
 

 

 

 

EMBEDDED SYSTEM DESIGN 
 

UNIT 1 

INTRODUCTION TO EMBEDDED SYSTEM 
 

 Embedded  systems overview 

An embedded system is nearly any computing system other than a desktop computer. An 

embedded system is a dedicated system which performs the desired function upon power up, 

repeatedly. 

Embedded systems are found in a variety of common electronic devices such as consumer 

electronics ex. Cell phones, pagers, digital cameras, VCD players, portable Video games, 

calculators, etc., 

Embedded systems are found in a variety of common electronic devices, such as: 

(a)consumer electronics -- cell phones, pagers, digital cameras, camcorders, videocassette 

recorders, portable video games, calculators, and personal digital assistants; (b) home  appliances 

-- microwave ovens, answering machines, thermostat, home security, washing machines, and 

lighting systems; (c) office automation -- fax machines, copiers, printers, and scanners; (d) 

business equipment -- cash registers, curbside check-in, alarm systems, card readers, product 

scanners, and automated teller machines; (e) automobiles --transmission control, cruise control, 

fuel injection, anti-lock brakes, and active suspension 

Classifications of Embedded systems 

 
1. Small Scale Embedded Systems: These systems are designed with a single 8- or 16-bit 

microcontroller; they have little hardware and software complexities and involve board- 

level design. They may even be battery operated. When developing embedded software 

for these, an editor, assembler and cross assembler, specific to the microcontroller or 

processor used, are the main programming tools. Usually, ‗C‘ is used for developing 

these systems. ‗C‘ program compilation is done into the assembly, and executable codes 

are then appropriately located in the system memory. The software has to fit within the 

memory available and keep in view the need to limit power dissipation when system is 



 

 

running continuously. 

 

2. Medium Scale Embedded Systems: These systems are usually designed with a single or 

few 16- or 32-bit microcontrollers or DSPs or Reduced Instruction Set Computers 

(RISCs). These have both hardware and software complexities. For complex software 

design, there are the following programming tools: RTOS, Source code engineering tool, 

Simulator, Debugger and Integrated Development Environment (IDE). Software tools 

also provide the solutions to the hardware complexities. An assembler is of little use as a 

programming tool. These systems may also employ the readily available ASSPs and IPs 

(explained later) for the various functions—for example, for the bus interfacing, 

encrypting, deciphering, discrete cosine transformation and inverse transformation, 

TCP/IP protocol stacking and network connecting functions. 

3. Sophisticated Embedded Systems: Sophisticated embedded systems have enormous 

hardware and software complexities and may need scalable processors or configurable 

processors and programmable logic arrays. They are used for cutting edge applications 

that need hardware and software co-design and integration in the final system; however, 

they are constrained by the processing speeds available in their hardware units. Certain 

software functions such as encryption and deciphering algorithms, discrete cosine 

transformation and inverse transformation algorithms, TCP/IP protocol stacking and 

network driver functions are implemented in the hardware to obtain additional speeds by 

saving time. Some of the functions of the hardware resources in the system are also 

implemented by the software. Development tools for these systems may not be readily 

available at a reasonable cost or may not be available at all. In some cases, a compiler or 

retarget able compiler might have to be developed for these. 

 

The processing units of the embedded system 

 
1. Processor in an Embedded System A processor is an important unit in the embedded 

system hardware. A microcontroller is an integrated chip that has the processor, memory 

and several other hardware units in it; these form the microcomputer part of the 

embedded system. An embedded processor is a processor with special features that allow 

it to be embedded into a system. A digital signal processor (DSP) is a processor meant for 

applications that process digital signals. 



 

 

 

2. Commonly used microprocessors, microcontrollers and DSPs in the small-, medium-and 

large scale embedded systems 

3. A recently introduced technology that additionally incorporates the application-specific 

system processors (ASSPs) in the embedded systems. 

4. Multiple processors in a system. 

 
Embedded systems are a combination of hardware and software as well as other components 

that we bring together inti products such as cell phones,music player,a network router,or an 

aircraft guidance system.they are a system within another system as we see in Figure 1.1 

 

 
Figure 1.1: A simple embedded system 

 

Building  an embedded system 

 
we embed 3 basic kinds of computing engines into our systems: microprocessor, 

microcomputer and microcontrollers. The microcomputer and other hardware are connected via 

A system bus is a single computer bus that connects the major components of a computer  

system. The technique was developed to reduce costs and improve modularity. It combines the 

functions of a data bus to carry information, an address bus to determine where it should be sent, 

and a control bus to determine its operation. 

The system bus is further classified int address ,data and control bus.the microprocessor 

controls the whole system by executing a set of instructions call firmware that is stored in ROM. 



 

 

 

An instruction set, or instruction set architecture (ISA), is the part of the computer 

architecture related to programming, including the native data types, instructions, registers, 

addressing modes, memory architecture, interrupt and exception handling, and external I/O. An 

ISA includes a specification of the set of opcodes (machine language), and the native commands 

implemented by a particular processor. To run the application, when power is first turned ON, 

the microprocessor addresses a predefined location and fetches, decodes, and executes the 

instruction one after the other. The implementation of a microprocessor based embedded system 

combines the individual pieces into an integrated whole as shown in Figure 1.2, which represents 

the architecture for a typical embedded system and identifies the minimal set of necessary 

components. 

 

 
Figure 1.2 :A Microprocessor based Embedded system 



 

 

 

Embedded design and development process 

 
Figure1.3 shows a high level flow through the development process and identifies the 

major elements of the development life cycle. 

 

 
Figure 1.3 Embedded system life cycle 



 

 

 

The traditional design approach has been traverse the two sides of the accompanying diagram 

separately, that is, 

   Design the hardware components 

  Design the software components. 

  Bring the two together. 

   Spend time testing and debugging the system. 

 
The major areas of the design process are 

 
   Ensuring a sound software and hardware specification. 

   Formulating the architecture for the system to be designed. 

  Partitioning the h/w and s/w. 

   Providing an iterative approach to the design of h/w and s/w. 

The important steps in developing an embedded system are 

  Requirement definition. 

   System specification. 

  Functional design 

   Architectural design 

  Prototyping. 

The major aspects in the development of embedded applications are 

 
   Digital hardware and software architecture 

   Formal design , development, and optimization process. 

  Safety and reliability. 

   Digital hardware and software/firmware design. 

   The interface to physical world analog and digital signals. 

Debug, troubleshooting and test of our design. 



 

 

 
 

 

Figure 1.4: Interfacing to the outside world 

 
Embedded applications are intended to work with the physical world, sensing various 

analog and digital signals while controlling, manipulating or responding to others. The study of 

the interface to the external world extends the I/O portion of the von-Neumann machine as 

shown in figure 1.4 with a study of buses, their constitutes and their timing considerations. 

Exemplary applications of each type of embedded system 

 
Embedded systems have very diversified applications. A few select application areas of 

embedded systems are Telecom, Smart Cards, Missiles and Satellites, Computer Networking, 

Digital Consumer Electronics, and Automotive. Figure 1.9 shows the applications of embedded 

systems in these areas. 



 

 

 
 

 
 

 

 

Figure 1.9 Applications of embedded systems 



 

 

 

UNIT 2 

THE HARDWARE SIDE 
 

In today‘s hi-tech and changing world, we can put together a working hierarchy of hard 

ware components. At the top, we find VLSI circuits comprising of significant pieces of 

functionality: microprocessor, microcontrollers, FPGA‘s, CPLD, and ASIC. 

Our study of hardware side of embedded systems begins with a high level view of the 

computing core of the system. we will expand and refine that view of hardware both inside and 

outside of the core. Figure 2.1 illustrates the sequence. 

 

 

Figure 2.1 Exploring embedded systems 
 

The core level 
 

Figure 2.2 Four major blocks of an embedded hardware core 



 

 

 

At the top, we begin with a model comprising four major functional blocks i.e., input, output, 

memory and data path and control depicting the embedded hardware core and high level signal 

flow as illustrated in figure 2.2. 

The source of the transfer is the array of eight bit values; the destination is perhaps a 

display. in figure 2.3, we refine the high level functional diagram to illustrate a typical bus 

configuration comprising the address, data and control lines. 

 

Figure 2.3 A typical Bus structure comprising address, data and control signals. 

 

 

The Microprocessor 

A microprocessor (sometimes abbreviated µP) is a programmable digital electronic 

component  that  incorporates  the  functions   of   a central   processing   unit   (CPU) on   a 

single semiconducting integrated circuit (IC). It is a multipurpose, programmable device that 

accepts digital data as input, processes it according to instructions stored in its memory, and 

provides results as output. It is an example of sequential digital logic, as it has internal memory. 

Microprocessors operate on numbers and symbols represented in the binary numeral system. 

A microprocessor control program can be easily tailored to different needs of a product 

line, allowing upgrades in performance with minimal redesign of the product. Different   features 



 

 

 

can be implemented in different models of a product line at negligible production cost. Figure 

2.4 shows a block diagram for a microprocessor based system. 
 

 

 

 

Figure 2.4 : A block diagram for a microprocessor based system 

 

 

The microcomputer 

The microcomputer is a complete computer system that uses a microprocessor as its 

computational core. Typically, a microcomputer will also utilizes numerous other large scale 

integrated circuits to provide necessary peripheral functionality. The complexity of 

microcomputers varies from simple units that are implemented on a single chip along with a 

small amount of on chip memory and elementary I/O system to the complex that will augment 

the microprocessor with a wide array of powerful peripheral support circuitry. 

The microcontroller 

A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer on a 

single integrated     circuit containing     a     processor     core,     memory,      and   

programmable input/output peripherals.  Program  memory  in  the  form  of NOR  flash or  OTP 



 

 

 

ROM is also often included on chip, as well as a typically small amount of RAM. 

Microcontrollers are designed for embedded applications, in contrast to the microprocessors used 

in personal computers or other general purpose applications. 

Figure 2.5 shows together the microprocessor core and a rich collection of peripherals and I/O 

capability into a single integrated circuit. 

Microcontrollers are used in automatically controlled products and devices, such as 

automobile engine control systems, implantable medical devices, remote controls, office 

machines, appliances, power tools, toys and other embedded systems. By reducing the size and 

cost compared to a design that uses a separate microprocessor, memory, and input/output  

devices, microcontrollers make it economical to digitally control even more devices and 

processes. Mixed signal microcontrollers are common, integrating analog components needed to 

control non-digital electronic systems. 

Figure 2.5 :A block diagram for a microcontroller based system 
 

The digital signal processor 

A digital signal processor (DSP) is a specialized microprocessor with an architecture 

optimized for the operational needs of digital signal processing. A DSP provides fast, discrete- 



 

 

 

time, signal-processing instructions. It has Very Large Instruction Word (VLIW) processing 

capabilities; it processes Single Instruction Multiple Data (SIMD) instructions fast; it processes 

Discrete Cosine Transformations (DCT) and inverse DCT (IDCT) functions fast. The latter are a 

must for fast execution of the algorithms for signal analyzing, coding, filtering, noise 

cancellation, echo-elimination, compressing and decompressing, etc. Figure 2.6 shows the block 

diagram for a digital signal processor 

 

Figure 2.6  A block diagram for a digital signal processor 
 

By the standards of general-purpose processors, DSP instruction sets are often highly irregular. 

One implication for software architecture is that hand-optimized assembly-code routines are 

commonly packaged into libraries for re-use, instead of relying on advanced compiler 

technologies to handle essential algorithms. 

Hardware features visible through DSP instruction sets commonly include: 
 

    Hardware modulo addressing, allowing circular buffers to be implemented without having to 

constantly test for wrapping. 



 

 

 

    Memory architecture designed for streaming data, using DMA extensively and expecting 

code to be written to know about cache hierarchies and the associated delays. 

    Driving multiple arithmetic units may require memory architectures to support several 

accesses per instruction cycle 

    Separate program and data memories (Harvard architecture), and sometimes concurrent 

access on multiple data busses 

    Special SIMD (single instruction, multiple data) operations 

    Some processors use VLIW techniques so each instruction drives multiple arithmetic units in 

parallel 

    Special arithmetic operations, such as fast multiply–accumulates (MACs). Many  

fundamental DSP algorithms, such as FIR filters or the Fast Fourier transform (FFT) depend 

heavily on multiply–accumulate performance. 

    Bit-reversed addressing, a special addressing mode useful for calculating FFTs 

    Special loop controls, such as architectural support for executing a few instruction words in a 

very tight loop without overhead for instruction fetches or exit testing 

    Deliberate exclusion of a memory management unit. DSPs frequently use multi-tasking 

operating systems, but have no support for virtual memory or memory protection. Operating 

systems that use virtual memory require more time for context switching among processes, 

which increases latency. 

Representing Information 

 

 



 

 

 

Big endian systems are simply those systems whose memories are organized with the 

most significant digits or bytes of a number or series of numbers in the upper left corner of a 

memory page and the least significant in the lower right, just as in a normal spreadsheet. 

Little endian systems are simply those system whose memories are organized with the 

least significant digits or bytes of a number or series of numbers in the upper left corner of a 

memory page and the most significant in the lower right. There are many examples of both types 

of systems, with the principle reasons for the choice of either format being the underlying 

operation of the given system. 

Understanding numbers 

We have seen that within a microprocessor, we don‘t have an unbounded numbers of bits with 

which to express the various kinds of numeric information that we will be working with in an 

embedded application. The limitation of finite word size can have unintended consequences of 

results of any mathematical operations that we might need to perform. Let‘s examine the effects 

of finite word size on resolution, accuracy, errors and the propagation of errors in these  

operation. In an embedded system, the integers and floating point numbers are normally 

represented as binary values and are stored either in memory or in registers. The expensive  

power of any number is dependent on the number of bits in the number. 

Addresses 

In the earlier functional diagram as well as in the block diagram for a microprocessor, we learned 

that information is stored in memory. Each location in memory has an associated address much 

like an index in the array. If an array has 16 locations to hold information, it will have 16 indices. 

if a memory has 16 locations to store information ,it will have 16 addresses. Information is 

accessed in memory by giving its address. 

MSB LSB 

31 0 

Big endian 

LSB MSB 



 

 

 

0 31 
 

Little endian 
 

Figure Expressing Addresses 
 

Instructions 

An instruction set, or instruction set architecture (ISA), is the part of the computer 

architecture related to programming, including the native data types, instructions, registers, 

addressing modes, memory architecture, interrupt and exception handling, and external I/O. An 

ISA includes a specification of the set of opcodes (machine language), and the native commands 

implemented by a particular processor. 

The entities that instructions operate on are denoted Operand. The number of operands that an 

instruction operates on at any time is called the arity of the operation. 

 

 
Figure 2.7 Expressing Instructions 



 

 

 

In figure 2.7 ,we see that within the 32 bit word, the bit are aggregated into groups or fields. 

Some of the fields are interpreted as the operation to be performed, and others are seen as the 

operands involved in the operation. 

Embedded systems-An instruction set view 

A microprocessor instruction set specifies the basic operations supported by the machine. From 

the earlier functional model, we see that the objectives of such operations are to transfer or store 

data, to operate on data, and to make decisions based on the data values or outcome of the 

operations, corresponding to such operations, we can classify instructions into the following 

groups 

   Data transfer 

  Flow control 

   Arithmetic and logic 

 

 
Data transfer Instructions 

Data transfer instructions are responsible for moving data around inside the processor as well as 

for bringing data in from the outside world or sending data out. The source and destination can  

be any of the following: 

   A register 

  Memory 

   An input or output 

As shown in figure 

 

Addressing modes 

There are five addressing modes in 8085. 

1.Direct Addressing Mode 

1. Register Addressing Mode 

 
2. Register Indirect Addressing Mode 



 

 

 

3. Immediate Addressing Mode 

 
4. Implicit Addressing Mode 

 
Direct Addressing Mode 

 
In this mode, the address of the operand is given in the instruction itself. 

 
   LDA is the operation. 

   2500 H is the address of source. 

  Accumulator is the destination. 

 
1. Immediate addressing mode: 

 
In this mode, 8 or 16 bit data can be specified as part of the instruction. 

 
OP Code Immediate Operand 

 

 

Example 1 : MOV CL, 03 H 

 
Moves the 8 bit data 03 H into CL 

Example 2 : MOV DX, 0525 H 

Moves the 16 bit data 0525 H into DX 

 
In the above two examples, the source operand is in immediate mode and the destination operand 

is in register mode. A  constant such as ―VALUE‖ can be defined by the assembler EQUATE 

directive such as VALUE EQU 35H 

Example :  MOV BH, VALUE 

 
Used to load 35 H into BH 

 
2. Register addressing mode 



 

 

 

The operand to be accessed is specified as residing in an internal register of 8086. Example 

below shows internal registers, any one can be used as a source or destination operand, however 

only the data registers can be accessed as either a byte or word. 

Example 1 : MOV DX (Destination Register) , CX (Source Register) 

Which moves 16 bit content of CS into DX. 

Example 2 : MOV CL, DL 

 
Moves 8 bit contents of DL into CL 

MOV BX, CH is an illegal instruction. 

* The register sizes must be the same. 

 
3. Direct addressing mode 

 
The 20 bit physical address of the operand in memory is normally obtained as 

PA = DS : EA 

But by using a segment override prefix (SOP) in the instruction, any of the four  segment 

registers can be referenced, 

 

 
The Execution Unit (EU) has direct access to all registers and data for register and immediate 

operands. However the EU cannot directly access the memory operands. It must use the BIU, in 

order to access memory operands. 

In the direct addressing mode, the 16 bit effective address (EA) is taken directly from the 

displacement field of the instruction. 



 

 

 

Example 1 : MOV CX, START 

 
If the 16 bit value assigned to the offset START by the programmer using an assembler pseudo 

instruction such as DW is 0040 and [DS] = 3050. 

Then BIU generates the 20 bit physical address 30540 H. The content of 30540 is moved to CL 

The content of 30541 is moved to CH 

Example 2 : MOV CH, START 

 
If [DS] = 3050 and START = 0040 

 
8 bit content of memory location 30540 is moved to CH. 

Example 3 : MOV START, BX 

With [DS] = 3050, the value of START is 0040. 

Physical address : 30540 

1. Register indirect addressing mode : 

 
The EA is specified in either pointer (BX) register or an index (SI or DI) register. The 20 bit 

physical address is computed using DS and EA. 

 

 
Example : MOV [DI], BX 

 
If [DS] = 5004, [DI] = 0020, [Bx] = 2456  PA=50060. 

 
The content of BX(2456) is moved to memory locations 50060 H and 50061 H. 

 
2. Based addressing mode: 



 

 

 

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is 

computed from BP and SS. 

 

 
Example : MOV AL, START [BX] or MOV AL, [START + BX] 

EA  :  [START] + [BX] 

PA  : [DS] + [EA] 

 
The 8 bit content of this memory location is moved to AL. 

 
Indexed addressing mode: 

 

 
Example : MOV BH, START [SI] 

PA : [SART] + [SI] + [DS] 

The  content of this memory is moved into BH 

 
Based Indexed addressing mode: 



 

 

 
 

 
 

Example : MOV ALPHA [SI] [BX], CL 

 
If [BX] = 0200, ALPHA – 08, [SI] = 1000 H and [DS] = 3000 

 
Physical address (PA) = 31208 

 
8 bit content of CL is moved to 31208 memory address. 

 
Execution flow 

 
The execution flow or control flow captures the order of evaluation of each instruction 

comprising the firmware in an embedded application, we can identify these as 

   Sequential 

Branch 

   Loop 

   Procedure or functional call 

 
Sequential flow-sequential control flow describes the fundamental movement through a program. 

Each instruction contained in the program is executed in sequence one after the other. 

Branch- 
 

The control-flow of a language specify the order in which computations are performed 

The if-else statement is used to express decisions. Formally the syntax is 

if (expression) 

statement1 

else 



 

 

 

statement2 

 
Where the else part is optional. The expression is evaluated; if it is true (that is, if expression has 

a nonzero value), statement1 is executed. If it is false (expression is zero) and if there is an else 

part,  statement2  is executed instead. 

Since a if tests the numeric value of an expression, certain coding shortcuts are possible. The 

most obvious is writing 

if (expression) 

 
Instead of 

 
if (expression != 0) 

 
Sometimes this is natural and clear; at other times it can be cryptic 

 

 

 
Procedure or function call 

 

The procedure or function invocation is the most complex of the flow of control constructs. 

CALL operand - when PC is unconditionally saved and replaced by specified operand; the 

control is transferred to specified memory location. 

RET – Previously saved contents of PC are restored, and control is returned to previous context. 

 
Arithmetic and logic 

 

Arithmetic and logic operations are essential elements in affecting what the processor is to do. 

such operations are executed by any og several hardware components comprising the ALU. 

Figure 2.8  presents a block diagram for a possible functional ALU architecture. 



 

 

t Datapath 

 
 

 

 

Figure 2.8  A  block diagram for a possible functional ALU architecture. 

 
Data is brought into the ALU and held in the local registers. The opcode is decoded, the 

appropriate operation is performed on the selected operands, and the result is stored in another 

local register. 

Embedded system-A register view 

 
At the ISA level, the instruction set specifies the basic operations supported by the machine-that 

is , the external view of the processor from the developer‘s perspective. The instruction set 

expresses the machine‘s ability to transfer data, store data , operate on data, and make decision. 

The core hardware comprises a control unit and a data path as illustrated in figure 2.9 

 

Control input 
control 

control output 

 

 

Control signals status information 

Data input  data output 

 
 

Figure 2.9 A control and datapath block diagram 



 

 

 

The data path is a collection of registers and an associated set of micro operations on the data 

held in the registers. The control unit directs the ordered execution of the micro operations so as 

to effect the desired transformation of the data. Thus the system‘s behavior can be expressed by 

the movement of data among these registers, by operations and transformations performed on the 

register‘s contents, and by the management of how such movements and operations take 

place.the operations on data found at the instruction level are paralled by a similar, yet more 

detailed, set of operations at the register level. 

Register view of a Microprocessor 

The datapath 

Figure 2.10 expresses the architecture of the datapath and the memory interface for a 

simple microprocessor at the register transfer level. 

 

 

Figure 2.10 Architecture of the datapath and the memory interface 
 

Processor control 
 

The control of the microprocessor data path comprises four fundamental operations 

defined as the instruction cycle . The steps are identified in figure 2.11 . 



 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 The instruction cycle 
 

Fetch-The fetch operation retrieves an instruction from memory. That instruction is identified by 

its address, which is the contents of the PC. 

Decode-The decode step is performed when the opcode field in the instruction is extracted from 

the instruction and decoded by the decoder. That information is forwarded to the control logic, 

which will initiate the execute portion of the instruction cycle. 

Execute-Based on the value contained in the opcode field, the control logic performs the 

sequence of steps necessary to execute the instruction. 

Next-The address of the next instruction to be executed is dependent on the type of instruction to 

be executed and potentially, on the state of the condition flags as modified by the recently 

completed instruction. 

The Hardware side-storage elements and finite state machines 

 
The logic devices that we have studied so far are combinational. The outputs of such circuitry are 

a function of inputs only, they are valid as long as the inputs are true. If the input changes, the 

output changes. 



 

 

 

The concepts of State and Time 

 
Time - A combinational logic system has no notion of time or history. The present output does 

not depend in any way on how the output values are achieved. Neglecting the delays through the 

system, we find that the output is immediate and a direct function of the current input set. Time  

is an integral part of the behavior of a system. 

State -In an analog circuits, we define branch and mesh currents and branch or node voltages. 

The values these variables assume over time characterize the behavior of that circuit. If we know 

the values of the specified variables over time, we know the behavior of the circuit. Such 

variables are called state variables. We define the state of a system at any time as a set of values 

for such variables; each set of values represents a unique state. 

State changes 

 
In traditional logic, a simple memory device, represented by a single variable, has two states 

binary 1 and 0. The device will remain in the state until changed. For a set of variables, the state 

changes with time are called the behavior of a system. 

The state diagram 

 
In the embedded world, the state diagram is one of the means used to capture, describe and 

specify the behavior of a system. In a state diagram, each state is represented by a circle,node,or 

vertex. We label each node to identify the state. A memory device has two states-its output is a 

logical 0 or 1,thus to express its behavior we will need two nodes as shown in figure 2.12. 

 

 

 

 
Figure 2.12 transition between states in a digital memory device 



 

 

 

We show the transition between two states using a labeled directed line or arrow called arc as 

illustrated in figure because the line has a direction, the state diagram is referred to as a directed 

graph. The head o point of the arrow identifies the final state, and the tail or back of the arrow 

identifies the initial state. 

Finite-state machine (FSM)- A theoretical model 

 
A finite-state  machine (FSM)  or finite-state  automaton (plural: automata),  or  simply    

a state machine, is a mathematical model of computation used to design  both computer  

programs and sequential logic circuits. It is conceived as an abstract machine that can be in one  

of a finite number of states. The machine is in only one state at a time; the state it is in at any 

given time is called the current state. It can change from one state to another when initiated by a 

triggering event or condition; this is called a transition. A particular FSM is defined by a list of 

its states, and the triggering condition for each transition. 

The behavior of state machines can be observed in many devices in modern society  

which perform a predetermined sequence of actions depending on a sequence of events with 

which they are presented. Simple examples are vending machines which dispense products when 

the proper combination of coins are deposited, elevators which drop riders off at upper floors 

before going down, traffic lights which change sequence when cars are waiting, and combination 

locks which require the input of combination numbers in the proper order. 

Finite-state machines can model a large number of problems, among which are electronic 

design automation, communication protocol design, language parsing and other engineering 

applications. In biology and artificial intelligence research, state machines or hierarchies of state 

machines have been  used  to  describe neurological  systems and  in  linguistics—to  describe  

the grammars of natural languages. 

Figure shows a simple finite-state machine having no inputs other than a clock and have 

only primitive outputs. such machines are referred to as autonomous clocks. A high level block 

diagram for a finite-state machine  begins with the diagram in figure 2.13. 



 

 

 
 

 
 

Figure 2.13 A high level block diagram for a finite-state machine 

 
The output shown in the diagram may be the values of the state variables, combinations of the 

state variables ,or combinations of the state variables and the inputs. 



 

 

 

UNIT 3 

Memory 

In a system, there are various types of memories. Figure 1.4 shows a chart for the various 

forms of memories that are present in systems. These are as follows: 

(i) Internal RAM of 256 or 512 bytes in a microcontroller for registers, temporary data and 

stack. 

(ii) (ii) Internal ROM/PROM/EPROM for about 4 kB to 16 kB of program (in the case of 

microcontrollers). 

(iii) (iii) External RAM for the temporary data and stack (in most systems). 

(iv) (iv) Internal caches (in the case of certain microprocessors). 

(v) (v) EEPROM or flash (in many systems saving the results of processing in nonvolatile 

memory: for example, system status periodically and digital-camera images, songs, or 

speeches after a suitable format compression). 

(vi) (vi) External ROM or PROM for embedding software (in almost all nonmicrocontroller- 

based systems). 

(vii) (vii) RAM Memory buffers at the ports. (viii) Caches (in superscalar microprocessors). 
 

 
 

Table 1.1 gives the functions assigned in the embedded systems to the memories. ROM or 

PROM or EPROM embeds the embedded software specific to the system. 



 

 

 

Table 1.1 
 

The memory unit in an embedded system should have low access time and high density (a 

memory chip has greater density if it can store more bits in the same amount of space). Memory 

in an embedded system consists of ROM (only read operations permitted) and RAM (read and 

write operations are permitted). The contents of ROM are non-volatile (power failure does not 

erase the contents) while RAM is volatile. The classification of the ROM is given in Figure 3.1. 

ROM stores the program code while RAM is used to store transient input or output data. 

Embedded systems generally do not possess secondary storage devices such as magnetic disks. 

As programs of embedded systems are small there is no need for virtual storage. 

 

Figure 3.1: Classifications of ROM 
 

Volatile memory 
 

A primary distinction in memory types is volatility. Volatile memories only hold their contents 

while power is applied to the memory device. As soon as power is removed, the memories lose 

their contents; consequently, volatile memories are unacceptable if data must be retained when 

the  memory  is  switched  off.  Examples  of  volatile  memories  include  static  RAM (SRAM), 



 

 

 

synchronous static RAM (SSRAM), synchronous dynamic RAM (SDRAM), and FPGA on-chip 

memory. 

Nonvolatile memory 
 

Non-volatile memories retain their contents when power is switched off, making them good 

choices for storing information that must be retrieved after a system power-cycle. Processor 

boot-code, persistent application settings, and FPGA configurationdataaretypicallystoredinnon- 

volatilememory.Althoughnon-volatile memory has the advantage of retaining its data when 

power is removed, it is typically much slower to write to than volatile memory, and often has 

more complex writing and erasing procedures. Non-volatile memory is also usually only 

guaranteed to be erasable a given number of times, after which it may fail. Examples of non- 

volatile memories include all types of flash, EPROM, and EEPROM. Most modern embedded 

systems use some type of flash memory for non-volatile storage. Many embedded applications 

require both volatile and non-volatile memories because the two memory types serve unique and 

exclusive purposes. The following sections discuss the use of specific types of memory in 

embedded systems. 

ROM Overview 

Although there are exceptions, the ROM is generally viewed as read only device. A high level 

interface to the ROM is as shown in figure 3.2. when the ROM is implemented,positions in the 

array that are to store a logical 0 have a transistor connected as shown in figure. Those positions 

intended to store a logical 1 have none. 

 

Figure 3.2 The ROM- outside and inside 



 

 

 

Read Operation 

A value is read from a ROM by asserting one of the row lines. Those rows in which there is a 

transistor will be pulled to ground thereby expressing a logical 0. Those without the transistor 

will express a logical 1. Timing for a ROM read operation is given in figure 3.3. 

 
 

 

Figure 3.3 The ROM –read operation timing 

Static RAM overview 

A high level interface to the SRAM is very similar to that for the ROM.The major differences 

arise from support for write capability. Figure 3.4 represents the major I/O signals and a typical 

cell in an SRAM array. 

 

Figure 3.4 The SRAM – inside and outside 



 

 

 

Write operation 

A value is written into the cell by applying a signal to bi and bibar through the write/sense 

amplifiers. Asserting  the word line causes the new value to be written into the latch. 

Read Operation 

A value is read from the cell by first precharging bi and bibar to a voltage that is halfway between 

a 0 and 1.the values are sensed and amplified by write/sense amplifier. 

Typical timimg for a read and write operation is shown in Figure 3.5 . 
 

 

Figure 3.5 timing for the SRAM-read and write operation 



 

 

 

SDRAM 

SDRAM is another type of volatile memory. It is similar to SRAM, except that it is 

dynamic and must be refreshed periodically to maintain its content. The dynamic memory cells  

in SDRAM are much smaller than the static memory cells used in SRAM. This difference in size 

translates into very high-capacity and low-cost memory devices. In addition to the refresh 

requirement, SDRAM has other very specific interface requirements which typically necessitate 

the use of special controller hardware. Unlike SRAM, which has a static set of address lines, 

SDRAM divides up its memory space into banks, rows, and columns. Switching between banks 

and rows incurs some overhead, so that efficient use of SDRAM involves the careful ordering of 

accesses. SDRAM also multiplexes the row and column addresses over the same address lines, 

which reduces the pin count necessary to implement a given size of SDRAM. Higher speed 

varieties of SDRAM such as DDR, DDR2, and DDR3 also have strict signal integrity 

requirements which need to be carefully considered during the design of the PCB. SDRAM 

devices are among the least expensive and largest-capacity types of RAM devices available, 

making them one of the most popular. Most modern embedded systems use SDRAM. A major 

part of an SDRAM interface is the SDRAM controller. The SDRAM controller manages all the 

address-multiplexing, refresh and row and bank switching tasks, allowing the rest of the system 

to access SDRAM without knowledge of its internal architecture. 

 
 

Dynamic RAM Overview 
 

Larger microcomputer systems use Dynamic RAM (DRAM) rather than Static RAM (SRAM) 

because of its lower cost per bit. DRAMs require more complex interface circuitry because of 

their multiplexed address bus and because of the need to refresh each memory cell periodically. 

A typical DRAM memory is laid out as a square array of memory cells with an equal number of 

rows and columns. Each memory cell stores one bit. The bits are addressed by using half of the 

bits (the most significant half) to select a row and the other half to select a column. 

Each DRAM memory cell is very simple – it consists of a capacitor and a MOSFET switch. A 

DRAM memory cell is therefore much smaller than an SRAM cell which needs at least two gates 

to implement a flip-flop. A typical DRAM array appears as illustrated in figure 3.6 . 



 

 

 
 

 
 

Figure 3.6 The DRAM inside 

 
Read Operation 

A value is read from the cell by first precharging bi and bibar to a voltage that is halfway between 

a 0 and 1. Asserting the word line enables the stored signal onto bi. If  the stored value is a  

logical 1,through charge sharing,the value on line bi will increase. Conversely,if the stored value 

is a logical 0, charge sharing will cause the value on bi to decrease. The change in the values are 

sensed and amplified by write/sense amplifier 

Write operation 

A value is written into the cell by applying a signal to bi and bibar through the write/sense 

amplifiers. Asserting the word line charges the capacitor if a logical 1 is to be stored and 

discharges if it a logical 0 to be stored. 

Typical DRAM read and write timing is given in figure 3.7 . 



 

 

 
 

 
 

 

 

 

 

Figure 3.7 : Timing for the DRAM read and write cycles 

Chip organization 

Independent type of internal storage, the typical memory chip appears as is shown in figure 3.8 



 

 

 
 

 

Figure 3.8 Typical memory chip internal architecture. 

 

 

A Memory interface in detail 

If a single ROM or RAM chip is large enough and the address and the data I/O are wide enough 

to satisfy system memory requirements,then the interface is rather straightforward. We will look 

at the SRAM system and then the DRAM design. 

An SRAM design 

A system specification requires an SRAM system that can store upto 4K 16 bit words..but the 

largest memory device available is 1K by 8. Thus it can store upto 1024 8 bit words. 

Consequently ,the design will require 8 of the smaller memorydevices:2 sets of 4. 



 

 

 

In worst case, to support 4K 16 bit words,12 address lines and 16 data lines are  required. 

The architecture of such system is given in figure 3.9 

 

 
Figure 3.9: Design a 4K *16 SRAM system 



 

 

 

A DRAM Design 

 
The DRAM system will utilize an architecture that duplicates most of the previous SRAM 

systems. One major difference is the potential need to manage the refresh function. A second 

difference results from a memory size versus IC package size difficulty. 

The relative timing for some of the signals in the base case is illustrated in figure 3.10. 

 

 
Figure 3.10 Basic DRAM timing 

 
The memory map 

 
As a first step towards understanding the memory subsystem in an embedded application, we 

begin with a memory map. The map specifies the allocation and use of each location in the 

physical memory address space. A typical memory map for a small 16 bit machine is presented  

in figure 3.11 

 

 
Figure 3.11 : Basic Memory map 



 

 

 

This is the primary physical memory. From a high level perspective, the memory subsystem is 

comprised of two basic types:ROM and RAM. It is possible for the required code and data space 

to exceed total available primary memory.under such circumstances, one must use techniques 

called virtual memory and overlays to accommodate the expanded needs. 

Memory subsystem Architecture 

 
The block labeled memory in the diagrrm for a vonneumann machine is sctually comprised of a 

memory components of different size, kinds, and speeds arranged in a heirarchial manner and 

designed   to   coopereate   with   each   other.such   a   hierarchy   is   given   in   figure   3.12    . 

 

 
Figure 3.12 : Typical memory hierarchy utilizing a variety of memory types. 

 
At the top are the slowest,largest and least expensive memories. These are known as secondary 

memory. At the bottom are the smallest,fastest,called cache memory. These are typically higher 

speed SRAM. These devices are more expensive. 

Basic concepts of Caching 

 
A CPU cache is a cache used by the central processing unit of a computer to reduce the average 

time to access memory. The cache is a smaller, faster memory which stores copies of the data 

from frequently used main memory locations. As long as most memory accesses are cached 

memory locations, the average latency of memory accesses will be closer to the cache latency 

than to the latency of main memory. 



 

 

 

Data is transferred between memory and cache in blocks of fixed size, called cache lines. When a 

cache line is copied from memory into the cache, a cache entry is created. The cache entry will 

include the copied data as well as the requested memory location (now called a tag). 

When the processor needs to read or write a location in main memory, it first checks for a 

corresponding entry in the cache. The cache checks for the contents of the requested memory 

location in any cache lines that might contain that address. If the processor finds that the memory 

location is in the cache, a cache hit has occurred. However, if the processor does not find the 

memory location in the cache, a cache miss has occurred. In the case of: 

 

    a cache hit, the processor immediately reads or writes the data in the cache line. 

    a cache miss, the cache allocates a new entry, and copies in data from main memory. Then, 

the request is fulfilled from the contents of the cache. 

 

 
 

 

The replacement policy decides where in the cache a copy of a particular entry of main memory 

will go. If the replacement policy is free to choose any entry in the cache to hold the copy, the 

cache is called fully associative. At the other extreme, if each entry in main memory can go in 

just one place in the cache, the cache is direct mapped. Many caches implement a compromise in 

which each entry in main memory can go to any one of N places in the cache, and are described 

as N-way set associative. For example, the level-1 data cache in an AMD Athlon is 2-way set 



 

 

 

associative, which means that any particular location in main memory can be cached in either of 

2 locations in the level-1 data cache. 

Associativity is a trade-off. If there are ten places to which the replacement policy could 

have mapped a memory location, then to check if that location is in the cache, ten cache entries 

must be searched. Checking more places takes more power, chip area, and potentially time. On 

the other hand, caches with more associativity suffer fewer misses so that the CPU wastes less 

time reading from the slow main memory. The rule of thumb is that doubling the associativity, 

from direct mapped to 2-way, or from 2-way to 4-way, has about the same effect on hit rate as 

doubling the cache size. Associativity increases beyond 4-way have much less effect on the hit 

rate and are generally done for other reasons 

In order of worse but simple to better but complex: 
 

    direct mapped cache — The best (fastest) hit times, and so the best tradeoff for "large" 

caches 

    2-way set associative cache 

    2-way skewed associative cache – In 1993, this was the best tradeoff for caches whose sizes 

were in the range 4K-8K bytes. 

    4-way set associative cache 

    fully associative cache – the best (lowest) miss rates, and so the best tradeoff when the miss 

penalty is very high 

Direct-mapped cache 
 

Here each location in main memory can only go in one entry in the cache. It doesn't have a 

replacement policy as such, since there is no choice of which cache entry's contents to evict. This 

means that if two locations map to the same entry, they may continually knock each other out. 

Although simpler, a direct-mapped cache needs to be much larger than an associative one to give 

comparable performance, and is more unpredictable. Let 'x' be block number in cache, 'y' be 

block number of memory, and 'n' be number of blocks in cache, then mapping is done with the 

help of the equation x=y mod n. 

2- way set associative cache 



 

 

 

If each location in main memory can be cached in either of two locations in the cache, one  

logical question is: which one of the two? The simplest and most commonly used scheme, shown 

in the right-hand diagram above, is to use the least significant bits of the memory location's index 

as the index for the cache memory, and to have two entries for each index. One benefit of this 

scheme is that the tags stored in the cache do not have to include that part of the main memory 

address which is implied by the cache memory's index. Since the cache tags have fewer bits, they 

take less area on the microprocessor chip and can be read and compared faster. Also LRU is 

especially simple since only one bit needs to be stored for each pair. 

 

 

Cache reads are the most common CPU operation that takes more than a single cycle. 

Program execution time tends to be very sensitive to the latency of a level-1 data cache hit. A 

great deal of design effort, and often power and silicon area are expended making the caches as 

fast as possible. 

The simplest cache is a virtually indexed direct-mapped cache. The virtual address is calculated 

with an adder, the relevant portion of the address extracted and used to index an SRAM, which 

returns the loaded data. The data is byte aligned in a byte shifter, and from there is bypassed to 

the next operation. There is no need for any tag checking in the inner loop — in fact, the tags 

need not even be read. Later in the pipeline, but before the load instruction is retired, the tag for 

the loaded data must be read, and checked against the virtual address to make sure there was a 



 

 

 

cache hit. On a miss, the cache is updated with the requested cache line and the pipeline is 

restarted. 

An associative cache is more complicated, because some form of tag must be read to determine 

which entry of the cache to select. An N-way set-associative level-1 cache usually reads all N 

possible tags and N data in parallel, and then chooses the data associated with the matching tag. 

Level-2 caches sometimes save power by reading the tags first, so that only one data element is 

read from the data SRAM. 

The diagram to the right is intended to clarify the manner in which the various fields of the 

address are used. Address bit 31 is most significant, bit 0 is least significant. The diagram shows 

the SRAMs, indexing, and multiplexing for a 4 kB, 2-way set-associative, virtually indexed and 

virtually tagged cache with 64 B lines, a 32b read width and 32b virtual address. 

Because the cache is 4 kB and has 64 B lines, there are just 64 lines in the cache, and we read 

two at a time from a Tag SRAM which has 32 rows, each with a pair of 21 bit tags. Although  

any function of virtual address bits 31 through 6 could be used to index the tag and data SRAMs, 

it is simplest to use the least significant bits. 

Similarly, because the cache is 4 kB and has a 4 B read path, and reads two ways for each access, 

the Data SRAM is 512 rows by 8 bytes wide. 

A more modern cache might be 16 kB, 4-way set-associative, virtually indexed, virtually hinted, 

and physically tagged, with 32 B lines, 32b read width and 36b physical addresses. The read path 

recurrence for such a cache looks very similar to the path above. Instead of tags, vhints are read, 

and matched against a subset of the virtual address. Later on in the pipeline, the virtual address is 

translated into a physical address by the TLB, and the physical tag is read (just one, as the vhint 

supplies which way of the cache to read). Finally the physical address is compared to the  

physical tag to determine if a hit has occurred. 

 

 

Dynamic memory allocation 

 
Memory management is the act of managing computer memory. The essential requirement of 

memory  management  is  to  provide  ways  to  dynamically  allocate  portions  of  memory     to 



 

 

 

programs at their request, and freeing it for reuse when no longer needed. This is critical to the 

computer system. 

Several methods  have  been  devised  that  increase  the  effectiveness  of  memory  

management. Virtual memory systems separate the memory addresses used by a process from 

actual physical addresses, allowing separation of processes and increasing the effectively 

available amount of RAM using paging or swapping to secondary storage. The quality of the 

virtual memory manager can have an extensive effect on overall system performance. 

The task of fulfilling an allocation request consists of locating a block of unused memory of 

sufficient size. Memory requests are satisfied by allocating portions from a large pool of memory 

called the heap. At any given time, some parts of the heap are in use, while some are "free" 

(unused) and thus available for future allocations. Several issues complicate implementation,  

such as internal and external fragmentation, which arises when there are many small gaps 

between allocated memory blocks, which invalidates their use for an allocation request. The 

allocator'smetadata can also inflate the size of (individually) small allocations. This is managed 

often by chunking. The memory management system must track outstanding allocations to 

ensure that they do not overlap and that no memory is ever "lost" as a memory leak. 

We are more concerned with managing main memory to accommodate 

 
   programs larger than main memory 

  multiple processes in main memory. 

  Multiple programs in main memory. 

Overlays 

 
An overlay is a poor man‘s version of virtual memory. The overlay will be in ROM and used to 

accommodate a program that is larger than main memory. The program is segmented into a 

number of sections called overlays. The sections are 

   Top level routine. 

   Code to perform overlay process. 

  Data segment for shared data. 

Overlay segment. 



 

 

 

 

UNIT 5 

EMBEDDED SYSTEM DESIGN AND DEVELOPMENT 

 
LIFE CYCLE MODELS 

 
The fundamentals of design are 

 
   Find out what the customers want. 

   Think of a way to give them what they want. 

   Prove what you have done by building and testing it. 

   Build a lot of the product to prove that it wasn‘t an accident. 

  Use the product to solve the customer‘s problem. 

The common life cycle models are: 

 
   Waterfall model 

  V cycle model. 

  Spiral 

   Rapid prototype 

 
Waterfall model 

 
The waterfall model represents a cycle- specifically a series of steps appearing much like a 

waterfall. It is the model which is use to linear process development. It is a sequential design 

process, often used in software process development in which progress is seen as flowing 

steadily downwards through the phases of Conception, Initiation, Analysis, Design,  

Construction, Testing, Production/Implementation and Maintenance. Figure  4.1  shows  the 

water life cycle model 



 

 

 
 

 
 

Figure 4.1 The waterfall life cycle model 

 
The waterfall development model originates in the manufacturing and construction 

industries: highly structured physical environments in which after-the-fact changes are 

prohibitively costly, if not impossible. Since no formal software development methodologies 

existed at the time, this hardware-oriented model was simply adapted for software development. 

The steps are: 

 
   Specification. 

   Preliminary design. 

  Design review 

   Detailed design. 

  Design review. 

  Implementation. 

Review. 



 

 

 

Phases: 

 
1) Requirement : In this phase we gather necessary information which will use for 

development of any project . For above example we gather information like which types of 

characteristics client wants. It also defines system requirement specification. This phase defines 

what to do. 

2) Design: In design phase we then construct design to how to implement that requirements 

gathered into phase 1 .This phase define how to do .For this phase we then write algorithms 

3) Coding: Now base on design phase we then write actual code to implement algorithms. This 

code should be efficient. 

4) Testing : This phase use to test our coding part it checks all the validation...like our code 

should work for each and every possibilities of input if any bug occur then we have to  report  

that bug to design phase or development phase. 

5) Maintenance: In this phase we need keep updating information. 

 
1. The implementation process contains software preparation and transition activities, such as the 

conception and creation of the maintenance plan; the preparation for handling problems 

identified during development; and the followup on product configuration management. 

2. The problem and modification analysis process, which is executed once the application has 

become the responsibility of the maintenance group. The maintenance programmer must analyze 

each request, confirm it (by reproducing the situation) and check its validity, investigate it and 

propose a solution, document the request and the solution proposal, and, finally, obtain all the 

required authorizations to apply the modifications. 

3. The process considering the implementation of the modification itself. 

 
4. The process acceptance of the modification, by confirming the modified work with the 

individual who submitted the request in order to make sure the modification provided a solution. 



 

 

 

5. The migration process is exceptional, and is not part of daily maintenance tasks. If the 

software must be ported to another platform without any change in functionality, this process  

will be used and a maintenance project team is likely to be assigned to this task. 

6. Finally, the last maintenance process, also an event which does not occur on a daily basis, is 

the retirement of a piece of software. 

The V model 

 
The V-Model is a term applied to a range of models, from a conceptual model designed to 

produce a simplified understanding of the complexity associated with systems development to 

detailed, rigorous development lifecycle models and project management models. Each test  

phase is identified with its matching development phase as shown in figure 4.2. 

 

 

Figure 4.2 : The V life cycle model 

 
In diagram, we have 

 
   Requirement system/Functional Testing 

High level design  Integration testing 



 

 

 

Detailed design Unit testing 
 

The V-model is a graphical representation of the systems development lifecycle. It summarizes 

the   main   steps   to   be   taken   in   conjunction   with   the   corresponding    deliverables 

within computerized system validation framework. 

The V represents the sequence of steps in a project life cycle development. It describes the 

activities to be performed and the results that have to be produced during product development. 

The left side of the "V" represents the decomposition of requirements, and creation of system 

specifications. The right side of the V represents integration of parts and their validation 

 

    Validation. The assurance that a product, service, or system meets the needs of the customer 

and other identified stakeholders. It often involves acceptance and suitability with external 

customers. Contrast with verification." 

    "Verification. The evaluation of whether or not a product, service, or system complies with a 

regulation, requirement, specification, or imposed condition. It is often an internal process. 

Contrast with validation." 

The spiral model 

 
The spiral     model is     a software     development     process combining     elements      of     

both design and prototyping-in-stages, in an effort to combine advantages of top-down and 

bottom-up concepts. Also known as the spiral lifecycle model (or spiral development), it is a 

systems development method (SDM) used in information technology (IT). This model of 

development combines the features of the prototyping and the waterfall model. The spiral model 

is intended for large, expensive and complicated projects. A simplified version of that model is 

presented in figure 4.3. 



 

 

 
 

 
 

Figure 4.3 The spiral life cycle model steps 

The steps in spiral model life cycle are 

   Determine objective,alternatives,and constraints. 

  Identify and resolve risks. 

   Evaluate alternatives. 

   Develop deliverables-verify that they are correct. 

  Plan the next iteration. 

   Commit to an approach for the next iteration. 

 

 
The spiral model combines the idea of iterative development (prototyping) with the systematic, 

controlled aspects of the waterfall model. It allows for incremental releases of the product, or 

incremental refinement through each time around the spiral. The spiral model also explicitly 

includes risk management within software development. Identifying major risks, both technical 

and managerial, and determining how to lessen the risk helps keep the software development 

process under control. 

The spiral model is based on continuous refinement of key products for requirements definition 

and analysis, system and software   design,   and implementation (the   code).   At   each iteration 



 

 

 

around the cycle, the products are extensions of an earlier product. This model uses many of the 

same phases as the waterfall model, in essentially the same order, separated by planning, risk 

assessment, and the building of prototypes and simulations 

Documents are produced when they are required, and the content reflects the information 

necessary at that point in the process. All documents will not be created at the beginning of the 

process, nor all at the end (hopefully). Like the product they define, the documents are works in 

progress. The idea is to have a continuous stream of products produced and available for user 

review. 

The spiral lifecycle model allows for elements of the product to be added in when they become 

available or known. This assures that there is no conflict with previous requirements and design. 

This method is consistent with approaches that have multiple software builds and releases and 

allows for making an orderly transition to a maintenance activity. Another positive aspect is that 

the spiral model forces early user involvement in the system development effort. For projects 

with heavy user interfacing, such as user application programs or instrument interface 

applications, such involvement is helpful 

Note that the requirements activity takes place in multiple sections and in multiple iterations, just 

as planning and risk analysis occur in multiple places. Final design, implementation, integration, 

and test occur in iteration 4. The spiral can be repeated multiple times for multiple builds. Using 

this method of development, some functionality can be delivered to the user faster than the 

waterfall method. The spiral method also helps manage risk and uncertainty by allowing multiple 

decision points and by explicitly admitting that all of anything cannot be known before the 

subsequent activity starts. 

Rapid prototype 

 
The Rapid prototyping model is intended to provide a rapid implementation of high  level 

portions of both the software and the hardware . the approach allows developers to construct 

working portion of hardware and software in incremental stages.Each stage through the  

cycle,one incorporates a little more of the intended functionality.The prototype is useful for both 

the designer and the customer. The prototype can be either evolutionary or throughway. It has  

the advantage of having a working system early in development process. 



 

 

 

Problem solving-five steps to design 

The 5 steps to a successful design are 

  Requirement definition. 

   System specification 

  Functional design  

  Architectural design 

  Prototyping. 

The design process 

 
The design process comprises five distinct stages although it may vary for particular projects or 

design disciplines. This information may be useful when working with a designer to understand 

the processes involved. Before the project is started however, a vital question has to be asked: 

―Why  do  you  need  a  new  identity,  brochure  or  website  etc?‖  This  question  is  the  key  to 

undertaking a successful project. 

Identifying and formulating the requirement specification 

 
Requirements analysis in systems engineering and software engineering, encompasses those  

tasks that go into determining the needs or conditions to meet for a new or altered product, taking 

account of the possibly conflicting requirements of the various stakeholders, analyzing, 

documenting, validating and managing software or system requirements. Figure 4.4 shows the 

interface between the customer and the design process. 

 

Figure 4.4  The interface between the customer and the design process. 



 

 

 

Requirements analysis is critical to the success of a systems or software project. The 

requirements should be documented, actionable, measurable, testable, traceable, related to 

identified business needs or opportunities, and defined to a level of detail sufficient for system 

design. 

Conceptually, requirements analysis includes three types of activities 
 

    Eliciting requirements: the task of identifying the various types of requirements from various 

sources including project documentation, business process documentation, and stakeholder 

interviews. This is sometimes also called requirements gathering. 

    Analyzing requirements: determining whether the stated requirements are clear, complete, 

consistent and unambiguous, and resolving any apparent conflicts. 

    Recording requirements: Requirements may be documented in various forms, usually 

including a summary list and may include natural-language documents, use cases, user 

stories, or process specifications. 

 

Characterizing the system 
 

Requirements analysis can be a long and arduous process during which many delicate 

psychological skills are involved. New systems change the environment and relationships 

between people, so it is important to identify all the stakeholders, take into account all their  

needs and ensure they understand the implications of the new systems. Analysts can employ 

several techniques to elicit the requirements from the customer. These may include the 

development of scenarios,  the  identification  of use  cases,  the  use  of  workplace  observation 

or ethnography,     holding interviews,     or focus      groups and      creating      requirements 

lists. Prototyping may be used to develop an example system that can be demonstrated to 

stakeholders. Where necessary, the analyst will employ a combination of these methods to 

establish the exact requirements of the stakeholders, so that a system that meets the business 

needs is produced. 

The specification of the external environment should contain the following for each entity: 

 
   Name and description of the entity. 

For each I/O variable, the following information is available 



 

 

 

➢ The name of the signal. 

➢ The use of the signal as an i/p  or o/p. 

➢ The nature of the signal as an event,data,state variable. 

  Responsibilities-activities. 

   Relationships. 

Safety and reliability. 

 

The system design specification 

 
The System Design Specification (SDS) is a complete document that contains all of the 

information needed to develop the system. Systems design is the process of defining the 

architecture,   components,   modules,    interfaces,    and data for    a system to    satisfy  

specified requirements.  Systems  design  could  be  seen  as  the   application   of systems   

theory to product development. There is some  overlap  with  the  disciplines  of systems  

analysis, systems architecture and systems engineering. System design specification serves as a 

bridges between the customers and designers as shown in figure 4.5. 

 

 
Figure 4.5: The Customer, the requirement, the design and the engineer 

 
The requirement specifications provides a view from the outside of the system, design 

specification provides a view from the inside looking out as well. Design specification has 2 

masters: 

   It must specify the system‘s public interface from inside the system. 

   It must specify how the requirements defined for and by the public interface are to be met 

by the initial functions of the system. 



 

 

 

Five areas should be considered are: 

 
   Geographical constraints. 

   Characterization of and constraints on interface signals. 

  User interface requirements 

   Temporal constraints. 

   Electrical infrastructure consideration 

  Safety and reliability 

System specification versus system requirements 

 
➢ Requirements give a description of something wanted or needed. They are a set of needed 

properties. 

➢ Specification is a description of some entity that has or implements those properties. 

 
A System Requirements Specification is a structured collection of information that embodies the 

requirements of a system. 

Requirements and specifications are very important components in the development of 

any embedded system. Requirements analysis is the first step in the system design process,  

where a user's requirements should be clarified and documented to generate the corresponding 

specifications. While it is a common tendency for designers to be anxious about starting the 

design and implementation, discussing requirements with the customer is vital in the  

construction of safety-critical systems. For activities in this first stage has significant impact on 

the downstream results in the system life cycle. 

For example, errors developed during the requirements and specifications stage may lead 

to errors in the design stage. When this error is discovered, the engineers must revisit the 

requirements and specifications to fix the problem. This leads not only to more time wasted but 

also the possibility of other requirements and specifications errors. Many accidents are traced to 

requirements flaws, incomplete implementation of specifications, or wrong assumptions about 

the requirements. While these problems may be acceptable in non-safety-critical systems, safety- 

critical systems cannot tolerate errors due to requirements and specifications. Therefore, it is 



 

 

 

necessary that the requirements are specified correctly to generate clear and accurate 

specifications. 

There is a distinct difference between requirements and specifications. A requirement is a 

condition needed by a user to solve a problem or achieve an objective. A specification is a 

document that specifies, in a complete, precise, verifiable manner, the requirements, design, 

behavior, or other characteristics of a system, and often, the procedures for determining whether 

these provisions have been satisfied. For example, a requirement for a car could be that the 

maximum speed to be at least 120mph. The specification for this requirement would include 

technical information about specific design aspects. Another term that is commonly seen in 

books and papers is requirements specification which is a document that specifies the 

requirements for a system or component. It includes functional requirements, performance 

requirements, interface requirements, design requirements, and developement standards. 

A specification is a precise description of the system that meets stated requirements. A 

specification document should be 

   Complete 

Consistent 

   Comprehensible 

   Traceable to the requirement 

  Unambiguous 

   Modifiable 

   Able to be written 

 
Functional design 

 
The functional design process maps the "what to do" of the Requirements Specification into the 

"how to do it" of the design specifications. During this stage, the overall structure of the product 

is defined from a functional viewpoint. The functional design describes the logical system flow, 

data organization, system inputs and outputs, processing rules, and operational characteristics of 

the product from the user's point of view. The functional design is not concerned with the 

software or hardware that will support the operation of the product or the physical organization 



 

 

 

of the data or the programs that will accept the input data, execute the processing rules, and 

produce the required output. 

Functional Design is a paradigm used to simplify the design of hardware and software devices 

such as computer software and increasingly, 3D models. A functional design assures that each 

modular part of a device has only one responsibility and performs that responsibility with the 

minimum  of  side  effects  on  other  parts.  Functionally  designed  modules  tend  to  have     

low coupling. 

Architectural design 

 
The major objective of the Architectural design activity is the allocation or mapping of the 

different pieces of system functionality to the appropriate hardware anf software blocks. Work is 

based on the detailed functional structure. The important constraints that must be considered 

include items as 

   The geographical distribution. 

  Physical and user interfaces 

   System performance specifications. 

   Timing constraints and dependability requirements 

  Power consumption 

   Legacy components and cost. 

 
Hardware and software specification and design 

 
For  the software design, the following must be analyzed and decided. 

 
   Whether to use a real time kernel. 

   Whether several functions can be combined in order to reduce the number of software 

tasks and if so, how? 

   A priority for each task. 

   An implementation technique for each intertask relationship. 

 
The important criteria that we strive to optimize are 



 

 

 

   Implementation cost 

   Development time and cost 

   Performance and dependability constraints 

  Power consumption 

Size 

 

Functional model versus architectural model 

 
An appropriate model has to include elements both at the functional and architectural level to be 

able to represent and evaluate hardware/software system. 

Functional model 

 
The functional model describes a system through a set of interacting functional elements. The 

design proceeds at a high level without initial bias toward any specific implementation. We have 

freedom to explore and to be creative. The functional models will interact using one of the 

following 3 types of relations 

   The shared variable relation-which defines a data exchange without temporal 

dependencies. 

   The synchronization relation- which specifies temporal dependency. 

   The message transfer by port- which implies a producer/consumer kind of relationship. 

 
Architectural model 

 
Tha architectural model describes the physical architecture of the system based on real 

components such as microprocessor, arrayed logics, special purpose processors,analog and  

digital components, and the many interconnections between them. 

Prototyping 

 
The prototype phase leads to an operational system prototype. A prototype implementation 

includes 

   Detailed design 

Debugging 



 

 

 

   Validation 

Testing 

 

A prototype is an early sample or model built to test a concept or process or to act as a thing to  

be replicated or learned from. It is  a  term  used  in  a  variety  of  contexts,  including  

semantics, design, electronics, and software programming. A prototype is designed to test and 

trial a new design to enhance precision by system analysts and users. Prototyping serves to 

provide specifications for a real, working system rather than a theoretical one. 

In many fields, there is great uncertainty as to whether a new design will actually do what is 

desired. New designs often have unexpected problems. A prototype is often used as part of the 

product design process to allow engineers and designers the ability to explore design alternatives, 

test theories and confirm performance prior to starting production of a new product. Engineers 

use their experience to tailor the prototype according to the specific unknowns still present in the 

intended design. For example, some prototypes are used to confirm and verify consumer interest 

in a proposed design whereas other prototypes will attempt to verify the performance or 

suitability of a specific design approach. 

In general, an iterative series of prototypes will be designed, constructed and tested as the final 

design emerges and is prepared for production. With rare exceptions, multiple iterations of 

prototypes are used to progressively refine the design. A common strategy is to design, test, 

evaluate and then modify the design based on analysis of the prototype. 

In many product development organizations, prototyping specialists are employed - individuals 

with specialized skills and training in general fabrication techniques that can help bridge between 

theoretical designs and the fabrication of prototypes. 

Other Considerations 

The 2 additional complementary and concurrent activities that need to be considered are 

  Capitalization and reuse 

   Requirement and traceability management. 

 
Capitalization and reuse 



 

 

 

Capitalization 

 
Capitalization and reuse are activities that are essential to the contemporary design 

process.  Proper  and  efficient  exploitation  of  intellectual  properties  is  very important 

.intellectuel properties are designs, often patented,that can be sold to another party to 

develop and sell as their product. 

Reuse 

 
One of the main purpose of reuse is to help designers shorten the development life  cycle. 

Component reuse is facilitated in 2 ways: present and future. 

To be reused,a component needs to be 

   Well defined 

   Properly modularized 

   In conformance to some interchange standard. 

Requirement and traceability management 

Requirement traceability 
 

Requirement traceability refers to the ability to follow the life of a requirement in both the 

forward and reverse directions through the entire design process and the design. The few 

important pieces of informations are 

   The means for the project manager and the customer to moniter the development 

progress. 

   A path that can be used during the verification and validation of the product against the 

original specification. 

   A means of identifying which hardware or software modules are affected if a requirement 

changes. 

 

Requirement management 

 
Requirement management addresses 



 

 

 

   Requirement specifications 

  Changes 

   Improvements 

Corrections 

 

During the design, such changes are difficult to avoid for many reasons. Therefore a clear 

procedure that facilitates a way to accommodate such modifications has to be used during the 

whole design process. 

Archiving the project 

 
When the product has finally been released to production, some work remains to be done. If the 

product follows the typical life cycle, bugs that must be fixed will be expected and added, and  

the next generation product will build on the current. The typical project will have had many 

contributors. A basic list can include 

   Product planning 

   Design and development 

  Test 

   Manufacturing 

Marketing 

   Sales 

 
Each group will have information, knowledge, documentation, and tools that will be important in 

future. figure depicts a typical project software directory. 



 

 

Performance Analysis and Optimization 
 

 

 

Performance or efficiency measures 

 
Performance is a measure of the results achieved. Performance efficiency is the ratio 

between effort expended and results achieved. The difference between current performance and 

the theoretical performance limit is the performance improvement zone. 

Another way to think of performance improvement is to see it as improvement in four 

potential areas. First, is the resource INPUT requirements (e.g., reduced working capital, 

material, replacement/reorder time, and set-up requirements). Second, is the THROUGHPUT 

requirements, often viewed as process efficiency; this is measured in terms of time, waste, and 

resource utilization. Third, OUTPUT requirements, often viewed from a cost/price, quality, 

functionality perspective. Fourth, OUTCOME requirements, did it end up making a difference. 

Performance    improvement is    the concept of measuring the    output    of    a  

particular process or procedure, then modifying the process or procedure to increase the output, 

increase efficiency, or increase the effectiveness of the process or procedure. The concept of 

performance improvement can be applied to either individual performance such as an athlete or 

organizational performance such as a racing team or a commercial enterprise. 

In Organizational development, performance improvement is the concept of 

organizational change in which the managers and governing body of an organization put into 

place and manage a program which measures the current level of performance of the  

organization      and       then       generates       ideas       for       modifying organizational 

behavior and infrastructure which are put into place to achieve higher output. The primary goals 

of organizational improvement are to increase organizational effectiveness and efficiency to 

improve the ability of the organization to deliver goods and or services. A third area sometimes 

targeted for improvement is organizational efficacy, which involves the process of setting 

organizational goals and objectives. 



 

 

 

Performance improvement at the operational or individual employee level usually 

involves processes such as statistical quality control. At the organizational level, performance 

improvement  usually  involves   softer   forms   of   measurement   such   as customer 

satisfaction surveys which are used to obtain qualitative information about performance from the 

viewpoint of customers. 

The difficulty is the significant variability one encounters when running the program. 
 

   What input data? 

   What hardware platform? 

  What compiler? 

   What compiler options> 

We can focus on several major areas: 

  Complexity 

   Time 

   Power consumption 

  Memory size 

   Cost 

Weight 

Other considerations include 

  Development time 

  Ease of maintenance 

  Extensibility 

The following considerations are 

Best or minimum case 



 

 

 

➢ When referring to time, the emphasis is on measuring the ability to complete a 

task. Such a measure is an essential quantity in many real time scheduling 

algorithms. 

➢ With respect to cost, power or weight, the metric becomes a value below which 

one cannot remove any more parts. 

➢ With respect to size, one is looking for the smallest amount needed. 

  Average case 

➢ Gives a typical measure; often, this is sufficient. 
 

   Worst case 

➢ The largest or longest value of a particular measure. When we refer to time, we 

are looking at an upper or lower bound on a schedule. 

The system 

A system is a set of interacting or interdependent components forming an integrated whole
[1] 

or a 

set of elements (often called 'components' ) and relationships which are different from 

relationships of the set or its elements to other elements or sets 

We consider hardware to comprise 

 
   Computational and control elements. 

  Communication subsystem 

   Memory 

 
We consider software to be 

 
   Algorithms and data structures. 

  Control and scheduling. 

Complexity analysis- A high level measure 

 
Complexity analysis involves breaking down a user task into a set of constituent steps and then 

calculating a complexity metric for each step in the task relative to the type of user.   Complexity 



 

 

 

analysis can also be used to provide relative comparisons of complexity between releases of a 

product. 

 

The complexity of an algorithm is a function describing the efficiency of the algorithm in terms 

of the amount of data the algorithm must process. Usually there are natural units for the domain 

and range of this function. There are two main complexity measures of the efficiency of an 

algorithm: 

 

    Time complexity is a function describing the amount of time an algorithm takes in terms 

of the amount of input to the algorithm. "Time" can mean the number of  memory 

accesses performed, the number of comparisons between integers, the number of times 

some inner loop is executed, or some other natural unit related to the amount of real time 

the algorithm will take. We try to keep this idea of time separate from "wall clock" time, 

since many factors unrelated to the algorithm itself can affect the real time (like the 

language used, type of computing hardware, proficiency of the programmer, optimization 

in the compiler, etc.). It turns out that, if we chose the units wisely, all of the other stuff 

doesn't matter and we can get an independent measure of the efficiency of the algorithm. 

    Space complexity is a function describing the amount of memory (space) an algorithm 

takes in terms of the amount of input to the algorithm. We often speak of "extra" memory 

needed, not counting the memory needed to store the input itself. Again, we use natural 

(but fixed-length) units to measure this. We can use bytes, but it's easier to use, say, 

number of integers used, number of fixed-sized structures, etc. In the end, the function we 

come up with will be independent of the actual number of bytes needed to represent the 

unit. Space complexity is sometimes ignored because the space used is minimal and/or 

obvious, but sometimes it becomes as important an issue as time. 

 

The methodology 

 
The steps involved in analyzing a complexity of a problem perform trade-off analyses in the 

design cycle. They are 

   Decompose the problem into a set of basic operations. 

Count the total number of such operations. 



 

 

 

   Derive a formula, based in some parameter and that is the size of the problem. 

Use order of magnitudes estimation to assess behavior 

 

Analyzing code 

As one gains facility in analyzing and understanding the behavior of a system, it becomes  

evident rather quickly that even the most complex parts of a system are ultimately composed of 

fundamental modules. Let‘s now analyze several of the basic flow of control construct that are 

commonly found in many algorithms. The analysis is done from the perspective of time 

performance. 

Constant Time statements 
 

The execution of constant time statements ,is a constant, independent of the size of the input. 
 

   Declarations and initializations of simple data types: 

Int x,y; 

Char mychar=‘a‘; 

   Assignment statements of simple data types: 

x-y; 

   Arithmetic operations: 

X=5.y+4.z; 

   Array referencing: 

A[j] 

   Referencing/ dereferencing pointers: 

Cursor=head-> next; 

   Most conditional tests: 

If(x<12)…. 

 

 

Looping construct 
 

Looping constructs are a common flow of control mechanism. any loop analysis has 2 parts. 

 
   Determine the number of iterations to be performed. 

  Determine the number of steps per iteration. 

For loop 



 

 

 

for loop is a programming  language statement which  allows  code  to  be  repeatedly executed. 

A for loop is classified as an iteration statement. 

or (int i = 0; i < 100; i++) { 

/* Prints the numbers 0 to 99, each separated by a space. */ 

System.out.print(i); 

System.out.print(' '); 

} 

System.out.println(); 

 

 

While loop 

 
a while loop is a control flow statement that allows code to be executed repeatedly based on a 

given boolean condition. The while loop can be thought of as a repeating if statement. 

int x = 0; 

while (x < 5) 

{ 

printf ("x = %d\n", x); 

x++; 

} 

Sequential statements 

 
For a sequence of statements, simply compute their individual complexity functions. 

 
Conditional statements 

 
Conditional statements are features of a programming language which perform different 

computations       or       actions       depending       on       whether       a       programmer- 

specified Boolean condition evaluates to true or false. Apart from the case of branch predication, 

this is always achieved by selectively altering the control flow based on some condition. 

IF (Boolean condition) THEN 

(Consequent) 



 

 

 

ELSE 

(Alternative) 

END IF 

When an interpreter finds an If, it expects a Boolean condition – for example, x > 0, which  

means "the variable x contains a number that is greater than zero" – and evaluates that condition. 

If the condition is true, the statements following the then are executed. Otherwise, the execution 

continues in the following branch – either in the else block (which is usually optional), or if there 

is no else branch, then after the end If. 

After either branch has been executed, control returns to the point after the end If. 
 

Analysis of Algorithms 

 
Efficiency of an algorithm can be measured in terms of: 

 
• Execution time (time complexity) 

 
• The amount of memory required (space complexity) 

 
Time complexity: 

 
For most of the algorithms associated with this course, time complexity comparisons are more 

interesting than space complexity comparisons .A measure of the amount of time required to 

execute an Factors that should not affect time complexity analysis: 

• The programming language chosen to implement the algorithm 

  
• The quality of the compiler 

 
• The speed of the computer on which the algorithm is to be executed algorithm 

 
Time complexity analysis for an algorithm is independent of programming language, machine 

used.  Objectives of time complexity analysis: 

• To determine the feasibility of an algorithm by estimating an upper bound on the amount of 

work performed 

• To compare different algorithms before deciding on which one to implement. 



 

 

 

• Analysis is based on the amount of work done by the algorithm 

 
• Time complexity expresses the relationship between the size of the input and the run time for 

the algorithm 

• Usually expressed as a proportionality, rather than an exact function 

 
• To simplify analysis, we sometimes ignore work that takes a constant amount of time, 

independent of the  problem input size 

• When comparing two algorithms that perform the same task, we often just 

Concentrate on the differences between algorithms 

Simplified analysis can be based on: 

 
• Number of arithmetic operations performed 

 
• Number of comparisons made 

 
• Number of times through a critical loop 

 
• Number of array elements accessed 

 
Instructions in detail 

 
It is assumed that a program or algorithm is made up of several common flows of control 

constructs. The basic constructs will be analyzed, several additional caveats are in order. 

   Single thread of execution is assumed. 

   The analysis is conducted at the assembly language level. Each different compiler is 

going to generate somewhat different assembly code, even for the same target. The 

analysis must be based on the compiler that is generating the final code for the 

microprocessor used in the design. 

   Compilers support different options for the compilation process. Such variations include 

the size of the target memory. Different code may be generated for a small memory  

model versus a large memory model. 



 

 

 

Consistency is the keyword. always perform the analysis on the code that will ultimately be 

embedded in the system being designed. 

A hardware interrupt is an electronic alerting signal sent to the processor from an external 

device, either a part of the computer itself such as a disk controller or an external peripheral. 

For example, pressing a key on the keyboard or moving the mouse triggers hardware 

interrupts that cause the processor to read the keystroke or mouse position. 

Time ,etc- a more detailed look 

 
Time is one of the most critical constraints that must be considered when designing 

embedded system. we must consider both hardware and software timing. On the hardware 

side, one must consider the internal delays of the hardware components as well as the delays 

through external elements. Software performance is affected by both the path through the 

program and the timing of the individual instructions. 

Metrics 

 
Response time- the interval between the occurrence of an event and the completion of some 

associated action. 

Time loading- this is the percentage of time that the CPU is doing useful work. 

Memory loading- this is the percentage of usable memory being used. 

Response time 
 

Response time is the time a system or functional unit takes to react to a given input. In data 

processing, the response time perceived by the end user is the interval between 

(a) The  instant  at  which  an  operator  at  a terminal enters  a  request  for  a  response  from     

a computer. 

(b) The instant at which the last character of the response is received at a terminal. 



 

 

 

In a data  system,  the  system  response  time  is  the  interval  between  the  receipt  of  the  end 

of transmission of an inquiry message and the beginning of the transmission of a response 

message to the station originating the inquiry. 

Polled loops 
 

Polled loops are the simplest and the response time consists of three components 

 
   Hardware delays in the external device to set the signaling event. 

  Time to test the flag 

   Time needed to respond to and process the event associated with the flag. 

 
Co-routine 

 

In a noninterrupt environment, the time for a co-routine may be computed directly or, more 

often,bounded, which we compute as the worst case path through each component. 

Time loading 
 

Time loading is the percentage of time that the CPU is doing useful work.analyzing time loading 

entails the execution times of the constituent modules. These times are computed by finding the 

time spent in both the primary tasks and the support tasks. Then compute the ratio of 

 

 

To compute the times, three primary methods are used: 
 

Instruction counting 

Simulation 

Physical measurement 



 

 

 

Memory loading 
 

 



 

 

 
 

 
 



 

 

 

Thoughts on performance optimization 

 
When investigating how to improve the performance of a system, one should think of a few 

things. When optimizing, it is important to think about 

1. What is being optimized? 

2. Why is it being optimized? 

3. What will be the effect on the overall program if the module being optimized is 

eliminated from the program? 

4. Is the optimization appropriate to the operating context? 

 
Performance optimization 

 
In order to improve the performance, we must look at the common mistakes that are often made 

when assessing and trying to improve performance 

Common mistakes 

 
   Expecting improvement in one aspect of the design to improve the overall performance 

proportional to improvement. 

   Using hardware independent metrics to predict performance. 

  Using peak performance 

   Comparing performance based on a couple of metrics 

  Using synthetic benchmarks. 

Tricks of the trade 

 
Response time and time loading can be reduced in a number of ways. Here are a couple of 

simple ones. 

   Use lookup tables or combinational logic. 

   Perform measurements and computations at a rate and significance that is consistent with 

the rate of change and values of the data, the type of arithemetic, and the number of 

significant digits calculated. 



 

 

 

   Certain arithemetic calculations can be implemented through shifting operations rather 

than using a standard mathematical computation. 

   Learn from the compiler experts. Compiler writers commonly use many tricks to reduce 

code size and to improve speed performance. 

   Loop management. 

   Flow of control optimization. 

  Use registers and caches. 

   Use only necessary values. 

   Optimize a common path or frequently used code block. The most frequently used path 

or highly used code segment should be the most highly optimized. 

   Use page mode accesses. 

   Know when to use recursion vs iteration 

Macros and inlining functions. 

 

Hardware accelarators 

 
One technique that can be used to gain significant performance increase with respect to a 

software implementation is to move some of the functionality to hardware. Such a collection 

of components is called a hardware accelerator. The accelerator is often attatched to the CPU 

bus. Communication with the CPU is accomplished through many of the same techniques  

that have already been discussed. 

   Shared variables. 

Implemented as data and control registers located in accelerator. 

   Shared memory locations. 

We may use DMA 

 
Hardware accelerators are used when there are functions whose operations do not map well onto 

the CPU. Possible examples include 

   Bit and nit field operations. 

   Differing precisions of arithmetic calculations. 

Very high speed arithmetic 



 

 

 

   FFT calculations 

  Multiples 

   Very high speed or associative search. 

   High demand input or output operations, with tight timing constraints and high 

throughput. 

   Streaming applications including high speed audio and video. With such application, 

delays in the time domain translate directly to distortion in the frequency domain. 

 

Caches and performance 

 
A CPU cache is a cache used by the central processing unit of a computer to reduce the 

average time to access memory. The cache is a smaller, faster memory which stores copies of the 

data from frequently used main memory locations. As long as most memory accesses are cached 

memory locations, the average latency of memory accesses will be closer to the cache latency 

than to the latency of main memory. 

The proportion of accesses that result in a cache hit is known as the hit rate, and can be a 

measure of the effectiveness of the cache for a given program or algorithm. 

Read misses delay execution because they require data to be transferred from memory much 

more slowly than the cache itself. Write misses may occur without such penalty, since the 

processor can continue execution while data is copied to main memory in the background. 

Instruction caches are similar to data caches, but the CPU only performs read accesses 

(instruction fetches) to the instruction cache. (With Harvard architecture and modified Harvard 

architecture CPUs, instruction and data caches can be separated for higher performance, but they 

can also be combined to reduce the hardware overhead.) 

In computer science, a cache is a component that transparently stores data so that future 

requests for that data can be served faster. The data that is stored within a cache might be values 

that have been computed earlier or duplicates of original values that are stored elsewhere. If 

requested data is contained in the cache (cache hit), this request can be served by simply reading 

the cache, which is comparatively faster. Otherwise (cache misses), the data has to be  

recomputed or fetched from its original storage location, which is comparatively slower.  Hence, 



 

 

 

the greater the number of requests that can be served from the cache, the faster the overall system 

performance becomes. 

To be cost efficient and to enable an efficient use of data, caches are relatively small. 

Nevertheless, caches have proven themselves in many areas of computing because access 

patterns in typical computer applications have locality of reference. References exhibit temporal 

locality if data is requested again  that  has  been  recently  requested  already.  References  

exhibit spatial locality if data is requested that is physically stored close to data that has been 

requested already. 

Small memories on or close to the CPU can operate faster than the much larger main memory. 

Most CPUs since the 1980s have used one or more caches, and modern high-end embedded, 

desktop and server microprocessors may have as many as half a dozen, each specialized for a 

specific function. Examples of caches with a specific function are the D-cache and I-cache (data 

cache and instruction cache). 


