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Advantages of Digital TransmissionsAdvantages of Digital Transmissions

Noise immunity
Error detection and correction

Ease of multiplexing
Integration of analog and digital data

Use of signal regenerators
Data integrity and security

Ease of evaluation and measurements
More suitable for processing ……..
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Disadvantages Disadvantages of Digital Transmissionsof Digital Transmissions

More bandwidth requirement

Need of precise time synchronization

Additional hardware for encoding/decoding

Integration of analog and digital data

Sudden degradation in 

Incompatible with existing analog facilities
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More bandwidth requirement

Need of precise time synchronization

Additional hardware for encoding/decoding

Integration of analog and digital data

Sudden degradation in QoS

Incompatible with existing analog facilities
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Basic Digital Communication Transformations
– Formatting/Source Coding 
– Transforms source info into digital symbols (digitization) 
– Selects compatible waveforms (matching function) 
– Introduces redundancy which facilitates accurate decoding despite errors 

It is essential for reliable communication 
– Modulation/Demodulation 
– Modulation is the process of modifying the info signal to facilitate transmission 
– Demodulation reverses the process of modulation. It involves the detection and retrieval 

of the info signal 
• Types 
• Coherent: Requires a reference info for detection 
• Noncoherent: Does not require reference phase information

Basic Digital Communication Transformations
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Modulation is the process of modifying the info signal to facilitate transmission 
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Basic Digital Communication Transformations

– Coding/Decoding 
Translating info bits to transmitter data symbols 
Techniques used to enhance info signal so that they are less vulnerable to channel 
impairment (e.g. noise, fading, jamming, interference) 

• Two Categories 
– Waveform Coding 

• Produces new waveforms with better performance 
– Structured Sequences 

Involves the use of redundant bits to determine the occurrence of error (and 
sometimes correct it) 
– Multiplexing/Multiple Access Is synonymous with resource sharing with other users 
– Frequency Division Multiplexing/Multiple Access (FDM/FDMA

Basic Digital Communication Transformations

Translating info bits to transmitter data symbols 
Techniques used to enhance info signal so that they are less vulnerable to channel 
impairment (e.g. noise, fading, jamming, interference) 

Produces new waveforms with better performance 
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Frequency Division Multiplexing/Multiple Access (FDM/FDMA
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Sampling

Sampling is the processes of converting continuous
by taking the “samples” at discrete-time intervals
– Sampling analog signals makes them discrete in time but still continuous valued
– If done properly (Nyquist theorem is satisfied), sampling does not introduce distortion

Sampled values:
– The value of the function at the sampling points

Sampling interval:
– The time that separates sampling points (interval b/w samples), 
– If the signal is slowly varying, then fewer samples per second will be required than if the waveform 

is rapidly varying
– So, the optimum sampling rate depends on the 

signal

Sampling

is the processes of converting continuous-time analog signal, xa(t), into a discrete-time signal 
time intervals

Sampling analog signals makes them discrete in time but still continuous valued
is satisfied), sampling does not introduce distortion

The value of the function at the sampling points

The time that separates sampling points (interval b/w samples), Ts

If the signal is slowly varying, then fewer samples per second will be required than if the waveform 

So, the optimum sampling rate depends on the maximum frequency component present in the 



Analog-to-digital conversion is (basically) a 2 step process:
– Sampling

• Convert from continuous-time analog signal 
– Is obtained by taking the “samples” of xa(t) at discrete

Quantization
– Convert from discrete-time continuous valued signal to discrete time discrete valued signal

step process:

time analog signal xa(t) to discrete-time continuous value signal x(n)
at discrete-time intervals, Ts

time continuous valued signal to discrete time discrete valued signal



Sampling

sf f

Sampling Rate (or sampling frequency fs):
The rate at which the signal is sampled, expressed as the number of samples per second 
(reciprocal of the sampling interval), 1/Ts = fs

Nyquist Sampling Theorem (or Nyquist Criterion):
If the sampling is performed at a proper rate, no info is lost about the original signal and it can be 
properly reconstructed later on
Statement: 

“If a signal is sampled at a rate at least, but not exactly equal to 
component of the waveform, then the waveform can be exactly reconstructed from the samples 

without any distortion”

Sampling

max2f f

The rate at which the signal is sampled, expressed as the number of samples per second 

If the sampling is performed at a proper rate, no info is lost about the original signal and it can be 

“If a signal is sampled at a rate at least, but not exactly equal to twice the max frequency 
waveform can be exactly reconstructed from the samples 



….. Sampling Theorem….. Sampling Theorem
Sampling Theorem for Bandpass Signal 
signal containing no frequency outside the specified bandwidth W 
Hz, it may be reconstructed from its samples at a sequence of points 
spaced 1/(2W) seconds apart with zero

The minimum sampling 
rate of (2W) samples per 
second, for an analog 
signal bandwidth of W Hz, 
is called the Nyquist rate.

The reciprocal of 
called the 
1/(
The phenomenon of the presence of 
high
spectrum of the original analog signal is 
called aliasing or simply 

….. Sampling Theorem….. Sampling Theorem
Signal - If an analog information 

signal containing no frequency outside the specified bandwidth W 
Hz, it may be reconstructed from its samples at a sequence of points 

W) seconds apart with zero-mean squared error.

The reciprocal of Nyquist rate, 1/(2W), is 
called the Nyquist interval, that is, Ts = 

/(2W).
The phenomenon of the presence of 
high-frequency component in the 
spectrum of the original analog signal is 
called aliasing or simply foldover.



Sampling TheoremSampling Theorem
Sampling Theorem for Baseband Signal 
no frequency components higher than 
recovered from the knowledge of its samples taken at a rate of at 
least 2 fm samples per second, that is, sampling frequency  

The minimum sampling 
rate fs = 2 fm samples per 
second is called the 
Nyquist sampling rate.

A baseband signal having no frequency 
components higher than 
completely described by its sample 
values at uniform intervals less than or 
equal to 
the sampling interval 
seconds.

Sampling TheoremSampling Theorem
Sampling Theorem for Baseband Signal - A baseband signal having 
no frequency components higher than fm Hz may be completely 
recovered from the knowledge of its samples taken at a rate of at 

samples per second, that is, sampling frequency  fs ≥ 2 fm.

A baseband signal having no frequency 
components higher than fm Hz is 
completely described by its sample 
values at uniform intervals less than or 
equal to 1/(2fm) seconds apart, that is, 
the sampling interval Ts ≤  1/(2fm) 
seconds.



Methods of SamplingMethods of Sampling

Ideal 
sampling -
an 
impulse at 
each 
sampling 
instant

Ideal Sampling
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Ideal Sampling ( or Impulse Sampling)

Is accomplished by the multiplication of the signal 
function)
Consider the instantaneous sampling of the analog signal 

Train of impulse functions select sample values at regular intervals

Fourier Series representation:
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( or Impulse Sampling)

accomplished by the multiplication of the signal x(t) by the uniform train of impulses (comb 

Consider the instantaneous sampling of the analog signal x(t)

Train of impulse functions select sample values at regular intervals
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Ideal Sampling ( or Impulse Sampling)

This shows that the Fourier Transform of the sampled signal is the Fourier Transform of the original 
signal at rate of 1/Ts

( or Impulse Sampling)

This shows that the Fourier Transform of the sampled signal is the Fourier Transform of the original 



Ideal Sampling ( or Impulse Sampling)

As long as fs> 2fm,no overlap of repeated replicas X(f 
Minimum Sampling Condition:

Sampling Theorem: A finite energy function 
its sampled value x(nTs) with

provided that =>
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( or Impulse Sampling)

X(f - n/Ts) will occur in Xs(f)

A finite energy function x(t) can be completely    reconstructed from 

provided that =>
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Ideal Sampling ( or Impulse Sampling)

This means that the output is simply the replication of the original signal at discrete intervals, e.g

( or Impulse Sampling)

This means that the output is simply the replication of the original signal at discrete intervals, e.g



Ts is called the Nyquist interval: It is the longest time interval that can be used for sampling a bandlimited 
signal and still allow reconstruction of the signal at the receiver without distortion

It is the longest time interval that can be used for sampling a bandlimited 
signal and still allow reconstruction of the signal at the receiver without distortion



….. Methods of Sampling….. Methods of Sampling

Natural 
sampling - a 
pulse of 
short width 
with varying 
amplitude 
with natural 
tops

Natural Sampling
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Natural Sampling



Natural SamplingNatural Sampling

If we multiply x(t) by a train of rectangular 
pulses xp(t), we obtain a gated waveform 
that approximates the ideal sampled 
waveform, known as natural sampling 
gating (see Figure 2.8)
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Each pulse in xp(t) has width Ts and amplitude 1/T
The top of each pulse follows the variation of the signal being sampled
Xs (f) is the replication of X(f) periodically every fs

Xs (f) is weighted by Cn  Fourier Series Coeffiecient
The problem with a natural sampled waveform is that the tops of the sample pulses are not flat
It is not compatible with a digital system since the amplitude of each sample has infinite number of 
possible values
Another technique known as flat top sampling is used to alleviate this problem

/Ts

The top of each pulse follows the variation of the signal being sampled
Hz

Fourier Series Coeffiecient
The problem with a natural sampled waveform is that the tops of the sample pulses are not flat
It is not compatible with a digital system since the amplitude of each sample has infinite number of 

is used to alleviate this problem



Flat-top 
sampling - a 
pulse of 
short width 
with varying 
amplitude 
with flat 
tops

Flat-top Sampling

….. Methods of Sampling….. Methods of Sampling

top Sampling

….. Methods of Sampling….. Methods of Sampling



Flat-Top Sampling
Here, the pulse is held to a constant height for the whole sample period
Flat top sampling is obtained by the convolution of the signal obtained after ideal 
sampling with a unity amplitude rectangular pulse, 
This technique is used to realize Sample-and
In S/H, input signal is continuously sampled and then the value is held for as long as it 
takes to for the A/D to acquire its value

Top Sampling
Here, the pulse is held to a constant height for the whole sample period
Flat top sampling is obtained by the convolution of the signal obtained after ideal 
sampling with a unity amplitude rectangular pulse, p(t)

and-Hold (S/H) operation
In S/H, input signal is continuously sampled and then the value is held for as long as it 



Flat top sampling (Time Domain)
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Taking the Fourier Transform will result to

where P(f) is a sinc function
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Flat top sampling (Frequency Domain)

Flat top sampling becomes identical to ideal sampling as the width of the pulses become 
shorter

Flat top sampling (Frequency Domain)

Flat top sampling becomes identical to ideal sampling as the width of the pulses become 



Recovering the Analog Signal
One way of recovering the original signal from sampled signal 
Filter (LPF) as shown below

If fs > 2B then we recover x(t) exactly

Else we run into some problems and signal is not fully recovered

Recovering the Analog Signal
One way of recovering the original signal from sampled signal Xs(f) is to pass it through a Low Pass 

Else we run into some problems and signal is not fully recovered



Significance of Sampling Rate

When fs < 2fm, 
spectral 
components of 
adjacent samples 
will overlap, 
known as aliasing

An Illustration of Aliasing

Significance of Sampling Rate

An Illustration of Aliasing



Undersampling and Aliasing
– If the waveform is undersampled (i.e. fs < 2B) then there will be 

signal

The signal at the output of the filter will be 

different from the original signal spectrum

This is the outcome of aliasing!

This implies that whenever the sampling condition is not met, an irreversible overlap of the spectral 
replicas is produced

) then there will be spectral overlap in the sampled 

!

This implies that whenever the sampling condition is not met, an irreversible overlap of the spectral 



This could be due to:

1. x(t) containing higher frequency than were expected
2. An error in calculating the sampling rate

Under normal conditions, undersampling of signals causing aliasing is not recommended

containing higher frequency than were expected
An error in calculating the sampling rate

Under normal conditions, undersampling of signals causing aliasing is not recommended



Solution 1: Anti-Aliasing Analog Filter

– All physically realizable signals are not completely bandlimited
– If there is a significant amount of energy in frequencies above half the sampling frequency 

(fs/2), aliasing will occur
– Aliasing can be prevented by first passing the analog signal through an 

called a prefilter) before sampling is performed
– The anti-aliasing filter is simply a LPF with cutoff frequency equal to half the sample rate

All physically realizable signals are not completely bandlimited
If there is a significant amount of energy in frequencies above half the sampling frequency 

Aliasing can be prevented by first passing the analog signal through an anti-aliasing filter (also 
) before sampling is performed

aliasing filter is simply a LPF with cutoff frequency equal to half the sample rate



Antialiasing Filter

An anti-aliasing 
filter is a low-pass 
filter of sufficient 
higher order 
which is 
recommended to 
be used prior to 
sampling.

Minimizing Aliasing 

Antialiasing Filter

Minimizing Aliasing 



• Aliasing is prevented by forcing the bandwidth of the sampled signal to satisfy the requirement 
of the Sampling Theorem
Aliasing is prevented by forcing the bandwidth of the sampled signal to satisfy the requirement 



Solution 2: Over Sampling and Filtering in the Digital Domain
– The signal is passed through a low performance (less costly) analog low

the bandwidth.
– Sample the resulting signal at a high sampling frequency.
– The digital samples are then processed by a high performance digital filter and down 

sample the resulting signal.

: Over Sampling and Filtering in the Digital Domain
The signal is passed through a low performance (less costly) analog low-pass filter to limit 

Sample the resulting signal at a high sampling frequency.
The digital samples are then processed by a high performance digital filter and down 



Summary Of Sampling
Ideal Sampling 
(or Impulse Sampling)

Natural Sampling 
(or Gating)

Flat-Top Sampling

For all sampling techniques
– If fs > 2B then we can recover x(t) exactly
– If fs < 2B) spectral overlapping known as aliasing
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Quantization

Quantization is a non linear transformation which maps elements from a continuous set 
to a finite set.  It is also the second step required by A/D conversion.

SampleAnalog Signal
Continuous time
Continuous value - Discrete time

- Continuous value

Quantization

Quantization is a non linear transformation which maps elements from a continuous set 
to a finite set.  It is also the second step required by A/D conversion.

Quantize Digital Signal
- Discrete time
- Discrete valueDiscrete time

Continuous value



Uniform Quantization

Region of operation

output 

-V

V

-V

Uniform Quantization

For M=2n levels, step size :
 = 2V /2n = V(2-n+1)

input w1(t)

output w2(t)

V



Figure 3.10 Two types of quantization: (Two types of quantization: (a) midtread and (b) midrise.
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V
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Error, /2
-/2

Quantization Error, e

input w1(t)

output w2(t)

V

input w1(t)

Error, e
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Definition.  The dynamic range of an input signal is the ratio of the largest  to 
the smallest power levels which the input signal can take on and be reproduced 
with the acceptable signal distortion.

The dynamic range of the quantizer input in the PCM system is 

Definition.  The dynamic range of an input signal is the ratio of the largest  to 
the smallest power levels which the input signal can take on and be reproduced 

The dynamic range of the quantizer input in the PCM system is 6n dB.



Nonuniform Quantizer

Used to reduce quantization error and increase the dynamic range when input signal is 
not uniformly distributed over its allowed range of values.

allowed 
values

values for 

Used to reduce quantization error and increase the dynamic range when input signal is 
not uniformly distributed over its allowed range of values.

time

input



Nonuniform quantizer

Compressor
Discrete
samples

“Compressing-and-expanding” is called “companding.”
• •

• •

Decoderreceived
digital signals

Nonuniform quantizer

Uniform
Quantizer

digital signals

expanding” is called “companding.”

Channel

• •
• •

Expander output



1. Unipolar nonreturn-to-zero (NRZ) Signaling 

2. Polar nonreturn-to-zero(NRZ) Signaling

3. Unipor nonreturn-to-zero (RZ) Signaling 

4. Bipolar nonreturn-to-zero (BRZ) Signaling 

5. Split-phase (Manchester code)

Line codes:

zero (NRZ) Signaling 

zero(NRZ) Signaling

zero (RZ) Signaling 

zero (BRZ) Signaling 

phase (Manchester code)

Line codes:



Figure 3.15 Line codes for the electrical representations of binary data. 
(a) Unipolar NRZ signaling. (b) Polar NRZ signaling.
(c) Unipolar RZ signaling. (d) Bipolar RZ signaling. 
(e) Split-phase or Manchester code.

Line codes for the electrical representations of binary data. 
) Polar NRZ signaling.

) Bipolar RZ signaling. 



Application of Sampling Theorem 
PAM/TDM

Design of 
PAM/TDM 

System 

Application of Sampling Theorem –
PAM/TDM



UNIT-II    DIGITAL MODULATIONII    DIGITAL MODULATION



Pulse Code Modulation (PCM)Pulse Code Modulation (PCM)

1.  Block Diagram of PCM

2  PCM Sampling

3  Quantization of Sampled Signal

4  Encoding of Quantized Sampled Signal

Pulse Code Modulation (PCM)Pulse Code Modulation (PCM)

3  Quantization of Sampled Signal

Encoding of Quantized Sampled Signal



The basic elements of a PCM system.

Pulse Code Modulation

The basic elements of a PCM system.

Pulse Code Modulation



PCM SamplingPCM Sampling

The Process 
of Natural 
Sampling

PCM SamplingPCM Sampling



Quantization of Quantization of 

Operation of 
Quantization

VL

L01

L12

L34

L23

L45

L56

L67

VH

s(t)
sq(t)

sq(t)

Quantization of Quantization of Sampled SignalSampled Signal
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Quantization is the 
conversion of an analog 
sample of the 
information signal into 
discrete form. Thus, an 
infinite number of 
possible levels are 
converted to a finite 
number of conditions.

Quantization error 
difference between rounding off sample 
values of an analog signal to the nearest 
permissible level of the 
the process of quantization.

Classification of Quantization 

Quantization Error and ClassificationQuantization Error and Classification

Quantization error is defined as the 
difference between rounding off sample 
values of an analog signal to the nearest 
permissible level of the quantizer during 
the process of quantization.

Classification of Quantization 
Process

Uniform 
quantization

Non-uniform 
quantization

Quantization Error and ClassificationQuantization Error and Classification



Characteristics of Compressor, Uniform Characteristics of Compressor, Uniform 
and Nonand Non--uniform Quantizeruniform Quantizer

Characteristics of Compressor, Uniform Characteristics of Compressor, Uniform 
uniform Quantizeruniform Quantizer



μμ--law law and Aand A--law Compression law Compression 
CharacteristicsCharacteristics

law Compression law Compression 
CharacteristicsCharacteristics



Encoding of Quantized Sampled SignalEncoding of Quantized Sampled Signal

PCM – Functional Blocks

Encoding of Quantized Sampled SignalEncoding of Quantized Sampled Signal

Functional Blocks



PCM Data Rate (bps) = 2nfm

PCM Bandwidth (Hz) = (1/2) PCM Data Rate = 

Dynamic Range (dB) = 20 log (2n –

Coding Efficiency (%) = [(minimum bits)/(actual bits)] x 

Where n is number of PCM encoding bits and 
frequency component of information signal

PCM System ParametersPCM System Parameters

) PCM Data Rate = nfm

1)

Coding Efficiency (%) = [(minimum bits)/(actual bits)] x 100

is number of PCM encoding bits and fm is the highest 
frequency component of information signal

PCM System ParametersPCM System Parameters



DELTA MODULATIONDELTA MODULATION



Delta modulation (DM) uses a single
digital transmission of analog signals

Essence of Delta Modulation (DM)Essence of Delta Modulation (DM)

An Ideal Delta Modulation Waveform

Delta modulation (DM) uses a single-bit DPCM code to achieve 
digital transmission of analog signals

Essence of Delta Modulation (DM)Essence of Delta Modulation (DM)

An Ideal Delta Modulation Waveform



DM system. (a) Transmitter. () Transmitter. (b) Receiver.



The modulator consists of a comparator, a quantizer, and an accumulator

The output of the accumulator is

   

                     

)sgn(
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Two types of quantization errors :
Slope overload distortion and granular noise

The modulator consists of a comparator, a quantizer, and an accumulator

(3.55)              
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Delta-Sigma modulation (sigma-delta modulation)
The            modulation which has an integrator
relieve the  draw back of delta modulation (differentiator

Beneficial effects of using integrator:
1. Pre-emphasize the low-frequency content
2. Increase correlation between adjacent samples 
(reduce the variance of the error signal at the quantizer input )

3. Simplify receiver design

Because the transmitter has an integrator , the receiver 
consists simply of a low-pass filter. 
(The differentiator in the conventional DM receiver is cancelled by the integrator )



delta modulation)
integrator can 

differentiator)  

frequency content
2. Increase correlation between adjacent samples 
(reduce the variance of the error signal at the quantizer input )

Because the transmitter has an integrator , the receiver 

(The differentiator in the conventional DM receiver is cancelled by the integrator )



equivalent versions of delta-sigma modulation system.



Differential Pulse-Code Modulation (DPCM)
PCM has the sampling rate higher than the Nyquist rate

can efficiently remove this redundancy.

Figure 3.28 DPCM system. (a) Transmitter. (b) Receiver.

Code Modulation (DPCM)
rate .The encode signal contains redundant information. DPCM

) Receiver.



Adaptive Differential Pulse-
Need for coding speech at low bit rates , we have two aims in mind:

. Remove redundancies from the speech signal as far as possible.

. Assign the available bits in a perceptually efficient manner.

Figure 3.29 Adaptive quantization with backward estimation (AQB).

Adaptive prediction with backward estimation (APB).

-Code Modulation (ADPCM)
Need for coding speech at low bit rates , we have two aims in mind:

. Remove redundancies from the speech signal as far as possible.

. Assign the available bits in a perceptually efficient manner.

Adaptive quantization with backward estimation (AQB).

prediction with backward estimation (APB).



S. No. Parameter PCM

1. Number of bits per 

sample

4/8/16 bits More than one bit but 

less than PCM

2. Number of levels Depends on number of bits Fixed number of levels

3. Step size Fixed or variable Fixed or variable

4. Transmission bandwidth More bandwidth needed Lesser than PCM

5. Feedback Does not exist Exists

6. Quantization 

noise/distortion

Quantization noise depends 

on number of bits

Quantization noise & 

slope overload

7. Complexity of 

implementation

Complex Simple

Comparison of PCM and DM TechniquesComparison of PCM and DM Techniques
DPCM DM ADM

More than one bit but 

less than PCM

One bit One bit

Fixed number of levels Two levels Two levels

Fixed or variable Fixed Variable

Lesser than PCM Lowest Lowest

Exists Exists Exists

Quantization noise & 

slope overload

slope overload & 

granular noise

Quantization noise only

Simple Simple Simple

Comparison of PCM and DM TechniquesComparison of PCM and DM Techniques



UNIT
Basband Pulse Transmission

UNIT-III   
Pulse Transmission



Transmit and Receive FormattingTransmit and Receive Formatting



Sources of Error in received Signal

Major sources of  errors:
– Thermal noise (AWGN)

• disturbs the signal in an additive fashion (Additive)
• has flat spectral density for all frequencies of  interest (White)
• is modeled by Gaussian random process (Gaussian Noise) 

– Inter-Symbol Interference (ISI)
• Due to the filtering effect of  transmitter, channel and receiver, symbols are 

“smeared”.

Sources of Error in received Signal

disturbs the signal in an additive fashion (Additive)
has flat spectral density for all frequencies of  interest (White)
is modeled by Gaussian random process (Gaussian Noise) 

Due to the filtering effect of  transmitter, channel and receiver, symbols are 
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Receiver Structure contd

The digital receiver performs two basic functions
– Demodulation
– Detection

Why demodulate a baseband signal???
– Channel and the transmitter’s filter causes ISI which “smears” the 

transmitted pulses
– Required to recover a waveform to be sampled at t = nT.

Detection
– decision-making process of  selecting possible digital symbol 

Receiver Structure contd

two basic functions:

Why demodulate a baseband signal???
Channel and the transmitter’s filter causes ISI which “smears” the 

Required to recover a waveform to be sampled at t = nT.

making process of  selecting possible digital symbol 



Steps in designing the receiver

Find optimum solution for receiver design with the following goals: 
1. Maximize SNR
2. Minimize ISI
Steps in design:

– Model the received signal
– Find separate solutions for each of  the goals.

Steps in designing the receiver

Find optimum solution for receiver design with the following goals: 



Detection of Binary Signal in Gaussian Noise

The recovery of  signal at the receiver consist of  two parts
Filter
• Reduces the received signal to a single variable z(T)
• z(T) is called the test statistics

Detector (or decision circuit)
• Compares the z(T) to some threshold level 0 , i.e.,

where H1 and H0 are the two 
possible binary hypothesis 0)(

0

1


H

H

Tz



Detection of Binary Signal in Gaussian Noise

are the two 



Finding optimized filter for AWGN channel

Assuming Channel with response equal to impulse 
function

Finding optimized filter for AWGN channel

Assuming Channel with response equal to impulse 
function



Detection of Binary Signal in Gaussian Noise

• For any binary channel, the transmitted signal over a symbol interval (

• The received signal r(t) degraded by noise n(t) and possibly degraded by the impulse response of  
the channel hc(t), is

Where n(t) is assumed to be zero mean AWGN process
• For ideal distortionless channel where hc(t) is an impulse function and convolution with h

produces no degradation, r(t) can be represented as:


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Detection of Binary Signal in Gaussian Noise

For any binary channel, the transmitted signal over a symbol interval (0,T) is:  

The received signal r(t) degraded by noise n(t) and possibly degraded by the impulse response of  

Where n(t) is assumed to be zero mean AWGN process
(t) is an impulse function and convolution with h

produces no degradation, r(t) can be represented as:

1
0

binaryafor
binaryafor
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Design the receiver filter to maximize the SNR

Model the received signal

Simplify the model:
– Received signal in AWGN

)( th c
)t

)( tn

)( tr

)( tn

)( ts i
Ideal channels

)()( tth c 

AWGN

AWGN

Design the receiver filter to maximize the SNR
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Find Filter Transfer Function H

Objective: To maximizes (S/N)T and find h(t)
Expressing signal ai(t) at filter output in terms of  filter transfer function H(f)

where H(f) is the filter transfer funtion and S(f) is the Fourier transform of  input signal s(t)

If  the two sided PSD of  i/p noise is N0/2
Output noise power can be expressed as:

Expressing (S/N)T :
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Find Filter Transfer Function H0(f)

(t) at filter output in terms of  filter transfer function H(f)

where H(f) is the filter transfer funtion and S(f) is the Fourier transform of  input signal s(t)
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• For H(f) = Hopt (f) to maximize (S/N)T use Schwarz’s Inequality

• Equality holds if  f1(x) = k f*2(x) where k is arbitrary constant and * indicates complex conjugate
• Associate H(f) with f1(x)  and S(f) ej2 fT with f2

• Substitute yields to:
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Schwarz’s Inequality:

(x) where k is arbitrary constant and * indicates complex conjugate

2(x) to get:
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and energy E of  the input signal s(t):

Thus (S/N)T depends on input signal energy
and power spectral density of  noise and
NOT on the particular shape of  the waveform

Equality for holds for optimum filter transfer function H

such that:

For real valued s(t):
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and energy E of  the input signal s(t):

depends on input signal energy

on the particular shape of  the waveform

holds for optimum filter transfer function H0(f)

(3.55)
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The impulse response of  a filter producing maximum output signal
mirror image of  message signal s(t), delayed by symbol time duration T.
The filter designed is called a MATCHED FILTER

Defined as:
a linear filter designed to provide the maximum 
signal-to-noise power ratio at its output for a given 
transmitted symbol waveform 
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 


TkS

th
0

(
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The impulse response of  a filter producing maximum output signal-to-noise ratio is the 
mirror image of  message signal s(t), delayed by symbol time duration T.

MATCHED FILTER

a linear filter designed to provide the maximum 
noise power ratio at its output for a given 
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whereelse

Ttt 0)



Matched Filter Output of a rectangular PulseMatched Filter Output of a rectangular Pulse



Replacing Matched filter with IntegratorReplacing Matched filter with Integrator



Implementation of matched filter receiver
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Detection

Max. Likelihood Detector
Probability of  Error

Detection

Max. Likelihood Detector
Probability of  Error



Detection

Matched filter reduces the received signal to a single variable z(T), after which the detection of  symbol is carried out
The concept of  maximum likelihood detector is based on Statistical Decision Theory
It allows us to  

formulate the decision rule that operates on the data
optimize the detection criterion

0)(
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
H

H

Tz
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z(T), after which the detection of  symbol is carried out
is based on Statistical Decision Theory



], P[s1]   a priori probabilities
These probabilities are known before transmission

probability of  the received sample
), p(z|s1)

conditional pdf  of  received signal z, conditioned on the class s
|z], P[s1|z]  a posteriori probabilities
After examining the sample, we make a refinement of  our previous knowledge

0], P[s0|s1]
wrong decision (error)

1], P[s0|s0]
correct decision

Probabilities Review

conditional pdf  of  received signal z, conditioned on the class si

After examining the sample, we make a refinement of  our previous knowledge

Probabilities Review



Maximum Likelihood Ratio test and Maximum a posteriori (

Problem is that a posteriori probabilities are not known.
Solution: Use Bay’s theorem:

How to Choose the threshold?
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This means that if received signal is positive, s1 (t) was sent
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Maximum Likelihood Ratio test and Maximum a posteriori (MAP) criterion:

How to Choose the threshold?
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MAP criterion:
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When the two signals, s0(t) and s1(t), are equally likely, i.e., 
becomes

This is known as maximum likelihood ratio test because we are selecting
the hypothesis that corresponds to the signal with the maximum likelihood.

In terms of the Bayes criterion, it implies that the cost of both types of error is the same
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, are equally likely, i.e., P(s0) = P(s1) = 0.5, then the decision rule 

because we are selecting
the hypothesis that corresponds to the signal with the maximum likelihood.

In terms of the Bayes criterion, it implies that the cost of both types of error is the same
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Substituting the pdfs
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• Hence

where z is the minimum error criterion and  0 is optimum threshold
• For antipodal signal, s1(t) = - s0 (t)  a1 = - a0
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Probability of Error

Error will occur if
is sent  s0 is received

is sent  s1 is received

The total probability of error is sum of the errors
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If  signals are equally probable

Hence, the probability of  bit error PB, is the probability that an incorrect hypothesis is made
Numerically, PB is the area under the tail of  either of  the conditional distributions 
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is the probability that an incorrect hypothesis is made
is the area under the tail of  either of  the conditional distributions p(z|s1) or p(z|s0)

)|(

)()|(

01

001

sH

sPsHP

dzaz

dzszpdz



















 


 


2

0

0

0

2
1exp

)|(
0







Inter-Symbol Interference (ISI)
ISI in the detection process due to the filtering effects of the 
system
Overall equivalent system transfer function

– creates echoes and hence time dispersion
– causes ISI at sampling time
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Symbol Interference (ISI)
ISI in the detection process due to the filtering effects of the 

Overall equivalent system transfer function

creates echoes and hence time dispersion
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Inter-symbol interference
Baseband system model

Equivalent model
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Nyquist bandwidth constraint
Nyquist bandwidth constraint:

• The theoretical minimum required system bandwidth to detect 
without ISI is Rs/2 [Hz]. 

• Equivalently, a system with bandwidth 
transmission rate of 2W=1/T=Rs [symbols/s] without ISI.

Bandwidth efficiency, R/W [bits/s/Hz] : 
• An important measure in DCs representing data throughput per hertz of bandwidth.
• Showing how efficiently the bandwidth resources are used by signaling techniques.
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Nyquist bandwidth constraint

The theoretical minimum required system bandwidth to detect Rs [symbols/s] 

Equivalently, a system with bandwidth W=1/2T=Rs/2 [Hz] can support a maximum 
[symbols/s] without ISI.

[bits/s/Hz] : 
An important measure in DCs representing data throughput per hertz of bandwidth.
Showing how efficiently the bandwidth resources are used by signaling techniques.
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Ideal Nyquist pulse (filter)
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Nyquist pulses (filters)
Nyquist pulses (filters):
– Pulses (filters) which results in no ISI at the 

Nyquist filter: 
– Its transfer function in frequency domain is obtained by convolving a 

rectangular function with any real even
Nyquist pulse: 
– Its shape can be represented by a 

time function.
Example of Nyquist filters: Raised

Nyquist pulses (filters)

Pulses (filters) which results in no ISI at the sampling time.

Its transfer function in frequency domain is obtained by convolving a 
rectangular function with any real even-symmetric frequency function

Its shape can be represented by a sinc(t/T) function multiply by another 

filters: Raised-Cosine filter



Pulse shaping to reduce ISI
Goals and trade-off in pulse-shaping
– Reduce ISI
– Efficient bandwidth utilization
– Robustness to timing error (small side lobes)

Pulse shaping to reduce ISI
shaping

Robustness to timing error (small side lobes)



The raised cosine filter
Raised-Cosine Filter
– A Nyquist pulse (No ISI at the sampling time)
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The Raised cosine filter 
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Pulse shaping and equalization to remove ISI

Square-Root Raised Cosine (SRRC) filter and Equalizer

)()(RC HfHfH t
No ISI at the sampling time
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Pulse shaping and equalization to remove ISI

Root Raised Cosine (SRRC) filter and Equalizer

)()()( fHfHfH erc

No ISI at the sampling time

)(SRRC fH
Taking care of ISI 
caused by tr. filter

Taking care of ISI 
caused by channel



Example of pulse shaping
Square-root Raised-Cosine (SRRC) pulse shaping

Amp. [V]

Data symbol

First pulse
Second pulse

Example of pulse shaping
Cosine (SRRC) pulse shaping

t/T

Baseband tr. Waveform

Second pulse

Third pulse



Example of pulse shaping …
Raised Cosine pulse at the output of matched filter
Amp. [V]

Example of pulse shaping …
Raised Cosine pulse at the output of matched filter

t/T

Baseband received waveform at 
the matched filter output
(zero ISI)



Eye pattern
Eye pattern:Display on an oscilloscope which sweeps the system response to 
a baseband signal at the rate 1/T (T symbol duration) 

am
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 sc
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Distortion
due to ISI

Timing jitter

Eye pattern
Display on an oscilloscope which sweeps the system response to 

symbol duration) 

time scale

Noise margin

Sensitivity to 
timing error



Example of eye pattern:
Binary-PAM, SRRQ pulse

Perfect channel (no noise and no ISI)

Example of eye pattern:
PAM, SRRQ pulse

Perfect channel (no noise and no ISI)



Correlative Coding

Transmit 2W symbols/s with zero ISI, using the theoretical minimum bandwidth of W Hz, without 
infinitely sharp filters.

Correlative coding (or duobinary signaling or partial response signaling) introduces some 
controlled amount of ISI into the data stream rather than trying to eliminate ISI completely

Doubinary signaling

Correlative Coding

W symbols/s with zero ISI, using the theoretical minimum bandwidth of W Hz, without 

Correlative coding (or duobinary signaling or partial response signaling) introduces some 
controlled amount of ISI into the data stream rather than trying to eliminate ISI completely



Duobinary signaling

Duobinary signaling (class I partial response)

Duobinary signaling

Duobinary signaling (class I partial response)



Duobinary signal and Nyguist Criteria

Nyguist second criteria: but twice the bandwidth

Duobinary signal and Nyguist Criteria

Nyguist second criteria: but twice the bandwidth



Differential Coding

The response of a pulse is spread over more than one signaling 
interval.
The response is partial in any signaling interval.
Detection :
– Major drawback : error propagation.

To avoid error propagation, need deferential coding 
(precoding).

Differential Coding

The response of a pulse is spread over more than one signaling 

The response is partial in any signaling interval.

Major drawback : error propagation.

To avoid error propagation, need deferential coding 



Modified duobinary signaling

Modified duobinary signaling
– In duobinary signaling, H(f) is nonzero at the origin.
– We can correct this deficiency  by using the class IV partial response.

Modified duobinary signaling

In duobinary signaling, H(f) is nonzero at the origin.
We can correct this deficiency  by using the class IV partial response.



Modified duobinary signaling

Spectrum

Modified duobinary signaling



Modified duobinary signaling

Time Sequency: interpretation of receiving 

Modified duobinary signaling

Time Sequency: interpretation of receiving 2, 0, and -2?



Duobinary Transfer FunctionDuobinary Transfer Function



Comparison of Binary with Duobinary 
Signaling

Binary signaling assumes the transmitted pulse amplitude are independent of one another

Duobinary signaling introduces correlation between pulse amplitudes

Duobinary technique achieve zero ISI signal transmission using a smaller system bandwidth

Duobinary coding requires three levels, compared with the usual two levels for binary coding

Duobinary signaling requires more power than binary signaling (~
signaling)

Comparison of Binary with Duobinary 
Signaling

Binary signaling assumes the transmitted pulse amplitude are independent of one another

Duobinary signaling introduces correlation between pulse amplitudes

Duobinary technique achieve zero ISI signal transmission using a smaller system bandwidth

Duobinary coding requires three levels, compared with the usual two levels for binary coding

Duobinary signaling requires more power than binary signaling (~2.5 dB greater SNR than binary 



Pass-band Data Transmissionband Data Transmission



Block Diagram

Functional model of pass-band data transmission system.

Block Diagram

band data transmission system.



Signaling 

Illustrative waveforms for the three basic forms of signaling binary information. 
(a) Amplitude-shift keying. (b) Phase-shift keying. (
continuous phase.

Signaling 

Illustrative waveforms for the three basic forms of signaling binary information. 
shift keying. (c) Frequency-shift keying with 



What do we want to study?

We are going to study and compare different modulation 
techniques in terms of 
– Probability of errors
– Power Spectrum
– Bandwidth efficiency 

B
R b Bits/s/Hz

What do we want to study?

We are going to study and compare different modulation 

Bits/s/Hz



Coherent PSK

Binary Phase Shift Keying (BPSK)
– Consider the system with 2 basis functions

– and  

 
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t
b

 2cos2
1 

 
T

t
b

 2sin2
2 

Coherent PSK

basis functions

tf c2

tf c2



BPSK

If we want to fix that for both symbols (
equal, we have

2

We place s0 to minimize
probability of error

s0

s0

BPSK

If we want to fix that for both symbols (0 and 1) the transmitted energies are 

1

s1



BPSK

We found that phase of s1 and 
We can rotate s1 and s0



s0

Rotate

BPSK

and s0 are 180 degree difference.  

1

2

s1



BPSK

We observe that 2 has nothing to do with signals. Hence, only one 
basis function is sufficient to represent the signals

2

s0

BPSK

has nothing to do with signals. Hence, only one 
basis function is sufficient to represent the signals

2

s1

1



BPSK

Finally, we have 

  tEts b  )(11 

  tEts b  (10 

BPSK
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T
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BPSK

Signal-space diagram for coherent binary PSK system. The waveforms depicting 
the transmitted signals s1(t) and s2(t), displayed in the inserts, assume 

BPSK

space diagram for coherent binary PSK system. The waveforms depicting 
), displayed in the inserts, assume nc  2.



BPSK

• Probability of error calculation. In the case of equally likely 
(Pr(m0)=Pr(m1)), we have
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BPSK

Probability of error calculation. In the case of equally likely 
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BPSK

Block diagrams for (a) binary PSK transmitter and (
receiver.

BPSK

) binary PSK transmitter and (b) coherent binary PSK 



Quadriphase-Shift Keying (QPSK)

   itf
T
Ets ci 

  22cos2 

T is symbol duration 
E is signal energy per symbol
There are 4 symbols for i = 1, 2, 3, and 

Shift Keying (QPSK)
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 0;

4
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, and 4



QPSK
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Which we can write in vector format as



QPSK

i Input Dibit Phase of 
QPSK 

signaling 

1 10

2 00

3 01

4 11

4/

4/3

4/5

/7

QPSK

Phase of 
QPSK 

signaling 

Coordinate of Message 
point

si1 si2

4

4

2/E

2/E

2/E

2/E

2/E

2/E2/E

2/E



QPSK

2

s3

s2

(10(00)

(01)

QPSK

1

s4

s1

10)

(11)



QPSK signalsQPSK signals



QPSK

Block diagrams of (a) 
QPSK transmitter and 
(b) coherent QPSK 
receiver.

QPSK



QPSK: Error Probability QPSK

Consider signal 
constellation given in 
the figure (10

Z3

Z2

E

QPSK: Error Probability QPSK
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s1

s3

s2
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QPSK
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We can treat QPSK as the combination of 
BPSK over the interval T=2Tb

since the first bit is transmitted by 
transmitted by 2. 
Probability of error for each channel is given by 

QPSK
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We can treat QPSK as the combination of 2 independent 

since the first bit is transmitted by 1 and the second bit is 

Probability of error for each channel is given by 



QPSK

Pc

If symbol is to be received correctly both bits must be received 
correctly. 
Hence, the average probability of correct decision is given by
Which gives the probability of errors equal to  
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If symbol is to be received correctly both bits must be received 

Hence, the average probability of correct decision is given by
Which gives the probability of errors equal to  
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QPSK

   erfcsymbolper Pe

Since one symbol of QPSK consists of two bits, we have 

The above probability is the error probability per symbol. The avg. 
probability of error per bit

Which is exactly the same as BPSK .
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Since one symbol of QPSK consists of two bits, we have E = 2Eb.

The above probability is the error probability per symbol. The avg. 



BPSK vs QPSK
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QPSK

Conclusion
– QPSK is capable of transmitting data twice as faster as BPSK with the 

same energy per bit.
– We will also learn in the future that QPSK has half of the bandwidth 

of BPSK.

QPSK

QPSK is capable of transmitting data twice as faster as BPSK with the 

We will also learn in the future that QPSK has half of the bandwidth 



OFFSET QPSK

2

s

s3

s2

(10(00)

(01)

90 degree shift in phase

180 degree shift in phase

OFFSET QPSK

1

s4

s1

10)

(11)

degree shift in phase

degree shift in phase



OFFSET QPSKOFFSET QPSK



OFFSET QPSK

Whenever both bits are changed simultaneously, 
phase-shift occurs. 
At 180 phase-shift, the amplitude of the transmitted signal 
changes very rapidly costing amplitude fluctuation.
This signal may be distorted when is passed through the filter 
or nonlinear amplifier. 

OFFSET QPSK

Whenever both bits are changed simultaneously, 180 degree 

shift, the amplitude of the transmitted signal 
changes very rapidly costing amplitude fluctuation.
This signal may be distorted when is passed through the filter 



OFFSET QPSK
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OFFSET QPSK

To solve the amplitude fluctuation problem, we propose the 
offset QPSK.
Offset QPSK delay the data in quadrature component by T/
seconds (half of symbol).
Now, no way that both bits can change at the same time.  

OFFSET QPSK

To solve the amplitude fluctuation problem, we propose the 

Offset QPSK delay the data in quadrature component by T/2 

Now, no way that both bits can change at the same time.  



OFFSET QPSK

In the offset QPSK, the phase of the signal can change by 
or 0 degree only while in the QPSK 
change by 180 90 or 0 degree. 

OFFSET QPSK

In the offset QPSK, the phase of the signal can change by 90 
degree only while in the QPSK the phase of the signal can 

degree. 



OFFSET QPSK
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Offset QPSK

Possible paths for switching between the
message points in (a) QPSK and (b) offset QPSK.

Offset QPSK

Possible paths for switching between the
) offset QPSK.



OFFSET QPSK
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Bandwidths of the offset QPSK and the regular QPSK is the 
same.
From signal constellation we have that

Which is exactly the same as the regular QPSK. 

OFFSET QPSK
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Bandwidths of the offset QPSK and the regular QPSK is the 

From signal constellation we have that

Which is exactly the same as the regular QPSK. 



M-array PSK

At a moment, there are M possible symbol values being sent 
for M different phase values,

ii 2 
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T
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array PSK

At a moment, there are M possible symbol values being sent 
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M-array PSK

Signal-space diagram for octaphase-
shift keying (i.e., M  8). The decision 
boundaries are shown as dashed 
lines.
Signal-space diagram illustrating the 
application of the union bound for 
octaphase-shift keying.

array PSK



M-array PSK

Probability of errors
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M-ary PSK
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M-array PSK

Power Spectra (M-array)

M=2, we have
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M-array PSK

Power spectra of M-ary PSK signals for M 

array PSK

ary PSK signals for M  2, 4, 8.

Tbf



M-array PSK

Bandwidth efficiency:
– We only consider the bandwidth of the main lobe (or null

– Bandwidth efficiency of M-ary PSK is given by
MTT

B
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array PSK
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M-ary QAM

QAM = Quadrature Amplitude Modulation
Both Amplitude and phase of carrier change according to the 
transmitted symbol, mi. 

where ai and bi are integers.   tfa
T
E

ts cii  2cos
2 0 

ary QAM

QAM = Quadrature Amplitude Modulation
Both Amplitude and phase of carrier change according to the 
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M-ary QAM

Again, we have

as the basis functions
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M-ary QAM

QAM square Constellation
– Having even number of bits per symbol, denoted by 
– M=L x L possible values
– Denoting   

ML 

ary QAM

Having even number of bits per symbol, denoted by 2n. 



16-QAM
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16-QAM

L-ary, 4-PAM



16-QAM

Calculation of Probability of errors
– Since both basis functions are orthogonal, we can treat the 

as combination of two 4-ary PAM systems.
– For each system, the probability of error is given by  
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Calculation of Probability of errors
Since both basis functions are orthogonal, we can treat the 16-QAM 

ary PAM systems.
For each system, the probability of error is given by  
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16-QAM

– A symbol will be received correctly if data transmitted on both 
PAM systems are received correctly.

– Probability of symbol error is given by
 c symbolP 

  ce PsymbolP





11                   

1

QAM

A symbol will be received correctly if data transmitted on both 4-ary 
PAM systems are received correctly. Hence, we have

Probability of symbol error is given by
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16-QAM

– Hence, we have

– But because average energy is given by

– We have
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Coherent FSK

FSK = frequency shift keying
Coherent = receiver have information on where the zero phase 
of carrier. 
We can treat it as non-linear modulation since information is 
put into the frequency.  

Coherent FSK

Coherent = receiver have information on where the zero phase 

linear modulation since information is 



Binary FSK

Transmitted signals are 

where
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Binary FSK

S1(t) represented symbol “1”.
S2(t) represented symbol “0”.
This FSK is also known as Sunde’s FSK.
It is continuous phase frequency

Binary FSK

This FSK is also known as Sunde’s FSK.
It is continuous phase frequency-shift keying (CPFSK).



Binary FSK

There are two basis functions written as

As a result, the signal vectors are 
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As a result, the signal vectors are 
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BFSK

From the figure, we have 
In case of Pr(0)=Pr(1), the probability of error is given by

We observe that at a given value of P
requires twice as much power as the BPSK system.   
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), the probability of error is given by

We observe that at a given value of Pe, the BFSK system 
requires twice as much power as the BPSK system.   
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Power Spectral density of BFSK

Consider the Sunde’s FSK where f1 and f2

We observe that in-phase component does not depend on m
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Power Spectral density of BFSK

We have

For the quadrature component
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Power Spectral density of BFSK

Finally, we obtain S

Power Spectral density of BFSK
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Phase Tree of BFSK

FSK signal is given by

At t = 0, we have

The phase of Signal is zero. 
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Phase Tree of BFSK

At t = Tb, we have

We observe that phase changes by 
for symbol “1” and + for symbol “0

We can draw the phase trellis as 
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Minimum-Shift keying (MSK)

MSK tries to shift the phase after one symbol to just half of 
Sunde’s FSK system. The transmitted signal is given by
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MSK tries to shift the phase after one symbol to just half of 
Sunde’s FSK system. The transmitted signal is given by

  

  



"0"for 02cos
2

"1"for 02cos
2

2

1





tf
T
E

tf
T
E

b

b

b

b



MSK

Where 

Observe that
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MSK

h = Tb(f1-f2) is called “deviation ratio.”
For Sunde’s FSK, h = 1.
For MSK, h = 0.5.
h cannot be any smaller because the orthogonality between cos(
and cos(2f2t) is still held for h < 0.5
Orthogonality guarantees that both signal will not interfere each other 
in detection process.  

MSK

) is called “deviation ratio.”

cannot be any smaller because the orthogonality between cos(2f1t) 
5.

Orthogonality guarantees that both signal will not interfere each other 



MSK

Phase trellis diagram for MSK signal 

MSK

Phase trellis diagram for MSK signal 1101000



MSK

Signal s(t) of MSK can be decomposed into 

where
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MSK

Symbol (0)
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MSK

For the interval –Tb < t  0, we have

Let’s note here that the  for the interval           
not be the same.
We know that 
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MSK

Since (0) can be either 0 or  depending on the past history. We have

“+” for (0) = 0 and “-” for (0) = 
Hence, we have
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MSK

Similarly we can write 

for 0< tTb and Tb < t2Tb. Note the “+” and “
between these intervals.

Furthermore, we have that (Tb) can be 
past history.  
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MSK

Hence, we have

we have that (Tb) can be /2 depending on the past history.
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MSK

Hence, we have

“+” for (Tb) = +/2 and “-” for (Tb

The basis functions change to
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MSK

We write MSK signal as

Where                     and 
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MSK
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MSK

We observe that MSK is in fact the QPSK having              the 
pulse shape

Block diagrams for transmitter and receiver are given in the 
next two slides.
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MSK

Probability of error of MSK system is equal to BPSK and QPSK
This due to the fact that MSK observes the signal for two symbol 
intervals whereas FSK only observes for single signal interval.  
Bandwidth of MSK system is 50% larger than QPSK.

2 16

cos32
)(








E
fS b

MSK


MSK

Probability of error of MSK system is equal to BPSK and QPSK
This due to the fact that MSK observes the signal for two symbol 
intervals whereas FSK only observes for single signal interval.  
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Noncoherent Orthogonal Modulation

Noncoherent implies that phase information is not available to the 
receiver. 
As a result, zero phase of the receiver can mean any phase of the 
transmitter. 
Any modulation techniques that transmits information through the 
phase cannot be used in noncoherent receivers.

Noncoherent Orthogonal Modulation

Noncoherent implies that phase information is not available to the 

As a result, zero phase of the receiver can mean any phase of the 

Any modulation techniques that transmits information through the 
phase cannot be used in noncoherent receivers.



Noncoherent Orthogonal Modulation
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Noncoherent Orthogonal Modulation

It is impossible to draw the signal constellation since we do not know 
where the axes are. 
However, we can still determine the distance of the each signal 
constellation from the origin.
As a result, the modulation techniques that put information in the 
amplitude can be detected. 
FSK uses the amplitude of signals in two different frequencies. Hence 
non-coherent receivers can be employed. 

Noncoherent Orthogonal Modulation

It is impossible to draw the signal constellation since we do not know 

However, we can still determine the distance of the each signal 

As a result, the modulation techniques that put information in the 

FSK uses the amplitude of signals in two different frequencies. Hence 
coherent receivers can be employed. 



Noncoherent Orthogonal Modulation

Consider the BFSK system where two frequencies f
represented two “1” and “0”. 
The transmitted signal is given by  

Problem is that  is unknown to the receiver. For the coherent receiver, 
 is precisely known by receiver. 
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Noncoherent Orthogonal Modulation

Consider the BFSK system where two frequencies f1 and f2 are used to 

is unknown to the receiver. For the coherent receiver, 
 bTti  0,2,1;



Noncoherent Orthogonal Modulation

Furthermore, we have

To get rid of the phase information (
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To get rid of the phase information (), we use the amplitude
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Noncoherent Orthogonal Modulation

Where

The amplitude of the received signal
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Noncoherent Orthogonal Modulation

Probability of Errors
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Noncoherent: BFSK

For BFSK, we have

  










                    0

2cos
2

b

b

i T
E

ts

Noncoherent: BFSK

 

elsewhere    ;               

0;2 bi Tttf



Noncoherent: BFSKNoncoherent: BFSK



Noncoherent: BFSK

Probability of Errors
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DPSK

Differential PSK
– Instead of finding the phase of the signal on the interval 

receiver determines the phase difference between adjacent time 
intervals. 

– If “1” is sent, the phase will remain the same
– If “0” is sent, the phase will change 

DPSK

Instead of finding the phase of the signal on the interval 0<tTb. This 
receiver determines the phase difference between adjacent time 

” is sent, the phase will remain the same
” is sent, the phase will change 180 degree.



DPSK

Or we have
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DPSK

In this case, we have T=2Tb and E=2
Hence, the probability of error is given by





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0
exp

2
1

N
E

P b
e

DPSK

2Eb

Hence, the probability of error is given by
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
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DPSK: Transmitter
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DPSK: Transmitter
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DPSK

bk} 1 0

dk-1} 1 1

Differential encoded 
dk}

1 1 0

Transmitted Phase 0 0 

DPSK

0 0 1 0 0 0 1 1

1 0 1 1 0 1 0 0

0 1 1 0 1 0 0 0

 0 0  0   



DPSK: ReceiverDPSK: Receiver



DPSK: Receiver
From the block diagram, we have that the decision rule as

If the phase of signal is unchanged (send “
both xi and xQ should not change. Hence, the
If the phase of signal is unchanged (send “
both xi and xQ should change. Hence, the

  1010  QQII xxxxl x

DPSK: Receiver
From the block diagram, we have that the decision rule as

If the phase of signal is unchanged (send “1”) the sign (“+” or “-”) of 
change. Hence, the l(x) should be positive.

If the phase of signal is unchanged (send “0”) the sign (“+” or “-1”) of 
should change. Hence, the l(x) should be negative.

0

1say 

0say 





Signal-space diagram of received DPSK signal.space diagram of received DPSK signal.



Unit-V –Introduction to Spread Spectrum TechniquesIntroduction to Spread Spectrum Techniques



M-ary signaling scheme:
In this signaling scheme 2 or more bits are grouped 

together to form a symbol.

One of the M possible signals 
s1(t) ,s2(t),s3(t),……sM(t)   
is transmitted during each symbol period 

of duration Ts. 

The number of possible signals = M = 2n,
where n is an integer.



n M = 2n

1 2

2 4

3 8

4 16

…. ……

The symbol values of M for a given value of n:

Symbol
0, 1

00, 01, 10, 11

000, 001, 010,011,...

0000, 0001, 0010,0011,….

……….

The symbol values of M for a given value of n:



Fig: waveforms of (a) ASK (b) PSK (c)FSK

• Depending on the variation of amplitude, phase or frequency of the carrier, the modulation scheme is called as 
M-ary ASK, M-ary PSK and M-ary FSK.

Fig: waveforms of (a) ASK (b) PSK (c)FSK

Depending on the variation of amplitude, phase or frequency of the carrier, the modulation scheme is called as 



M-ary Phase Shift Keying(MPSK)

In M-ary PSK, the carrier phase takes on one of the M possible values, namely 
i = 2 * (i - 1) / M 
where i = 1, 2, 3, …..M.

The modulated waveform can be expressed as 

where Es is energy per symbol =  (log2 M) E
Ts is symbol period = (log2 M) Tb.

ary Phase Shift Keying(MPSK)

ary PSK, the carrier phase takes on one of the M possible values, namely 

The modulated waveform can be expressed as 

M) Eb 

b.



The above equation in the Quadrature form is

By choosing orthogonal basis signals

defined over the interval 0  t  Ts

The above equation in the Quadrature form is



M-ary signal set can be expressed as

 Since there are only two basis signals, the constellation of M
dimensional. 

 The M-ary message points are equally spaced on a circle of radius 
at the origin.

 The constellation diagram of an 8-ary PSK signal set is shown in fig.

Since there are only two basis signals, the constellation of M-ary PSK is two 

ary message points are equally spaced on a circle of radius Es, centered 

ary PSK signal set is shown in fig.



Fig: Constellation diagram of an M-ary PSK system(m=8)ary PSK system(m=8)



Derivation of symbol error probability:
Decision Rule:

Fig: Constellation diagram for M=2 (Binary PSK)(Binary PSK)



If a symbol (0,0,0) is transmitted, it is clear
that if an error occurs, the transmitted signal is most 
likely to be mistaken for (0,0,1) and (1,1,1
signal being mistaken for (1,1,0) is remote.

The decision pertaining to (0,0,0) is bounded by 
/8(below 1(t)- axis) to  = + /8 ( above 

The probability of correct reception is… 

) is transmitted, it is clear
that if an error occurs, the transmitted signal is most 

1) and the 
) is remote.

) is bounded by  = -
( above 2(t)- axis) 



Fig: Probability density function of Phase .



The average symbol error probability of an coherent M
AWGN channel is given by

Similarly, The symbol error Probability of a differential M
AWGN channel is given by

The average symbol error probability of an coherent M-ary PSK system in 

Similarly, The symbol error Probability of a differential M-ary PSK system in 



Fig: The performance of symbol error probability for 

-different values of M

Fig: The performance of symbol error probability for 



M-ary Quadrature Amplitude       
(QAM)

It’s a Hybrid modulation

As we allow the amplitude to also vary with the phase, a new modulation scheme 
called quadrature amplitude modulation (QAM) is obtained.

The constellation diagram of 16-ary QAM consists of a square lattice of signal 
points.

ary Quadrature Amplitude       Modulation 
(QAM)

As we allow the amplitude to also vary with the phase, a new modulation scheme 
called quadrature amplitude modulation (QAM) is obtained.

ary QAM consists of a square lattice of signal 



Fig: signal Constellation of M-ary QAM for M=ary QAM for M=16



M-ary Frequency Shift 
Keying(MFSK)

In M-ary FSK modulation the transmitted signals are defined by:

where fc = nc/2Ts, for some fixed integer n.
The M transmitted signals are of equal energy and equal duration, and 
the signal frequencies are separated by 
orthogonal to one another. 

ary Frequency Shift 
Keying(MFSK)

ary FSK modulation the transmitted signals are defined by:

, for some fixed integer n.
The M transmitted signals are of equal energy and equal duration, and 
the signal frequencies are separated by 1/2Ts Hertz, making the signals 



The average probability of error based on the union bound is given by 

Using only the leading terms of the binomial expansion:

The average probability of error based on the union bound is given by 

Using only the leading terms of the binomial expansion:



Power Efficiency and Bandwidth :
Bandwidth:

The channel bandwidth of a M-ary FSK signal is :

Power Efficiency and Bandwidth :

ary FSK signal is :



The channel bandwidth of a noncohorent MFSK is :

This implies that the bandwidth efficiency of an M
with increasing M. Therefore, unlike M-
bandwidth inefficient.

The channel bandwidth of a noncohorent MFSK is :

This implies that the bandwidth efficiency of an M-ary FSK signal decreases 
-PSK signals, M-FSK signals are 



Introduction to Spread Spectrum

• Problems such as capacity limits, propagation effects, synchronization 
occur with wireless systems

• Spread spectrum modulation spreads out the modulated signal 
bandwidth so it is much greater than the message bandwidth

• Independent code spreads signal at transmitter and despreads signal 
at receiver

Introduction to Spread Spectrum

Problems such as capacity limits, propagation effects, synchronization 

Spread spectrum modulation spreads out the modulated signal 
bandwidth so it is much greater than the message bandwidth
Independent code spreads signal at transmitter and despreads signal 



Multiplexing

• Multiplexing in 4 dimensions
– space (si)
– time (t)
– frequency (f)
– code (c)

• Goal: multiple use 
of a shared medium

• Important: guard spaces needed!

Multiplexing

s2

s3

s1 f

t
c

k2 k3 k4 k5 k6k1

t
c

f

t
c

channels ki



Frequency multiplex

• Separation of spectrum into smaller frequency bands
• Channel gets band of the spectrum for the whole time
• Advantages:

– no dynamic coordination needed
– works also for analog signals

• Disadvantages:
– waste of bandwidth 

if traffic distributed unevenly
– inflexible
– guard spaces

Frequency multiplex

Separation of spectrum into smaller frequency bands
Channel gets band of the spectrum for the whole time

k3 k4 k5

t

c



t

Time multiplex

Channel gets the whole spectrum for a certain amount of time
Advantages:
– only one carrier in the

medium at any time
– throughput high even 

for many users
Disadvantages:
– precise 

synchronization 
necessary

c
k2 k3 k4 k5k1

Time multiplex

Channel gets the whole spectrum for a certain amount of time



Time and frequency multiplex

• A channel gets a certain frequency band for a certain amount of time (e.g. 
GSM)

• Advantages:
– better protection against tapping
– protection against frequency 

selective interference
– higher data rates compared to

code multiplex
• Precise coordination

required

t

Time and frequency multiplex

A channel gets a certain frequency band for a certain amount of time (e.g. 

c

k2 k3 k4 k5k1



Code multiplex

Each channel has unique code
All channels use same spectrum at same time
Advantages:
– bandwidth efficient
– no coordination and synchronization
– good protection against interference

Disadvantages:
– lower user data rates
– more complex signal regeneration

Implemented using spread spectrum technology

Code multiplex

Implemented using spread spectrum technology

k2 k3 k4 k5 k6k1

t

c



Spread Spectrum Technology

• Problem of radio transmission: frequency dependent fading can wipe out 
narrow band signals for duration of the interference

• Solution: spread the narrow band signal into a broad band signal using a 
special code

detection at
receiver

interference spread signal

f

power

Spread Spectrum Technology

Problem of radio transmission: frequency dependent fading can wipe out 
narrow band signals for duration of the interference
Solution: spread the narrow band signal into a broad band signal using a 

detection at
receiver

signal
spread
interference

f

power



Spread Spectrum Technology
• Side effects:

– coexistence of several signals without dynamic coordination
– tap-proof

• Alternatives: Direct Sequence (DS/SS), Frequency Hopping (FH/SS)
• Spread spectrum increases BW of message signal by a factor 

Gain 

P ro c e s s in g G a in 1 0 lo gN  

Spread Spectrum Technology

coexistence of several signals without dynamic coordination

Alternatives: Direct Sequence (DS/SS), Frequency Hopping (FH/SS)
Spread spectrum increases BW of message signal by a factor N, Processing 

1 0P ro c e s s in g G a in 1 0 lo gs s s sB BN
B B
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Effects of spreading and interference

P

f
i) ii)

senderP

f
iii) iv)

receiver

Effects of spreading and interference

P

f

P

f

receiver

f
v)

user signal
broadband interference
narrowband interference

P



Spreading and frequency selective fading
channel
quality

1 2
3

4

5

Narrowband signal guard space

channel
quality

1

spread
spectrum

Spreading and frequency selective fading

frequency

6

22222

frequency

narrowband channels

spread spectrum 
channels



DSSS (Direct Sequence Spread Spectrum) I

• XOR the signal with pseudonoise (PN) sequence (chipping sequence)
• Advantages

– reduces frequency selective 
fading

– in cellular networks 
• base stations can use the 

same frequency range
• several base stations can 

detect and recover the signal

• But, needs precise power control

DSSS (Direct Sequence Spread Spectrum) I

XOR the signal with pseudonoise (PN) sequence (chipping sequence)

user data

chipping 
sequence

resulting
signal

0 1

0 1 1 0 1 0 1 01 0 0 1 11

XOR

0 1 1 0 0 1 0 11 0 1 0 01

=

Tb

Tc



user data
m(t)

chipping
sequence, c(t)

X

DSSS (Direct Sequence Spread Spectrum) II

radio
carrier

Spread spectrum
Signal y(t)=m(t)c(t)

transmitter

demodulator

received
signal

radio
carrier

X

Chipping sequence, c(t)

receiver

DSSS (Direct Sequence Spread Spectrum) II

modulator

radio
carrier

Signal y(t)=m(t)c(t) transmit
signal

X

Chipping sequence, c(t)

integrator

products

decision
data

sampled
sums

correlator



DS/SS Comments III

Pseudonoise(PN) sequence chosen so that its autocorrelation 
is very narrow => PSD is very wide
– Concentrated around t < Tc

– Cross-correlation between two user’s codes is very small

DS/SS Comments III

Pseudonoise(PN) sequence chosen so that its autocorrelation 
is very narrow => PSD is very wide

correlation between two user’s codes is very small



DS/SS Comments IV

Secure and Jamming Resistant
– Both receiver and transmitter must know c(t)
– Since PSD is low, hard to tell if signal present
– Since wide response, tough to jam everything

Multiple access
– If ci(t) is orthogonal to cj(t), then users do not interfere

Near/Far problem
– Users must be received with the same power

DS/SS Comments IV

Both receiver and transmitter must know c(t)
Since PSD is low, hard to tell if signal present
Since wide response, tough to jam everything

(t), then users do not interfere

Users must be received with the same power



FH/SS (Frequency Hopping Spread Spectrum) I

• Discrete changes of carrier frequency
– sequence of frequency changes determined via PN sequence

• Two versions
– Fast Hopping: several frequencies per user bit (FFH)
– Slow Hopping: several user bits per frequency (SFH)

• Advantages
– frequency selective fading and interference limited to short period
– uses only small portion of spectrum at any time

• Disadvantages
– not as robust as DS/SS
– simpler to detect

FH/SS (Frequency Hopping Spread Spectrum) I

Discrete changes of carrier frequency
sequence of frequency changes determined via PN sequence

: several frequencies per user bit (FFH)
: several user bits per frequency (SFH)

frequency selective fading and interference limited to short period
uses only small portion of spectrum at any time



FHSS (Frequency Hopping Spread Spectrum) II

0 1

Tb

0

f

f1

f2

f3

Td

f

f1

f2

f3

Td

Tb: bit period

FHSS (Frequency Hopping Spread Spectrum) II

user data

slow
hopping
(3 bits/hop)

fast
hopping
(3 hops/bit)

1 1 t

t

t
Td: dwell time



FHSS (Frequency Hopping Spread Spectrum) III

modulator
user data

narrowbandtransmitter

received
signal

receiver

hopping
sequence

demodulator

frequency
synthesizer

FHSS (Frequency Hopping Spread Spectrum) III

modulator

hopping
sequence

modulator

narrowband
signal

Spread transmit
signal

demodulator
data

frequency
synthesizer



Applications of Spread Spectrum 

Cell phones
– IS-95 (DS/SS)
– GSM

Global Positioning System (GPS)
Wireless LANs
– 802.11b

Applications of Spread Spectrum 

Global Positioning System (GPS)



Performance of DS/SS Systems

Pseudonoise (PN) codes 
– Spread signal at the transmitter
– Despread signal at the receiver

Ideal PN sequences should be
– Orthogonal (no interference)
– Random (security)
– Autocorrelation similar to white noise (high at 

equal 0)

Performance of DS/SS Systems

Autocorrelation similar to white noise (high at t=0 and low for t not 



PN Sequence Generation

• Codes are periodic and generated by  a shift register and XOR
• Maximum-length (ML) shift register sequences, 

bits

R(

-1/n-nTc

+

PN Sequence Generation

Codes are periodic and generated by  a shift register and XOR
length (ML) shift register sequences, m-stage shift register, length: n = 2m – 1 

R(t)

Tc

t 

nTc

Output



Generating PN Sequences

Take m=2 =>L=3
cn=[1,1,0,1,1,0, . . .], usually written 
as bipolar cn=[1,1,-1,1,1,-1, . . .]

+
Output

 










 




11/1
01

1
1

LmL
m

cc
L

m
L

n
mnn

Generating PN Sequences

m Stages connected to 
modulo-2 adder

2 1,2
3 1,3
4 1,4
5 1,4
6 1,6
8 1,5,6,7



Problems with 

Cross-correlations with other m
different input sequences can be quite high
Easy to guess connection setup in 
secure
In practice, Gold codes or Kasami sequences which combine 
the output of m-sequences are used.

Problems with m-sequences

m-sequences generated by 
different input sequences can be quite high
Easy to guess connection setup in 2m samples so not too 

In practice, Gold codes or Kasami sequences which combine 
sequences are used.



Detecting DS/SS PSK Signals

X
Bipolar, NRZ
m(t)

PN
sequence, c(t) sqrt(2)cos

Spread spectrum
Signal y(t)=m(t)c(t)

transmitter

X

received
signal

X

c(t)

receiver

z(t)

sqrt(2)cos (wct + )

LPF
x(t)

Detecting DS/SS PSK Signals

X

)cos (wct + )

Signal y(t)=m(t)c(t) transmit
signal

integrator decisionLPF

w(t)



Optimum Detection of DS/SS PSK

Recall, bipolar signaling (PSK) and white noise give the optimum error 
probability

Not effected by spreading
– Wideband noise not affected by spreading
– Narrowband noise reduced by spreading

bP Q

Optimum Detection of DS/SS PSK

Recall, bipolar signaling (PSK) and white noise give the optimum error 

Wideband noise not affected by spreading
Narrowband noise reduced by spreading

2 b
b

EP Q
 

    



Signal Spectra

• Effective noise power is channel noise power plus jamming (NB) 
signal power divided by N

P ro c e s s in g G a in 1 0 lo gB B TN
B B T
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T

Signal Spectra

Effective noise power is channel noise power plus jamming (NB) 

1 0P ro c e s s in g G a in 1 0 lo gs s s s b

c
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Multiple Access Performance

Assume K users in the same frequency band, 
Interested in user 1, other users interfere

4

3 2

Multiple Access Performance

users in the same frequency band, 
, other users interfere

1

5

6



Signal Model

Interested in signal 1, but we also get signals from other 
users:

At receiver,

    
  
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Signal Model

, but we also get signals from other K-1
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Interfering Signal 

After mixing and despreading (assume 

After LPF

After the integrator-sampler

    2 c o s c o sk k k k k c k cz t m t c t c t t t         
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T
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Interfering Signal 

After mixing and despreading (assume t1=0)
     1 12 c o s c o sk k k k k c k cz t m t c t c t t t         

     1 1c o sk k k k k kw t m t c t c t      

    1 10
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At Receiver

m(t) =+/-1 (PSK), bit duration Tb
Interfering signal may change amplitude at 

At User 1:
Ideally, spreading codes are Orthogonal:

  1 1 1 0 10
c o s k b
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At Receiver

Interfering signal may change amplitude at tk

Ideally, spreading codes are Orthogonal:

     1 1 1 0 1
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