); 

function resolved (s: std_ulogic_vector) return std_ulogic; subtype std_logic is resolved 

std_ulogic; Resolution function must perform an associative operations so that the order in which 

the multiple signal drivers are examined does not affect the resolved value of the signal. 18 

Resolution Table for std_logic - U X X X X X X X X H U X 0 1 H W W H X L U X 0 1 L W L 

W X W U X 0 1 W W W W X Z U X 0 1 Z W L H X 1 U X X 1 1 1 1 1 X 0 U X 0 X 0 0 0 0 X 

X U X X X X X X X X U U U U U U U U U U U X 0 1 Z W L H - 19 Example: Multiple 

Drivers entity resol is end entity; architecture beh of resol is signal X, Y, Z, T: std_logic; begin X 

<= 'U', '1' after 10 ns, '0' after 20 ns; Y <= '1', 'W' after 10 ns, '-' after 20 ns; Z <= 'W', 'Z' after 10 

ns, 'L' after 20 ns; x_process: process(X) is begin T <= X; end process; y_process: process(Y) is 

begin T <= Y; end process; z_process: process(Z) is begin T <= Z; end process; end architecture 

beh; 20 Example: Waveforms 21 Resolution Function architecture beh of resol02 is function 

resolution (drivers: std_ulogic_vector) return std_logic is type my_array_type is array (std_logic, 

std_logic) of STD_ULOGIC; constant my_array : my_array_type := (('U', 'U', 'U', 'U', 'U', 'U', 

'U', 'U', 'U'), ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), ('U', 'X', 'X', 

'1', '1', '1', '1', '1', 'X'), ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), 

('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), ('U', 'X', 'X', 'X', 'X', 

'X', 'X', 'X', 'X')); variable tmp: std_ulogic; begin tmp := my_array(drivers(drivers'length-

1),drivers(drivers'length-2)); for i in drivers'length-3 downto 0 loop tmp := my_array(tmp, 

drivers(i)); end loop; return tmp; end function; 22 Resolution Function signal Z: std_ulogic; 

begin Z <= resolution("1HWW") after 20 ns; end architecture beh; 23 Example: Resolution 

Functions • Multi-chip module with multiple die chip carrier global error signal die 24 Example: 

Resolution Functions library IEEE; use IEEE.std_logic_1164.all; entity mcm is –- and empty 

entity declaration end entity mcm; architecture beh of mcm is function 

wire_or(sbus:std_ulogic_vector) return std_ulogic is begin for i in sbus’range loop if sbus(i) = 

‘1’ then return ‘1’; end if; end loop; return ‘0’; end function wire_or; subtype wire_or_logic is 



wire_or std_ulogic; signal error_bus: wire_or_logic; ... resolution function base type 25 

Example: Resolution Functions ... subtype wire_or_logic is wire_or std_ulogic; signal error_bus: 

wire_or_logic; begin chip1: process is begin ... error_bus <= ‘1’ after 2 ns; ... end process chip1; 

chip2: process is begin ... error_bus <= ‘0’ after 2 ns; ... end process chip2; end architecture beh; 

26 Synthesis Example entity func is port(data: in std_logic_vector( 7 downto 0); count: out 

integer range 0 to 7); end entity func; architecture beh of func is function ones(signal data: 

std_logic_vector) return integer is variable count: integer range 0 to 7; begin for i in data’range 

loop if data(i) = ‘1’ then count:= count + 1; end if; end loop; return (count); end function ones; 

begin check: process(data) is begin count <= ones(data); end process check; end architecture 

beh; 27 Synthesis Example (cont.) • count <= ones(data); • each time this function is called, 

internal variables are initialized, the function is executed, and output value is returned. • Internal 

variables do not retain value across different invocations. • The loop is unrolled if data(0) = ‘1’ 

then count := count + 1; end if; if data(1) = ‘1’ then count := count + 1; end if; ... • When 

synthesized, it will produce a combinational circuit with a long dependency. 28 Synthesis 

Example (cont.) 29 Yet Another Example entity func02 is port(data: in std_logic_vector(7 

downto 0); parity: out std_logic); end entity func02; architecture beh of func02 is function 

parity_func(signal data: std_logic_vector) return std_logic is variable parity: std_logic:='0'; begin 

for i in data'range loop parity := parity xor data(i); end loop; return (parity); end function 

parity_func; begin parity_process: process(data) is begin parity <= parity_func(data); end 

process check; end architecture beh; 30 Yet Another Example 31 Procedures • Similar to 

functions • distinguishing feature is that procedures can modify input parameters. • Syntax: – 

procedure read_v1d(file fname: in text; v: out std_logic_vector); – a procedure that reads data 

from a file called fname. • Parameters can be of in, out, inout modes. – default class is constant 

for input parameters. – default class is variable for out and inout mode parameters. 32 Procedures 

• Variables declared within a procedure are initialized in each call • Variables do not retain 

values across procedure calls. • Example: entity CPU is port(write_data: out std_logic_vector(31 

downto 0); ADDR: out std_logic_vector(2 downto 0); MemRead, MemWrite: out std_logic; 

read_data: in std_logic_vector(31 downto 0); S: in std_logic); end entity CPU; 33 Example: CPU 

+ Memory architecture beh of CPU is procedure mread( address: in std_logic_vector(2 downto 

0); signal R: out std_logic; signal S: in std_logic; signal ADDR: out std_logic_vector(2 downto 

0); signal data: out std_logic_vector(31 downto 0)) is begin ADDR <= address; R <= ‘1’; wait 

until S = ‘1’; data <= read_data; R <= ‘0’; end procedure mread; ... end architecture beh; 34 

Example: CPU + Memory architecture beh of CPU is ... procedure mwrite( address: in 

std_logic_vector(2 downto 0); signal data: in std_logic_vector(31 downto 0); signal ADDR: out 

std_logic_vector(2 downto 0); signal W: out std_logic; signal DO: out std_logic_vector(31 

downto 0)) is begin ADDR <= address; DO <= data; W <= ‘1’; wait until S = ‘1’; W <= ‘0’; end 

procedure mwrite; ... end architecture beh; 35 Example: CPU + Memory architecture beh of CPU 

is ... -- CPU description here begin process is begin -- -- behavioral description -- end process; 

process is begin -- -- behavioral description -- end process; end architecture beh; 36 Using 

Procedures • Signals can be passed to procedures and updated within procedures • Signals cannot 

be declared within procedures • Visibility rules apply here – procedure can update signals visible 

to it even if these signals do not appear in the parameter list. – This is sometimes called as side 

effect of procedure. – updating signals that do not appear in the parameter list is a poor 

programming practice. • A process calling a procedure with a wait statement cannot have 

sensitivity list 37 Concurrent vs. Sequential Procedure Calls • Concurrent procedure call – 

procedure calls can be made in concurrent signal assignments – execution of a procedure is 



concurrent with other concurrent procedures, CSA statements, or processes. – The procedure is 

invoked when there is an event on a signal that is a parameter to the procedure. – Parameter list 

cannot include a variable in a concurrent procedure call (shared variables can be included 

though). • Sequential procedure call – executed within the body of a process. – executions is 

determined by the order. 38 Example: Concurrent Procedure Call entity serial_adder is port(a, b, 

clk, reset: in std_logic; z: out std_logic); end entity; architecture structural of serial adder is 

component comb is port(a, b, c_in: in std_logic; z, carry: out std_logic); end component; 

procedure dff(signal d, clk, reset: in std_logic; signal q, qbar: out std_logic) is begin if(reset =‘0’) 

then q <= ‘0’ after 5 ns; qbar <= ‘1’ after 5 ns; elsif(rising_edge(clk)) then q <= d after 5 ns; qbar 

<= not d after 5 ns; end if; end procedure; signal s1, s2: std_logic; begin C1: comb port(a=>a, 

b=>b, c_in=>s1, z=>z, carry=>s2); dff(clk=>clk, reset=>reset, d=>s2, q=>s1, qbar=>open); end 

architecture structural; behavioral description explicitly associating formal and actual parameters 

39 Example: Sequential Procedure Call entity serial_adder is port(a, b, clk, reset: in std_logic; z: 

out std_logic); end entity; architecture structural of serial adder is component comb is port(a, b, 

c_in: in std_logic; z, carry: out std_logic); end component; procedure dff(signal d, clk, reset: in 

std_logic; signal q, qbar: out std_logic) is ... end procedure; signal s1, s2: std_logic; begin C1: 

comb port(a=>a, b=>b, c_in=>s1, z=>z, carry=>s2); process begin dff(clk=>clk, reset=>reset, 

d=>s2, q=>s1, qbar=>open); wait on clk, reset, s2; end process; end architecture structural; 40 

Synthesis & Procedures • In-lining approach – during synthesis, the compiler replaces the 

procedure calls with the corresponding code (flattening) – therefore, inferencing techniques are 

applicable • Latch inference – local variables do not retain value across invocations; they will be 

synthesized into wires – signals of mode out may infer latches. – for example, if procedure 

resides in a conditional block of code, latches will be inferred for output signals of the procedure 

41 Synthesis & Procedures • Wait statements – recall that synthesis compilers allows only one 

wait statement in a process. – procedures that are being called within a process that has already a 

wait statement cannot have a wait statement of its own. – Therefore, wait statements are 

generally not supported in procedures for synthesis. • For synchronous logic – use if statements 

in the procedure 42 Example entity proc_call is port(data:in std_logic_vector(7 downto 0); count: 

out std_logic); end entity proc_call; architecture beh of proc_call is procedure ones(signal data: 

in std_logic_vector; signal count: out std_logic) is variable parity: std_logic:=‘0’; begin for i in 

data’range loop parity := parity xor data(i); end loop; count <= parity; end procedure ones; begin 

ones(data, count); -- concurrent procedure call end architecture beh; 43 Example 44 Yet Another 

Example entity proc_call is port(reset, clock: in std_logic; data:in std_logic_vector(7 downto 0); 

count: out std_logic); end entity proc_call; architecture beh of proc_call is procedure ones(signal 

data: in std_logic_vector; signal count: out std_logic) is variable parity: std_logic:=‘0’; begin for 

i in data’range loop parity := parity xor data(i); end loop; count <= parity; end procedure ones; 

begin process(reset, clock) is begin if reset = ‘0’ and rising_edge(clock) then ones(data, count); 

end if; end process; end architecture beh; 45 Yet Another Example 46 Subprogram Overloading 

• Subprograms – functions and procedures • Sometimes, it is convenient to have two or more 

subprograms with the same name – function count (oranges: integer) return integer; function 

count (apples: bit) return integer; – dff(clk, d, q, qbar); dff(clk, d, q, qbar, reset, clear); • In this 

case, subprograms are overloaded. – compiler will decide which subprogram to call based on the 

number and type of arguments. – and, or etc are overloaded in std_logic_1164 package. 47 

Operator Overloading • An operator that behaves different depending on the operands is said to 

be overloaded – For example, “” and “+” are defined for certain predefined types of the language 

such as integers. – What if we want to use these operators to do multiplication and addition one 



data types we newly defined. • Example – function “” (arg1, arg2: std_logic_vector) return 

std_logic_vector; – function “+” (arg1, arg2: signed) return signed; – these examples are taken 

from std_logic_arith.vhd package. 48 Operator Overloading • You can define a new multi-value 

logic and logic operations on the data of this new type. type MVL is (‘U’, ‘0’, ‘1’, ‘Z’); function 

“and” (L, R: MVL) return MVL; function “or” (L, R: MVL) return MVL; function “not” (R: 

MVL) return MVL; • Example: signal a, b, c: MVL; a <= ‘z’ or ‘1’; b <= “or”(‘0’, ‘1’); c <= (a 

or b) and (not c); 49 Packages • A package provides a convenient mechanism to store items that 

can be shared across distinct VHDL programs: – Those items are type definitions, functions, 

procedures, etc. – We group logically related sets of functions and procedures into a package. – 

When working with a large design project consisting of many small VHDL programs, it is 

convenient to have common procedures and functions in separate packages. – For example, a 

package containing definition of new types for registers, instructions, memories, etc. will 

certainly be useful for microprocessor design. 50 Package Declaration • Package declaration – 

contains information about what is available in the package that we can use in our VHDL 

programs. – In other words, it contains interface or specifications of the functions and procedures 

that are available in the package. – For example, – list of functions and procedures, – what are 

the parameters they take – the type of input parameters – What it returns, – what is the type of 

the returning value – etc. 51 Package Declaration: Syntax package package-name is package-

item-declarations  these may be: -- subprogram declarations -- type declarations -- subtype 

declarations -- constant declarations -- signal declarations -- variable declarations -- file 

declarations -- alias declarations -- component declarations -- attribute declarations -- attribute 

specifications -- disconnection specifications -- use clauses end [package] [package-name]; 52 

Package Declaration: Example package synthesis_pack is constant low2high: time := 20 ns; type 

alu_op is (add, sub, mul, div, eql); attribute pipeline: Boolean; type mvl is (‘U’, ‘0’, ‘1’, ‘Z’); 

type mvl_vector is array (natural range <>) of mvl; subtype my_alu_op is alu_op range add to 

div; component nand2 port(a, b: in mvl; c: out mvl); end component; end synthesis_pack; • Items 

declared in a package declaration can be accessed by other design units by using library and use 

clauses. use work.synthesis_pack.all; 53 Yet Another Example use work.synthesis_pack.all; -- 

include all declarations -- from package synthesis_pack package program_pack is constant 

prop_delay: time; -- deferred constant function “and” (l, r: mvl) return mvl; procedure load 

(signal array_name: inout mvl_vector; start_bit, stop_bit, int_value: in integer); end_package 

program_pack; 54 Package Declaration: std_logic_1164 package std_logic_1164 is type 

std_ulogic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’ , ‘-’); type std_ulogic_vector is array (natural 

range <>) of std_ulogic; function resolved(s: std_ulogic_vector) return std_ulogic; subtype 

std_logic is resolved std_logic; type std_logic_vector is array (natural range <>) of std_logic; 

function “and”(l, r: std_logic_vector) return std_logic_vector; function “and”(l, r: 

std_ulogic_vector) return std_ulogic_vector; ... end package std_logic_1164; 55 Package Body • 

It basically contains the code that implements the subprograms • Syntax: package body package-

name is package-body-item-declarations  These are: -- subprogram bodies -- complete constant 

declarations -- subprogram declarations -- type and subtype declarations -- file and alias 

declarations -- use clauses end [package body] [package-name]; 56 Package Body: Example 

package body program_pack is use work.tables.all; constant prop_delay: time := 15 ns; function 

“and”(l, r: mvl) return mvl; begin return table_and(l, r); -- table_and is a 2-D constant defined in 

-- another package, called “tables” in the -- current working directory end “and”; procedure 

load(signal array_name: inout mvl_vector; start_bit, stop_bit, int_value: in integer) is begin -- 

procedure behavior here end load; end program_pack; 57 Libraries • Design units (design files) – 



entity declaration, – architecture body, – configuration declaration, – package declaration, – 

package body • Each design unit is analyzed (compiled) and placed in a design library. – recall 

that libraries are generally implemented as directories and are referenced by a logical name. – 

this logical name corresponds to physical path to the corresponding directory. 58 WORK 

Compilation Process • VHDL analyzer verify the syntactic and semantic correctness of the 

source • then compiles each design unit into an intermediate form. • Each intermediate form is 

stored in a design library called working library. design file VHDL Analyzer intermediate form 

STD IEEE LIB1 design libraries 59 Libraries: Visibility • Implicit visibility – In VHDL, the 

libraries STD and WORK are implicitly declared. • Explicit visibility is achieved through – 

library clause – use clause – Example: library IEEE; use IEEE.std_logic_1164.all; • Once a 

library is declared, all of the subprograms, type declarations in this library become visible to our 

programs through the use of use clause. 60 Context Clauses • Examples for context clauses: – 

library IEEE; use IEEE.std_logic_1164.all; • Context clauses only applies the following design 

entity – if a file contains more than one entity, context clauses must precede each of them to 

provide the appropriate visibility to each design entity. 61 How to Create a Library? 62 How to 

Add Packages to a Library? 63 Package Declaration library IEEE; use IEEE.std_logic_1164.all; 

package my_pack_a is subtype word is std_logic_vector(15 downto 0); function "+" (op1, op2: 

word) return word; function "-" (op1, op2: word) return word; function "" (op1, op2: word) 

return word; end package my_pack_a; 64 Package Body library IEEE; use 

IEEE.std_logic_1164.all; use IEEE.std_logic_signed.all; use IEEE.std_logic_arith.all; package 

body my_pack_a is function "+" (op1, op2: word) return word is variable result: word; variable 

a, b, c: integer; begin a := conv_integer(op1); b := conv_integer(op2); c := a + b; result := 

conv_std_logic_vector(c, 16); return result; end function; ... end package body my_pack_a; 65 

Package Body ... function "-" (op1, op2: word) return word is variable result: word; variable a, b, 

c: integer; begin a := conv_integer(op1); b := conv_integer(op2); c := a - b; result := 

conv_std_logic_vector(c, 16); return result; end function; function "" (op1, op2: word) return 

word is variable result: word; variable a, b, c: integer; begin a := conv_integer(op1); b := 

conv_integer(op2); c := a  b; result := conv_std_logic_vector(c, 16); return result; end function; 

end package body my_pack_a; 66 Example using this Package library IEEE; library my_lib; use 

IEEE.std_logic_1164.all; use my_lib.my_pack_a.all; entity aritmetik is end entity; architecture 

beh of aritmetik is signal a, b, c: word; begin a <= x"abcd"; b <= x"1347"; c <= a + b; end 

architecture beh; 67 Simulation Results 68 Summary • Hierarchy • Functions • Procedures • 

subprogram overloading • operator overloading • packages • librarie 

The Demultiplexer 
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The data distributor, known more commonly as a Demultiplexer or “Demux” for short, is the 

exact opposite of the Multiplexer we saw in the previous tutorial.3 

The demultiplexer takes one single input data line and then switches it to any one of a number of 

individual output lines one at a time. The demultiplexer converts a serial data signal at the input 

to a parallel data at its output lines as shown below. 

1-to-4 Channel De-multiplexer 

 
 

Output Select 

Data Output 

Selected 

a b 

0 0 A 

0 1 B 

1 0 C 

1 1 D 
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The Boolean expression for this 1-to-4 Demultiplexer above with outputs A to D and data select 

lines a, b is given as: 

F = abA + abB + abC + abD 

The function of the Demultiplexer is to switch one common data input line to any one of the 4 

output data lines A to D in our example above. As with the multiplexer the individual solid state 

switches are selected by the binary input address code on the output select pins “a” and “b” as 

shown. 

Demultiplexer Output Line Selection 

 
As with the previous multiplexer circuit, adding more address line inputs it is possible to switch 

more outputs giving a 1-to-2n data line outputs. 

Some standard demultiplexer IC´s also have an additional “enable output” pin which disables or 

prevents the input from being passed to the selected output. Also some have latches built into 

their outputs to maintain the output logic level after the address inputs have been changed. 

However, in standard decoder type circuits the address input will determine which single data 

output will have the same value as the data input with all other data outputs having the value of 

logic “0”. 

The implementation of the Boolean expression above using individual logic gates would require 

the use of six individual gates consisting of AND and NOT gates as shown. 

4 Channel Demultiplexer using Logic Gates 
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The symbol used in logic diagrams to identify a demultiplexer is as follows. 

The Demultiplexer Symbol 

 
 

Again, as with the previous multiplexer example, we can also use the demultiplexer to digitally 

control the gain of an operational amplifier as shown. 

Digitally Adjustable Amplifier Gain 

 
 

The circuit above illustrates how to provide digitally controlled adjustable/variable op-amp gain 

using a demultiplexer. The voltage gain of the inverting operational amplifier is dependent upon 

the ratio between the input resistor, Rin and its feedback resistor, Rƒas determined in the Op-

amp tutorials. 

The digitally controlled analogue switches of the demultiplexer select an input resistor to vary 

the value of Rin. The combination of these resistors will determine the overall gain of the 

amplifier, (Av). Then the voltage gain of the inverting operational amplifier can be adjusted 

digitally simply by selecting the appropriate input resistor combination. 

Standard Demultiplexer IC packages available are the TTL 74LS138 1 to 8-output 

demultiplexer, the TTL 74LS139 Dual 1-to-4 output demultiplexer or the CMOS CD4514 1-to-

16 output demultiplexer. 
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Another type of demultiplexer is the 24-pin, 74LS154 which is a 4-bit to 16-line 

demultiplexer/decoder. Here the individual output positions are selected using a 4-bit binary 

coded input. Like multiplexers, demultiplexers can also be cascaded together to form higher 

order demultiplexers. 

Unlike multiplexers which convert data from a single data line to multiple lines and 

demultiplexers which convert multiple lines to a single data line, there are devices available 

which convert data to and from multiple lines and in the next tutorial about combinational logic 

devices, we will look at Encoders which convert multiple input lines into multiple output lines, 

converting the data from one form to another. 
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