UNIT I OVERVIEW AND INTRODUCTION
New trends in Engineering and Science: Micro and Nanoscale systems Introduction to Design of MEMS and NEMS, Overview of Nano and Microelectromechanical Systems,
- Applications of Micro and Nanoelectromechanical systems, Microelectromechanical systems, devices and structures Definitions,
- Materials for MEMS: Silicon, silicon compounds, polymers, metals
UNIT II MEMS FABRICATION TECHNOLOGIES

• Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions:

• LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining

• High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials
III MICRO SENSORS

- MEMS Sensors: Design of Acoustic wave sensors,
- resonant sensor, Vibratory gyroscope,
- Capacitive and Piezo Resistive Pressure sensors-
- Engineering mechanics behind these Microsensors.
- Case study: Piezo-resistive pressure sensor
UNIT IV MICRO ACTUATORS

• Design of Actuators: Actuation using thermal forces
• Actuation using shape memory Alloys,
• Actuation using piezoelectric crystals,
• Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps.
• Case study: Comb drive actuators
UNIT V NANOSYSTEMS AND QUANTUM MECHANICS

• Atomic Structures and Quantum Mechanics,
• Molecular and Nanostructure Dynamics: Shrodinginger Equation and Wavefunction
• Theory, Density Functional Theory, Nanostructures and Molecular Dynamics,
• Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.
Introduction to MEMS & NEMS Design
What are the Goals of this Course?

• *Accessible* to a broad audience → minimal prerequisites

• *Design* emphasis →
 exposure to the techniques useful in analytical design of structures, transducers, and process flows

• *Perspective* on MEMS research and commercialization circa 2003
Lecture Outline

• Reading Senturia: Chapter 1

• Today’s Lecture
 • MEMS defined
 • Historical tour of MEMS
 • MEMS and nanotechnology
MEMS Defined

- **Micro Electro Mechanical Systems**

 - Batch fabrication (e.g., IC technology)
 - Energy conversion: electrical to and from *non-electrical*
 - Ultimate goal: solutions to real problems, not just devices

English problems: plural or singular?
Common oxymoron: “MEMS device”
Why is batch fabrication a critical part of the definition?
Dimensional Ranges

• 1 \(\mu m < L < 300 \mu m \) lateral dimensions
 Surface micromachined structures ... “classic MEMS”

• 300 \(\mu m < L < 3 \text{ mm} \)
 Bulk silicon/wafer bonded structures ... still call them MEMS and cover them in this course

• 10 \(\text{nm} < L < 1 \mu m \)
 Nano electromechanical systems ... NEMS
 (overlap with MEMS ... some coverage in this course)
What aren’t MEMS

- The Denso micro-car: circa 1991
 http://www.globaldenso.com/ABOUT/history/ep_91.html
- Fabrication process: micro electro-discharge machining
Experimental Catheter-type Micromachine for Repair in Narrow Complex Areas

Batch Fabrication Technology

• **Planar integrated circuit technology 1958 -**
 1. Thin-film deposition and etching
 2. Modification of the top few \(\mu \text{m} \) of the substrate
 3. Lateral dimensions defined by photolithography, a process derived from offset printing

• Result: CMOS integrated circuits became the ultimate “enabling technology” by circa 1980

• Moore’s Law
 Density (and performance, broadly defined) of digital integrated circuits increases by a factor of two every year.
Moore’s Law

Original form: transistor density doubles every year since 1962

\[d = (Y - 1962)^2 \]

Lead \(\mu \)P Slope (2x/1.5 years) \(\cong 300x \)

Lead ADC: 2x/4.7 years
All ADCs: 2x/6.1 years

A Microfabricated Inertial Sensor

MEMSIC
(Andover, Mass.)

Two-axis thermal-bubble accelerometer

Technology: standard CMOS electronics with post processing to form thermally isolated sensor structures

Note: I’m a technical advisor to MEMSIC a spinoff from Analog Devices.
Other Batch Fabrication Processes

• Historically, there aren’t that many examples outside of chemical processes

• However, that’s changing:

 Soft (rubber-stamp) lithography
 Parallel assembly processes →
 enable low-cost fabrication of MEMS from micro/nano components made using other batch processes ...
 “heterogeneous integration”
Microassembly Processes

Parallel Pick-and-Place

Parallel assembly processes promise inexpensive, high-volume heterogeneous integration of MEMS, CMOS, and photonics

www.memspi.com, Chris Keller, Ph.D. MSE 1998

Wafer-Level Batch Assembly

Fluidic Self-assembly

Many challenges:
> interconnect
> glue

www.microassembly.com
Michael Cohn, Ph.D. EECS, 1997

Uthara Srinivasan, Ph.D., Chem.Eng. 2001
A Brief History of MEMS:

1. Feynmann’s Vision

- Richard Feynmann, Caltech (Nobel Prize, Physics, 1965)

American Physical Society Meeting, December 29, 1959:

“What I want to talk about is the problem of manipulating and controlling things on a small scale. ... In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.”

“... And I want to offer another prize -- ... $1,000 to the first guy who makes an operating electric motor---a rotating electric motor which can be controlled from the outside and, not counting the lead-in wires, is only 1/64 inch cube.”

... he had to pay the electric motor prize only a year later

2. Planar IC Technology

- 1958 Robert Noyce – Fairchild and Jack Kilby (Nobel Prize, Physics, 2000) - Texas Instruments invent the integrated circuit
- By the early 1960s, it was generally recognized that this was the way to make electronics small ... and cheaper

Harvey Nathanson and William Newell, surface-micromachined resonant gate transistor, Westinghouse, 1965

Did Harvey hear about Richard Feynman’s talk in 1959? I don’t think so ...
Why Didn’t MEMS Take Off in 1965?

• Resonant gate transistor was a poor on-chip frequency reference → metals have a high temperature sensitivity and don’t have a sharp resonance (low-Q) ... specific application didn’t “fly”

• In 1968, Robert Newcomb (Stanford, now Maryland) proposed and attempted to fabricate a surface micromachined electromagnetic motor after seeing the Westinghouse work

 Energy density scaling for this type of motor indicated performance degradation as dimensions were reduced ...

 ... Materials incompatibility with Stanford’s Microelectronics Lab research focus on electronic devices became a major issue
Another Historical Current:
Silicon Substrate (Bulk) Micromachining

• 1950s: silicon anisotropic etchants (e.g., KOH) discovered at Bell Labs
• Late 1960s: Honeywell and Philips commercialize piezoresistive pressure sensor utilizing a silicon membrane formed by anisotropic etching
• 1960s-70s: research at Stanford on implanted silicon pressure sensors (Jim Meindl), neural probes, and a wafer-scale gas chromatograph (both Jim Angell)
• 1980s: Kurt Petersen of IBM and ex-Stanford students Henry Allen, Jim Knutti, Steve Terry help initiate Silicon Valley “silicon microsensor and microstructures” industry
• 1990s: silicon ink-jet print heads become a commodity
When the Time is Right ...

• Early 1980s: Berkeley and Wisconsin demonstrate polysilicon structural layers and oxide sacrificial layers ... rebirth of surface micromachining

• 1984: integration of polysilicon microstructures with NMOS electronics

• 1987: Berkeley and Bell Labs demonstrate polysilicon surface micromechanisms; MEMS becomes the name in U.S.; Analog Devices begins accelerometer project

• 1988: Berkeley demonstrates electrostatic micromotor, stimulating major interest in Europe, Japan, and U.S.; Berkeley demonstrates the electrostatic comb drive
Polysilicon Microstructures

• UC Berkeley 1981-82

R. T. Howe and R. S. Muller,
ECS Spring Mtg.,
May 1982
Polysilicon MEMS + NMOS Integration

- UC Berkeley 1983-1984

Polysilicon Electrostatic Micromotor

Self-aligned pin-joint, made possible by conformal deposition of structural and sacrificial layers

Prof. Mehran Mehregany, Case Western Reserve Univ.
Electrostatic Comb-Drive Resonators

New idea: structures move *laterally* to surface

Analog Devices Accelerometers

• Integration with BiMOS linear technology
• Lateral structures with interdigitated parallel-plate sense/feedback capacitors

ADXL-05 (1995)

Courtesy of Kevin Chau, Micromachined Products Division, Cambridge
Surface Micromachining Foundries

1. MCNC MUMPS technology (imported from Berkeley) 1992-
 4 and 5 poly-Si level processes

result: more universities, companies do MEMS

M. S. Rodgers
and J. Sniegowski,
Transducers 99

(Sandia Natl. Labs)
Self-Assembly Processes

Alien Technologies, Gilroy, Calif.

chemically micromachined “nanoblock” silicon CMOS chiplets fall into minimum energy sites on substrate

nanoblocks being fluidically self-assembled into embossed micro-pockets in plastic antenna substrate
More Recent History

• Mechanical engineers move into MEMS, starting with Al Pisano in 1987 ... expand applications and technology beyond EE’s chip-centric view

• Commercialization of inertial sensors (Analog Devices and Motorola polysilicon accelerometers 1991 →) ≈ 10^8 by each company by 2002

• Microfluidics starts with capillary electrophoresis circa 1990; micro-total analysis system (μ-TAS) vision for diagnosis, sensing, and synthesis

MEMS and Nanotechnology I

• Richard Feynmann’s 1959 talk:
 “But it is interesting that it would be, in principle, possible (I think) for a physicist to synthesize any chemical substance that the chemist writes down. Give the orders and the physicist synthesizes it. How? Put the atoms down where the chemist says, and so you make the substance.”

• Eric Drexler, 1980s: visionary promoting a molecular engineering technology based on “assemblers” ... had paper at first MEMS workshop in 1987

• Early 1990s: U.S. MEMS community concerned that “far-out” nanotech would be confused with our field, undermining credibility with industry and government
MEMS and Nanotechnology II

• Buckyballs, carbon nanotubes, nanowires, quantum dots, molecular motors, ... together with the atomic-force microscope (AFM) as an experimental tool
 ➢ Synthetic and “top-down” nanotechnology earns respect of MEMS community

• Why is nanotechnology interesting?
 ➢ Molecular control of sensing interface (chemical detection)
 ➢ Synthetic processes promise to create new batch-fabrication technologies
 ➢ Planar lithography is reaching into the nano regime (state-of-the are is 50 nm line/space; spacer lithography has reached 7 nm)
 ➢ New computational devices: neural, quantum computing
1 GHz NEMS Resonator

Si double-ended tuning fork

tine width = 35nm
length = 500 nm
thickness = 50 nm

Interconnect parasitic elements are critical → need nearby electronics

Uses vertical channel FINFET process on SOI substrate
MEMS (NEMS?) Memory: IBM’s Millipede

Array of AFM tips write and read bits: potential for low and adaptive power

"MILLIPEDE"
Highly parallel, very dense AFM data storage system

2D cantilever array chip

Multiplex driver

Storage medium (thin organic film)
Electrostatic NEMS Motor

multi-walled carbon nanotube rotary sleeve bearing

500 nm
New Micro/Nano Structural Materials and Processes

SiC nanowires

Si/SiGe superlattice nanowires
Nanogap DNA Junctions

- Development of ultrafast and ultrasensitive dielectric DNA detection
- Applications to functional genomics or proteomics chips, as well as an exploration of nanogap DNA junction-based information storage and retrieval devices
SEMs of a Nanogap DNA Junction

Top View

(a)

(b)

(c)

Poly-Si (I)
Poly-Si (II)
Poly-Si (II)
Poly-Si (II)
Poly-Si (I)

SiN

100nm

Mag = 42.11 K X
EHT = 10.00 KV
WD = 4 mm
Date: 21 Mar 2002
Time: 23:24

Mag = 4.30 K X
EHT = 15.30 KV
WD = 3 mm
Date: 21 Mar 2002
Time: 23:03

Mag = 4.00 K X
EHT = 15.00 KV
WD = 2 mm
Date: 21 Mar 2002
Time: 23:03
Opportunities in Blurring the MEMS/NEMS Boundary

• Aggressive exploitation of extensions of “top-down” planar lithographic processes
• Synthetic techniques create new materials and structures (nanowires, CNT bearings)
• Self-assembly concepts will play a large role in combining the top-down and bottom-up technologies
• Application: mainstream information technology with power consumption being the driver
 “Beyond CMOS” ... really, extensions to CMOS > 2015
 Non-volatile memories
 Communications