BEC301 SIGNALS AND SYSTEMS

UNIT-I

CLASSIFICATION OF SIGNALS
AND SYSTEMS
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CLASSIFICATION OF SIGNALS AND SYSTEMS

 What s a Signal?

A signal is defined as a time varying physical phenomenon
which conveys information

Examples :Electrical signals, Acoustic signals, VVoice signals, Video
signals, EEG, ECG etc.

 What is a System?

System is a device or combination of devices, which can operate
on signals and produces corresponding response.

« Inputto a system is called as excitation and output from it is called as

reSponse.

Excitation
or Input Signal

—{ [nput System Output [—p

Response
or Output Signal



Continuous & Discrete-Time Signals

Continuous-Time Signals

Most signals in the real world are
continuous time, as the scale is
Infinitesimally fine.

Eg voltage, velocity,

Denote by x(t), where the time interval
may be bounded (finite) or infinite

Discrete-Time Signals

Some real world and many digital signals
are discrete time, as they are sampled

E.g. pixels, daily stock price (anything
that a digital computer processes)

Denote by x[n], where n is an integer
value that varies discretely

Sampled continuous signal

X[n] =x(nk) — k is sample time
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Signal Types
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Signal classification

Signals may be classified into:

1.

ok W

Periodic and aperiodic signals

Energy and power signals
Deterministic and probabilistic signals
Causal and non-causal

Even and Odd signals

6/20



Signal Properties

Periodic signals: a signal is periodic if it repeats itself after a fixed period T,
l.e. X(t) = x(t+To) for all t. A sin(t) signal is periodic.
The smallest value of To that satisfies the periodicity condition of this

equation is the fundamental period of x(t).
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Causal and Non-Causal Signals:

fit) Causa
™ K=
M/

T | 7N
zero hera
A Mon-causal
5
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Even and odd signals: a signal is even if x(-t) = x(t) (i.e. it can be reflected in the
axis at zero). A signal is odd if x(-t) = -x(t). Examples are cos(t) and sin(t)
signals, respectively

+ Areal function x,t) is said to be an even function of ¢ if

Xell) = X0 —1) I/II\
a T

S

+ Areal function x4t is said to be an odd function of ¢ if

x.(t) = —x,(~t) \
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Decomposition in even and odd components

« Any signal can be written as a combination of an even and
an odd signals — Even and odd components
I 1

1O =370+ 7 (-0)+ 3 7(0)-1(-0)

f£.(t)==(f(t)+ f(~t)) even component

£ (2) (f (!)—f[—f)) odd component

1
2
!
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Energy and Power signal
A signal with finite energy is an energy signal

E, = [lf@) dr

A signal with finite and different from zero power is a power
signal

Power — The power is the time average (mean) of the squared
signal amplitude, that is the mean-squared value of f(t) .

‘ 1 +1'/2
P, = }_ﬂ;ﬁf{r}
There exists signals for which neither the energy nor the
power are finite .
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Elementary Signals

Unit Step Signal:
Useful for representing causal signals

”m={1 (=0

0 r<0

u(t)
Py

1 |

O

The discrete-time unit step signal u[n] is defined as

[i. n >0,
I

= 1 n < 0.



Ramp Signal

Ramp signal is denoted by r(t), and it is defined as

Oift <0
rit) = _,Li{u- it < tn
J.i.E-i'.-'-fu

. 1

0 1 2 t

Area under unit ramp is unity.




Unit Impulse Function

Impulse function 1s denoted by o(t).

&(t)

/ " ()t = u(t)

du(t)

0 =t 5t:
()=

Discrete time impulse function
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Relation Between the Elementary Signals

8[n]=u[n]-u[n-I]

o) 3 8[n-k]
ks




Signum Function

(1 ¢ #>0]
sgn(z)=4 0 , =0
h—l % e | |
Precise Graph Commonly-Used Graph
sen(t) soen(t)
A
1 L
- !
.| ] — |

The signum function, in a sense, returns an indication of
the sign of its argument.



Elementary Signals

Rectangular Signal Triangular Signal
Let it be denoted as X(t) Let it be denoted as x(t)
x(t) = A rect [%] o) =A [1 _ I_;E]

. X(t)
A X(t)
A |
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Exponential and Sinusoidal Signals
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Sinusoidal Signals

Discrete Time sinusoidal signal

Continuous Time sinusoidal signal
x[n] =Acos (22,0 +¢)

x(t) = A cos{w t + ¢)
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Systems

A system is characterized by

- Inputs

- outputs

- rules of operation ( mathematical model of the
system)

Input «— _» Output

Or <+—— System — or
Excitation < | —* Response




How Is a System Represented?

A system takes a signal as an input and transforms it into
another signal

Input signal Output signal
> System >
(1 g y(t)

In a very broad sense, a system can be represented as the ratio
of the output signal over the input signal

That way, when we “multiply” the system by the input signal,
we get the output signal.

y(t)=F (x(1))



Classification of Systems

Systems are classified into the following categories:

Linear and Non-linear Systems

Time Variant and Time Invariant Systems
Static and Dynamic Systems

Causal and Non-causal Systems
Invertible and Non-Invertible Systems
Stable and Unstable Systems



Linear and Non-Linear System

A system is said to be linear when it satisfies superposition and
homogenate principles.

Consider two systems with inputs as x1(t), x2(t), and outputs as y1(t),
y2(t) respectively.

Then, according to the superposition and homogenate principles,
T [ay x1(1) T+ ap Xo(t)] = a3 T[x4(1)] + a2 T[x2(1)]

s T [ag Xi(t) + a2 x2(6)] = a1 yi(t) + az ya(t)

Thus response of overall system is equal to response of the individual
system.



Time/Shift Invariant

Time-invariance: A system is time invariant if the system’s
output is the same, given the same input signal, regardless
of time.

gi(x) = H{fi(x)] implies that g;(x + xo) = H[fi(x + x0)]

for all f(x) €E{fix)} and for all x,,

Offsetting the independent variable of the input by x0 causes the same
offset in the independent variable of the output. Hence the input-output
relation remains the same.



Static and Dynamic Systems

Static system is memory-less whereas dynamic system is a memory
system.

Example 1: y(t) = 2 x(t)

For present value t=0, the system output is y(0) = 2x(0).
Here, the output is only dependent upon present input.
Hence the system is memory less or static.

Example 2: y(t) = 2 x(t) + 3 x(t-3)
For present value t=0, the system output is y(0) = 2x(0) + 3x(-3).

Here x(-3) is past value for the present input for which the system requires
memory to get this output.

Hence, the system is a dynamic system.



Causal and Non-Causal Systems

A system is said to be causal If its output depends upon
present and past inputs, and does not depend upon future
Input.

For non causal system, the output depends upon future inputs
also.

flx) = 0 for x < xo 1implies that g(x) = H[f(x)] = 0 forx < xo.

Example : y(n) = 2 x(t) + 3 x(t-3)

For present value t=1,

the system output is y(1) = 2x(1) + 3x(-2).

Here, the system output only depends upon present and past inputs.
Hence, the system is causal.



Invertible and Non-Invertible systems

A system is said to invertible if the input of the system
appears at the output.

X(t) y(t) = x(t)

" ; ha(t)
mib Invertible System

Y(S) = X(S) H1(S) H2(S) = X(S) H1(S) - 1/(H1(9))
Since H2(S) = 1/( H1(S) )

=~ Y(S) = X(S)

— y(t) =x(t)

Hence, the system is invertible.

If y(t) # x(t), then the system is said to be non-invertible



Stable and Unstable Systems

The system is said to be stable only when the output is
bounded for bounded input. For a bounded input, if the

output is unbounded in the system then it is said to be
unstable.

f(x)| < K implies that |g(x)| < cK

Example : y (t) = x2(t)

Let the input is u(t) (unit step bounded input) then the output
y(t) = u2(t) = u(t) = bounded output.
Hence, the system is stable.



Types of Systems

&[] ——

Continuous -time
system

—y (t)

e y(t)

t[nfi=—e

Discrete—~time
system

= ==tyin]

xfn] e vn]



Properties Of LTI system

Commutative

= y=x% h

= y=h % X

LTI System: output the same
if input and impulse

response interchanged

LTI Systems can be cascaded in any order

Associative:

i

Commutative:

X

— hz*hl

Associative:

x % h, [:*hll-ﬁha
- hso S
F*“‘Ilﬂhz}
—ie
x % (hash, )
e
x % ha (x%hz)ah,
- h e




Properties Of LTI Systems

Distributive

X # h

1*h|+:*h3

l*hz

:—-I hl+h2 -—+x*th|+h2}




UNIT-II
Analysis of Continuous-Time Signals



Continuous-Time Sinusoidal signal

g(t) = Acos(27zt [T, + 9) = Acos(27z ft+ 9) = Acos(a)ot + 9)

Amplitude Period Phase Shift Cyclic Radian
(s)  (radians) Frequency Frequency
(Hz) (radians/s)

o(t) = Acos(2nf0t+8)

AN ANANAS
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eContinuous-Time Exponentials

g(t)=Ae™"
T 1

Amplitude Time Constant (s)
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*Exponential Fourier Series

The Fourier series representation of a signal X(z)

overatimet, <t <t,+7T is

oo

X(f) — Z c. [k] 2R

where c¢_[k] 1s the harmonic function and £ is the harmonic
number. The harmonic function can be found from the signal
using the princple of orthogonality.

ty+T

: ‘[ x(t)e 2™ dr,

x(!)=2{:x[k]eﬁ’”ﬂ and cx[k]=?

==

The signal and its harmonic function form a Fourier series

pair x(r)%‘;——}cx [k] where T is the representation time and,
therefore, the fundamental period of the CTFS representation of x(7)
If T is also period of x(¢), the CTFS representation of x(¢) is valid
for all time. This is, by far, the most common use of the CTFS in
engineering applications. If T is not a period of x(¢), the CTFS

representation is generally valid only in the interval 1, <t <7, +T.



Trignometric CTFS

For a real valued function x(t),

C, [k] =C, :—k]

t)=a_[0] +§ {a,|k]cos(27ke / T)+b, | k|sin(27kt / T)]

where

I

_f x(¢)cos(27kt /T)dt

a, [k]

*‘-iIH

b, [k] =

*‘-iIM

_f t)sin(27kt / T)dt



Trignometric CTFS

For an even function, the complex CTFS harmonic function
c, | k] is purely real and the sine harmonic function a, k]| is
Zero.

For an odd function, the complex CTFS harmonic function
cx[k] IS purely imaginary and the cosine harmonic function

b, [K] is zero.



CTFS Properties

Let a signal x(¢) have a fundamental period 7, and leta
signal y(#) have a fundamental period 7. Let the CTFS

harmonic functions, each using a common period T as the
representation time, be ¢ [4]andc [4]. Then the following

properties apply.

x(f) —<
N 20

T FSH C: [k]
Linearity y(t) B /':

ax(t)+By(t)——ac [k]+Be,[]

*

k] o
gy Pl

X(H)—=FS

C
C

y()—*{FS




CTFS Properties

Time Shifting x(r—1,)¢——e "™ ¢ _[k]

|k
x(r) |L[ ]
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CTFS Properties

Frequency Shifting

(Harmonic Number .{:-"“"'"“"‘":a;(r)*cx[k—ﬁf“]
Shifting)

A shift in frequency (harmonic number) corresponds to
multiplication of the time function by a complex exponential.

Time Reversal *(—7) % ¢, |—k]



CTFS Properties

Time Scaling
Let z(¢)=x(at),a>0 APVZ !
Case 1. T =1;_la=1, for:z{7)
T, |

cz[kl = cx[k] Z(1)
Case2. T=T,, forz(t)

If a 1s an integer,
I
[kl &, [kr‘a] , k/a an integer
c. —
Z G —:EL
a

, otherwise

Je. [£]

TI|1H1| ‘IHIMM

[] a=2

:.l.[.I.l.l.I.‘. .‘.J.‘.I.I.I.r




CTFS Properties

le.[%]
};U} 0.5
1100 o
Time Differentiation — ‘ Tt o ke k]
N T i Lt
i(x(r)]ﬂa 2mke [k)/T LT, o
dt o * |j2nke, [k]/7|
x'(1) 7
1,
I H Il ' oo gi2mke [k]IT
I Il T
1l J‘I:f- i
Time Integration
Case 1 Case 2
Case 1. ¢, [0]=0 c,[0]=0 c,[0]=0
[ ] %(1) x(r)
f : k
PRy WL L L?
[xar et -ahae 000
o bl Ll L
Case 2. ¢, [0]=0 _["(T)"’T :[x(ﬂdt

_j;x([{) dA is not periodic XVA?AVL ) _/_;/_/7




CTFS Properties

Multiplication - Convolution Duality
x(0)y(1)e—7—e [k]*c, [K]
(The harmonic functions ¢ [k] and ¢ [k] must be based
on the same representation time 7°.)
x(0)@y()eFoTe, (ke [£]
The symbol & indicates periodic convolution.

Periodic convolution is defined mathematically by

x(N@y(r)=[ x(¢)y(t-7)dz
x(t)@y(r)=x,,(t)*y(r) where x,, () is any single period of x(r)

Conjugation
X (1)l k]
Parseval’s Theorem

On)

~[Ix@f ar=¥

e, [k]
f=—eo

The average power of a periodic signal is the sum of the

average powers in its harmonic components.



Continuous Time Fourier
Transforms

Forward f form Inverse

(e e} (oo}

X(F)=F (x(0)= [x()e ™™ dr x()=F "(X(1)= [ X(£)e"™" df

— oo —o0

Forward o form Inverse

oo

X(jw)=F (x(z))= jx(z)e‘f“” dt  x(t)=F '1(X(ja))):$_]: X(jw)e™ dw

—0Q

Commonly-used notation:

X(t)@ X(f) or X(t)% X(jw)



Some CTFT Pairs

¢ “'uliu"]{;;].-"{jﬂ}+ﬂ] La=0
te mu':.l'}{r—}||"{_jm+l'_l}: , =0
f"f_m'[l_{f}.‘,' F b[:jm.:.];r}”l . =)
y'“’"sinl{-:unrj]u{.fjli L w_“: -, >0
(jo+a) +o
""'cuﬁ{{unrjutf)‘ : jm+,ﬂ: , a>0
- {_;‘m+a]'+mf
o,

E(E‘;I{;;]
—¢ f"u{—f]{;,r].-"l::j&l+r:ﬂ] , =0
~te " u(-t)eLm1/(jo+a) , e<0
— e u(—t et "’ — L a<0
{jm+a}
—{e'“’sin{m"r}u{—r]: T m°3 -, <0
(jo+a) +o
_.r_:'*'"::ubi{{l'_}"fl.u[:—é']{ i : jr:.]|+:':r: , o=
’ Um+ct}'+mlf
' ,I{I -, =0
W+



Convergence and the Generalized Fourier

Transform
x(1)
Let x(¢)=4. Then from the I
definition of the CTFT, 4
X(f)= [ de2 dt = 4 [ &1 i
(f) :[C e __[Ce -
This integral does not converge so,

strictly speaking, the CTFT does not
exist.

X0

G decreasing

But consider a similar function,
x,(1)=4e™ |, >0

Its CTFT integral 4 4

= o X ()
X,(f)=| Ae™ Mg 727 gy g

a

4 i © decreasing

=

does converge.




Convergence and the Generalized Fourier
Transform

N
Carrying out the integral, X_(f)=A— il —.
o’ +(2nf)

Now let o approach zero.

2
If f #0 then limA———— =0. The area under this
720 ¢ +(2mf)
L 20 o :
function is AJ - —df which is A, independent of
2o’ +(2nf)

the value of @. So, in the limit as ¢ approaches zero, the

CTFT has an area of A and is zero unless f = 0. This exactly

defines an impulse of strength A. Therefore At A8 (f).

By a similar process it can be shown that

f.:us(lﬂ:ﬁ}r)%%[ﬂf—fﬁ)"‘ﬂ{er fn]]

and

sin(Z:rﬁJ]a;F-—:i%[is(f"‘ﬁa)—5(f—ﬁ1 }]



More CTFT Pairs

The generalization of the CTFT allows us to extend the table
of CTFT pairs to some very useful functions.

8(1)e——1 e8| f)
sgn(t)e——1/ jr f ut)e—(1/2)8(f)+1/ j2rf
rect( Je——ssinc( /) sine(¢ ) e——rect( /)
trl{!':]t;,wlﬂc [j’) sincz[:r:]%rtri(_f'}
8, (1) 18, (1) . £,=1/1 18, (1)e—8, (1), T,=1/1,
cos(27 ft)eF— {nz){ {__f—_f'u]+.5(_,f'+_fl'l}] sin{lx_fc'lr}{—F—-—}{j.-"1}[5[:_f'+__f{'lﬁ_I—E{__.f'—_}‘,;]]



CTFT Properties

IfF (x(¢))=X(f)or X(jw) and F (y(t))=Y(f)or Y(jw)

then the following properties can be proven.
ox(1)+By(t)e——aX(f)+BY(f)
Linearity ax(1)+By(t)e———aX(jw)+BY(jo)

x(t)— o f—
j} F =oX(f)+BY(f)
y()— B '

x(1)—| o | & .
E@ -aX(f) +BY(f)
yO) — B & '




CTFT Properties

Time Shifting

(1-1,)Em X(F)e

x(1—1,)

%}{

(joo)e

= jag

X0 il
N,
LX)
T k.
“ef
-1
IX{ 0l
-
LX(f)

i




CTFT

Frequency Shifting
x(t)e ™ e s X(f~£,)

x(1)e" «F - X(w-0,)

Time Scaling

Frequency Scaling

Properties

x(at)eF—— X(f)

a

x(ar) ety L x( ‘“)

ja " a

lx(j@ X (af )

a| \a

ﬁlx(;](F—,X(jam)

X
1
Im(e”™) ’
Reie"™) -
PEE- 5 £X(f)
-1 r
2eos( 2 £
®
+4 ‘ U V
X
|
]lm T
E¥T: :tr' "f
o AX(f)
-I - = I_:J
~f



CTFT Properties

Transform of X (1)e—=—X"(-f)
a Conjugate X (1)eE—= X (-jo)

o x(1)#y ()= X(f) Y(¥)
b;ljulupl:cil'tmn X(I)*}’(f)';-%X[;m)Y(jm}
ity Oy X()5 (1)

In the frequency domain, the cascade connection multiplies

the frequency responses instead of convolving the impulse
responses.

X(1)—= h(t) |=y(t) = h(sx(t) X(f)—H( =Y (f)=H(f)X(f)

X()H N PXOH) A H(OHPFYI=XUNHRHHLS)

X()—HOHHNH YY)




CTFT Properties

'd F . . ;o

Time —(x(n)e" - j2rrX(1)

Differentiation fT*; (x{r}jé-—}jm){{jm)
i

x(t)cos {erﬁb.r]{—F-—Z*%[X(f - fy _]'"‘ }'\{,f + 1 )]
Modulation -

x{r}ms{mﬁr]{—F-ﬁ%[X(j(m— CU(.}] + X(j{m +mr.r}}:|

(0= X X[Ke™™ o X(1)= X XkIS(7 - 4f)

k=—a=

Transforms of

Periodic Signal S - N
eriodic Signals x(1)= ¥ X[k]e ™ X (jo)=2rY X[k]6(w- ko,)
— foe
Jlx(0) o= JIx(r) ar
Parseval’s = e
Theorem r 2 T 2
I Ix(r)[ dr = ’?]_:r “1‘((}&3)‘_ df
Integral Definition ]‘ -2y g 3( }
e T P = X
of an Impulse S ’
. X(t)e——x(—f) and X(-1)e——x(f)
Duality

X(jt)e——2nx(-0) and X(-jt)e——2nx(®)



CTFT Properties

X(0) = j (e ar| = [ x(1)a

A I —pil§

x{m{ [ X(f)e ™ daf | = [ X(f)df
Total - Area - Jisg =
Integral - .
K(ﬂ}:{jx[f}e'*‘“ dt = | x(¢)dr
I' I ] + e | _ 1 Tt ]
x(0)= {Ei X(jw)e dm_,_,[. —Ei}{ﬁjm]dm
[x(ayaret—2U Ly o)s(r)
e J2nf 2
Integration r _
[x(A)daet }X[_;Jm}+ﬂ}{(i]]5(m}
e I



Fourier Transform Examples

Impulses

L #% 4
3(t) = —f el dw
— 00

97
®)  2(t) = ot — to)
w -
X[:}w‘:l — / d(f — f[])t’?_‘}wit’ﬁ

— qwt
— ¢ Jen



Fourier Transform of a Right sided
Exponential

1
— e y(t),a >0 J\
e

o0 0o 1/a
= / :E(t}{?_jwt'{ﬁ:/ e” eIV dt
-0 0 i

g=—latjw)t
- 1 o~ (atjw)t
a+ jw

& 1
IX(jo)l = 1/(a%+ )" ZX(jw) = tan” (w/a)

0 a4+ jw

1/al

Even symmetry



CT Fourier Transforms of Periodic
Signals

Suppose
X(jw) = d(w — wo)
|2
1 [ - 1 .
r(t) = — dw — wy)e?“tdw = —el¥ot
( } 2?1' ]_m ( l:.-l..r[]} 2?]_
That is

eIt s 21 (w — wy)

More generally



Laplace Transform

The CTFT expresses a time-domain signal as a linear
combination of complex sinusoids of the form ¢’ . In the
generalization of the CTFT to the Laplace transform, the
complex sinusoids become complex exponentials of the
form ¢” where s can have any complex value. Replacing
the complex sinusoids with complex exponentials leads to

this definition of the Laplace transform.

=

L (x(r))=X(s)= Ix(r)e’” dt

—



Generalizing the Fourier
Transform

The variable s is viewed as a generalization of the variable @ of
the form s = ¢ + jw. Then, when &,the real part of s, 1s zero, the
Laplace transform reduces to the CTFT. Using s = 0 + jw the

Laplace transform is X(1)

K(J)= Ix(r)f-{dﬂ-m]r dt /\/‘\L

==t [x(r)e'm]

which 1s the Fourier

=

transform of x (7 ) e




Existence of Laplace Transform

Right-Sided Exponential

x(t)=e"ult-1t,) , acl
X(E) - jemre—srdr - IE{'H_E.}EE—I&EdI
If Re(s) = o > a the asymptotic

(a—o )t —j
E o

behavior of &' T ag o

1s to approach zero and the Laplace

transform integral converges.

x(1)

-

0



Existence of Laplace
Transform

Left-Sided Exponential x(1)
x(t)="ult,~t) , Bel u

X(s) — T e dt = T efo kg Iot gy

—a0 —30

If o < [ the asymptotic behavior of \‘
e” 7 g i a5 t —5 o0 is to approach

zero and the Laplace transform :

integral converges.



Existence of Laplace
Transform

The two conditions ¢ > & and ¢ < £ define the region of
convergence (ROC) for the Laplace transform of right- and

left-sided signals.

|:unl i L] ’ i

o ROC
[ ] 4 [

{?'_I []
| 0P
i ]

:-— Path of LIIIL‘E:I"‘LIli.'lII'I e —



Region of Convergence

The following two Laplace transform pairs illustrate the importance

of the region of convergence.
l

e “u(r)e—— , O>—0
s+ o

— e " u(=t)e—— L 6<-a
s+o

The two time-domain functions are different but the algebraic

expressions for their Laplace transforms are the same. Only the

ROC’s are different.



Importance of ROC

i 1
sulis (s+1) (s+2)

_ 1
X(s) = &) 5+2)

1
(s+1) (s+2)

X(s) =

Y
g

8

NN\

NS /“Al /

V._A



Properties of ROC

PROPERTIES OF THE REGION OF CONVERGENCE

« The ROC contains no poles

_ Nis)
X(s) = D(s)
poles of X{(s) == D(s) =0

« The ROC of X(s) consists of a strip
parallel to the jw-axis in the s-plane

e 5 Ix(t)} converges <=> ROC includes
the jw-axis in the s-plane



Region of Convergence

x(t) rightsided and Re |s| = g, is in ROC
=> all values for which Re {s| > g, arein ROC

x(t)
N gt
RN

S~ N
B"Uﬂt Y ~

LI

x(t) right-sided and X(s) rational

=2 ROC is to the right of the rightmost pole.

x(t) left-sided and Re{s} = o, isin ROC
=> all values for which Re{s} < g are

in ROC

x(t) left-sided and X(s) rational
=> ROC to the left of the leftmost pole.

x(t) two-sided and Re{s} = g, isin ROC

=> ROC is a strip in the s-plane



Inverse Laplace Transform

« Decomposing a specified Laplace transform into a partial
fraction expansion.

. : i St IS
Find the inverse Laplace Transform gi'x(s) = 1) (542)

Im
Im

7% V I h;

7
/,, 7 é
—X—XZ N Re ~X—
oy A 7 // 2/7 -
=== e
X6) = T Re s> Xys) = Refs}> -1  Xp) =3 Refs]>-1

= e Reshod x4(t) = e tult) x,(t) = -2ty



UNIT I
LTI-CT SYSTEMS



Systems

Systems have inputs and outputs

Systems accept excitations or input signals at their
Inputs and produce responses or output signals at

their outputs

Engineering system analysis is the application of
mathematical methods to the design and analysis
of systems. Systems are often usefully represented

by block diagrams

A single-input, single-output system block diagram

x(?)

—y(?)

]



Linear Time Invariant Systems

A system satisfying both the linearity and the
time-invariance property.
LTI systems are mathematically easy to analyze

and characterize, and consequently, easy to
design.

Highly useful signal processing algorithms have
been developed utilizing this class of systems
over the last several decades.

They possess superposition theorem.



Representation of LTI systems

Any linear time-invariant system (LTI) system,
continuous-time or discrete-time, can be uniquely
characterized by Iits

Impulse response: response of system to an impulse

Frequency response: response of system to a complex
exponential e 121 for all possible frequencies f.

Transfer function: Laplace transform of impulse
response
Given one of the three, we can find other two
provided that they exist



Block Diagram Symbols

*Three common block diagram symbols for an amplifier (we will
suse the last one).

X —»

K »Kxx*lb—»l{x x— K& kx

*Three common block diagram symbols for a summing junction
o(we will use the first one).

-

N

~

Xﬁ?—X-y

y

/

X Ai%)—»x-y X Ai?—>x-y
y y



Block Diagram Symbols

*Block diagram symbol for an integrator

() — T .,ix(t)dt




Additivity
If one excitation causes a zero-state response and another excitation

causes another zero-state response and if, for any arbitrary
excitations, the sum of the two excitations causes a zero-state

response that is the sum of the
two zero-state responses, the
system is said to be additive.

Additive System

Xl(f)_b‘ g—[- > yl(t)

X(t) = H >y,

Adder

X, (2) + X,(2)
x,(f) ﬁ > I >y, +y,0

X()

If g(t)—"—y,(t)and h(t)——,(t)
and g(t)+h(t)——vy,(t)+y,(t)=H is Additive



Convolution Integral

1) = / \ﬁr[r)ﬂ(f 1) =yt = ] 2l -1l

-0
#’
Convolution Integral

y(t) = x(t) x h(t) = /: .:r(r)h(t — 7)dT
i) b 2 g

X

M lT)h( )Imerdle/ ()h( )d

="




Convolution Integral

Example
xt) hit)
.f- T * ,‘ T f
| 3 f _2. al
Xt
hit- 1)
It N
| ] - K‘.
! 3 1 1+



Impulse Response

Let a system be described by

a,y"(t)+ay'(t)+a,y(t)=x(¢)
and let the excitation be a unit impulse at time £ =0. Then the
zero-state response v 1s the impulse response h.

a, h"(¢)+a,h'(¢)+a, h(z)=(¢)
Since the impulse occurs at time £ = 0 and nothing has excited
the system before that time. the impulse response before time
t =0 1s zero (because this 1s a causal system). After time =0
the impulse has occurred and gone away. Therefore there 1s no

longer an excitation and the impulse response 1s the homogeneous
solution of the differential equation.



Impulse Response

Continuous-time LTI systems are described by differential

equations of the general form,

a,y" (t)+a, " (t)++ay (1) +a,y(1)
=b, X" (t)+b, X" (t)+--+bx(t) +b,x(1)

For all times, 7 <0:
If the excitation x(#) is an impulse, then for all time # <0
it is zero. The response y(¢) is zero before time =0

because there has never been an excitation before that time.

(1)

a,y" (t)+a,,y"" (t)+ - +ay'(t)+a,y(1)
—b, x" () +b, x" " (t)+---+b,x'(£) + b, x(¢)

Case 1: m<n
If the response contained an impulse at time 7 = 0 then
the nth derivative of the response would contain the nth
derivative of an impulse. Since the excitation contains
only the mth derivative of an impulse and m < n, the
differential equation cannot be satisfied at time ¢ = 0.
Therefore the response cannot contain an impulse or any

derivatives of an impulse.



Impulse Response

Case2: m=n
In this case the highest derivative of the excitation and
response are the same and the response could contain an
impulse at time £ = 0 but no derivatives of an impulse.
Case3: m=>=n
In this case, the response could contain an impulse at
time = 0 plus derivatives of an impulse up to the
(m — n)th derivative.

Case 3 1s rare in the analysis of practical systems.



Example
To find the constant X integrate h'(¢)+3h(¢)=d(¢) over the

infinitesimal range 0™ to 0.

Th'(r)dt + SE]Zh(r) = Tﬁ(r)

p(o*)_-}u(o-)+3jﬁe-xu(x)dr=u(o+)-u(o-]

u_ i i g k i

=K -0 -1 -0
3 0"
K+3K{E—3] =K +3K[(-1/3)~(-1/3)] =1
— D 5, e #

=0

K=1l=> h(r] e™ u(f]

Il



A Graphical Hlustration of the Convolution
Integral

h(t) x(t)

L’ L

1 1

R

- T - T

vw(rjzj:{(r)h(r—r)dr:_fu(r) E_;; u(z—r)dr
[<0 [>0
A | 4 -’l(f-'l?)




A Graphical Hlustration of the Convolution

Integral
t<0: v,,(t)=0
= E—[z—r'& RC
U — _ d
t>0: v,,(2) __‘;U(f) ———u(t-r)dr
! —(t-z)iRC | o E
vﬂm‘ (r) = i E—[.;—?'.:' RCdI- — ]- e _ |:_€—|.i!'—€':' RC:I _ 1 . E_z RC
RC RC| —-1/RC | 0

For all time,

(0= (1= Ju



Convolution Example

:'i.II,H .1::!;1'] Jl.:i-'l."l
& | &
1= 34
4 3 ! 4 3 ! I a T
:-'.Il,tl:Lrtd.'-:_i-lL'i-r] .'-:Iqr;land x,(0-1) .'-clmand x 01 -1) .'-:Imand x,02-1) '-;_Iir]:lndx,.l:l_‘i-n
' - ' h i - '} h a4 h
.1 I .1 ,il .1 ,:l .1 [il .1 I
1 i r 4 arv 4 | a v 4 QT 4 i L
1|[T].~:Il-ﬂ.ﬁ -T) .'-cli'r:n.,Ll:I -7l X finy( l -7} .'-:Ilr:la.,ll -7l '-1111.'13.,(2_5 - Tl
i i i i i
I':: I'I-H i3 H‘ ]-‘ I'::
i 4 3 v 3 [ 1 i 1 v 3 1




Convolution Integral Properties

x(2)*A8(t—1t,)=Ax(t—1t,)

If g(t) =g, () *5(z) then g(t—1,) =g, (t—1,)*5(¢) =g, () *S(t -1, )
If y(¢#)=x(¢) *h(z) then y'(#) =x'(¢) *h(z) =x(¢)*h’'(¢)
and y(at) =|a|x(at)*h(at)

Commutativity
x(2)*y(2) =y (1) *x(7)
Associativity
[ x(8)¥y(2) |*2() =x(e) *[ () *2(7) ]
Distributivity

[x()+y(2) | *2() =x(e) *2(e) +y (£) *2(2)



Cascade Connection of Systems

If the output signal from a system is the input signal to a second
system the systems are said to be cascade connected.

It follows from the associative property of convolution that the
impulse response of a cascade connection of LTT systems 1s the
convolution of the individual impulse responses of those systems.

X(#) —=h,(1)

| x(f)xh (1) —»

Cascade
Connection

hy()

—y(1)=[x(t)*h,(H)]h,(1)

X(1) —={h (1) h,(t) | y()




Parallel Connection Of Systems

If two systems are excited by the same signal and their responses
are added they are said to be parallel connected.

It follows from the distributive property of convolution that the
impulse response of a parallel connection of LTT systems is the
sum of the individual impulse responses.

£)xh (t
) x(f)=h,(1)
x(1)— y(=x(t)xh,(H)+x()xh,(O=x(t)*[h,(H)+h,(1)]
Parallel v
Connection E x(1)xh(1)

x(t) — h(D+h(H) =y




Stability and Impulse Response

A system Is BIBO stable if its impulse response is
absolutely integrable. That is if

T\h(t)\dt is finite.



Systems Described by Differential
Equations

The most general form of a differential equation describing an

N M
LTIsystemis > a, y?(¢)=> b, x" (). Let x(r) = Xe* and
=0

=0

let y(r)=Ye". Then x'¥(r)=s*Xe" and y'”(r) = s"Ye" and

N M
Z akskYe” = Z b.s *Xe™

7=0 i=0

The differential equation has become an algebraic equation.

Ye“Za.‘s —Xe“st 35—2"‘_” i

=0 X Z,{:u a.s”
The transfer function for systems of this type is

i -1 2
ZH, S b S +b +"‘+b;5 +bs+b,
N-1 2
Z as®  ays’ +a_1¥.._15 +--+ a5 +as+aq,

=0

This type of function is called a rational function because it s
a ratio of polynomials in s. The transfer function encapsulates
all the system characteristics and is of great importance in signal

and system analysis.



Systems Described by Differential
Equations

Now let x(7) = Xe’** and let y(z)="Ye’".

This change of variable s — j@ changes the transfer function
to the frequency response.

by (jm)ﬂ +by (jm)ﬂ_l +---+b, (jm)l +b, (Jm) +b,

ay(jo)" +ay_,(jo)"

Frequency response describes how a system responds to a

H(jo)= S
(j ) 1+"‘+ﬂ2(jﬂ))d+ﬂ1(jﬂ))+ﬂu

sinusoidal excitation, as a function of the frequency of that

excitation.
It is shown in the text that if an LTI system 1s excited by ¢
sinusoid x(¢) =4, cﬂs(mﬂr + E?x) that the response is
y(t)= A, ms(mur + Q) where 4, = ‘H (jmu)‘dx and
6, =0 H(jm[,)w?x.



Block Diagram-Direct Form-|
Realization

'l-_.‘:
L ]
"__‘\

S P A ey M
-lg" = z z
L .
(4 )—ss + o+

T




Block Diagram-Direct Form-l|
Realization

y(t)




System Analysis using Fourier
Transform

Consider the general system,

N M
d*r

Zﬂg_ ZI.F};_ rh“- i

k=l fe=fl

Our objective is to determine h(t) and H(jw). Applying CTFT on both

sides:
Y dy(t) 2 dkz(t)
F{Zru_r c.:;‘“ } =}'{Z_.’J;‘. {;fi :

k=0

Therefore by ||near|t\l ::mrl rllffnrenflnfmn nranarty e have

Zm.u Y (jw) ‘me}%

k=

AN VAN I VAT AO

The convolution prope~* - ~* =~~~ _
p p H[}u..;l } I:J"""' E.:i_[] ':"rul:-' l{j;;”l]l‘l

X(jw) TN ar(jw)k

we can apply the technique of partial fraction expansion to express
H(jw) in a form that allows us to determine h(t).



UNIT IV
ANALYSIS OF D.T. SIGNALS



Z-Transform

The definition of the z-Transform is

+oo

¥z — Z z(klz .

k=—o0

where, z(k) is a discrete time sequence (sampled data). When z(k)

1s defined for £ > 0, 1.e. causal, one sided z-transform is given by

Xey= % =k 5

The variable z is complex, so is X(z).



z- Transform of simple functions

O function

5(#:)—{ 1. #Hk=0

0 otherwise

+oo
— —k _
unit step f Zlo(k)] = Ejé(k')z =1



Inverse Z-Transform

The inversion integral 1s

T{[J'?] = }2% [-X(:):”_ldz.

t.
C

This 1s a contour mtegral i the complex plane and 1s bevond the
scope of this course. The notation x[n]«=—X(z) indicates that

x[r:] and X(:) form a "z-transtorm pair”.



Existence of the z -Transform

Time Limited Signals

If a discrete-time signal x [n]

1s time limited and bounded,

the z transformation

M o-

summation i x[n]z' 18
e

finite and the z transform of

X [n] exists for any non-zero

value of z.

x[n]

]

-
¥



Existence of the z Transform

Right- and Left-Sided Signals

A right-sided signal x, [n] is one for which x, [n] =0 forany
n <n, and a left-sided signal x, [n] 1s one for which x, [H] =0

forany n >n,.

x [n] x,IHI
i b

I‘ 3 1 ..“.-‘.

— .”hhn.___.



Region of Convergence

The Region of Convergence (ROC) of the z-transform is the set of z such that
X(z) converges, i.e.,

X(z) exists if an E |z[n]|r~" < oc. Nt Z Is Inside the Region of Convergence in
the z plane. .=«
ROC is very important in analyzing the system stability and behavior

The z-transform exists for signals that do not have DTFT.

ROC:

ROC:

ROC:

# >
E =

bl <

fj'.| <> causal system
r,r.| 4 anti-causal system

E| - |ﬂ.| $——p two-sided svstem (non-causal)

ROC includes [z[=1 1.e. the unit circle <<= stable system



Properties of ROC

Property 1. The ROC is a ring or disk in the z-plane centre at origin
Property 2: DTFT of x[n] exists if and only if ROC includes the unit circle
Property 3:The ROC contains no poles.

Property 4:1f x[n] is a finite impulse response (FIR), then the ROC is the
entire z-plane.

Property 5: If xX[n] is a right-sided sequence, then ROC extends outward
from the outermost pole.

Property 6: If X[n] is a left-sided sequence, then ROC extends inward from
the innermost pole.

Property 7: If X(z) is rational, i.e., X(z) = A(z) B(z) where A(z) and B(z)
are polynomials, and if x[n] is right-sided, then the ROC is the region
outside the outermost pole




Examples with ROC

Example 1: The Z transform of a right sided signal
IS

z|n| = a™uln]

_ i -7 __ —lyn __ _
- X(z) = n:E_I a"uln]zT" = nE:D[mz "= et
For thIS SU||||||ML|U|| L\ UU"V\I'&\I, 1Ly TVI I\\Ll L\

pod

exist, It IS necessary to have , l.e., the ROC
IS |Z|>|a| laz"t < 1
As aspecial case whena=1 =~ andwe have
1
Zluln]] = : z| > 1

] — z— 17



Examples with ROC (contd..)

Example 2: The Z-transform of a left sided signal

r|n| = —a™ul—n — 1]
bt —1
X(z) = — a"u[-n—1]z7" = — Y (az7)"
- : 1 z 1
— — (a1 = 1 — — —
: nzzl:jm ?) l—alz z—a 1—az!
For the summation above to converge, it is required ja™2] <1
that , 1.e., the ROC is |z|[< |a] . Comparing the two

examples above we see that two different signals can have
Identical z-transform, but with different ROCs.



Some Common z Transform Pairs

uu[u], z s
nee” un e
Hin[il.,ar]u[ar]‘

cos(Lhnjuln]e

e sin (L2 0 u[n]

" IL'IZ!IH|:.£1,,.I!}IJI.I':I.|

ﬂ[rr]-#ﬂ

S el

—a) {l az)

:_, 'aml[ﬂ,,] |'|::-I
'—“"'-;-:Js{ﬂ..'|+l o

; flz—eos(n,)] =1
2= 2zeos(fy,)+1 T

z :tl'!-ijnl::ﬂ“] 1] > o
z° — e c'cs.l;[:ﬂnjl +at '

7 :[; —ercos(L2, ]]

z —IE:L'USIIE,,]+EE':

R

Zz

-

"

el = e

— X

-

ufn- rlu]—u[rl—ﬂ,]%%{:'*- _

g

. Az

—u[- n—l|¢—-—1—

—f.:‘u[—ﬂ—

- .lﬂ.'ll—.ll -

—ne"u[-n—1]e"=

sinf{2 n ) u[ n-1

— cos (£, )u]-n—1

o cos I_r_f.!,,.l?] u[ n

el <l <]

=y =1
“

+:|| ng, _"'_I_I

— " sin(£2,n)u[—n— 1]

||~=:I

e——s -
! = 1 H{lﬂl

- <1
I — |z =1
| (z=1) [1-27") |

- |

L
':_L'.—-I'.?I:_I' [I_ﬂ':"}

o2 zsin(£2, ) <1
7 =2zeos({, )+1
ety :L:.—cn,u[ﬂ..JJ 1] <1
' —2zcos(£2,)+1

.:r.':.t;ml:ﬂu] )
o° — 2ezeos(€L, )+ o <l
e r :[;—ﬂ:‘umfﬂ,,]-l

+ I+

NERL

=20z L'U!-ifﬂ,,] +at

-

: . I.':| =



z-Transform Properties

Given the z-transform pairs g[n]#(}(z) and h[n]% H(z)
with ROC's of ROC_, and ROC,, respectively the following

properties apply to the z transform.

Linearity ag[n]+ Bh[n]et—aG(z)+ BH(z)
ROC = ROC,, "ROC,

Time Shifting g [n —n, ] L 7" G(z)

ROC =ROC,, except perhaps z=0 orz — oo

Change of Scale in 7 o"g[n]«~t—>G(z/a)
ROC = |a|ROC,



z-Transform Properties

Time Reversal g[—u]x‘z_}f}(z")
ROC=1/ROC,
n/k| ., n/k and inte er .
Time Expansion gln/k] | ° *%*'Gr(zf~ )
0 . otherwise

ROC = (ROC, )"

Conjugation g [n]«*—G (E)
ROC =ROC,,
. - z . d
z-Domain Differentiation -—-n E[”] € > - G (3)
9

ROC = ROC,



z-Transform Properties

Convolution

First Backward Difference

Accumulation

Initial Value Theorem

Final Value Theorem

gln|* h[nJ{—E-—}H(E}G{:)

g[n]-g[n—1]e=(1-2")G(z)
ROC S ROC,, M| >0

Fi

Zg[nr]{ N

M=—ua

ROC 2 ROC; Nz|>1

z—1

If g[n]=0,n<0 then g[[}]=!in;|n G(z)
If g[n]=0.7<0, lim g[n]=lim(z-1)G(z)

7=l

if lim g[n] exists.

= 0y



z Transform -Examples

i) = (0.2 ula] + (30 ul-n-1]

10

RO is 1.2 “l:l =3

~-nHHHH

-12

Fr

12

xln) = (0.85) cos{ 2Znn/buln| + (0.9) cos{ 2an/6iul -n-1|

4

h o

ROC is 0.85 <[] < 0.9

LTI

4

fil‘l_,_l.'T._.-.l‘_...”

12

iln] = (095" uln] + (0.9 ul-n-1]

4

Mo RO

IHHH”.”HTHHTTTE

i

-12

x|n] = (1.1) cos( 26| n] + (1.05) " cos{ 2mm'6)u[-n-1]

i

e T] T{

I
PRI LR T B 111 .

Mo ROC




The Inverse z Transform

Synthetic Division

For rational z transforms of the form

b,z¥ +b,, 2"+ +bz+b,

v +---taz+aq,

H(z) =

a,z V4 a, 2
we can always find the inverse z transform by synthetic

division. For example,




The Inverse z Transform

Synthetic Division

1+0.4z7' +0.5272---

22 =052 =034z +{i}.{_13):‘ —0.122 =1.042—0.336
2> -0.52-0.34z +0.08
0.4z - 0.7z— 0.256
0.4z2> —-0.2z— 0.136-0.032z""

0.5z— 0.12+0.032z"

The inverse z transtorm 1s

O [H] +{:].4£“;[H E 1] +U.5-:.‘F[J'.r —2]---#}1 L0477 40 522



The Inverse z Transform

Synthetic Division

We could have done the svnthetic division this way.

—4.2-30.852-158.613z° - --
0.08-0.34z-0.521 +:-‘)-ﬂ.336—1.(:4_-—:'.1.1.-1 +2

—0.336+1.428z+2.1z -4 27’
~24682-2.22" 4522
—-2.4682z+10.4892" +15.4252° —30.85z*
-12.6892* -10.2252° +30.852"

—425[n]-30.858[n+1]-158.6135[n+2]---«2>-4.2-30.85z-158 6132 - -

but with the restriction

:‘ > (0.8 this second form does not converge and 1s

theretore not the mverse z transtorm.



Partial Fraction Expansion

Partial-fraction expansion works tor inverse z transtorms the
same way 1t does for inverse Laplace transforms. But there 1s
a situation that 1s quite common in inverse z transforms which
deserves mention. It is very common to have z-domain
functions in which the number of finite zeros equals the
number of finite poles (making the expression improper in z)

with at least one zero at z = 0.

) )




Partial Fraction Expansion

Dividing both sides by z we get

H(z) _ 2 (z=5)(z=5)(==2)

N ARy AR Ry

and the fraction on the right 1s now proper in z and can be

expanded n partial fractions.
H(z K K, K,
{ )= L+ —2 4.4 —=

2 =P, Z—=Ds 2= Py

Then both sides can be multiplied by z and the inverse transform

can be tound.

H(z)= LT S I 3"
z-p z-p, z—p,

h[n]=K p/u[n]+K,piu[n]+--+K pliu[n]




Inverse z -Transform Example-1

Find the inverse 7 transform of

-

Z _ d
z—05 z+2
Right-sided signals have ROC’s that are outside a circle and

X(z)= , 05<]7<2

left-sided signals have ROC’s that are inside a circle. Using

’ z 1
o uln]et et 2| > ||
; Z I
— 0O u[—ﬂ—l]:: 2 }z—azl—ﬂ'z_] . |E|:‘.:|C-':‘
We get
(0.5)" u[n]+(=2) u[-n—1]25X(z)=————— , 0.5<|z|<2

z—05 z+42



Inverse z -Transform Example-2

Find the inverse 7z transform of

_ i B rd 1 o)
by 42 2>

In this case, both signals are right sided. Then using

X(

LA

7 |

@)t (4>l
We get
n i i L < _ i -
[(05)" —(-2) Ju[n]f—}}((w)—z_ﬁj — - ld>2




Inverse z Transform Example-3

Find the inverse z transform of

X(z)=—————, |z|<05
z—05 z+2
In this case, both signals are left sided. Then using
Z I
—a"u[-n-1]t———= z
94 l][ n ] S l—ﬂﬁﬂ_l < ﬂ:lﬂfl

We get

n " 7 . < Z _ .
_[(U.S] —(—2) Ju[—ﬂ—l]{—:»X(z)—a_ﬂ.S—E_l_z . |4,‘<:{J*5



The Unilateral Z -Transform

Definition:

T

X(z)= Z rln]z™"
1=l
* The unilateral z-transform ignores x[—1], x[—2], . . . and, hence,
Is typically only used for sequences that are zero forn <0
(sometimes called causal sequences).
o Ifx[n] =0 for all n <0 then the unilateral and bilateral
transforms are identical.
e Linear.
* No need to specify the ROC (extends outward from largest pole).
* Inverse z-transform is unique (right-sided).
» Can handle non-zero initial conditions.



Discrete Time Fourier Transform

The discrete-time Fourier transform (DTFT) or the Fourier
transform of a discrete—time sequence X[n] is a representation of
the sequence in terms of the complex exponential sequence ,jwn

The DTFT sequence x[n] is given by

X{w) =22 _z(nle o
eInverse Discrete-Time Fourier Transform

O .
r(n) = E/ X(w)e™ " dw



Properties of DTFT

Periodicity

Llnea“ty .:’L-Efjjl:m-;-jn}) ol _.YI::'J"“'}

Time shift ; | |
Phase shift ary[n] + broln] +— aX;(e™) + bX,(e™)
Conjugacy zln — ng] +— e X ()

Time Reversal L gl X (o)
Differentiation :

r*[n] +— X*(e™*)
r[—n] +— X(e )

1X (e
nr[n] <--->jr (™)

( LL-'



Propertiesof DTFT

Parseval Equality :

- s 1 —
: Z |z[n]|” = P [ | X (e™)|"dw
COﬂVO'UtIOﬂ Fl=— ail Jox

Multiplication y[n] = x[n] * hn] +— Y () = X(*)H ()

y[n] = z;[n]z,[n] +— Y (&) = i

:)T/ X, () X (e —*))dd

2y



Discrete Fourier Transform (DFT)

Fourier transform is computed (on computers) using discrete technigues.
Such numerical computation of the Fourier transform is known as
Discrete Fourier Transform (DFT). Begin with time-limited signal x(t),

we want to compute its Fourier Transform X(m).

- 0l f -

We know the effect of sampling in time domain:
| =

T . N NG5, N

I -

I-i-l-H-I-H-I--I--.
0 ol jo=T r—=




Discrete Fourier Transform (DFT) (2)

,,-.m..._...?}lﬂmmlu%h_. - _\r’/—\ *—/“h HT—-'/ /;\-——1:’/;

*Now construct the sampled version of x(t) as repeated copies. The effect is
sampling the spectrum.

tIH|Hiilxmu.ﬁﬂI[]fHI!I!Iftﬂ.f,:.ﬂ\|”|Hi1m..""b

eNumber of time samples In

T0
Iy

) s
N



Formal definition of DFT

If X(nT) and X(rwo) are the nth and rth samples of x(t) and
X(m) respectively, then we define:

and
T,
%, = Tx(nT) = 3-x(nT) X, = X(ray)
where
_ 2m
Then Forveo =2rfo = —
il

Backward DFT :



Properties Of Discrete Fourier Transform

Let and then,
Hneas ) = X(e) Flylm]] = Y ()

Time Shitting :
Time Reversal :
Frequency Shifting :  F[z[m — my|| = e ™ X (&%)
Differencing : Flz[-m]] = X (e™)
Differentiation in frequency :

Flazim] +byfm]] = aX () + by ()

Flalm]e™om] = X(/9)
Flz[m] — z[m —1]] = (1 - e7) X (")

d .,
.}’-"'llja.‘[{r'“ )] = m z[m)]



Properties Of Discrete Fourier Transform

Convolution Theorems : The convolution theorem states
that convolution in time domain corresponds to
multiplication in frequency domain and vice versa.

Flaln] « ylnl] = X () ¥ ()

Flz[n] y[n]] = X(¢¥) * Y (™)
Parseval's Relation

= ) l 2 . 4% 17
Z|mwzzﬁ|ﬂﬁwm



UNIT V

LTI-DT SYSTEMS



Linear Constant Co-efficient
Difference Equation

N M
> a, vin-kl =2 bex[n-k] (1)
k=0 k=0

N
> ay y, [n-k] =0 (Homogeneous Equation)  (2)
k=0

If y, [n] satisfies (1) then so does

?p[ﬂ] +'rh[n] where y;, [n] satisfies (2)

o

yplin] Particular solution

yy[n] & Homogeneous solution



Homogenous Solution

N

E akx Yo[n-k] =0
k=0

““guess’’ solution of the form

yy[n] = AZ"

N

ik g Az"z7k=¢
k=0

N

Ea 2 %=0 Nrootsz, z. ...
k 1:21

k=0

- n n
valnl =A; 2.+ ...+ A, 2,



Block Diagram Representation

LTI systems with rational
system functions can be 2]
represented as Linear constant ,<£
co-efficient difference equations " @
The implementation of — > —
difference equations requires
delayed values of the sample. — o —




Direct Form-1l Realization

General form of Difference Equation

Re-arranging ,
M Mo,
Z ék'ﬁ"'[n = k] o thx[n T I""~]
k=0 e k=0

T N M :
yinl- ¥ a,yln-k| =¥ b, x|n - k]
k=1 k={




Block Diagram-Direct Form-I1 Realization

- No need to store the same data twice
In previous system

N, v B L - Sowe can collapse the delay
xIn] ><P | -Q Il elements into one chain .This is
7! called Direct Form Il or the
Canonical Form

i) b
Q‘ ° Y g Q -Theoretically no difference between
B Direct Form | and 11

-Implementation wise
I. Less memory in Direct ||

an_1 by_1 Il. Difference when using finite
| - precision arithmetic.

a b N




Cascade form of Realization

Obtained by factoring the polynomial system function.

M M
H(z) = Zh[n]r" = ﬁ[buu +byz™ + bzhz_z}
n=0 k=1

'I:'ll! Ir"n: -||-'_||.|lI

et B . - T b= S == = e e ——
x|n] | | v [m]

Iy " 1y | Iy A

By | . frya by, |

B T e [ oL - - .Jr-.

| l

Iy i ¥ i Iy ;

) s, b, |




Cascade Form -Example

_——— s

-1 e L =1 -1
Hiz) 1+227 +2 " l+zf1+2?)

_ +z?)  +z?)
(1-0.5z2')[1 -0.25z")

Cascade of Direct Form I subsections

" - i o > - - 't - = . = - O
x[n] ¥
o | £ oy !

L = — i - . -
25

L5

Cascade of Direct Form II subsections

e e - i - - P P o3 - i
ln] | vin]
T:I = |
ul i e [ =l - .

L5 025



Parallel Form of Realization

Represent system function using partial fraction expansion

)= S AL ¥ Bl-er

-] -] L |
k=0 a,;_.ll—'l:kl |,,;.,1{1 ‘—dkE Il—dhl j
M M. =]
By +8,Z o
HZ)=Y Cz* +> — o T Eul
k=0 k=1 l - amz a:kz -,
e = e - -
k L i )
Or by pairingthe real poles | ——1—
| i
11 - T
L]



Parallel Form-Example

Partial Fraction Expansion
Eeartiaye P 18 25

H2) =1 0753012522 - 8+ (t-0.527") (t-0.25z7)

K
-

Combine |.Joles to get LAY

-7+ 87 i

Hiz) =8
2)=8+ 575,71, 01952




Signal Flow Graph Representation

Similar to block diagram representation
A network of directed branches connected at nodes.

i
-
."lll!' 1
| LIy
= A o
Souree f B N g % Sink e A wiln]
node o e waln] v [n] NOde v wln LN
I , /

1'.-.
=



SFG-Example

=
(a)

Source Sink
node () 1 2 by 3 node 5
x(n] wInl| Delay yin]

I‘ht'ﬂ]'lt‘.t‘/
i // hl
4
Wy [;r] 11'3[”] b“ u'_;[”]
x|n| ;L‘ ; yln|
p yo!
i 'hl

Wy [HJ

w; [n] = aw,[n] + x[n]
W[n] = w, [n]

W3[I'I] = bnwz[n]"' b1w4[n]
WJFI] =W, [I'I - 1]

yIn] = wsln]

w, [n] = aw,[n - 1]+ x|n]

‘y’[l"l] o buwl[”] + I31""""'1[":' = 1]



System Properties using z-

transform
CAUSALITY

Property 1. A discrete-time LTI system is causal if and only if
ROC is the exterior of a circle (including o).
STABILITY

Property 2. A discrete-time LTI system is stable if and only if
ROC of H(z) includes the unit circle.

Property 3. A causal discrete-time LTI system is stable if and
only if all of its poles are inside the unit circle.




System Properties using z-transform

Examples

Causal, Stable Cautal, Unstabie Mot causal, Stabla



