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Time-Varying Fields

Stationary charges electrostatic fields

Steady currents magnetostatic fields

Time-varying currents electromagnetic fields

Only in a non-time-varying case can electric and magnetic fields be considered as independent of 
each other. In a time-varying (dynamic) case the two fields are interdependent. 

A changing magnetic field induces an electric field, and vice versa. 



Motional EMF

• A rod is moved at a speed v along a pair of conducting rails separated by a 
distance ℓ in a uniform magnetic field B. 

• The rails are stationary relative to B
• Connected to a stationary resistor R
• Consider the area enclosed by the 

moving rod, rails and resistor. 
• B is perpendicular to this area, and the 

area is increasing as the rod moves. 
Thus the magnetic flux enclosed by the 
rails, rod and resistor is increasing. 
When flux changes, an EMF is induced according to Faraday's law of 

induction.
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The Continuity Equation

Electric charges may not be created or destroyed (the principle of conservation 
of charge). 

Consider an arbitrary volume V bounded by surface S. A net charge Q exists 
within this region. If a net current I flows across the surface out of this region, 
the charge in the volume must decrease at a rate that equals the current:

Divergence theorem

This equation must hold regardless of the choice of V, therefore the integrands 
must be equal:

For steady currents

that is, steady electric currents are divergences or solenoidal. 

0 J
Kirchhoff’s current 
law

follows from this

)/( 3mA the equation of
continuity

Partial derivative 
because     may be 
a function of both 
time and space

This equation must hold regardless of the choice of V, therefore the integrands 
must be equal:
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Displacement Current
For magnetostatic field, we recall that

Taking the divergence of this equation we have

However the continuity equation requires that

Thus we must modify the magnetostatic curl equation to agree with the 
continuity equation. Let us add a term to the former so that it becomes

where     is the conduction current density             , and     is to be determined 
and defined. 
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Displacement Current continued

  dJJH  0 JJd 

 
t
DD

tt
JJ V

d














t
DJd





H  J  D
t

xH  ds 
S
 J  D

t

æ

è
ç

ö

ø
÷

S
 ds H dl  I  D

tS
 ds

L
�

Taking the divergence we have

In order for this equation to agree with the continuity equation,

displacement current density

Stokes’ theorem

Gauss’ law
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A typical example of displacement current is the current through a capacitor when an 
alternating voltage source is applied to its plates. The following example illustrates the 
need for the displacement current.

Displacement Current continued

Using an unmodified form of 
Ampere’s law (no conduction current 

flows through 
(   =0))J

0dJ
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Displacement Current continued

The total current density is         .In 
the first equation          so it 
remains valid. In the second 
equation        so that

So we obtain the same current for 
either surface though it is 
conduction current in     and 
displacement current in  . 
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Faraday’s Law

Faraday discovered experimentally that a current was induced in a conducting 
loop when the magnetic flux linking the loop changed. In differential (or point) 
form this experimental fact is described by the following equation

Taking the surface integral of both sides over an open surface and applying 
Stokes’ theorem, we obtain

where    is the magnetic flux through the surface S. 

Integral form
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Time-varying electric field is not conservative.

Suppose that there is only one 
unique voltage                   .              
Then           

Faraday’s Law continued

However,

Thus        can be unambiguously 
defined only if                .(in 
practice, if         than the 
dimensions of system in question)

Path L1

B

A

Path L2

The effect of electromagnetic induction. When 
time-varying  magnetic fields are present, the 
value of the line integral of     from A to B 
may depend on the path one chooses.
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Faraday’s Law continued

According to Faraday’s law, a time-varying magnetic flux through a loop of wire 
results in a voltage across the loop terminals:

The negative sign shows that the induced voltage acts in such a way as to 
oppose the change of flux producing it (Lenz’s law).
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circuit is closed)
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The terminals are far away from 
the time-varying magnetic field

Increasing time-varying
magnetic field

-
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A time-varying magnetic flux through a 
loop wire results in the appearance of a 
voltage across its terminals.

Consider now terminals 
3 and 4, and 1 and 2

1

2 3

4 Integration path

No contribution from 2-3 and 4-1 
because the wire is a perfect 
conductor

If N-turn coil instead 
of single loop
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Boundary Condition on Tangential Electric Field

Using Faraday’s law,                         , we can obtain boundary condition on the 

tangential component of    at a dielectric boundary. 
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Faraday’s Law continued

(For the normal component:                )

at a dielectric boundary

(unless            )

- continuous at the boundary
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General Forms of Maxwell’s Equations
Differential Integral Remarks

Gauss’ Law

Nonexistence of 
isolated magnetic 
charge

Faraday’s Law

Ampere’s circuital law

In 1 and 2, S is a closed surface enclosing the volume V

In 2 and 3, L is a closed path that bounds the surface S
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Sinusoidal Fields
In electromagnetics, information is usually transmitted by imposing amplitude, frequency, 
or phase modulation on a sinusoidal carrier. Sinusoidal (or time-harmonic) analysis can be 
extended to most waveforms by Fourier and Laplace transform techniques.

Sinusoids are easily expressed in phasors, which are more convenient to work 
with. Let us consider the “curl H” equation.

Its phasor representation is

is a vector function of position, but it is independent of time. The three scalar 
components of    are complex numbers; that is, if
H
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Sinusoidal Fields continued

Time-Harmonic Maxwell’s Equations Assuming Time Factor        . 

Point Form Integral Form
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Poynting’s Theorem
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Interpretation of Poynting’s Theorem
Poynting’s Theorem for the material medium says that the power delivered to

the volume V by the current source J0 is accounted for by the power dissipated in the
volume due to the conduction current in the medium, plus the time rates of increase of
the energies stored in the electric and magnetic fields, plus another term, which we
must interpret as the power carried by the electromagnetic field out of the volume V,
for conservation of energy to be satisfied.



UNIT II

TRANSMISSION LINES



Transmission Line Concepts



Transmission Line

Has two conductors running parallel
 Can propagate a signal at any frequency (in theory)
 Becomes lossy at high frequency 
 Can handle low or moderate amounts of power 
 Does not have signal distortion, unless there is loss
May or may not be immune to interference
 Does not have Ez or Hz components of the fields (TEMz) 

Properties

Coaxial cable (coax)
Twin lead



Transmission Line (cont.)

CAT 5 cable
(twisted pair)

The two wires of the transmission line are twisted to reduce interference and 
radiation from discontinuities. 



Transmission Line (cont.)

Microstrip

h
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Stripline
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Transmission lines commonly met on printed-circuit boards

Coplanar strips
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w w

Coplanar waveguide (CPW)

her
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Transmission Line (cont.)

Transmission lines  are commonly met on printed-circuit boards.

A microwave integrated circuit

Microstrip line



Fiber-Optic Guide
Properties

Uses a dielectric rod 
 Can propagate a signal at any frequency (in theory)
 Can be made very low loss 
 Has minimal signal distortion 
Very immune to interference 
 Not suitable for high power
 Has both Ez and Hz components of the fields



Fiber-Optic Guide (cont.)
Two types of fiber-optic guides:

1) Single-mode fiber

2) Multi-mode fiber

Carries a single mode, as with the mode on a transmission line 
or waveguide. Requires the fiber diameter to be small relative to 
a wavelength. 

Has a fiber diameter that is large relative to a wavelength. It 
operates on the principle of total internal reflection (critical 
angle effect).



To combine these, take the derivative of the first one with 
respect to z:
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TEM Transmission Line (cont.)
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TEM Transmission Line (cont.)
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TEM Transmission Line (cont.)

Time-Harmonic Waves:



Note that

= series impedance/length
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TEM Transmission Line (cont.)



Let

Convention:

Solution:
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TEM Transmission Line (cont.)

 is called the "propagation constant."
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TEM Transmission Line (cont.)
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Forward travelling wave (a wave traveling in the positive z direction):
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The wave “repeats” when:

Hence:



Phase Velocity

Track the velocity of a fixed point on the wave (a point of constant phase), e.g., the 
crest.
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Phase Velocity (cont.)

0

constant 

 




 

 



t z
dz
dt
dz
dt

Set

Hence p
v 




  1/2Im ( )( )pv
R j L G j C


 


 

In expanded form:



Characteristic Impedance Z0

0
( )
( )

V zZ
I z





0

0

( )

( )

z

z

V z V e
I z I e





  

  





so 0
0

0

VZ
I





+ 
V+(z)
-

I+ (z)

z

A wave is traveling in the positive z direction.

(Z0 is a number, not a function of z.)



Use Telegrapher’s Equation:
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Characteristic Impedance Z0 (cont.) 



From this we have:

Using

We have
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Characteristic Impedance Z0 (cont.) 
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Note: The principal branch of the square root is chosen, so that Re (Z0) > 0. 
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General Case (Waves in Both Directions)



Backward-Travelling Wave
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A wave is traveling in the negative z direction.

Note: The reference directions for voltage and current are the same as 
for the forward wave. 



GENERAL



LOSSLESS PROPAGATION



Standing Waves

• The interaction of incident and 
reflected waves in a transmission line 
results in standing waves

• When a reflected wave is present but 
has lower amplitude than the 
incident, there will be no point on the 
line where the voltage or current 
remains zero over the whole cycle



Voltage Standing Wave Ratio
• When a transmission line is terminated with an impedance, ZL , that is not 

equal to the characteristic impedance of the transmission line, Z0 , not all of 
the incident power is absorbed by the termination. Part of the power is 
reflected back , so that phase addition and subtraction of the incident and 
reflected waves creates a voltage standing wave pattern on the transmission 
line. The ratio of the maximum to minimum voltage is known as the 
Voltage Standing Wave Ratio (VSWR) and successive maxima and 
minima are spaced by 180 degrees.



Reflection Co-efficient



Smith Chart
• Smith Chart is a graphical plot of the normalized resistance and 

reactance functions in the complex reflection-coefficient plane. It is a 
graph showing both the normalized impedance and the reflection 
coefficient. Smith chart is convenient for transmission line and circuit 
calculations. It is also a useful tool in impedance matching circuit 

design.



Smith Chart (contd..)



Smith Chart (contd..)

• Voltage Maxima and Minima in Smith Chart Voltage maxima occur when 
the angle of the reflection coefficient ( Γ ( ℓ)) θ = -2 n π ( n = 0, 1, 2, …). This 
corresponds to the right-most point in the Smith chart. Voltage minima occur 
when the angle of the reflection coefficient ( Γ ( ℓ)) θ = -2( n+1) π ( n = 0, 1, 
2, …). This corresponds to the left-most point in the Smith chart.



Impedance Matching
Reasons for impedance matching: 
1. Maximize power transfer to the load 
2. The input impedance remains constant at the value Z0. Therefore, 
the input impedance is independent of the length of transmission line. 
3. VSWR = 1. Therefore there are no voltage peaks on the 
transmission line.
Meaning of impedance matching: Impedance matching is to eliminate 
the reflected voltage or current on a transmission line. 
Two matching techniques: 
1. Quarter-wave transformer 
2. Single-stub matching network



Quarter Wave Transformer



Quarter Wave Transformer 
(contd.)



Quarter Wave Transformer 
(contd.)

2 2 21 1 tan secT Tt l l    where we used



Single stub Matching



THE UNIFORM PLANE WAVETHE UNIFORM PLANE WAVE

UNIT-III



Infinite Plane Current Sheet Source

for 0z 

Example:
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For a current distribution having only an x-component of 
current density that varies only with z, 
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The only relevant equations are:

Thus,  ,x xE z tE a  ,y yH z tH a

y xE B
z t

 
  

 

yx BE
z t


 

 

0 zB
t


 



yx BE
z t


 

 

y x
x

H DJ
z t

 
  

 

yx DH
z t




 

0 zD
t






Dy x
x

H
J

z t
 

  
 



In the free space on either side of the sheet, Jx = 0

Combining, we get 

Wave Equation

0
y yx B HE

z t t


 
   

   0
y x xH D E

z t t
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  
 

  
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0 0

2 2

0 02 2
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x x
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t z
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E E
z t





 

 

  
      

 
     

       
 


 



Uniform Plane Wave in Dielectric and Conductors 

1. Perfect dielectric:

Behavior same as in free space except that 
0   and 0  .

 0 

j j j     �

0     no attenuation 

,   purely realj
j
 
 

 

  



2. Imperfect Dielectric:

Behavior essentially like in a perfect dielectric except
for attenuation.

 0 but    �

 j j    

2
j  


 

1
2

j 
 

   
 



3. Good Conductor:

Behavior much different from that in a dielectric. 

 j j    

 1f j  

f     

 1j f j
j

  
  

  


2 45f 


  

  �



4. Perfect Conductor:

No waves can penetrate into a perfect conductor.
No time-varying fields inside a perfect conductor. 

   

Idealization of good conductor in the limit
that .  

, 0   



Transmission line modeling
Travelling waves

–For frequencies above f1 (and frequency components above f1),Zo is real 
and frequency independent 

–For a transmission line with a matched load (RL = Zo), when ‘looking’ into 
a transmission line, the source initially ‘sees’ a resistive load

or



Transmission line modeling
Travelling waves example

–Consider the case where the 5-V step voltage generator with a 30- source 
resistance drives a 50- transmission line with a matched impedance termination.

Vs = 5 V, Rs = 30 , Zo = 50 , RL = 50 

–The wave propagating down the transmission line has a voltage of

–The wave propagating down the transmission line has a current of

VV 13.3
3050

505 


mA63
50

V133



.



Transmission line modeling
• Travelling waves

– Now consider the more general case with impedance mismatches
– First consider the source end

for Rs = Zo, VA = Vs/2

for Rs  Zo, 

– The wave travels down the transmission line and arrives at B at time 
t = ℓ/vp where the impedance mismatch causes a reflected wave with 
reflection coefficient, L                           

 wave voltage
– Special cases

• if RL = Zo (matched impedance), then L = 0
• if RL = 0 (short circuit), then L = –1
• if RL =  (open circuit), then L = +1

oS

o
SA ZR

ZVV




oL

oL
L ZR

ZR







Transmission line modeling
– The reflected signal then travels back down the transmission 

line and arrives at A at time t = 2ℓ/vp where another 
impedance mismatch causes a reflected wave with reflection 
coefficient, S

 wave voltage = VA L S

– This reflected signal again travels down the transmission line 
– For complex loads, the reflection coefficient is complex
– In general

oS

oS
S ZR

ZR





oL

oL

ZZ
ZZ




 or 



1
1

Z
Z

o

L



Poynting’s Theorem for Power Flow

Consider the quantity          . .Then, from a vector identity,E× H

     E× H H × E E × H   � � �
Substituting

0

B× E

D D× H J J

t

t t

 


    
 





0where  represents source current density, we haveJ

 

0

2 2
0 0 0

1 1
2 2

t t

E Ht t 

    
 

              

D BE× H E J E H

E J E× H

� � � �

� �







Performing volume integration on both sides, and using the
divergence theorem for the last term on the right side, we get 

where we have defined                     , known as the Poynting 
vector. The equation is known as the Poynting’s Theorem. 

P E × H

  2
0 0

2
0

1
2
1                          2

E J

P S

V V

V S

dv E dvt

H dv dt





       
      

 
 

�

��



Polarization

The characteristic which describes how the position of 
the tip of the vector varies with time.
Linear Polarization:

Tip of the vector describes a line.
Circular Polarization:

Tip of the vector describes a circle.



SKIN EFFECT

• The effect of resistance in a transmission line is to continuously 
reduce the amplitude of both incident and reflected voltage and 
current waves.

• Skin Effect: As frequency increases, depth of penetration into 
adjacent conductive surfaces decreases for boundary currents 
associated with electromagnetic waves. This results in the 
confinement of the voltage and current waves at the boundary of the 
transmission line, thus making the transmission more lossy.

• The skin depth is given by:
skin depth (m) = 1/pmgf0.5

where f = frequency, Hz
m = permeability, H/m
g = conductivity, S/m



Elliptical Polarization:
• Tip of the vector describes
an ellipse.
(i) Linear Polarization

Linearly polarized in the x direction.



F1  F1 cos (t  )
  

ax
Direction remains
along the x axis

Magnitude varies
sinusoidally with time



Linear polarization





F2  F2 cos (t   )
  

ay Direction remains
along the y axisMagnitude varies

sinusoidally with time

Linearly polarized in the y direction.

If two (or more) component linearly polarized vectors 
are in phase, (or in phase opposition), then their sum 
vector is also linearly polarized.
Ex:

1 2cos cosx y      ( ) ( )F t F tF a a



Sum of two linearly polarized vectors in phase is a linearly 
polarized vector

y

x


F1

F2 F



Circular Polarization

If two component linearly polarized vectors are
(a) equal to amplitude
(b) differ in direction by 90˚
(c) differ in phase by 90˚,
then their sum vector is circularly polarized.



Circular Polarization



Example:

   

 

1 1

2 2
1 1

1

1 1

1
1

 cos  sin 

 cos  sin 

,  constant
 sin  tan
 cos 

tan tan 

x yF t F t

F t F t

F
F t
F t

t t

 

 






 





 

 





 

F a a

F

1F

2F
F

x

y





Elliptical Polarization
In the general case in which either of (i) or (ii) is not 
satisfied, then the sum of the two component linearly 
polarized vectors is an elliptically polarized vector.

Example:

F  F1 cos t ax  F2 sin t ay

1F

2F
F



x–F0

–F0

F0

F0F1

F2 F

p/4

y

Example:  0 0cos cos 4F a ax yF t F t    



 

UNIT-4 
Transmission and reflection of planes waves at the boundaries  

 
Plane Wave Propagation at Arbitrary Angle 
 
Plane waves are not normally incident, so now we must consider the general problem of a 
plane wave propagating along a specified axis that is arbitrarily relative to a rectangular 
coordinate system.  The most convenient way is in terms of the direction cosines of the 
uniform plane wave, the equiphase surfaces are planes perpendicular to the direction of 
propagation.   
 
Definitions: 
 uniform planes – a free space plane wave at an infinite distance from the 
generator, having constant amplitude electric and magnetic field vectors over the 
equiphase surfaces. 
 
 equiphase surface – any surface in a wave over which the field vectors of a 
particular instant have either 0° or 180° phase difference.   
 
For a plane wave propagating along the +z axis 
 
   ( )  z e am

j z
x         (6.1) 

 
Equation (6.1) states that each z equal to a constant plane will represent an equiphase 
surface with no spatial variation in the electric or magnetic fields.  In other words, 




x y

 0      for a uniform plane wave 

 
It will be necessary to replace z for a plane wave traveling in an arbitrary direction with 
an expression when put equal to a constant (βz = constant), that will result in equiphase 
surfaces.   
The equation of an equiphase plane is given by  
 
      r n r  

 
The radial vector (r) from the origin to any point on the plane, and β is the vector normal 
to the plane is shown in Figure (6.1). 
 
 
 
 
 
 



 

  
 
As you can see from figure 6.1, the plane perpendicular to the vector β is seen from its 
side appearing as a line P-W.  The dot product nβ · r is the projection of the radial vector 
r along the normal to the plane and will have the constant value OM for all points on the 
plane.  The equation β · r = constant is the characteristic property of a plane 
perpendicular to the direction of propagation β. 
 
The equiphase equation is  
 
  β · r = βxx + βyy + βzz 
 
         = β (cos θxx + cos θyy + cos θzz) 
 
         = constant 
 
 
 r = x a y a z ax y z       
 
      x x y y z za a a          
 
θx, θy, θz, are the angles the β vector makes with x, y, and z axes, respectively.   
 
 
 
Definition: 
 transverse electromagnetic wave (TEM) – electromagnetic wave having electric 
field vectors and magnetic field vectors perpendicular to the direction of propagation.   
 
 

x 
y 

z 

P 

W 

r 

x  

 y  

z  

O 

M 

 


 n  



 

p = P x H 
power density flow 

H is perpendicular to E, and both E and H are perpendicular to the direction of 

propagation β.  The expressions for  
 

and are 
 
      

m
j re   

          (6.2) 

  






n


 

 
The unit vector nβ along β and η is the wave impedance in the propagation medium.  See 

Figure 6.2 for the illustration of orthogonal relations between  
 

and and the direction 
of propagation.   

  
 
 
 
 
 
 
 
EXAMPLE 6.1 
 
The vector amplitude of an electric field associated with a plane wave that propagates in 
the negative z direction in free space is given by m x ya a V

m 2 3  

 
Find the magnetic field strength. 
 
 
Solution: 
 

Y 

Z 
H 

E 

Point on the 
plane 

Plane of constant 
phase 

r 

nβ 

X 



 

The direction of propagation nβ is –az.  The vector amplitude of the magnetic field is then 

given by 





m

x y z

x y
n a a a

a a A
m    







 
1

0
2

0
3

1
0

1
377

3 2


 

 

*note 








  120π~377Ω (Appendix D – Table D.1) 

 
Reflection by Perfect Conductor – Arbitrary Angle of Incidence 
 
By decomposing the general problem into two special cases we can simplify our analysis. 
 
1. E field is polarized in the plane formed by the normal to the reflecting surface in the 

direction βi of the incident wave. 
2. E field is perpendicular to the plane of incidence. 
 
The plane formed by the normal to the reflecting surface and the direction of propagation 
β is known as the plane of incidence.  The general case can be considered as a 
superposition of two cases –  
 

 E is parallel to the plane of incidence 
 E is perpendicular to the plane of incidence 
 

 
E Field Parallel to Plane of Incidence 
 

 

 y  

βi 

 r
r  

 y  

θi θr 

Y 

Z 

X 

Perfect 
Conductor 

 i  



 

 
The figure shows an incident wave polarized with the E field in the plane of incidence 
and the power flow in the direction of i  at angle  i with respect to the normal to the 
surface of the perfect conductor.   
 
The direction of propagation is given by the Poynting vector and the i , E, and H fields 

need to be arranged so that i  is in the same direction as  i i at any time.  The 
magnetic field is out of the plane of the paper,   

y ya for the direction of the electric 
field shown. There is no transmitted field within the perfect conductor; however there 
will be a reflected field with power flow at the angle  r with respect to the normal to the 

interface.  To maintain the power density flow r r  will be in the same direction 
 r as. The expression for the total electric field in free space is   
   
               i r

m
i j i r

m
r j r re e      (6.5) 

 
    i i z i x x y zr a a x a y a z a        cos sin  
 
             x zi isin cos       (6.6) 
 
  r r rr x z     sin cos       (6.7) 
 
 
The total electric field has x and z components: 
  

   ,  cos  cos  x m
i

i
j i r

m
r j r r

rx z e e         
 

   ,  sin  sin  z m
i

i
j i r

m
r j r r

rx z e e         
 

   cos  cos  x at z m
i

i
j i r

m
r j r r

re e
     

0
0    

 

                    cos  cossin sin m
i

i
j x

m
r j x r

r
ie e 

   0        (6.8) 
 
Equation 6.8 shows the relationship between the incident and reflected amplitudes for a 
perfect conductor the total tangential E field at the surface must be zero which satisfies 
the boundary condition.  To be zero at all values of x along the surface of the conducting 
plane, the phase terms must be equal to each other – 
 
      i r      (6.9) 



 

 
Equation 6.9 is known as Snell’s law of reflection. 
 
 
Definition: 
 Snell’s Law is a rule of Physics that applies to visible light passing from air (or 
vacuum) to some medium with an index of refraction different from air.   
 
Substitute equation 6.9 into equation 6.8 –  
 
      m

i
m
r      (6.10) 

 
Therefore, the total electric field in free space is  
 
 
     ( , )  ,  ,  x z x z a x z ax x z z   
              
      cos sin cos cosmi i

j x i j z i j z i xe e e a                 

       sin sin cos cosm
i

i j x i j z i j z ie e e za        
 

                           2 j z e am
i

i
j x i

i x cos sin cos( ) sin
   

     (6.11)  
 
            2 j z e am

i
i i j x i z

 sin cos cos sin       
 

      2  cos sin cos( )m
i

i i xj z a    
 
   
             sin cos cos sin

i i z j x iz a e      
 
Take equation 6.11 and recover the time-domain form of the total electric field 
 
         r t r e j t, Re    
 
Observe the variation of the total field with the x variable indicating there is a traveling 
wave in the x direction with a phase constant 
 
      x i sin  

 
And in the z direction the field forms a standing wave. 
 



 

The total magnetic field is  
 
         ,  ,  ,  ,   x z x z a x z a x z ay y y

i
y y

r
y    

Use the relation 



n


for each of the incident and reflected fields to employ the 

expressions x and z components of the incident and reflected electric fields.   
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sin

 cos

cos

 sin(sin cos ) (sin cos 

 

 
 
 
 
 
 
The solution of the determinant, the only nonzero component of  i is the ay component 
given by  
 

      cos  sinsin cos sin cos  i
y m

i
i

j ix iz
m
i

i
j i x iza e e    1 2 2


        

   


sin cosm
i

j ix iz
ye a


    

 
The reflected magnetic fields is given by  
 

 


sin cos
r m

i
j i x iz ye a  


    

 

The total magnetic field 


(x, z) is  
 

  ( , )


cos cos sin


x z a z ey
m
i

i
j x i 2


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The average power flow parallel to the conducting surface is 
 

   ave x z  , Re   
1
2

 

 

      


1
2

0
0

0
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
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y
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z

z

a a a



  

 
The cross product yields two components: 

 One in the x direction 
 One in the z direction 

 

  ave z y x x y za a       1
2

Re      

 
The expression of Pave will reduce to  
 

     ave z y xx z a  , Re    1
2

 

          

         
2

2


sin cos cos
m
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i i xz a


     

 
 
Glancing Incident: 
 

  
 

i ave

m
i

xa


 







90
2

2

,






, the power flow is at maximum. 

 
Normal Incident: 
 
 i x ave  0 0, ,   (Power flow in the x direction is zero) 
 
Average power flow perpendicular to the conducting surface is zero, because the average 
Poynting Vector is zero in that direction 
 

  z ave x yP , Re   1
2

0   



 

Why?  Because  x is multiplied by j, therefore   x yand are out of phase by 90°.  
Therefore, a traveling-wave pattern occurs in the x direction, because the incident and 
reflected waves travel in the same direction, the standing-wave pattern will be observed 
in the z direction, because the incident and reflected waves travel in the opposite 
directions. 
 
The location of zeros (nodes) of the  x field can be found by letting sin   z icos  = 0.  
At a distance z from the conducting plane given by  
 
     z nicos   
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The zeros will occur at distances larger than integer multiples of 2 .  So, for normal 
incidence,i  0,  cosi 1, and the positions of the zeros will are the same as those 
discussed in chapter 5.  For the oblique incidence, the locations of the standing-wave 
nodes are 2  apart along the direction of propagation.  The wavelength measured along 
the z-axis is greater than the wavelength of the incident waves along the direction of 
propagation.  As shown in Figure 6.4 the relation between these wavelengths 

is z
i



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
cos
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The plane of the zero  x field occur at multiples of  2 along the direction of 
propagation, and they are located at integer multiples of z 2  along the z-axis which 
appear separated by larger distances.  Also note that the standing-wave pattern associated 
with the  z component may appear as if there is no zero value of the electric field at  
z = 0, but the  z component is normal to the reflecting surface, therefore the boundary 
condition is not in violation.   
 
Electric Field Normal to the Plane of Incidence 
 
The entire electric field is (out of the paper) in the y direction and the magnetic field will 
have both x and z components.  See Figure 6.5. 
 
The incident electric and magnetic fields are  
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where     i i ir x z  sin cos .  Assume that the reflected field is also in the y 

direction so the magnetic field must be perpendicular to both E and the Poynting Vector 
P = E ^ H, 
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Where      r r rr x z  sin cos .   Determine the angle of reflection r and the 

amplitude of the reflected electric field m
r by using the boundary conditions at z = 0.  

This also includes zero values of the tangential electrical field E and the normal 
component of the magnetic field H.   
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And  
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Note:  These two conditions will provide the same results for the unknowns r m

rand  , 
and be true for every value of x along z = 0 plane, so the phase factors must be equal.   
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Negative sign indicates the opposite direction of the reflected electric field (i.e. into the 
paper) 
 
The total E field is  
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The total H field is 
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And the substitution of   m

r
m
i has been made.  The direction vectors of the incident 

and reflective wave are 
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The components of the total magnetic field are 
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There is a standing-wave in the z direction because the reflected and incident waves 
travel in the opposite direction along the z-axis.  The fields traveling in the x direction 
and having the only nonzero power flow in the direction parallel to the interface.   
 
The concept can be illustrated by considering the average density flow associated with 
the wave.   
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flow is in the x direction. 
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Reflection and Refraction at Plane Interface between Two Media:   
 
Oblique Incidence 
 
Figure 6.7 shows two media with electrical properties 1and 1  in medium 1, and 2  and   
2  in medium 2.  Here a plane wave incident anglei  on a boundary between the two 
media will be partially transmitted into and partially reflected at the dielectric surface.  
The transmitted wave is reflected into the second medium, so its direction of propagation 
is different from the incidence wave.  The figure also shows two rays for each the 
incident, reflected, and transmitted waves.  A ray is a line drawn normal to the equiphase 
surfaces, and the line is along the direction of propagation.   
 



 

 
      
 
The incident ray 2 travels the distance CB, while on the contrary the reflected ray 1 
travels the distance AE.  For both AC and BE to be the incident and reflected wave fronts 
or planes of equiphase, the incident wave should take the same time to cover the distance 
AE.  The reason being that the incident and reflected wave rays are located in the same 
medium, therefore their velocities will be equal,  
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With this being the case then it follows that  
 
      i r   
 
What is the relationship between the angles of incidence i and refraction r ?   
 
It takes the incident ray the equal amount of time to cover distance CB as it takes the 
refracted ray to cover distance AD – 
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And the magnitude of the velocity V1 in medium 1 is:  
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And in medium 2: 
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For most dielectrics   2 1    
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Equation 6.12 is known as Snell’s Law of Refraction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Parallel Polarization Case – E is in Plane of Incidence 
 
 
 
 
 
 

 
 
The unknown amplitudes of the reflected and transmitted electric fields || ||

r tand   can be 
determined by simply applying the boundary conditions at the dielectric interface.  The 
electric fields || ||

r tand   will now be used in the analysis to emphasize the case of parallel 

polarization, instead of using the electric fields m mt
r and  . 

 
The tangential component of H should be continuous across the boundary.  Therefore,  
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There is no need to carry the ay vector, because the magnetic fields only have one 
component in the y direction.  Recall that this relation is valid at z = 0, 
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Figure 6.9 



 

1&21 are the magnitudes of  in regions 1 & 2, respectively.  In order for this to be 
valid at any value of x at any point on the interface, and knowing i r : 
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* This is the same relation that was determined earlier from Snell’s Law.  Substitute       
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E and H are related by , so equation 6.14 can be rewritten as  
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Tangential components of E must be continuous across the boundary, therefore 
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*Remember the exponential terms cancel out z = 0, (Snell’s Law). 
 
Equations 6.15 & 6.16 are solved by –  
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*Making use of the fact that i r .  Define the reflection coefficient  | |  and the 

transmission 
| | : 
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The total electric field in region 1 is  
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Substituted  i rr r , from expressions derived earlier, and   

||  m
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m
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Equation 6.18 states that there is a traveling-wave field in the x direction, and a traveling 
and standing wave field in the z direction.  The difference is that  | |  1 , but 

that  | |     m
r

m
i .  By rearranging the second term in ax component of the total field – 
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This expression indicates that a wave of amplitude  1  ||  is propagating in the z 

direction and another wave of amplitude  2 
| | has the characteristics of a standing wave 

along the z axis.  The characteristic of the wave along the z axis is a combination of a 
traveling and standing wave.  If  | |  1  the amplitude of the traveling wave will be zero, 

and the wave characteristic along the z axis will be a totally standing wave.  If  | |  0 , the 



 

amplitude of the standing wave will be zero and the wave characteristic in the z direction 
would be a totally traveling wave.   
 
The magnetic field in region 1 is 
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The transmitted fields in medium 2 are 
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Definition: 
 
 Brewster Angle – (from Brewster’s Law), the polarizing angle of which (when 
light is incident) the reflected and refracted index is equal to the tangent of the polarizing 
angle.  In other words, the angle of incidence of which there is no reflection. 
From the reflection coefficient expression- 
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It can be seen that there is an angle of incidence at  | |  0 .  This angle can be obtained 
when  
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The angle of incidencei , at which  | |  0 , is known as the Brewster angle.  The 
expression for this angle in terms of the dielectric properties of media 1 & 2, considering 
Snell’s Law for the special case   1 2   is  
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This condition is important, because it is usually satisfied by the materials often used in 
optical applications.   
 
Equation 6.19 will take the form –  
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Square both sides of equation 6.20 and use Snell’s Law for the special case of 
  1 2   for the following result: 
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The last substitution was based on Snell’s Law of refraction.  Therefore, 
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The Brewster angle of incidence is 
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A specific value of θi can be obtained from equation 6.21 -  
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From equations 6.22 & 6.23 –  
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This specific angle of incidence  i is called the Brewster angle .   
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Perpendicular Polarization case – E Normal to Plane of Incidence 
 
As shown in figure 6.10 is a perpendicular polarized wave incident at angle i a 
dielectric medium 2.  Snell’s Law states that a reflected wave will be at the same 
angle r i , and the transmitted wave in medium 2 at angle  t can be calculated using 
this law.  The amplitude of the reflected and transmitted waves can be determined by 
applying the continuity of the tangential components of E & H at the boundary.   
 This is given by – 
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Since E & H are related by ,  
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 
i  

 r  
 t   At z = 0    (6.25) 

 
*Note:  The exponential factors were canceled after substituting z = 0 and using Snell’s 
Laws in the above two equations.   
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And for nonmagnetic materials,   1 2   ,  
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at z = 0, 
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For nonmagnetic material,  
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Comparison between Reflection Coefficients  | | and  for Parallel and 
Perpendicular Polarizations 
 
The significant differences between the two will be illustrated in the following example: 
 
EXAMPLE 
 

1. Define what is meant by the Brewster angle. 

2. Calculate the polarization angle (Brewster angle) for an air water   r  81  

interface at which plane waves pass from the following: 
(a) Air into water. 
(b) Water into air. 

 
 
 
 
 
 



 

SOLUTION 
 

1. Brewster angle is defined as the angle of incidence at which there will be no 
reflected wave.  It occurs when the incident wave is polarized such that the E field 
is parallel to the plane of incidence.   

2. (a)  Air into water: 
     r rand1 21 81    
 
  The Brewster angle is then given by  

    



 1 2

1
tan  = 6.34° 

  Therefore,  
 
      1 81tan  = 83.7° 

 
(b) Water into air: 

    r rand1 281 1   
      Hence, 

     1 1
81

tan = 6.34° 

 
      To relate the Brewster angles in both cases, let us calculate the angle of  
       refraction.   
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sin

i

t


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 Therefore, in case a, 
 

   
sin
sin


 t

 81  

Therefore, 

   tsin
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.  
837
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011 

 
 
 
 
 
 
 
 
 



 

Or t  6 34.  , which is the same as the Brewster angle for case b.  Also, the angle of 
refraction in case b is given by Snell’s Law as: 

   
sin
sin






t
 

81


1
81

 

Therefore, 
 

   tsin
sin .

.  
6 34

1
81

0 99  

Or t  83 7. , which is the Brewster angle for case a.   
 
Total Reflection at Critical Angle of Incidence 
 
In the previous section it was shown that for common dielectrics, the phenomenon of 
total transmission exists only where the electric field is parallel to the plane of incidence 
known as parallel polarization.   
There is a second phenomenon existing for both polarizations: 

 Total reflection occurring at the interface between two dielectric media 
 A wave passing from a medium with a larger dielectric constant to a medium with  
 smaller value of ε 

 
Snell’s Law of refraction shows –  
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   (6.26) 

 
Therefore, if    1 2 , and t i then a wave incident at an angle i will pass into 
medium 2 at a larger anglet .   
 
Definition: 
 c , (critical angle of incidence) is the value of i that makes t = π/2, see Figure 
 6.13. 
 
Substitute t  = π/2 in equation 6.26 to get –  
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1
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1
sin  



 

 
 
Figure illustrates the fact that   t i if , 1 2 .  The critical angle c is defined as the 
value of i at which t = π/2. 
 
Envision a beam of light impinging on an interface between two transparent media 
where n ni t .  At normal incidence (i = 0) most of the incoming light is transmitted 
into the less dense medium.  As i  increases, more and more light is reflected back into 
the dense medium, while t  increases.  When t  = 90°, i is defined to be c  and the 
transmittance becomes zero.  For i > c  all of the light is totally internally reflected, 
remaining in the incident medium.   
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Electromagnetic Spectrum 
 

 
      3 GHz   3 x 1012 Hz  3 x105 Hz  3 x1018 Hz 
      

 
    Frequency 
 
Application to Optics 
 
The figure above shows the spectrum of electromagnetic radiation extending from the 
long- wavelength radio waves to X rays and gamma rays the shortest wavelength. 
 
Topics to be discussed will include control of polarization of incident waves, role of 
Brewster windows in light amplification, and use of the concept of angle of total 
reflection in optical fibers.   
 
 
 
 
 
 
 

 

 Radio  Microwave     Infrared 

 
V
i 
s 
b 
l 
e    

U 
l 
t 
r 
a 
v 
i 
o 
l 
e 
t 
 

X rays 
γ rays 

1 m 10-3 m 10-6 m 10-9 m 

 
 
  1 mm   1μm   1nm 
 

Wavelength 
Figure 6.16 Electromagnetic spectrum from radio waves to X and γ rays. 



 

 
Polarization by Reflection 
 
Definition 
  Unpolarized light – light in which the wave orientation is random around the axis 
of the beam. 
Unpolarized light has both polarization cases  

 Parallel polarization, where the electric field is the plane of incidence 
 Perpendicular polarization where the electric field is perpendicular to the plane of 

incidence 
In certain cases, there may be a need to separate the two polarizations.  One method that 
can be used is the Brewster angle of incidence, also called the polarization angle, to 
separate the two orthogonal polarizations.   
 
Example 
Consider an Unpolarized light that is incident at the Brewster angle on a piece of glass 
with index of refraction n r  15. .  The polarization with a electric field parallel to the 
plane of incidence will be entirely transmitted and the other polarization with a electric 
field perpendicular to the plane of incidence will be partially reflected and partially 
transmitted.  Why is the electric field parallel to the plane of incident totally transmitted?  
*Because it is incident at the Brewster angle.   
 
The second interface which is glass to air as illustrated in example 6.7 has an angle of 
incidence also known as the Brewster angle for light incident from the glass side to free 
space. So, again the polarization with E parallel to the plane of incident will be entirely 
transmitted, and E perpendicular will be partially reflected and partially transmitted. 
 
In Figure 6.17: 

 Reflected wave is entirely polarized, E perpendicular  to the plane of incidence 
 Transmitted wave possess both polarizations 
 Larger amplitude is the E parallel to plane of incidence – entirely transmitted 

throughout the interfaces 
 More glass elements and the transmitted light could be essentially completely 

polarized, E parallel to the plane of incidence 
 

 
 
 
 
 
 
 
 
 



 

Brewster Windows or Brewster Cuts in LASER 
In a normal situation there are more electrons in the ground state (level 1) than in the 
excited states (level 2 & 3).  In other words, there are more electrons in level 1 ready to 
absorb photons that there are electrons in level 2 & 3 to emit photons.  A net emission of 
photons could be the result if this situation could be inverted.  Such a condition is called 
population inversion.  This in fact is the fundamental principle involved in the operation 
of a laser.  Figure 6.8 illustrates this principle. 
 
Definition: 
 Laser (Light Amplification by Stimulated Emission) – A device that produces 
coherent radiation in the visible-light range, between 7500 and 3900 angstroms 
 
Summarized steps leading to LASER action in three-level ruby laser material: 
  

1. The laser material is in the shape of a long rod that is subjected to radiation from 
an extremely intense light source that causes interatomic transition from energy 
levels 1 to 3. (Figure 6.18b) 

 
2. If the nonradiative transition between level 3 and level 2 is fast enough, then 

electrons in level 3 will transfer to level instead of returning to level 1.   
 

3. As a result of direct transition the population of electrons in level 2 will increase 
from level 1.  This is during the radiation from the light source, as well as the 
transfer from level 3.  (Figure 6.18c) 

 
4. If the pumping action is large and fast enough the electron population at level 2 

can be made larger than level 1.  Radiation of light quanta at frequency f21 occurs 
when the electrons can make the transition from level 2 to level 1. 

 
5. By placing mirrors at the end of the laser and forcing the radiation to be reflected 

back and forth maintaining the high-photon density, stimulated emission will 
increase resulting in a large photon density build up or in other words an 
avalanche of photons. 

 
6. An intense light beam will result emerging from the end of the laser rod.   
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  Figure :Light polarizations by multiple reflections. 
 

 
 
Figure 6.18 is a schematic diagram illustrating the sequence of events.   
The role of the Brewster angle: 
 
Known Factors 

 The output of many lasers is linearly polarized  
 The ratio of the light polarized in one direction exceeds the light polarized in the 

orthogonal direction by 1000:1 
As in most cases, a high degree of linear polarization will be the result of a Brewster 
surface within the laser.  A Brewster surface is usually used in the construction of a laser.  
The light must be transmitted out of the medium of the laser to avoid minimal loss.   
 
 

n n n 

 1
 

Partially 
polarized light; 
mostly E 
parallel to plane 
of incidence 

Polarized 
light with E 
perpendicular 
to plane of 
incidence 



 

 
 
 Figure :Sequence of events occurring in laser action. 
 
Figure is a schematic illustrating the use of Brewster windows in a gas discharge laser.  
The Brewster angle makes sure that light in one polarization direction is transmitted out 
of the medium of the laser to the reflecting mirrors and back into the medium of the laser 
with no loss.  Where the light is polarized perpendicular to the plane of incidence a large 
loss at the Brewster surface will take place due to the reflection out of the medium of the 
laser.  The preferred polarization case (linear polarization) will lase (emit coherent light) 
that will account for the high degree of polarization taking place at the output.   

 
 The device in Figure 6.19 exhibits stimulated emission of radiation.  For and example 
lets say the mixture of gases are helium and neon. These gases are confined to the glass 
tube sealed at both ends by mirrors.  An oscillator is connected to the tube to that causes 
electrons to sweep through the tube, colliding with atoms of gas and raising them to 

Brewster windows 
External mirror 
(totally reflecting) 

External mirror 
(partially reflecting) 

Output beam 

Gas discharge 
tube (plasma) 

Figure : Schematic illustrating the use of Brewster windows in a gas discharge LASER 

(a) Thermal equilibrium (b) Absorption of pump radiation 

(c)Nonradiative transfer 
to upper level 

(d) Coherent radiative transition 
and emitting laser 



 

exited states.  Some neon atoms are excited to a higher state during this process that will 
also result in a collision with excited helium atoms.  Stimulated emission occurs as the 
neon atoms make a transition to a lower state and neighboring excited atoms are 
stimulated to emit at the same frequency and phase.  This will result in a production of 
coherent light.   

 
Fiber Optics 
 
Fiber optics deals with the transmission of light through small filamentary fibers called 
dielectric waveguides.  This is based on the phenomenon of total internal reflection 
occurring at the point where the light is obliquely incident on an interface between two 
media with different refractive indexes at an angle greater than the critical angle.  Light is 
incident at an angle θi as shown in Figure 6.20 and is required to determine the range of 
values of the index of refraction n so the internal reflections will occur for any value of 
θi. 

 
Snell’s Law of refraction is the relationship between θi and θt as the wave enter the fiber 
is 

   
sin
sin

i

t
n







 2

1
  1      (6.27) 

  
If 2  is suppose to be larger thanc , then 
 
   sin 2= cos t  ≥ sin c     (6.28)  
 
Refraction from fiber to air sin c  = 1/n, therefore, from equation 6.27 & 6.28 – 
 

sin cos sin sin2
2

2
21 1

1 1
       





 t t in n

   (6.29) 

 
Solve for n, 
   n i

2 21  sin        (6.30) 
 
For equation 6.30 to be true then    = π/2, all incident light will be passed by the fiber 
requiring 
 
   n2 ≥ 2      or    n ≥ 2  
 
 
Most types of glass have n ≈ 1.5; therefore, we have a valid equation.   
 
 
 



 

 

θi 
θt θ2 

Smallest critical angle 

Reflected point 

n ≥ 2  

Figure Schematic illustrating the principle of light propagation in optical fibers. 

 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-5  
WAVEGUIDES AND CAVITY 

RESONATORS 



  

 

 
 
 

TEM wave: Transverse electromagnetic wave (no field 
components in the direction of propagation) 
TM wave: Transverse magnetic wave (with a longitudinal electric 
field component in the direction of propagation) 
TE wave: Transverse electric wave (with a longitudinal magnetic 
field component in the direction of propagation) 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A uniform waveguide with an arbitrary cross section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An enclosed conducting box, which is 
essentially a segment of a waveguide with 
closed end faces, is called a cavity resonator 



  

Waveguides 
 
 
 

Transmission  Lines: support transverse electromagnetic  (TEM) waves. 
 
 
•   Waveguide: A structure  in which EM waves can propagate 
•   TLs are specials cases of waveguides 
• Waveguides  support TEM waves (Hz=Ez=0), but also support 

transverse magnetic (TM) waves (Hz=0) and transverse  electric (TE) 
waves (Ez=0) 

•   TM and TE modes have characteristic  cut-off  frequencies 
•   Waveguides  can be metallic or dielectric 

. 



  

 

General Wave Behaviors along 
Uniform Guiding Structures 

 
We shall consider a straight waveguide in the form of a dielectric-filled metal tube 

having an arbitrary cross section and lying along the z-axis. 

 
 
 
 
 
 
 



  

 

γ is the propagation constant  

 

In Maxwell equations, the two source-free curl equations have six components: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since divE=0 and divH=0 (E and H are divergenceless), this means that there are only four independent 
equations in the above table. Therefore, we have…… 



  

 

Four independent equations: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The transverse components of E and H can be expressed in terms of the longitudinal field components 

Ez, Hz in the direction of propagation (z-direction). 
             (h is viewed as a transverse wavenumber) 

Discussions: Single-conductor waveguides cannot support the TEM waves 
1) If h is nonzero, and Ez=0, Hz=0, then all the transverse components of E and H vanish. This means that 
TEM cannot exist in this single-conductor waveguide. 
2) If h is zero, single-conductor waveguides cannot support TEM waves, either . 



  

According to whether Ez or Hz exists, the propagating waves in a uniform waveguide 
can be classified into three types: 

 

  
TEM waves 

(For TEM waves, Ez=0, Hz=0, and hence h=0, i.e., γ=jk) 
. 

 

 



  

 
 

 
 
 

 
 
 
 

For TEM waves, k, E, H form a right-handed system. 



  

 

 

 
TM waves 

 
(Hz=0, and all the transverse components of E, H are expressed in terms of Ez) 

 
 

E, H are expressed in terms of Ez: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Impedance Z of TM waves is equal 
to γ/(jωε) [similar to that of TEM 
waves], but not equal to jω μ / γ. 

 
 
 
 
 
 
 



  

 

The relation between E and H of TM waves is of the same form as that of TEM waves. 
Cutoff frequency of TM waves (when γ=0) 

 

 
 
 
 
 
 
 
 
 



  

 

 
 

 
 
 
 

When γ=0, the frequency contributes only to the transverse wavenumber h. Such a 
frequency value is the cutoff frequency. 
 
 
 
 
 

 



  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This relation is exactly the same as that of a de Broglie matter wave (in relativistic 
quantum mechanics). Indeed, the dispersion relation of the wave in a waveguide is exactly 
analogous to that of a de Broglie matter wave (with rest mass proportional to the 
transverse wavenumber h). 

 
 



  

 

The wave impedance Z is a real number (purely resistive). 



  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The wave impedance Z is reactive (no power flow with evanescent waves) 



  

 

TE waves 
(Ez=0, and all the transverse components of E, H are expressed in terms of Hz)  

E, H are expressed in terms of Hz: 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Impedance Z of TM waves is equal to jωμ/γ[similar to that of TEM waves], but not equal 
to γ/(jωε) . 



  

When the frequency f is larger than fc, 
 

 
 

Note: 
1) Wavelength, phase velocity, group velocity are the same for TE and TM 
waves. 
2) The wave impedance Z of TE waves is larger than the dielectric impedance, while the 
wave impedance Z of TM waves is smaller than the dielectric impedance. 



  

When the frequency f is smaller than fc, 
 

 
 
 

The wave impedance Z is reactive (no power flow with evanescent waves) 



  

The three types of modes 
 
 

 
 
 

Note: 
1) Wavelength, phase velocity, group velocity are the same for TE and TM 
waves. 
2) The wave impedance Z of TE waves is larger than the dielectric impedance, 
while the wave impedance Z of TM waves is smaller than the dielectric impedance. 



  

 

Parallel-Plate Waveguide 
 
 

A infinite parallel-plate waveguide  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parallel-plate waveguide of two perfectly conducting plates separated by a 
dielectric medium with constitutive parameters ε and μ. 
Note: 
Perfect conductors: the electric conductivity σ of the parallel plates is infinite. 
Perfect dielectrics: the electric conductivity σ of the filling medium is zero. 



  

 

TM Waves in a Parallel-Plate Waveguide 
Since E, H are expressed in terms of Ez,  for the first, we need to obtain Ez: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The solution is given by 
 

 

The wave is uniform (i.e., it does not vary) in the x-direction; The wave is a standing 
wave in the y-direction;The wave is propagating (travelling) in the z-direction. 



  

The cutoff frequency is determined by the wavenumber of the standing wave in the y- 
direction. 

 

Waves with f>fc propagate with a phase constant βgiven in Eq. (10-38), while waves with 
f<fc are evanescent.   
TM for n=0 exists (In fact, TM for n=0 is a TEM wave because its Ez also vanishes). 
Obviously, for n=0, the cutoff frequency fc=0. 
The mode having the lowest cutoff frequency is called the “dominant mode”. 
Thus, for a parallel-plate waveguide, the dominant mode is the TEM mode. 



  

TE Waves in a Parallel-Plate Waveguide 
 

Since E, H are expressed in terms of Hz,  for the first, we need to obtain Hz: 
 
 

 
 
 

The wave is uniform (i.e., it does not vary) in the x-direction; The wave is a standing 
wave in the y-direction; 
The wave is propagating (travelling) in the z-direction. 



  

 
 

Note: 
1) The cutoff frequency for the TEn mode in a parallel-plate waveguide is exactly the 

same as that for the TMn mode given in Eq. (10-67). 
2)  TEn for n=0 does not exist, because Hy=0, Ex=0. 
3)  TMn for n=0 exists (In fact, TM for n=0 is a TEM wave because its Ez=0). 



  

 

 TM waves in rectangular waveguides 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: When the dimension a approaches an infinite value, Ex and Hy are zero, and Ey and Hx are 
reduced to the forms in  (10-64), (10-65) of TM modes in parallel-plates waveguides. 



  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For TM modes in rectangular waveguides, neither m nor n can be zero. 
Hence the TM11 mode has the lowest cutoff frequency of all TM modes in a rectangular 
waveguide. 



  

 

 

TE waves in rectangular waveguides 
Since E, H are expressed in terms of Hz,  for the first, we need to obtain Hz: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: When the dimension a approaches an infinite value, Ey and Hx are zero, and Ex and 
Hy are reduced to the forms in (10-84), (10-85) of TE modes in parallel-plates waveguides 



  

 
 
 



  

 

Circular Waveguides 
 
 
 
 
 
 

Circular Waveguides: Metal pipes having a uniform 

circular cross section and being filled with a dielectric 

medium. 
    
 

A straight waveguide with a uniform circular cross section (its axis in the z-direction)   
The TEM waves cannot exist in such a waveguide without an inner conductor.       
The propagating waves can be classified into two groups: transverse magnetic (TM) and transverse 
electric (TE) waves.   
For the TM waves, we need to solve the homogeneous  Helmholtz’s  
equation of Ez. 



  

 
Bessel’s differential equation and Bessel functions 

 

In cylindrical  coordinates   the expansion  of Eq. (10-196)  gives (see Eq. 4-8) 
 

(10-197)         
To  solve Eq. (10-197),  we apply  the method  of separation   of variables  by assuming a product   
solution. 

 

     (10-198)  
where  R(r)  and      are functions  only of r and    respectively.  Substituting   solution 
(10-198)  in Eq. (10-197)  and  dividing  by the  product  we obtain 
 

     
Now  the  left side  of  Eq.  (10-199)   is a function   of r  only,  and  the  right  side  is a function  of 

 only.  For  Eq.  (10-199)   to  hold  for all values  of r and    ,   both  sides must  be equal  to  the  
same  constant.   Let  this constant   (separation   constant)   be n2•  
 



  

We can separate   Eq. (10-199)  into  two ordinary   differential  equations:  
 

 

     (10-200) 
 
 
 

       

 

 



  

The Bessel functions of the first kind 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Bessel functions Jn(x) of the first kind have three properties: 
①Jn(0)=0 for all n except when n=0. For n=0, J0(0)=1. 
②Jn(x) are alternating functions of decreasing amplitudes. 
③As x becomes large, the Bessel functions Jn(x) approach the sinusoidal forms.



  

 

 

 
TM waves in circular waveguides 

 
 
 
 
 
 
 



  

 

The solutions for TM waves in the circular waveguide 
 

 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



  

 

 
 
 
 

Fig. 10-20 
Field lines for TM01 mode in a transverse 
plane of circular waveguide 

 
 
 
 
 
 
 
 
 
 
 
 

TM01 mode: Ez, Er and Hφ are the only nonzero 
field components. 



The solutions for TE waves in the circular waveguide  

 

 
 
 

By using Eqs. (10-49) (10-50) (10-51) (10-52), we can 
obtain all the field components of TE modes in the circular waveguide: 



The solutions for TE waves in the circular waveguide  

 
 
 
 
 
 
 
 

 

 
 
 
 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10-21 
Field lines for TE11 mode in a transverse plane of a 
circular waveguide 

 
 



 

 

 
 
 

 Cavity Resonators 
 

 
 
 
 
 

An enclosed conducting box, which 
is essentially a segment of a 
waveguide with closed end faces, is 
called a cavity resonator. 



 

 
TMmnp modes in a rectangular cavity resonator 

 

The phasor of the field components: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

TEmnp modes in a rectangular cavity resonator 
 

The phasor of the field components: 
 

 
 
 
 
 


