
UNIT – 1 

Basic Circuit Concepts 

In modern life, circuits are everywhere. Without circuits, you wouldn't have indoor 

lights. Without circuits, you wouldn't have the computer you're using to watch this lesson. 

Without circuits, you wouldn't have anything that is powered by electricity. 

A circuit is a series of electrical components or devices connected together in a 

complete loop, allowing electric current in the form of charged electrons to flow through it 

and power the components. 

There are practically an unlimited number of types of components that could go into a 

circuit, including batteries, bulbs, resistors, inductors, switches, capacitors, buzzers, diodes, 

temperature controls called thermistors, light sensors, and many others. 

 

CIRCUIT ELEMENTS 

The most commonly encountered linear one-ports are the 

Inductor of inductance L, 

Resistor of resistance R & 

Capacitor of capacitance C; 

Their schematic representations are shown in Figure below. 

 

 

 

 

 

One-port elements-- (a) an inductor of inductance , (b) a resistor of resistance R & 

(c) a capacitor of capacitance C. 

The equations relating voltage and current in the three one-ports, as well as their associated 

impedances are as follows: 
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  Capacitor  
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Each of these circuit elements is passive as long as its element value (L, C or R) is positive; 

the inductor and capacitor are easily shown to be lossless as well. The inductor and capacitor 

are examples of reactive circuits elements--all power instantaneously absorbed by either one 

will be stored and eventually be returned to the network to which it is connected. The resistor 

is passive, but not lossless. 

In addition to the one-ports mentioned above, we can also define the short - circuit, open-

circuit, current source and voltage source (see Figure below) by: 



  Short-circuit 
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  Voltage source 
 

 

    

  Current source 
 

 

    

 

 

 

 

 

Other one-ports-- (a) short-circuit, (b) open-circuit, (c) voltage source and (d) current source. 

Dots adjacent to the sources indicate polarity. 

The impedances of the short- and open-circuit one-ports are zero and infinity, respectively. 

Both are lossless. 

 

Kirchhoff’s Law 

Kirchhoff's circuit laws are two equalities that deal with the current and potential difference 

(commonly known as voltage) in the lumped element model of electrical circuits. 

Kirchhoff’s First Law – The Current Law, (KCL) 

Kirchhoff’s Current Law or KCL, states that the “total current or charge entering a junction 

or node is exactly equal to the charge leaving the node as it has no other place to go except to 

leave, as no charge is lost within the node“. In other words the algebraic sum of ALL the 

currents entering and leaving a node must be equal to zero, I(exiting) + I(entering) = 0. This idea by 

Kirchhoff is commonly known as the Conservation of Charge. 

Kirchhoff’s Current Law 

 

 

 

 

 

 

Here, the 3 currents entering the node, I1, I2 and I3 are all positive in value and the 2 currents 

leaving the node, I4 and I5 are negative in value. Then this means we can also rewrite the 

equation as; 

I1 + I2 + I3 – I4 – I5 = 0 

The term Node in an electrical circuit generally refers to a connection or junction of two or 

more current carrying paths or elements such as cables and components. Also for current to 

flow either in or out of a node a closed circuit path must exist. We can use Kirchhoff’s 

current law when analysing parallel circuits. 

 



Kirchhoff’s Voltage Law: 

 

 

 

 

 

 

 

 

 

Starting at any point in the loop continue in the same direction noting the direction of all the 

voltage drops, either positive or negative, and returning back to the same starting point. It is 

important to maintain the same direction either clockwise or anti-clockwise or the final 

voltage sum will not be equal to zero. We can use Kirchhoff’s voltage law when analysing 

series circuits. 

When analysing either DC circuits or AC circuits using Kirchhoff’s Circuit Laws a number of 

definitions and terminologies are used to describe the parts of the circuit being analysed such 

as: node, paths, branches, loops and meshes. These terms are used frequently in circuit 

analysis so it is important to understand them. 

 

R, C, and L Elements and their V and I relationships 

 

We deal with three essential elements in circuit analysis: 

• Resistance R 

• Capacitance C 

• Inductance L 

Their V and I relationships are summarized below. 

 

 

 

 

 

 

 

 

 

 

 



Resistance is a static element in the sense V (t) versus I (t) relationship is instantaneous. For 

example, V (t) at time t = 2 seconds simply depends only on I (t) at t = 2 seconds and nothing 

else. This implies that the resistance does not know what happened in the past, in other words 

it does not store any energy unlike other elements C and L as we see soon. 

 

 

 

 

 

 

 

Unlike in the case of resistance, for a capacitance the V (t) versus I (t) relationship and vice 

versa at any time t depends on the past as they involve diff erentials and integrals. This 

implies that the capacitance is a dynamic element. What happened in the past influences the 

present behaviour. As we shall see soon, capacitance stores energy. 

 

 

 

 

 

 

 

Once again, unlike in the case of resistance, for an inductance the V (t) versus I (t) 

relationship and vice versa at any time t depends on the past as they involve diff erentials and 

integrals. This implies that the inductance is a dynamic element. What happened in the past 

influences the present behaviour. As we shall see soon, inductance stores energy 

 

Independent and Dependent Sources 

There are two principal types of source, namely voltage source   and current source.  Sources 

can be either independent or dependent upon some other quantities. 

An independent voltage source maintains a voltage (fixed or varying with time) which is not 

affected by any other quantity. Similarly an independent current source maintains a current 

(fixed or time-varying) which is unaffected by any other quantity. The usual symbols are 

shown in figure. 

 

 

 

 

Figure: Symbols for independent sources 

 



 

 

Some voltage (current) sources have their voltage (current) values varying with some other 

variables. They are called dependent   voltage (current) sources or controlled voltage 

(current) sources, and their usual symbols are shown in figure below. 

Remarks - It is not possible to force an independent voltage source to take up a voltage which 

is different from its defined value. Likewise, it is not possible to force an independent current 

source to take up a current which is different from its defined value. Two particular examples 

are short-circuiting an independent voltage source and open-circuiting an independent current 

source. Both are not permitted. 

 

 

 

 

Figure: Symbols for dependent sources. Variables in brackets are the controlling variables 

whose values affect the value of the source. 

 

Simple Resistive Circuits 

 Resistors in Series 

 Resistors in Parallel 

 The Voltage-Divider and Current-Divider Circuits 

 Voltage Division and Current Division 

 Measuring Voltage and Current 

 

Resistors in Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Resistors in Parallel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

The Voltage-Divider 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



Current-Divider Circuits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Mesh Current Method 

The Mesh Current Method, also known as the Loop Current Method, is quite similar 

to the Branch Current method in that it uses simultaneous equations, Kirchhoff’s Voltage 

Law, and Ohm’s Law to determine unknown currents in a network. It differs from the Branch 

Current method in that it does not use Kirchhoff’s Current Law, and it is usually able to solve 

a circuit with less unknown variables and less simultaneous equations, which is especially 

nice if you’re forced to solve without a calculator. 

Mesh Current, conventional method 

Let’s see how this method works on the same example problem: 

 

 

 

 

 

 

The first step in the Mesh Current method is to identify “loops” within the circuit 

encompassing all components. In our example circuit, the loop formed by B1, R1, and R2 

will be the first while the loop formed by B2, R2, and R3 will be the second. The strangest 

part of the Mesh Current method is envisioning circulating currents in each of the loops. In 

fact, this method gets its name from the idea of these currents meshing together between 

loops like sets of spinning gears: 

 

 

 

 

 

 

 



The choice of each current’s direction is entirely arbitrary, just as in the Branch 

Current method, but the resulting equations are easier to solve if the currents are going the 

same direction through intersecting components (note how currents I1 and I2 are both going 

“up” through resistor R2, where they “mesh,” or intersect). If the assumed direction of a mesh 

current is wrong, the answer for that current will have a negative value. 

The next step is to label all voltage drop polarities across resistors according to the 

assumed directions of the mesh currents. Remember that the “upstream” end of a resistor will 

always be negative, and the “downstream” end of a resistor positive with respect to each 

other, since electrons are negatively charged. The battery polarities, of course, are dictated by 

their symbol orientations in the diagram, and may or may not “agree” with the resistor 

polarities (assumed current directions):  

 

 

 

 

 

 

Using Kirchhoff’s Voltage Law, we can now step around each of these loops, 

generating equations representative of the component voltage drops and polarities. As with 

the Branch Current method, we will denote a resistor’s voltage drop as the product of the 

resistance (in ohms) and its respective mesh current (that quantity being unknown at this 

point). Where two currents mesh together, we will write that term in the equation with 

resistor current being the sum of the two meshing currents. 

Tracing the left loop of the circuit, starting from the upper-left corner and moving 

counter-clockwise (the choice of starting points and directions is ultimately irrelevant), 

counting polarity as if we had a voltmeter in hand, red lead on the point ahead and black lead 

on the point behind, we get this equation: 

 

Notice that the middle term of the equation uses the sum of mesh currents I1 and I2 as 

the current through resistor R2. This is because mesh currents I1 and I2 are going the same 

direction through R2, and thus complement each other. Distributing the coefficient of 2 to the 

I1 and I2 terms, and then combining I1 terms in the equation, we can simplify as such: 

 

 

 

 

 

 

At this time we have one equation with two unknowns. To be able to solve for two unknown 

mesh currents, we must have two equations. If we trace the other loop of the circuit, we can 

obtain another KVL equation and have enough data to solve for the two currents. Creature of 

habit that I am, I’ll start at the upper-left hand corner of the right loop and trace counter-

clockwise:  

 



Simplifying the equation as before, we end up with: 

 

Now, with two equations, we can use one of several methods to mathematically solve for the 

unknown currents I1 and I2: 

 

 

 

 

 

 

 

 

 

Knowing that these solutions are values for mesh currents, not branch currents, we must go 

back to our diagram to see how they fit together to give currents through all components: 

 

 

 

 

 

 

The solution of -1 amp for I2 means that our initially assumed direction of current was 

incorrect. In actuality, I2 is flowing in a counter-clockwise direction at a value of (positive) 1 

amp: 

 

 

 

 

 

 

This change of current direction from what was first assumed will alter the polarity of the 

voltage drops across R2 and R3 due to current I2. From here, we can say that the current 

through R1 is 5 amps, with the voltage drop across R1 being the product of current and 

resistance (E=IR), 20 volts (positive on the left and negative on the right). Also, we can 

safely say that the current through R3 is 1 amp, with a voltage drop of 1 volt (E=IR), positive 

on the left and negative on the right. But what is happening at R2? 

Mesh current I1 is going “up” through R2, while mesh current I2 is going “down” through 

R2. To determine the actual current through R2, we must see how mesh currents I1 and I2 

interact (in this case they’re in opposition), and algebraically add them to arrive at a final 



value. Since I1 is going “up” at 5 amps, and I2 is going “down” at 1 amp, the real current 

through R2 must be a value of 4 amps, going “up:”  

 

 

 

 

 

 

A current of 4 amps through R2‘s resistance of 2 Ω gives us a voltage drop of 8 volts (E=IR), 

positive on the top and negative on the bottom. 

The primary advantage of Mesh Current analysis is that it generally allows for the solution of 

a large network with fewer unknown values and fewer simultaneous equations. Our example 

problem took three equations to solve the Branch Current method and only two equations 

using the Mesh Current method. This advantage is much greater as networks increase in 

complexity: 

 

 

 

 

 

To solve this network using Branch Currents, we’d have to establish five variables to account 

for each and every unique current in the circuit (I1 through I5). This would require five 

equations for solution, in the form of two KCL equations and three KVL equations (two 

equations for KCL at the nodes, and three equations for KVL in each loop): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I suppose if you have nothing better to do with your time than to solve for five unknown 

variables with five equations, you might not mind using the Branch Current method of 

analysis for this circuit. For those of us who have better things to do with our time, the Mesh 

Current method is a whole lot easier, requiring only three unknowns and three equations to 

solve:  

 

 

 

 

 

 

 

 

 

 

 

Less equations to work with is a decided advantage, especially when performing 

simultaneous equation solution by hand (without a calculator). 

Another type of circuit that lends itself well to Mesh Current is the unbalanced Wheatstone 

Bridge. Take this circuit, for example: 

 

 

 

 

 

 

 

 

 

The directions of these mesh currents, of course, is arbitrary. However, two mesh currents 

is not enough in this circuit, because neither I1 nor I2 goes through the battery. So, we must 

add a third mesh current, I3: 



 

 

 

Here, I have chosen I3 to loop from the bottom side of the battery, through R4, through R1, 

and back to the top side of the battery. This is not the only path I could have chosen for I3, 

but it seems the simplest. 

Now, we must label the resistor voltage drop polarities, following each of the assumed 

currents’ directions: 

 

 

 

Notice something very important here: at resistor R4, the polarities for the respective mesh 

currents do not agree. This is because those mesh currents (I2 and I3) are going through 

R4 in different directions. This does not preclude the use of the Mesh Current method of 

analysis, but it does complicate it a bit. Though later, we will show how to avoid the 

R4 current clash. (See Example below) 

Generating a KVL equation for the top loop of the bridge, starting from the top node and 

tracing in a clockwise direction: 



 

 

 

In this equation, we represent the common directions of currents by their sums through 

common resistors. For example, resistor R3, with a value of 100 Ω, has its voltage drop 

represented in the above KVL equation by the expression 100(I1 + I2), since both currents 

I1 and I2 go through R3 from right to left. The same may be said for resistor R1, with its 

voltage drop expression shown as 150(I1 + I3), since both I1 and I3 go from bottom to top 

through that resistor, and thus work together to generate its voltage drop. 

Generating a KVL equation for the bottom loop of the bridge will not be so easy, since we 

have two currents going against each other through resistor R4. Here is how I do it (starting 

at the right-hand node, and tracing counter-clockwise): 

 

 

 

Note how the second term in the equation’s original form has resistor R4‘s value of 300 Ω 

multiplied by the difference between I2 and I3 (I2 - I3). This is how we represent the 

combined effect of two mesh currents going in opposite directions through the same 

component. Choosing the appropriate mathematical signs is very important here: 300(I2 - 

I3) does not mean the same thing as 300(I3 - I2). I chose to write 300(I2 - I3) because I was 

thinking first of I2‘s effect (creating a positive voltage drop, measuring with an imaginary 

voltmeter across R4, red lead on the bottom and black lead on the top), and secondarily of 

I3‘s effect (creating a negative voltage drop, red lead on the bottom and black lead on the 

top). If I had thought in terms of I3‘s effect first and I2‘s effect secondarily, holding my 

imaginary voltmeter leads in the same positions (red on bottom and black on top), the 

expression would have been -300(I3 - I2). Note that this expression is mathematically 

equivalent to the first one: +300(I2 - I3). 

Well, that takes care of two equations, but I still need a third equation to complete my 

simultaneous equation set of three variables, three equations. This third equation must also 

include the battery’s voltage, which up to this point does not appear in either two of the 

previous KVL equations. To generate this equation, I will trace a loop again with my 

imaginary voltmeter starting from the battery’s bottom (negative) terminal, stepping 

clockwise (again, the direction in which I step is arbitrary, and does not need to be the 

same as the direction of the mesh current in that loop): 



 

 

 

Solving for I1, I2, and I3 using whatever simultaneous equation method we prefer: 

 

 

Node Voltage Method 

The node voltage method of analysis solves for unknown voltages at circuit nodes in terms of 

a system of KCL equations. This analysis looks strange because it involves replacing voltage 

sources with equivalent current sources. Also, resistor values in ohms are replaced by 

equivalent conductance in Siemens, G = 1/R. The Siemens (S) is the unit of conductance, 

having replaced the mho unit. In any event S = Ω-1. And S = mho (obsolete). 

We start with a circuit having conventional voltage sources. A common node E0 is chosen 

as a reference point. The node voltages E1 and E2 are calculated with respect to this point. 

 

 

 

A voltage source in series with a resistance must be replaced by an equivalent current 

source in parallel with the resistance. We will write KCL equations for each node. The 

right hand side of the equation is the value of the current source feeding the node. 



 

 

 

Replacing voltage sources and associated series resistors with equivalent current sources 

and parallel resistors yields the modified circuit. Substitute resistor conductances in 

siemens for resistance in ohms. 

 

 

 

The parallel conductances (resistors) may be combined by addition of the conductances. 

Though, we will not redraw the circuit. The circuit is ready for application of the node 

voltage method. 

Deriving a general node voltage method, we write a pair of KCL equations in terms of 

unknown node voltages V1 and V2 this one time. We do this to illustrate a pattern for writing 

equations by inspection. 

The coefficients of the last pair of equations above have been rearranged to show a pattern. 

The sum of conductances connected to the first node is the positive coefficient of the first 

voltage in equation (1). The sum of conductances connected to the second node is the positive 

coefficient of the second voltage in equation (2). The other coefficients are negative, 

representing conductances between nodes. For both equations, the right hand side is equal to 

the respective current source connected to the node. This pattern allows us to quickly write 

the equations by inspection. This leads to a set of rules for the node voltage method of 

analysis. 

 

Node voltage rules: 

Convert voltage sources in series with a resistor to an equivalent current source with the 

resistor in parallel. 

Change resistor values to conductances. 

Select a reference node (E0) 

Assign unknown voltages (E1) (E2) ... (EN) to remaining nodes. 

https://www.allaboutcircuits.com/video-lectures/series-circuits-part-1/
https://www.allaboutcircuits.com/video-lectures/parallel-circuits/


Write a KCL equation for each node 1,2, ... N. The positive coefficient of the first voltage in 

the first equation is the sum of conductances connected to the node. The coefficient for the 

second voltage in the second equation is the sum of conductances connected to that node. 

Repeat for coefficient of third voltage, third equation, and other equations. These coefficients 

fall on a diagonal. 

All other coefficients for all equations are negative, representing conductances between 

nodes. The first equation, second coefficient is the conductance from node 1 to node 2, the 

third coefficient is the conductance from node 1 to node 3. Fill in negative coefficients for 

other equations. 

The right hand side of the equations is the current source connected to the respective nodes. 

Solve system of equations for unknown node voltages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT – 2 

SINUSOIDAL STEADY STATE ANALYSIS 

 

Phasor 

 A vector that represents a sinusoidally varying quantity, as a current or voltage, by 

means of a line rotating about a point in a plane, the magnitude of the quantity being 

proportional to the length of the line and the phase of the quantity being equal to the angle 

between the line and a reference line is known as Phasor. 

Euler's formula indicates that sinusoids can be represented mathematically as the sum of two 

complex-valued functions: 

 

 

Or as the real part of one of the functions: 

 

 

The function         is the analytic representation of  

 

Sinusoidal Steady State Response Concepts of Impedance and Admittance 

In electrical engineering, sinusoidal forcing functions are particularly important. The 

alternating sinusoidal current of power frequencies (50 Hz, 60 Hz) is extensively used for 

producing, transmitting and utilizing electric energy in industry and in the home. High-

frequency sinusoids (of kilohertz, megahertz and gigahertz) are used as carrier signals for 

communication purposes. Sinusoids are in abundance in nature, as, for example, in the 

movement of a pendulum, in the bouncing of a ball, and in the vibrations of strings and 

membranes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

In electrical engineering, sinusoidal forcing functions are particularly important. The 

alternating sinusoidal current of power frequencies (50 Hz, 60 Hz) is extensively used for 

producing, transmitting and utilizing electric energy in industry and in the home. High-

frequency sinusoids (of kilohertz, megahertz and gigahertz) are used as carrier signals for 

communication purposes. Sinusoids are in abundance in nature, as, for example, in the 

movement of a pendulum, in the bouncing of a ball, and in the vibrations of strings and 

membranes. Historically, in the late 1800s the primary use of electricity was in direct current 

(d.c.) operating systems. The first big power system in New York and New Jersey was 

Edison's direct current system. However, it became clear that some of the disadvantages of 

d.c. had hindered the development of the widespread use of electric power. Thus, the use of 

alternating current (a.c.) and its 'competition' with d.c. began. It is evident that the a.c. system 

won this competition. The main advantage of the a.c. over d.c. is the efficiency of 

transmission. Alternating voltage can be transformed to high voltages, thus reducing the loss 

on the transmission line. If a line has a wire resistance R and the power transmitted is 

proportional to V], the power lost in the lines is ]2 R. Thus, if the transmitted voltage could 

be set at a high level (typically today up to 765 kV) which allows the current to be kept low, 

the line losses would be minimized. Transformers, which are used to step up and step down 

the a.c. voltage, also are very efficient and require practically no maintenance. Typically, in a 

power station the output voltage of the a.c. generators (also sometimes called alternators) is in 

the range: 11-30 kV. It is then stepped up to hundreds of kilovolts for long-distance 

transmission, and then it is stepped down for use in factories and homes. Another advantage 

of a.c. is the convenience of producing electric power. In practice, a.c. generators are easier to 

build than d.c. machines for two main reasons: (a) high-voltage high-current armature 

windings are on the stator (instead of on the rotor as in d.c. generators); (b) the voltage 

induced in the stator is naturally oscillatory and almost sinusoidal. Finally, with three-phase 

a.c. circuits (see Chapter 4) it is easy to create a rotating magnetic field and to produce cheap 

and reliable induction motors-the main drive in industry. It is also cheaper to build three-

phase transmission lines and uses less conductive material (copper and aluminum), since only 

three wires are needed instead of six to transmit the same power. Sinusoidal forcing functions 

are relatively easily analyzed. In the sinusoidal steady-state behavior of linear time-invariant 

circuits, when they are driven by one or more sinusoidal sources at some angular frequency 

OJ, all currents and voltages are sinusoidal at the same frequency OJ. (Note that steady-state 

behavior sets in after all 'transients' have died down.) 

 

 

 



Analysis of simple circuit 

 

Example 1 

Consider Figure 8.1 with the following Parameters: 

 

 

V1=15V 

V2=7V 

R1=2Ω 

R2=20Ω 

R3=10Ω 

R4=5Ω 

R5=2Ω 

R6=2Ω  

Find current through  

R3 using Mesh Analysis method.  

 

Solution: 

Figure 8.2: Currents in loops 

This is the same example we solved in Exercise 7. 

We can see that there are three closed paths 

(loops) where we can apply KVL in, Loop 1, 2 

and 3 as shown in figure 8.2 

We can now apply KVL arround the loops 

remembering Passive Convention when defining 

Currents and voltages. 

KVL around abca loop:  

 

 

Therefore, 

 

 

KVL around acda loop: 

 

 

Therefore 

 

 

KVL around bdcb loop:  

 

 

 

Therefore  

 

 

 

 

https://en.wikiversity.org/wiki/File:EE-102-L08-Fig2.jpg


Now we can create a matrix with the above equations as follows: 

 

 

 

 

 

 

 

The following matrix is the above with values substituted: 

 

 

 

 

 

 

 

Solving determinants of: 

 Matrix A: General matrix A from KVL equations 

 Matrix A1 : General Matrix A with Column 1 substituted by  

 Matrix A2 : General Matrix A with Column 2 substituted by 

 Matrix A3 : General Matrix A with Column 3 substituted by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we can use the solved determinants to arrive at solutions for Mesh Currents I1, I2 & I3 

as follows: 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Now we can solve for the current through R3 as follows: 

   

 

 

 

POWER AND POWER FACTOR 

In an AC circuit, the voltage and current waveforms are sinusoidal so their amplitudes are 

constantly changing over time. Since we know that power is voltage times the current (P = 

V*I), maximum power will occur when the two voltage and current waveforms are lined up 

with each other. That is, their peaks and zero crossover points occur at the same time. When 

this happens the two waveforms are said to be “in-phase”. 

 

The three main components in an AC circuit which can affect the relationship between the 

voltage and current waveforms, and therefore their phase difference, by defining the total 

impedance of the circuit are the resistor, the capacitor and the inductor. 

 

The impedance, (Z) of an AC circuit is equivalent to the resistance calculated in DC circuits, 

with impedance given in ohms. For AC circuits, impedance is generally defined as the ratio 

of the voltage and current phasor’s produced by a circuit component. Phasor’s are straight 

lines drawn in such a way as to represents a voltage or current amplitude by its length and its 

phase difference with respect to other phasor lines by its angular position relative to the other 

phasor’s. 

 

AC circuits contain both resistance and reactance that are combined together to give a total 

impedance (Z) that limits current flow around the circuit. But an AC circuits impedance is not 

equal to the algebraic sum of the resistive and reactive ohmic values as a pure resistance and 

pure reactance are 90
o
 out-of-phase with each other. But we can use this 90

o
 phase difference 

as the sides of a right angled triangle, called an impedance triangle, with the impedance being 

the hypotenuse as determined by Pythagoras theorem. 

 

This geometric relationship between resistance, reactance and impedance can be represented 

visually by the use of an impedance triangle as shown. 

 

 

 

 

 

 

 

 

 

 

 



 

Note that impedance, which is the vector sum of the resistance and reactance, has not only a 

magnitude (Z) but it also has a phase angle (θ), which represents the phase difference 

between the resistance and the reactance. Also note that the triangle will change shape due to 

variations in reactance, (X) as the frequency changes. Of course, resistance (R) will always 

remain constant. 

 

We can take this idea one step further by converting the impedance triangle into a power 

triangle representing the three elements of power in an AC circuit. Ohms Law tells us that in 

a DC circuit, power (P), in watts, is equal to the current squared (I
2
) times the resistance (R). 

So we can multiply the three sides of our impedance triangle above by I
2
 to obtain the 

corresponding power triangle as: 

 

Real Power   P = I
2
R  Watts, (W) 

 

Reactive Power   Q = I
2
X  Volt-amperes Reactive, (VAr) 

  

Apparent Power   S = I
2
Z  Volt-amperes, (VA) 

 

Real Power in AC Circuits 

 

Real power P, also known as true or active power, performs the “real work” within an 

electrical circuit. Real power, measured in watts, defines the power consumed by the resistive 

part of a circuit. Then real power, P in an AC circuit is the same as power, P in a DC circuit. 

So just like DC circuits, it is always calculated as I
2
R, where R is the total resistive 

component of the circuit. 

 

As resistances do not produce any phasor difference (phase shift) between 

voltage and current waveforms, all the useful power is delivered directly to 

the resistance and converted to heat, light and work. Then the power 

consumed by a resistance is real power which is fundamentally the circuits 

average power. 

 

To find the corresponding value of the real power the rms voltage and current values are 

multiplied by the cosine of the phase angle, θ as shown. 

 

Real Power   P = I
2
R = V*I*cos(θ)  Watts, (W) 

 

But as their is no phase difference between the voltage and the current in a resistive circuit, 

the phase shift between the two waveforms will be zero (0). Then: 

 

Real Power in an AC Circuit 

 

 

 

 

 

 

 

 

 

Where real power (P) is in watts, voltage (V) is in rms volts and current (I) is in rms amperes. 

Then real power is the I
2
R resistive element measured in watts, which is what you read on 

your utility energy meter and has units in Watts (W), Kilowatts (kW), and Megawatts (MW). 

Note that real power, P is always positive. 



 

Reactive Power in AC Circuits 

 

Reactive power Q, (sometimes called wattless power) is the power consumed in an AC 

circuit that does not perform any useful work but has a big effect on the phase shift between 

the voltage and current waveforms. Reactive power is linked to the reactance produced by 

inductors and capacitors and counteracts the effects of real power. Reactive power does not 

exist in DC circuits. 

 

Unlike real power (P) which does all the work, reactive power (Q) takes 

power away from a circuit due to the creation and reduction of both 

inductive magnetic fields and capacitive electrostatic fields, thereby 

making it harder for the true power to supply power directly to a circuit 

or load.  

 

The power stored by an inductor in its magnetic field tries to control the current, while the 

power stored by a capacitors electrostatic field tries to control the voltage. The result is that 

capacitors “generate” reactive power and inductors “consume” reactive power. This means 

that they both consume and return power to the source so none of the real power is consumed. 

 

To find reactive power, the RMS voltage and current values are multiplied by the sine of the 

phase angle, θ as shown. 

 

Reactive Power   Q = I
2
X = V*I*sin(θ)  volt-amperes reactive, (VAr’s) 

 

As there is a 90
o
 phase difference between the voltage and the current waveforms in a pure 

reactance (either inductive or capacitive), multiplying VI by sinθ gives a vertical component 

that is 90
o
 out-of-phase with each other, so: 

 

Reactive Power in an AC Circuit 

 

 

 

 

 

 

 

 

 

 

Where reactive power (Q) is in volt-amperes reactive, voltage (V) is in rms volts and current 

(I) is in rms amperes. 

 

Then reactive power represents the product of volts and amperes that are 90
o
 out-of-phase 

with each other, but in general, there can be any phase angle, θ between the voltage and the 

current. 

 

Thus reactive power is the I
2
X reactive element that has units in volt-amperes reactive (VAr), 

Kilovolt-amperes reactive (kVAr), and Megavolt-amperes reactive (MVAr). 

 

 

 

 

 

 



Apparent Power in AC Circuits 

 

We have seen above that real power is dissipated by resistance and that reactive power is 

supplied to a reactance. As a result of this the current and voltage waveforms are not in-phase 

due to the difference between a circuits resistive and reactive components. 

 

Then there is a mathematical relationship between the real power (P), and the reactive power 

(Q), called the complex power. The product of the rms voltage, V applied to an AC circuit 

and the rms current, I flowing into that circuit is called the “volt-ampere product” (VA) given 

the symbol S and whose magnitude is known generally as apparent power. 

 

This complex Power is not equal to the algebraic sum of the real and reactive powers added 

together, but is instead the vector sum of P and Q given in volt-amps (VA). It is complex 

power that is represented by the power triangle. The rms value of the volt-ampere product is 

known more commonly as the apparent power as, “apparently” this is the total power 

consumed by a circuit even though the real power that does the work is a lot less. 

 

As apparent power is made up of two parts, the resistive power which is the in-phase power 

or real power in watts and the reactive power which is the out-of-phase power in volt-

amperes, we can show the vector addition of these two power components in the form of a 

power triangle. A power triangle has four parts: P, Q, S and θ. 

 

The three elements which make up power in an AC circuit can be represented graphically by 

the three sides of a right-angled triangle, in much the same way as the previous impedance 

triangle. The horizontal (adjacent) side represents the circuits real power (P), the vertical 

(opposite) side represents the circuits reactive power (Q) and the hypotenuse represents the 

resulting apparent power (S), of the power triangle as shown. 

 

Power Triangle of an AC Circuit 

 

 

 

 

 

 

 

 

Where: 

P is the I
2
R or Real power that performs work measured in watts, W 

Q is the I
2
X or Reactive power measured in volt-amperes reactive, VAr 

S is the I
2
Z or Apparent power measured in volt-amperes, VA 

θ is the phase angle in degrees. The larger the phase angle, the greater the reactive power 

Cosθ = P/S = W/VA = power factor, p.f. 

Sinθ = Q/S = VAr/VA 

Tanθ = Q/P = VAr/W 

 

The power factor is calculated as the ratio of the real power to the apparent power because 

this ratio equals cosθ. 

 

Power Factor in AC Circuits 

 

Power factor, cosθ, is an important part of an AC circuit that can also be expressed in terms 

of circuit impedance or circuit power. Power factor is defined as the ratio of real power (P) to 

apparent power (S), and is generally expressed as either a decimal value, for example 0.95, or 

as a percentage: 95%. 



 

Power factor defines the phase angle between the current and voltage waveforms, were I and 

V are the magnitudes of rms values of the current and voltage. Note that it does not matter 

whether the phase angle is the difference of the current with respect to the voltage, or the 

voltage with respect to the current. The mathematical relationship is given as: 

 

Power Factor of an AC Circuit: 

 

 

 

 

 

 

 

We said previously that in a pure resistive circuit, the current and voltage waveforms are in-

phase with each other so the real power consumed is the same as the apparent power as the 

phase difference is zero degrees (0
o
). So the power factor will be: 

 

Power Factor, pf  = cos 0
o
  =  1.0 

 

That is the number of watts consumed is the same as the number of volt-amperes consumed 

producing a power factor of 1.0, or 100%. In this case it is referred to a unity power factor. 

 

We also said above that in a purely reactive circuit, the current and voltage waveforms are 

out-of-phase with each other by 90
o
. As the phase difference is ninety degrees (90

o
), the 

power factor will be: 

 

Power Factor, pf  = cos 90
o
  =  0 

 

  

That is the number of watts consumed is zero but there is still a voltage and current supplying 

the reactive load. Clearly then reducing the reactive VAr component of the power triangle 

will cause θ to reduce improving the power factor towards one, unity. It is also desirable to 

have a high power factor as this makes the most efficient use of the circuit delivering current 

to a load. 

 

Then we can write the relationship between the real power, the apparent power and the 

circuits power factor as: 

 

 

 

 

 

An inductive circuit where the current “lags” the voltage (ELI) is said to have a lagging 

power factor, and a capacitive circuit where the current “leads” the voltage (ICE) is said to 

have a leading power factor. 

 

 

 

 

 

 

 

 

 



 

Power Triangle Example 1 

 

A wound coil that has an inductance of 180mH and a resistance of 35Ω is connected to a 

100V 50Hz supply. Calculate: a) the impedance of the coil, b) the 

current, c) the power factor, and d) the apparent power consumed. 

 

Also draw the resulting power triangle for the above coil.  

 

Data given: R = 35Ω, L = 180mH, V = 100V and ƒ = 50Hz. 

 

(a) Impedance (Z) of the coil: 

 

 

 

 

 

 

 

 

 

 

(b) Current (I) consumed by the coil: 

 
  

(c) The power factor and phase angle, θ: 

 
  

(d) Apparent power (S) consumed by the coil: 



 
  

 

 

 

(e) Power triangle for the coil: 

 
 

As the power triangle relationships of this simple example demonstrates, at 0.5263 or 52.63% 

power factor, the coil requires 150 VA of power to produce 79 Watts of useful work. In other 

words, at 52.63% power factor, the coil takes about 88% more current to do the same work, 

which is a lot of wasted current. 

 

Adding a power factor correction capacitor (for this example a 32.3uF) across the coil, in 

order to increase the power factor to over 0.95, or 95%, would greatly reduce the reactive 

power consumed by the coil as these capacitors act as reactive current generators, thus 

reducing the total amount of current consumed. 

 

Power Triangle and Power Factor Summary 

 

We have seen here that the three elements of electrical power, Real Power, Reactive Power 

and Apparent Power in an AC circuit can be represented by the three sides of a triangle called 



a Power Triangle. As these three elements are represented by a “right-angled triangle”, their 

relationship can be defined as: S
2
 = P

2
 + Q

2
, where P is the real power in watts (W), Q is the 

reactive power in volt-amperes reactive (VAr) and S is the apparent power in volt-amperes 

(VA). 

 

We have also seen that in an AC circuit, the quantity cosθ is called the power factor. The 

power factor of an AC circuit is defined as the ratio of the real power (W) consumed by a 

circuit to the apparent power (VA) consumed by the same circuit. This therefore gives us: 

Power Factor = Real Power/Apparent Power, or pf = W/VA. 

 

Then the cosine of the resulting angle between the current and voltage is the power factor. 

Generally power factor is expressed as a percentage, for example 95%, but can also be 

expressed as a decimal value, for example 0.95. 

 

When the power factor equals 1.0 (unity) or 100%, that is when the real power consumed 

equals the circuits apparent power, the phase angle between the current and the voltage is 0
o
 

as: cos-1(1.0) = 0
o
. When the power factor equals zero (0), the phase angle between the 

current and the voltage will be 90
o
 as: cos-1(0) = 90

o
. In this case the actual power consumed 

by the AC circuit is zero regardless of the circuit current. 

 

In practical AC circuits, the power factor can be anywhere between 0 and 1.0 depending on 

the passive components within the connected load. For an inductive-resistive load or circuit 

(which is most often the case) the power factor will be “lagging”. In a capacitive-resistive 

circuit the power factor will be “leading”. Then an AC circuit can be defined to have a unity, 

lagging, or leading power factor. 

 

A poor power factor with a value towards zero (0) will consume wasted power reducing the 

efficiency of the circuit, while a circuit or load with a power factor closer to one (1.0) or unity 

(100%), will be more efficient. This is because a a circuit or load with a low power factor 

requires more current than the same circuit or load with a power factor closer to 1.0 (unity). 

 

 

Solution of three phase balanced circuits and three phase unbalanced circuits 

 

Requirements of a Balanced 3-Phase Set 

 

Following are the requirements that must be satisified in order for a set of 3 sinusoidal 

variables (usually voltages or currents) to be a "balanced 3-phase set" 

All 3 variables have the same amplitude 

All 3 variables have the same frequency 

All 3 variables are 120o in phase 

In terms of the time domain, a set of balance 3-phase voltages has the following general form. 

 

va =  Vm cos (   t +  ) 

vb =  Vm cos (   t +  - 120o ) 

vc =  Vm cos (   t +  - 240o ) =  Vm cos (   t +  +120o ) 

Notice that we have assumed (and will continue to assume) positive (abc) phase sequence, 

i.e., phase "b" follows 120o behind "a" & phase "c" follows 120o behind phase "b" 

Figure 1 below illustrates the balanced 3-phase voltages in time domain. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 1: Balanced 3-Phase Variables in Time Domain 

In terms of phasors, we write the same balanced set as follows. Note that the phasors are in 

rms, as will be assumed throughout this course. 

Va = Vm  m 

Vb = Vm   - 120
o
 

Vc = Vm   - 240
o
 = Vm   +120

o
 

Thus, 

Vb = Va (1  -120
o
) , and Vc = Va (1  +120

o
) 

Figure 2 below illustrates the balanced 3-phase phasors graphically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Requirements of a Balanced 3-Phase Circuit 

Following are the requirements that must be satisified in order for a 3-phase system or circuit 

to be balanced 

All 3 sources are reprensented by a set of balanced 3-phase variables 

All loads are 3-phase with equal impedances 

Line impedances are equal in all 3 phases 

Having a balanced circuit allows for simplified analysis of the 3-phase circuit. In fact, if the 

circuit is balanced, we can solve for the voltages, currents, and powers, etc. in one phase 

using circuit analysis. The values of the corresponding variables in the other two phases can 

be found using some basic equations. This type of solution is accomplished using a "one-line 

diagram", which will be discussed later. If the circuit is not balanced, all three phases should 

be analyzed in detail. 

 

Figure 3 illustrates a balanced 3-phase circuit and some of the naming conventions to be used 

in this course Following are the requirements that must be satisified in order for a 3-phase 

system or circuit to be balanced 

1. All 3 sources are reprensented by a set of balanced 3-phase variables 

2. All loads are 3-phase with equal impedances 



3. Line impedances are equal in all 3 phases 

Having a balanced circuit allows for simplified analysis of the 3-phase circuit. In fact, if the 

circuit is balanced, we can solve for the voltages, currents, and powers, etc. in one phase 

using circuit analysis. The values of the corresponding variables in the other two phases can 

be found using some basic equations. This type of solution is accomplished using a "one-line 

diagram", which will be discussed later. If the circuit is not balanced, all three phases should 

be analyzed in detail. 

Figure 3 illustrates a balanced 3-phase circuit and some of the naming conventions to be used 

in this course 

 

 

 

 

 

 

 

 

 

 

A Balanced 3-Phase Circuit 

Power measurement in three phase circuits 

 

In this method we have two types of connections 

 Star connection of loads 

 Delta connection of loads. 

When the star connected load, the diagram is shown in below- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For star connected load clearly the reading of wattmeter one is product phase current 

and voltage 

difference (V2-V3). Similarly the reading of wattmeter two is the product of phase current and 

the voltage difference (V2-V3). Thus the total power of the circuit is sum of the reading of 

both the wattmeter. Mathematically we can write  

 

https://www.electrical4u.com/voltage-or-electric-potential-difference/
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but we have, hence putting the value of. 

We get total power as. When delta connected load, the 

diagram is shown in below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reading of wattmeter one can be written as and reading of 

wattmeter two is 

 

 

But, hence expression for total power will reduce to. 

 

Measurement of Three Phase Power by One Wattmeter Method 

 

Limitation of this method is that it cannot be applied on unbalanced load. So under this 

condition we have . 

Diagram is shown below: 

 

 

 

 

 

 

 

 

 

 

 

Two switches are given which are marked as 1-3 and 1-2, by closing the switch 1-3 we get 

reading of wattmeter as  

Similarly the reading of wattmeter when switch 1-2 is closed is

 



 

UNIT – 3 

 

Superposition Theorem 

Superposition theorem is one of those strokes of genius that takes a complex subject 

and simplifies it in a way that makes perfect sense. A theorem like Millman’s certainly works 

well, but it is not quite obvious why it works so well. Superposition, on the other hand, is 

obvious. 

The strategy used in the Superposition Theorem is to eliminate all but one source of 

power within a network at a time, using series/parallel analysis to determine voltage drops 

(and/or currents) within the modified network for each power source separately. Then, once 

voltage drops and/or currents have been determined for each power source working 

separately, the values are all “superimposed” on top of each other (added algebraically) to 

find the actual voltage drops/currents with all sources active. Let’s look at our example 

circuit again and apply Superposition Theorem to it: 

 
Since we have two sources of power in this circuit, we will have to calculate two sets 

of values for voltage drops and/or currents, one for the circuit with only the 28 volt battery in 

effect. . . 

 
. . . and one for the circuit with only the 7 volt battery in effect: 

 
When re-drawing the circuit for series/parallel analysis with one source, all other 

voltage sources are replaced by wires (shorts), and all current sources with open circuits 

(breaks). Since we only have voltage sources (batteries) in our example circuit, we will 

replace every inactive source during analysis with a wire. 

 



Analyzing the circuit with only the 28 volt battery, we obtain the following values for 

voltage and current: 

 
 

 

Analyzing the circuit with only the 7 volt battery, we obtain another set of values for 

voltage and current: 

 
 

 

When superimposing these values of voltage and current, we have to be very careful 

to consider polarity (voltage drop) and direction (electron flow), as the values have to be 

added algebraically. 

 

 

 

 

 

 

 

 

 

 



 

Currents add up algebraically as well, and can either be superimposed as done with 

the resistor voltage drops, or simply calculated from the final voltage drops and respective 

resistances (I=E/R). Either way, the answers will be the same. Here I will show the 

superposition method applied to current: 

 
Once again applying these superimposed figures to our circuit: 

 
 

 

Thevenin’s Theorem 

 

Thevenin’s Theorem states that it is possible to simplify any linear circuit, no matter 

how complex, to an equivalent circuit with just a single voltage source and series resistance 

connected to a load. The qualification of “linear” is identical to that found in the 

Superposition Theorem, where all the underlying equations must be linear (no exponents or 

roots). If we’re dealing with passive components (such as resistors, and later, inductors and 

capacitors), this is true. However, there are some components (especially certain gas-

discharge and semiconductor components) which are nonlinear: that is, their opposition to 

current changes with voltage and/or current. As such, we would call circuits containing these 

types of components, nonlinear circuits. 

 

Thevenin’s Theorem is especially useful in analyzing power systems and other 

circuits where one particular resistor in the circuit (called the “load” resistor) is subject to 

change, and re-calculation of the circuit is necessary with each trial value of load resistance, 

to determine voltage across it and current through it. Let’s take another look at our example 

circuit: 

 

 

 

 

 

 

 



 

 

Let’s suppose that we decide to designate R2 as the “load” resistor in this circuit. We 

already have four methods of analysis at our disposal (Branch Current, Mesh Current, 

Millman’s Theorem, and Superposition Theorem) to use in determining voltage across R2 

and current through R2, but each of these methods are time-consuming. Imagine repeating 

any of these methods over and over again to find what would happen if the load resistance 

changed (changing load resistance is very common in power systems, as multiple loads get 

switched on and off as needed. the total resistance of their parallel connections changing 

depending on how many are connected at a time). This could potentially involve a lot of 

work! 

Thevenin’s Theorem makes this easy by temporarily removing the load resistance 

from the original circuit and reducing what’s left to an equivalent circuit composed of a 

single voltage source and series resistance. The load resistance can then be re-connected to 

this “Thevenin equivalent circuit” and calculations carried out as if the whole network were 

nothing but a simple series circuit: 

 
. . after Thevenin conversion . . 

 

 
 

 

The “Thevenin Equivalent Circuit” is the electrical equivalent of B1, R1, R3, and B2 as seen 

from the two points where our load resistor (R2) connects. 

 

The Thevenin equivalent circuit, if correctly derived, will behave exactly the same as the 

original circuit formed by B1, R1, R3, and B2. In other words, the load resistor (R2) voltage 

and current should be exactly the same for the same value of load resistance in the two 

circuits. The load resistor R2 cannot “tell the difference” between the original network of B1, 

R1, R3, and B2, and the Thevenin equivalent circuit of EThevenin, and RThevenin, provided 

that the values for EThevenin and RThevenin have been calculated correctly. 

 

The advantage in performing the “Thevenin conversion” to the simpler circuit, of course, is 

that it makes load voltage and load current so much easier to solve than in the original 



network. Calculating the equivalent Thevenin source voltage and series resistance is actually 

quite easy. First, the chosen load resistor is removed from the original circuit, replaced with a 

break (open circuit): 

 
Next, the voltage between the two points where the load resistor used to be attached is 

determined. Use whatever analysis methods are at your disposal to do this. In this case, the 

original circuit with the load resistor removed is nothing more than a simple series circuit 

with opposing batteries, and so we can determine the voltage across the open load terminals 

by applying the rules of series circuits, Ohm’s Law, and Kirchhoff’s Voltage Law: 

 

 
The voltage between the two load connection points can be figured from the one of the 

battery’s voltage and one of the resistor’s voltage drops, and comes out to 11.2 volts. This is 

our “Thevenin voltage” (EThevenin) in the equivalent circuit: 

 
To find the Thevenin series resistance for our equivalent circuit, we need to take the original 

circuit (with the load resistor still removed), remove the power sources (in the same style as 



we did with the Superposition Theorem: voltage sources replaced with wires and current 

sources replaced with breaks), and figure the resistance from one load terminal to the other: 

 

 
With the removal of the two batteries, the total resistance measured at this location is equal to 

R1 and R3 in parallel: 0.8 Ω. This is our “Thevenin resistance” (RThevenin) for the equivalent 

circuit: 

 
 

With the load resistor (2 Ω) attached between the connection points, we can determine 

voltage across it and current through it as though the whole network were nothing more than 

a simple series circuit: 

 
Notice that the voltage and current figures for R2 (8 volts, 4 amps) are identical to those 

found using other methods of analysis. Also notice that the voltage and current figures for 

the Thevenin series resistance and the Thevenin source (total) do not apply to any 

component in the original, complex circuit. Thevenin’s Theorem is only useful for 

determining what happens to a single resistor in a network: the load. 

The advantage, of course, is that you can quickly determine what would happen to that 

single resistor if it were of a value other than 2 Ω without having to go through a lot of 

analysis again. Just plug in that other value for the load resistor into the Thevenin 

equivalent circuit and a little bit of series circuit calculation will give you the result. 

 

Norton’s Theorem 

 

Norton’s Theorem states that it is possible to simplify any linear circuit, no matter how 

complex, to an equivalent circuit with just a single current source and parallel 

https://www.allaboutcircuits.com/video-lectures/series-circuits-part-1/
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resistance connected to a load. Just as with Thevenin’s Theorem, the qualification of 

“linear” is identical to that found in the Superposition Theorem: all underlying equations 

must be linear (no exponents or roots). 

Contrasting our original example circuit against the Norton equivalent: it looks something 

like this: 

 

 

 

. . . after Norton conversion . . . 

 

 

 

 

Remember that a current source is a component whose job is to provide a constant amount 

of current, outputting as much or as little voltage necessary to maintain that constant 

current. 

As with Thevenin’s Theorem, everything in the original circuit except the load resistance 

has been reduced to an equivalent circuit that is simpler to analyze. Also similar to 

Thevenin’s Theorem are the steps used in Norton’s Theorem to calculate the Norton source 

current (INorton) and Norton resistance (RNorton). 

As before, the first step is to identify the load resistance and remove it from the original 

circuit: 



 

 

 

Then, to find the Norton current (for the current source in the Norton equivalent circuit), 

place a direct wire (short) connection between the load points and determine the resultant 

current. Note that this step is exactly opposite the respective step in Thevenin’s Theorem, 

where we replaced the load resistor with a break (open circuit): 

 

 

 

With zero voltage dropped between the load resistor connection points, the current through 

R1 is strictly a function of B1‘s voltage and R1‘s resistance: 7 amps (I=E/R). Likewise, the 

current through R3 is now strictly a function of B2‘s voltage and R3‘s resistance: 7 amps 

(I=E/R). The total current through the short between the load connection points is the sum 

of these two currents: 7 amps + 7 amps = 14 amps. This figure of 14 amps becomes the 

Norton source current (INorton) in our equivalent circuit: 

 

 

 

Remember, the arrow notation for a current source points in the direction opposite that of 

electron flow. Again, apologies for the confusion. For better or for worse, this is standard 

electronic symbol notation. Blame Mr. Franklin again! 

https://www.allaboutcircuits.com/video-lectures/electronic-components-resistors/


To calculate the Norton resistance (RNorton), we do the exact same thing as we did for 

calculating Thevenin resistance (RThevenin): take the original circuit (with the load resistor 

still removed), remove the power sources (in the same style as we did with the 

Superposition Theorem: voltage sources replaced with wires and current sources replaced 

with breaks), and figure total resistance from one load connection point to the other: 

 

 

 

Now our Norton equivalent circuit looks like this: 

 

 

 

If we re-connect our original load resistance of 2 Ω, we can analyze the Norton circuit as a 

simple parallel arrangement: 

 

 

 

As with the Thevenin equivalent circuit, the only useful information from this analysis is 

the voltage and current values for R2; the rest of the information is irrelevant to the original 

circuit. However, the same advantages seen with Thevenin’s Theorem apply to Norton’s as 

well: if we wish to analyze load resistor voltage and current over several different values of 

load resistance, we can use the Norton equivalent circuit again and again, applying nothing 

more complex than simple parallel circuit analysis to determine what’s happening with 

each trial load. 

 

 



 

 

 

Maximum Power Transfer Theorem 

 

The Maximum Power Transfer Theorem is not so much a means of analysis as it is an aid 

to system design. Simply stated, the maximum amount of power will be dissipated by a 

load resistance when that load resistance is equal to the Thevenin/Norton resistance of the 

network supplying the power. If the load resistance is lower or higher than the 

Thevenin/Norton resistance of the source network, its dissipated power will be less than 

maximum. 

This is essentially what is aimed for in radio transmitter design , where the antenna or 

transmission line “impedance” is matched to final power amplifier “impedance” for 

maximum radio frequency power output. Impedance, the overall opposition to AC and DC 

current, is very similar to resistance, and must be equal between source and load for the 

greatest amount of power to be transferred to the load. A load impedance that is too high 

will result in low power output. A load impedance that is too low will not only result in 

low power output, but possibly overheating of the amplifier due to the power dissipated in 

its internal (Thevenin or Norton) impedance. 

Taking our Thevenin equivalent example circuit, the Maximum Power Transfer Theorem 

tells us that the load resistance resulting in greatest power dissipation is equal in value to 

the Thevenin resistance (in this case, 0.8 Ω): 

 

 

 

With this value of load resistance, the dissipated power will be 39.2 watts: 

 

 

 

If we were to try a lower value for the load resistance (0.5 Ω instead of 0.8 Ω, for 

example), our power dissipated by the load resistance would decrease: 
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Power dissipation increased for both the Thevenin resistance and the total circuit, but it 

decreased for the load resistor. Likewise, if we increase the load resistance (1.1 Ω instead 

of 0.8 Ω, for example), power dissipation will also be less than it was at 0.8 Ω exactly: 

 

 

 

If you were designing a circuit for maximum power dissipation at the load resistance, this 

theorem would be very useful. Having reduced a network down to a Thevenin voltage and 

resistance (or Norton current and resistance), you simply set the load resistance equal to 

that Thevenin or Norton equivalent (or vice versa) to ensure maximum power dissipation at 

the load. Practical applications of this might include radio transmitter final amplifier stage 

design (seeking to maximize power delivered to the antenna or transmission line), a grid 

tied inverter loading a solar array, or electric vehicle design (seeking to maximize power 

delivered to drive motor). 

The Maximum Power Transfer Theorem is not: Maximum power transfer does not 

coincide with maximum efficiency. Application of The Maximum Power Transfer theorem 

to AC power distribution will not result in maximum or even high efficiency. The goal of 

high efficiency is more important for AC power distribution, which dictates a relatively 

low generator impedance compared to load impedance. 

Similar to AC power distribution, high fidelity audio amplifiers are designed for a 

relatively low output impedance and a relatively high speaker load impedance. As a ratio, 

“output impdance” : “load impedance” is known as damping factor, typically in the range 

of 100 to 1000. [rar] [dfd] 

Maximum power transfer does not coincide with the goal of lowest noise. For example, the 

low-level radio frequency amplifier between the antenna and a radio receiver is often 

designed for lowest possible noise. This often requires a mismatch of the amplifier input 

impedance to the antenna as compared with that dictated by the maximum power transfer 

theorem. 
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UNIT – 4 

 

TRANSIENT RESPONSE FOR DC CIRCUITS 

 

TRANSIENT RESPONSE OF RL CIRCUITS: 

  

So far we have considered dc resistive network in which currents and voltages were 

independent of time. More specifically, Voltage (cause input) and current (effect output) 

responses displayed simultaneously except for a constant multiplicative factor (VR). Two 

basic passive elements namely, inductor and capacitor are introduced in the dc network. 

Automatically, the question will arise whether or not the methods developed in lesson-3 

to lesson-8 for resistive circuit analysis are still valid. The voltage/current relationship for 

these two passive elements are defined by the derivative (voltage across the inductor 

 

Our problem is to study the growth of current in the circuit through two stages, namely; 

(i) dc transient response (ii) steady state response of the system 

  

D.C Transients: The behavior of the current and the voltage in the circuit switch is closed 

until it reaches its final value is called dc transient response of the concerned circuit. The 

response of a circuit (containing resistances, inductances, capacitors and switches) due to 

sudden application of voltage or current is called transient response. The most common 

instance of a transient response in a circuit occurs when a switch is turned on or off –a rather 

common event in an electric circuit. 



  

Growth or Rise of current in R-L circuit 

  

To find the current expression (response) for the circuit shown in fig. 10.6(a), we can 

write the KVL equation around the circuit 

  

The table shows how the current i(t) builds up in a R-L circuit. 

 



 

 



 

 

Consider network shown in fig. the switch k is moved from position 1 to 2 at 

reference time t = 0. 

  

Now before switching take place, the capacitor C is fully charged to V volts and it 

discharges through resistance R. As time passes, charge and hence voltage across capacitor 

i.e. Vc decreases gradually and hence discharge current also decreases gradually from 

maximum to zero exponentially. 

  

After switching has taken place, applying kirchoff’s voltage law, 

 
Where VR is voltage across resistor and VC is voltage across capacitor. 



 
Above equation is linear, homogenous first order differential equation. Hence rearranging we 

have, 

 
Integrating both sides of above equation we have 

 
Now at t = 0, VC =V which is initial condition, substituting in equation we have, 

 
Where Q is total charge on capacitor 

Similarly at any instant, VC = q/c where q is instantaneous charge. 

 
Thus charge behaves similarly to voltage across capacitor. 

Now discharging current i is given by 



 
but VR = VC when there is no source in circuit. 

The above expression is nothing but discharge current of capacitor. The variation of this 

current with respect to time is shown in fig. 

  

 This shows that the current is exponentially decaying. At point P on the graph. The current 

value is (0.368) times its maximum value. The characteristics of decay are determined by 

values R and C, which are 2 parameters of network. 

  

For this network, after the instant t = 0, there is no driving voltage source in circuit, hence it 

is called undriven RC circuit. 

 
TRANSIENT RESPONSE OF RC CIRCUITS 

  

Ideal and real capacitors: An ideal capacitor has an infinite dielectric resistance and 

plates (made of metals) that have zero resistance. However, an ideal capacitor does not 

exist as all dielectrics have some 

  

leakage current and all capacitor plates have some resistance. A capacitor’s of how much 

charge (current) it will allow to leak through the dielectric medium. Ideally, a charged 

  

capacitor is not supposed to allow leaking any current through the dielectric medium and 

also assumed not to dissipate any power loss in capacitor plates resistance. Under this 

situation, the model as shown in fig. 10.16(a) represents the ideal capacitor. However, all 

real or practical capacitor leaks current to some extend due to leakage resistance of 

dielectric medium. This leakage resistance can be visualized as a resistance connected in 

parallel with the capacitor and power loss in capacitor plates can be realized with a 

resistance connected in series with capacitor. The model of a real capacitor is shown in 

fig. 

  

Let us consider a simple series RC−circuit shown in fig. 10.17(a) is connected through a 

switch ‘S’ to a  constant voltage source . 



 
 

The switch ‘S’ is closed at time ‘t=0’ It is assumed that the capacitor is initially charged with 

a voltage and the current flowing through the circuit at any instant of time ‘’ after closing the 

switch is 

 

 

Current decay in source free series RL circuit: - 

 
At t = 0- , , switch k is kept at position ‘a’ for very long time. Thus, the network is in steady 

state. Initial current through inductor is given as, 

 

 
Because current through inductor can not change instantaneously 

Assume       that at t = 0 switch k is moved to position 'b'. 

Applying KVL, 

 
Rearranging the terms in above equation by separating variables 

 
Integrating both sides with respect to corresponding variables 

 
Where   k’   is   constant   of   integration.  

To   find-    k’:                                                      

Form equation 1, at t=0, i=I0   

Substituting the values in equation 3 



 
Substituting   value   of   k’   from   equation   4   in 

 
fig. shows variation of current i with respect to time 

 
From the graph, H is clear that current is exponentially decaying. At point P on graph. 

The current value is (0.363) times its maximum value. The characteristics of decay are 

determined by values R and L which are two parameters of network. 

The voltage across inductor is given by 

 

 
 

 

 

 

 

 

 



 

TRANSIENT RESPONSE OF RLC CIRCUITS 

 

 

In the preceding lesson, our discussion focused extensively on dc circuits having resistances 

with either inductor () or capacitor () (i.e., single storage element) but not both. Dynamic 

response of such first order system has been studied and discussed in detail. The presence of 

resistance, inductance, and capacitance in the dc circuit introduces at least a second order 

differential equation or by two simultaneous coupled linear first order differential equations. 

We shall see in next section that the complexity of analysis of second order circuits increases 

significantly when compared with that encountered with first order circuits. Initial conditions 

for the circuit variables and their derivatives play an important role and this is very crucial to 

analyze a second order dynamic system. 

  

Response of a series R-L-C circuit 

Consider a series RLcircuit as shown in fig.11.1, and it is excited with a dc voltage 

source C−−sV.  

Applying around the closed path for , 

 

 

The current through the capacitor can be written as Substituting the current ‘’expression in 

eq.(11.1)  and rearranging the terms, 

 



The above equation is a 2nd-order linear differential equation and the parameters associated 

with the differential equation are constant with time. The complete solution of the above 

differential equation has two components; the transient response and the steady state 

response. Mathematically, one can write the complete solution as 

 

Since the system is linear, the nature of steady state response is same as that of forcing 

function (input voltage) and it is given by a constant value. Now, the first part of the total 

response is completely dies out with time while and it is defined as a transient or natural 

response of the system. The natural or transient response (see Appendix in Lesson-10) of 

second order differential equation can be obtained from the homogeneous equation (i.e., from 

force free system) that is expressed by 

 

and solving the roots of this equation (11.5) on that associated with transient part of the 

complete solution (eq.11.3) and they are given below. 

 
The roots of the characteristic equation are classified in three groups depending upon the 

values of the parameters ,,RLand of the circuit 

  

Case-A (overdamped response): That the roots are distinct with negative real parts. Under 

this situation, the natural or transient part of the complete solution is written as 

 
and each term of the above expression decays exponentially and ultimately reduces to zero as 

and it is termed as overdamped response of input free system. A system that is overdamped 

responds slowly to any change in excitation. It may be noted that the exponential term 



t→∞11tAeαtakes longer time to decay its value to zero than the term21tAeα. One can 

introduce a factorξ that provides an information about the speed of system response and it is 

defined by damping ratio 

 
 

  

RLC Circuit: 

 

 

 

 

Consider a circuit in which R, L, and C are connected in series with each other across 

ac supply as shown in fig. 

  

The ac supply is given by, V = Vm sin wt 

The circuit draws a current I. Due to that different voltage drops are, 

1.     Voltage drop across Resistance R is VR = IR  

  

2.     Voltage drop across Inductance L is VL = IXL 

  

3.     Voltage drop across Capacitance C is Vc = IXc The characteristics of three drops 

are,  

  

(i)                VR is in phase with current I 

  



(ii)              VL leads I by 900 

(iii)           Vc lags I by 900 

According               to   krichoff’s   laws 

  

Steps to draw phasor diagram: 

1.     Take current I as reference  

2.     VR is in phase with current I  

  

3.     VL leads current by 900 

4.     Vc lags current by 900 

5.     obtain resultant of VL and Vc. Both VL and Vc are in phase opposition 

(1800 out of phase)  

  

6.     Add that with VRby law of parallelogram to get supply voltage.  

  

The phasor diagram depends on the condition of magnitude of VL and Vc which 

ultimately depends on values of XL and Xc. 

Let us consider different cases: 

Case(i): XL > Xc 

When X L > Xc 

Also VL > Vc (or) IXL > IXc 

So, resultant of VL and Vc will directed towards VL i.e. leading current I. Hence I 

lags V i.e. current I will lags the resultant of VL and Vc i.e. (V L - Vc). The circuit is said 

to be inductive in nature. 

From voltage triangle, 

 
If , V = Vm Sin wt    ;  i = Im Sin (wt - ф ) 

i.e         I   lags   V   by   angle   ф 

Case(ii): XL < Xc 

When XL < Xc 

Also VL < Vc (or) IXL < IXc 

  

Hence the resultant of VL and Vc will directed towards Vc i.e current is said to be 

capacitive in nature 

Form voltage triangle 

 
i.e         I   lags   V   by   angle   ф 

Case(iii): XL = Xc 

When XL = Xc 

Also VL = Vc (or) IXL = IXc 

  



So VL and Vc cancel each other and the resultant is zero. So V = VR in such a case, the 

circuit is purely resistive in nature. 

  

Impedance: 

  

In general for RLC series circuit impedance is given by, Z = R + j X 

            X = XL –Xc = Total reactance of the circuit 

If       XL > Xc      ;         X is positive & circuit is Inductive 

If       XL < Xc      ;         X is negative & circuit is Capacitive 

If       XL = Xc      ;         X =0 & circuit is purely Resistive 

Tan      фL - =Xc[(X)∕R] 

Cos      ф   =   [R∕Z] 

Z    = 2 √+(X L(R-Xc ) 2) 

Impedance triangle: 

In both cases             R   =   Z   Cos   ф 

  

X   =   Z   Sin   ф 

  

Power and power triangle: 

The average power consumed by circuit is, 

  

Pavg = (Average power consumed by R) + (Average power consumed by L) + 

(Average power consumed by C) 

  

Pavg = Power taken by R = I2R = I(IR) = VI 

  

V = V Cos ф P = VI Cos ф 

  

Thus, for any condition, XL > Xc or XL < Xc General power can be expressed as 

  

P = Voltage x Component in phase with voltage 

Power triangle: 

S = Apparent power = I2Z = VI 

  

P = Real or True power = VI Cos ф = Active po Q = Reactive power = VI Sin ф 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT – 5 

RESONANCE AND COUPLED CIRCUITS      

Resonance in Series-Parallel Circuits 

 

In simple reactive circuits with little or no resistance, the effects of radically altered 

impedance will manifest at the resonance frequency predicted by the equation given 

earlier. In a parallel (tank) LC circuit, this means infinite impedance at resonance. In a 

series LC circuit, it means zero impedance at resonance: 

 

 

 

However, as soon as significant levels of resistance are introduced into most LC circuits, 

this simple calculation for resonance becomes invalid. We’ll take a look at several LC 

circuits with added resistance, using the same values for capacitance and inductance as 

before: 10 µF and 100 mH, respectively. According to our simple equation, the resonant 

frequency should be 159.155 Hz. Watch, though, where current reaches maximum or 

minimum in the following SPICE analyses: 

 

 
Parallel LC circuit with resistance in series with L. 

 

 

https://www.allaboutcircuits.com/textbook/direct-current/chpt-1/resistance/


Resistance in series with L produces minimum current at 136.8 Hz instead of calculated 

159.2 Hz 

 

 

 
Parallel LC with resistance in serieis with C. 

 

Here, an extra resistor (Rbogus) (Figure below)is necessary to prevent SPICE from 

encountering trouble in analysis. SPICE can’t handle an inductor connected directly in 

parallel with any voltage source or any other inductor, so the addition of a series resistor is 

necessary to “break up” the voltage source/inductor loop that would otherwise be formed. 

This resistor is chosen to be a very low value for minimum impact on the circuit’s 

behavior. 

 
Resistance in series with C shifts minimum current from calculated 159.2 Hz to roughly 

180 Hz. 

 

Switching our attention to series LC circuits, (Figure below) we experiment with placing 

significant resistances in parallel with either L or C. In the following series circuit 

examples, a 1 Ω resistor (R1) is placed in series with the inductor and capacitor to limit 

total current at resonance. The “extra” resistance inserted to influence resonant frequency 

effects is the 100 Ω resistor, R2. The results are shown in (Figurebelow). 

https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/resonance-series-parallel-circuits/#02103.png
https://www.allaboutcircuits.com/video-lectures/series-circuits-part-1/
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/resonance-series-parallel-circuits/#02104.png
https://www.allaboutcircuits.com/video-lectures/parallel-circuits/
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/resonance-series-parallel-circuits/#22010.png


 

 
Series LC resonant circuit with resistance in parallel with L. 

 
Series resonant circuit with resistance in parallel with L shifts maximum current from 

159.2 Hz to roughly 180 Hz. 

 

And finally, a series LC circuit with the significant resistance in parallel with the capacitor. 

(Figure below) The shifted resonance is shown in (Figure below) 

https://www.allaboutcircuits.com/video-lectures/capacitors-part-1/
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Series LC resonant circuit with rsistance in parallel with C. 

 
Resistance in parallel with C in series resonant circuit shifts curreent maximum from 

calculated 159.2 Hz to about 136.8 Hz. 

 

 

The tendency for added resistance to skew the point at which impedance reaches a 

maximum or minimum in an LC circuit is called antiresonance. The astute observer will 

notice a pattern between the four SPICE examples given above, in terms of how resistance 

affects the resonant peak of a circuit: 

 Parallel (“tank”) LC circuit: 
 R in series with L: resonant frequency shifted down 

 R in series with C: resonant frequency shifted up 

 Series LC circuit: 
 R in parallel with L: resonant frequency shifted up 

 R in parallel with C: resonant frequency shifted down 

Again, this illustrates the complementary nature of capacitors and inductors: how 

resistance in series with one creates an antiresonance effect equivalent to resistance in 

parallel with the other. If you look even closer to the four SPICE examples given, you’ll 

see that the frequencies are shifted by the same amount, and that the shape of the 

complementary graphs are mirror-images of each other! 

https://www.allaboutcircuits.com/video-lectures/inductors-part-1/


Antiresonance is an effect that resonant circuit designers must be aware of. The equations 

for determining antiresonance “shift” are complex, and will not be covered in this brief 

lesson. It should suffice the beginning student of electronics to understand that the effect 

exists, and what its general tendencies are. 

Added resistance in an LC circuit is no academic matter. While it is possible to 

manufacture capacitors with negligible unwanted resistances, inductors are typically 

plagued with substantial amounts of resistance due to the long lengths of wire used in their 

construction. What is more, the resistance of wire tends to increase as frequency goes up, 

due to a strange phenomenon known as the skin effect where AC current tends to be 

excluded from travel through the very center of a wire, thereby reducing the wire’s 

effective cross-sectional area. Thus, inductors not only have resistance, but changing, 

frequency-dependent resistance at that. 

As if the resistance of an inductor’s wire weren’t enough to cause problems, we also have 

to contend with the “core losses” of iron-core inductors, which manifest themselves as 

added resistance in the circuit. Since iron is a conductor of electricity as well as a 

conductor of magnetic flux, changing flux produced by alternating current through the coil 

will tend to induce electric currents in the core itself (eddy currents). This effect can be 

thought of as though the iron core of the transformer were a sort of secondary transformer 

coil powering a resistive load: the less-than-perfect conductivity of the iron metal. This 

effects can be minimized with laminated cores, good core design and high-grade materials, 

but never completely eliminated. 

One notable exception to the rule of circuit resistance causing a resonant frequency shift is 

the case of series resistor-inductor-capacitor (“RLC”) circuits. So long as all components 

are connected in series with each other, the resonant frequency of the circuit will be 

unaffected by the resistance. (Figure below) The resulting plot is shown in (Figure below). 

 

 
Series LC with resistance in series. 

Maximum current at 159.2 Hz once again! 

https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/resonance-series-parallel-circuits/#02106.png
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Resistance in series resonant circuit leaves current maximum at calculated 159.2 Hz, 

broadening the curve. 

 

Note that the peak of the current graph (Figure below) has not changed from the earlier 

series LC circuit (the one with the 1 Ω token resistance in it), even though the resistance is 

now 100 times greater. The only thing that has changed is the “sharpness” of the curve. 

Obviously, this circuit does not resonate as strongly as one with less series resistance (it is 

said to be “less selective”), but at least it has the same natural frequency! 

It is noteworthy that antiresonance has the effect of dampening the oscillations of free-

running LC circuits such as tank circuits. In the beginning of this chapter we saw how a 

capacitor and inductor connected directly together would act something like a pendulum, 

exchanging voltage and current peaks just like a pendulum exchanges kinetic and potential 

energy. In a perfect tank circuit (no resistance), this oscillation would continue forever, just 

as a frictionless pendulum would continue to swing at its resonant frequency forever. But 

frictionless machines are difficult to find in the real world, and so are lossless tank circuits. 

Energy lost through resistance (or inductor core losses or radiated electromagnetic waves 

or . . .) in a tank circuit will cause the oscillations to decay in amplitude until they are no 

more. If enough energy losses are present in a tank circuit, it will fail to resonate at all. 

Antiresonance’s dampening effect is more than just a curiosity: it can be used quite 

effectively to eliminate unwanted oscillations in circuits containing stray inductances 

and/or capacitances, as almost all circuits do. Take note of the following L/R time delay 

circuit: (Figure below) 

 

 
L/R time delay circuit 

 

The idea of this circuit is simple: to “charge” the inductor when the switch is closed. The 

rate of inductor charging will be set by the ratio L/R, which is the time constant of the 

circuit in seconds. However, if you were to build such a circuit, you might find unexpected 

oscillations (AC) of voltage across the inductor when the switch is closed. (Figure below) 

https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/resonance-series-parallel-circuits/#22012.png
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Why is this? There’s no capacitor in the circuit, so how can we have resonant oscillation 

with just an inductor, resistor, and battery? 

 

 
Inductor ringing due to resonance with stray capacitance. 

 

All inductors contain a certain amount of stray capacitance due to turn-to-turn and turn-to-

core insulation gaps. Also, the placement of circuit conductors may create stray 

capacitance. While clean circuit layout is important in eliminating much of this stray 

capacitance, there will always be some that you cannot eliminate. If this causes resonant 

problems (unwanted AC oscillations), added resistance may be a way to combat it. If 

resistor R is large enough, it will cause a condition of antiresonance, dissipating enough 

energy to prohibit the inductance and stray capacitance from sustaining oscillations for 

very long. 

Interestingly enough, the principle of employing resistance to eliminate unwanted 

resonance is one frequently used in the design of mechanical systems, where any moving 

object with mass is a potential resonator. A very common application of this is the use of 

shock absorbers in automobiles. Without shock absorbers, cars would bounce wildly at 

their resonant frequency after hitting any bump in the road. The shock absorber’s job is to 

introduce a strong antiresonant effect by dissipating energy hydraulically (in the same way 

that a resistor dissipates energy electrically). 

 

Mutual Inductance 

Mutual Inductance is the ratio between induced Electro Motive Force across a coil to the 

rate of change of current of another adjacent coil in such a way that two coils are in 

possibility of flux linkage.Mutual induction is a phenomenon when a coil gets induced in 

EMF across it due to rate of change current in adjacent coil in such a way that the flux of one 

coil current gets linkage of another coil. Mutual inductance is denoted as ( M ), it is called co-

efficient of Mutual Induction between two coils.

Mutual inductance for two coils gives the same value when they are in mutual induction 

https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/what-is-flux-types-of-flux/


with each other. Induction in one coil due to its own rate of change of current is called self 

inductance (L), but due to rate of change of current of adjacent coil it gives mutual 

inductance (M). 

From the above figure, first coil carries current i1 and its self inductance is L1. Along with its 

self inductance it has to face mutual induction due to rate of change of current i2 in the second 

coil. Same case happens in the second coil also. Dot convention is used to mark the polarity 

of the mutual induction. Suppose two coils are placed nearby.

 
Coil 1 carries I1 current having N1 number of turn. Now the flux density created by the coil 1 

is B1. Coil 2 with N2 number of turn gets linked with this flux from coil 1. So flux linkage in 

coil 2 is N2 . φ21 [φ21 is called leakage flux in coil 2 due to coil 1]. 

Consider φ21 is also changing with respect to time, so an EMF appears across coil 2. This 

EMF is called mutually induced EMF. Now it can be 

written from these equations, Again, coil 1 gets induced by flux from coil 2 

due to current I2 in the coil 2.

 

https://www.electrical4u.com/self-inductance/
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In same manner it can be written that for coil 1. However, using 

the reciprocity theorem which combines Ampere’s law and the Biot-Savart law, one may 

show that the constants are equal. i.e. M12 = M21 = M. M is the mutual inductance for both 

coil in Henry. The value of mutual inductance is a function of the self-

inductances Suppose two coils are place nearby such that they are in mutual induction. 

L1 and L2 are co-efficient of self induction of them. M is the mutual inductance.

Here, ƙ is called co-efficient of coupling and it is defined as the ratio of mutual inductance 

actually present between the two coils to the maximum possible value. If the flux due to first 

coil completely links with second coil, then ƙ = 1, then two coils are tightly coupled. Again if 

no linkage at all then ƙ = 0 and hence two coils are magnetically isolated. Merits and demerits 

of mutual inductance: Due to mutual inductance, transformer establishes its operating 

principle. But due to mutual inductance, in any circuit having inductors, has to face extra 

voltage drop. 

How to find out Leq in a circuit having mutual inductance with dot conventionSuppose 

two coils are in series with same place dot.

Mutual 

inductance between them is positive. Suppose two coils 

are in series with opposite place dot.

https://www.electrical4u.com/reciprocity-theorem/
https://www.electrical4u.com/biot-savart-law/
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When a few numbers of inductors are in series with 

mutual inductances.

 
 

Self-Inductance 

Self-inductance is the ration between the induced Electro Motive Force (EMF) across a coil 

to the rate of change of current through this coil. Self-inductance is related term to self-

induction phenomenon. Because of self-induction self-inductance generates. Self-inductance 

or Co-efficient of Self-induction is denoted as L. Its unit is Henry (H). First we have to know 

what self-induction is. Self-induction is the phenomenon by which in a coil a change 

in electric current produces an induced Electro Motive Force across this coil itself. This 

induced Electro Motive Force (ε) across this coil is proportional to the current changing rate. 

The higher the rate of change in current, the higher the value of EMF. 

 

We can write that,  

https://www.electrical4u.com/electric-current-and-theory-of-electricity/


 

But the actual equation is The question is that why there is Minus (-) 

sign? This Induced EMF across this coil is always opposite to the direction of the rate of 

change of current as per Lenz’s Law.

When current 

(I) flows through a coil some electric flux produces inside the coil in the direction of the 

current flowing. At that moment of self induction phenomenon, the induced EMF generates 

to oppose this rate of change of current in that coil. So their values are same but sign differs. 

Look at the figure below.

Take a 

closer look at a coil that is carrying current. The magnetic field forms concentric loops that 

surround the wire and join to form larger loops that surround the coil. When the current 

increases in one loop the expanding magnetic field will cut across some or all of the 

neighboring loops of wire, inducing a voltage in these loops. 

 

For the DC source, when the switch is ON, i.e. just at t = 0+, a current will flow from its zero 

value to a certain value and with respect to time there will be a rate of change in current 

https://www.electrical4u.com/what-is-magnetic-field/


momentarily. This current produces magnetic flux lines (φ) through this coil. As current 

changes its value to zero to a certain value that’s why magnetic flux (φ) get rate of change 

with respect to the time, i.e. Now apply Faraday's Law in this coil, Where, 

N is the number of turn of the coil and e is the induced EMF across this coil. Lenz's law states 

that an induced current due to induced EMF has a direction such that its magnetic field 

opposes the change in magnetic field that induced the current. As per Lenz’s law we can 

write down this equation of induced voltage across the coil, Now, we can 

modify this equation to calculate the value of inductance of a coil.

so, [B is the flux density i.e. B 

=φ/A, A is area of the coil], [N. φ or L.I is called magnetic flux Linkage and it is denoted 

by Ѱ] Again, H.l = N.I, where H is the magnetizing force due to which magnetic flux lines 

flow from south to north pole inside the coil, l is the effective length of the coil and

r 

is the radius of the coil cross-sectional area.

L is a geometric quantity; it depends 

only on the dimensions of the solenoid, and the number of turns in the solenoid. Furthermore, 

in a DC circuit when the switch is just closed, then only momentarily effect of self-

inductance occurs in the coil. After then no effect of self inductance is in a coil. It is because 

of steady flow of unidirectional current through this coil after closing the operating switch 

after t = 0+. 

But in AC circuit, alternating effect of current always causes the self-induction in the coil and 

a certain value of this self-inductance gives the inductive reactance 

 depending on the value of supply frequency. Generally in the electrical circuit the coils those 

are used are known as inductor having values of L1, L2, L3 etc. when they are series 

combination then equivalent inductance of them is calculated as

When they are in parallel, then
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