
UNIT - 1.1

INTRODUCTION TO COMPUTER

1.1.1 INTRODUCTION

Definition
A computer is an electronic machine, devised for performing calculations and controlling

operations that can be expressed either in logical or numerical terms.

Applications
The applications domain of a computer depends totally on human creativity and imagination

it covers a huge area of applications including education, industries, government medicine, scientific
research, low and even music and arts.

 • Millions of complex calculations can be done in a mere fraction of time

 • Difficult decisions can be made with unerring accuracy for comparatively little cost

1.1.2 CHARACTERISTICS OF COMPUTER
Speed

Computer process data at an extremely fast rate – millions of instructions per second in few
seconds, a computer can perform a huge task that a normal human being may take days or even
years to complete.

The speed of a computer is calculated in Mhz

Accuracy
Besides efficiency, computer are accurate as well. The level of accuracy depends an the

instructions and the type of machine being used.

Diligence
Computer being a machine does not suffer form the human trailts of tiredness and lack of

concentration

Reliability
Reliability is the measurement of performance of a computer, which is measured against

some predetermined standard for operation without any failure.

1.2 Fundamentals of Computing an Programming

Storage capability
The main memory of the computer is relatively small and it can hold only a certain amount

of information, therefore, the data is stored on secondary storage devices such as magnetic tape or
disks.

Versatility
It can perform multiple taks simultaneously with great ease. For example, at

one moment it can be used to draft a letter, another moment it can be used to play
music an in between, one can print a document as well.

All this work is possible by changing the program.

Resource sharing
It made the sharing of costly resources like printer possible.

Apart from device sharing data and information can also be shared among group of
computers, thus creating a large information and knowledge base.

1.1.3 EVOLUTION OF COMPUTERS
 • In the beginning, when the task was simply counting or adding, people used either their

fingers or pebbles along lines in the sand.

In order to simplify the process of counting, people in Asia Minor built a counting
device called abacus. This device allowed users to do calculations using a system of
sliding beads arranged on a rack.

 • With the passage of time, many computing devices such as Napier bones and slide rule
were invented.

 • In 1642, a French mathematician, Blaise Pascal invented the first functional automatic
calculator.

This brass rectangular box, also called a Pascaline, used eight movable dios to adds
sums eight figures long.

 • In 1694, german mathematician Gottfried wilhem von Leibniz extended pascal’s design
to perform multiplication, division and to find square root. This machine is known as
Stepped Reckoner.

 • The real beginnings of computers as we know them today, however, lay with an English
mathematics professor, Charles Babbage.

In 1822, he proposed a machine to perform differential equations, called a Difference
Engine.

 • In 1889, Herman Hollerith, who worked for us census bureau, also applied the Jacquard
loom concept to computing.

Hollerith’s method used cards to store data, which he fed into a machine that complled
the results mechanically.

Introduction to Computers 1.3

 • Mark I, which was built as a partnership between Harvard Aiken and IBM in 1944.

This electronic calculating machine used relays and electromagnetic components to
replace mechanical components

 • In 1946, John Eclcert and John Mauchy of developed ENIAC (electronic numerical
integrator and calculator)

Thus computer used electronic vacuum tubes to make internal parts of the computer

 • Eckert and mauchy also proposed the development of EDVAC (electronic discrete
variable automatic computer.

It was the first electronic computer to use the stored program concept introduced by
John von Neumann.

 • In 1949, at the Cambridge university, Maurice wilkes developed EDSAC (electronic
delay storage automatic calculator)

This machine used mercury delay lines for memory and vacuum tubes for logic.

 • The Eckert – mauchy corporation manufactured UNIVAC (universal automatic
computer) in 1951 and its implementation marked the real beginning of the computer
era.

1.1.4 COMPUTER GENERATIONS
1.1.4.1 First Generation (1940-56) : Vacuum Tube

First generation computer were vacuum tubes/thermionic value based machines these
computers used vacuum tubes for circuitry and magnetic drums for memory.

A magnetic drum is a metal cylinder coated with magnetic iron-oxide material on which
data and programs can be stored.

Input was based on punched cards and paper tape and output was in the form of printouts.

For example: ENIAC, EDVAC AND UNIVAC.

Characteristics of First Generation Computers.
 • These computers were based on vacuum tube technology.

 • These were the fastest computing devices of their time.

 • These computers were very large, and required a lot of space for installation.

 • These were non-portable and very slow equipments.

1.1.4.2 Second Generations (1956-63): Transistors
A transistor is made up of semiconductor material like germanium and silicon. It usually

had three leads and performed electrical functions such as voltage, current or power amplification
with low power requirement.

Since transistor is a small device, the physical size of computers was greatly reduced.

1.4 Fundamentals of Computing an Programming

Computers became smaller, faster, cheaper, energy-efficient and more reliable than their
predecssors.

Magnetic cores- were used as primary memory and magnetic disks as secondary storage
devices. However, they still relied on punched cards for input and printouts for output.

For example: PDP – 8 , IBM 1401 and IBM 7090

Characterstics of Second Generation Computer.
 • These machines were based on transistor technology

 • These were smaller as compared to the first generation computers.

 • These were more portable and generated less amount of heat.

1.1.4.3 Third Generation (1964 – Early 1970), Integrated Circuits
The development of the integrated circuit was the trait of the third generation computer.

Also called an ic, an integrated circuit consists of a single chip with many components such as
transistors and resistors fabricated on it.

Integrated circuit replaced several individually wired transistor. This development made
computers smaller in size, reliable and efficient.

Instead of punched cards and printouts, users interacted with third generation computers
through keyboards and monitors and interfaced with operating system.

For example : NCR 395 and B6500

Characteristic of Third Generation Computer
 • These computers were based on integrated circuit (ic) technology.

 • They were able to reduce computational time from micro seconds to nano seconds.

 • Extensive use of high – level language became possible

1.1.4.4 Fourth Generation (Early (1970 – Till Date) Microprocessors)
The technology of this generation was still based on the intergrated circuit, these have been

made readily available to use because of the development of the microprocessor.

The fourth generation computers led to an era of large scale integration (LSI) and very
large scale integration (vlsi) technology. LSI technology allowed thousands of transistors to be
constructed on one small slice of silicon material whereas vlsi squeezed hundreds of thousands of
components on to a single ewp

ULTRA – large scale integration (ULSI) increased that number into millions the fourth
generation computer became more powerful compact, reliable and affordable.

For example: apple ii, attair 8800 and CRAY-1

Introduction to Computers 1.5

Characteristics of Fourth Generation Computers
 • Fourth generation computers are microprocessor based systems
 • These computers are very small
 • GUI an d pointing devices enable users to learn to use the computer quickly
 • Interconnection of computers leads to better communication and resource sharing

1.1.4.5 Fifth Generation (Present and Beyond): Artificial Intelligence
A computer would learn from its mistakes and possess the skill of experts the starting point

for the fifth generation of computers has been set in the early 1990. The expert system it defined as
a computer information system that attempts to mimic the thought process and reasoning of experts
in specific areas three characteristics can be identified with the fifth generation computer these are.

Mega chips
Fifth generation computers will use super large scale integrated (SLSI) chips, which will

result in the production of microprocessor having millions of electronic components on a single chip

Parallel processing
A computer using parallel processing accesses several instructions at once and works on

them at the same time through use of multiple central processing units.

Artificial intelligence: (AI)
AI comprises a group of related technologies expert systems (ES), natural language

processing (NLP) speech recognition, vision recognition and robotics.

1.1.5 CLASSIFICATION OF COMPUTERS
Four major categories: micro, mini, mainframe and super computers

Micro computers
A micro computer is a small, low cost digital computer, which usually consists of a

microprocessor, a storage unit, an input channel and an output channel, all of which may be on one
chip inserted into are or several pc boards.

IBM – pc,Pentium 100, ibm-pc Pentium 200 and Apple Macintosh are some of the example
of micro computers

1.6 Fundamentals of Computing an Programming

Micro computers include desktop, laptop and hand – held models such as PDAS (personal)
digital assistants.

Desktop computer
Desktop computer also known as personal computer (pc) is principally intended per stand

alone use by an individual micro computer typically consist of a system unit a display monitor, a
keyboard internal hard disk storage and other peripheral devices.

Some of the major personal computer manufactures are Apple, IBM, Dell and Hewlett
Packard.

Laptop
A laptop is a portable computer that is a user can carry it around. Laptops are small computer

enclosing all the basic features of a normal desktop computer.

The biggest advantage of this computer is that one can use this computer anywhere and at
anytime, especially when are is travelling

Hand held computers
A hard-held, also called personal digital assistant (PDA), is a computer that can conveniently

be stored in a pocket and used while the user is holding it.

PDAs are essentially small portable computers and are slightly bigger than the common
calculators.

Some example of PDAs are Apple Newton, Casio Cassiopeia and Franklin ebook man

Mini computers
The mini computer is a small digital computer whose process and storage capacity is lesser

than that of a mainframe, but more than that of micro computer.

Its speed of processing data is in between that of a mainframe and a micro computes,
generally, it is used as desktop device that is often connected to a mainframe in order to perform the
auxiliaxy operations.

Mini computers are usually multi-user systems, so these are used in interactive applications
in industries, research organisations colleges and universities.

High – performance workstations with graphics I/o capability use mini computers

Some of the widely used mini computers are PDP II, IBM (8000 series) and VAX 7500.

Mainframe computer
A mainframe is an ultra – high performance computer made for high – volume, processor –

intensive computing. It consists of a high end computer processor, with related peripheral devices,
capable of supporting large volumes of data processing systems and extensive data storage and
retrieval.

Introduction to Computers 1.7

Mainframes are the second largest of the computer family, the largest being super computers.

Mainframe allows its user to maintain large information storage at a conrralised location
and be able to access and process this data from different computers located at different locations

It is typically used by large businesses and for scientific purpose.

Examples of mainframe computers are IBM’s E5000, VAX8000 and CDC6600.

Super computers
Super computers are the special purpose machine, which are specially designed to maximise

the numbers of FLOPS (floating point operation per second). Any computer below one gigaflop/sec
is not considered a super computer. A super computer has the highest processing speed at a given
time for solving scientific and engineering problems.

Essentially, it contains a number of cpu, that operate in parallel to make it faster. Its
processing speed lies in the range of 400 – 10,000 MF LOP’s (millions of floating point operation
per second).

Super computers are used to solve multivariant mathematical problems of existent physical
processes, such as aerodynamics, metrologis, and plasms physics.

The largest commercial use of super computers is in the entertainment advertising industry,
CRAY – 3, Cyber 205 and PARAM are some well known super computers.

1.1.6 BASIC COMPUTER ORGANIZATION

The block diagram of the computer system have the following three units, each functional
unit corresponds to their basic operations performed as described in details.

(a) Input unit

(b) Central processing unit

(c) Output unit

1.8 Fundamentals of Computing an Programming

(a) Input Unit
 • Accept data and instructions from the outside world.

 • Convert it to a form that the computer can understand

 • Supply the converted data to the computer system for further processing

 • The input unit is used to send information or instructions or commands to the computer.
The data received from the input input unit is immediately stered in main memory and
then processed.

Following are the some of the input devise.

(i) Keyboard

(ii) Mouse

(iii) Light pen

(iv) Joystick

(v) Ocr (optical character recognizer)

(vi) MICR (magnetic ink character recognizer)

(vii) OMR (optical mark recognizer)

(b) Central Processing Unit (CPU)
 • It performs all calculations and all decisions.

 • It controls and co-ordinates all units of the computer

 • It interprets instructions of a program

 • It stores data temporarily and monitors external requests.

The CPU is sub-divided into the following sub-system.

(i) Control unit

(ii) Arithmetic and logical unit

(iii) Memory unit

(a) Primary storage

(b) Secondary storage.

(i) Control unit

The control unit instructs the computer how to carry out program instructions. It directs
the flow of data between memory and arithmetic logical unit.

The input unit does not know when to receive data and where to put the data in the
storage unit after receiving it similarly, the control unit instruces the input unit where to
store the data after receiving it from the user.

In the same way, it controls the flow of data and instructions from the storage unit to

Introduction to Computers 1.9

ALU during program execution the control unit fetches instructions from the primary
memory, decodes them to determine the operations required, and then sets up instructions
execution.

Eg. To add two numbers or to read a character from a keyboard. A number registers are
associated with the control unit.

(ii) Arithmetic And Logical Unit

Arithmetic and logical unit performs all the arithmetic and logical operations.
Arithmetic operations like addition, subtraction, multiplication and logical operations, such
as comparisons are performed in ALU.

All calculations are performed in the arithmetic and logical unit (ALU) of the computer
ALU also does comparisons and take decision .

Example: it can check if the number A is less than equal to or greater than the number
B. once the calculations or the logical operation is performed by ALU, then the result is
transferred to the storage unit.

(iii) Memory unit

Memory is the part of computer which holds data for processing and other information
it is also called as main memory or primary memory.

A device that stores program instructions or data used by the cpu when performing a
given function.

 Memory is a device, which is used to store information temporarity/permanently, it is
the place where the information is safekeeped. Secondary memory, such as disk storage, is
functionalty considered I/O because it is accessed through the I/O system.

(a) Primary storage

The primary storage is also called as “main memory” stores and access information
very fastly. This is generally used to hold the program being currently executed in the
computer, the data being received from the input unit, the intermediate and final results
of the program.

Primary storage is also known as system memory, internal, temporary and “RAM”

 ▪ Installed on the main computer board (motherboard)

 ▪ Typically comprised of ICs (integrated circuits)

 ▪ Fast access – usually in the order of nano seconds

(b) Secondary storage

The secondary storage is also known as Auxiliary Storage it may store several programs,
documents, databases etc.

1.10 Fundamentals of Computing an Programming

The program that we want to run on the computer is first transferred to the primary
memory before it can run. Similarly, after running the program if need to save the result,
we will transfer them to the secondary storage.

The secondary memory is slower and cheaper than the primary memory. Some of the
commonly used secondary memory devices are Floppy diskette, Zip diskette, Hard disk
and Magnetic disks and Tapes etc.

(c) Output unit

Devices used to get the response or result of a process from the computer is called
output output unit is the communication between the user and the computer.

The output unit of a computer provider the information and results of a computation to
the outside world.

Computers do not work in the decimal system, they work in the binary system. Therefore
if required, the output unit also converts the binary data into a form that users can
understand.

Commonly used output devices are.

 ▪ Visual display unit (VDU) or monitor

 ▪ Printer

 ▪ Computer output microfilm

 ▪ Plotter.

1.1.7 NUMBER SYSTEMS
Introduction

A number is required for counting or to express the amount of some quantity it consists of a
group of symbols called digits, which are arranged in a definite manner. There can be many ways in
which the digits can be arranged to form a number. This gives rise to what we call a number system.

The decimal number system which has ten digits (0, 1, 2,……9), the octal system has eight
digits (0,1,2,….7) the hexadecimal system has sixteen digits (0,1,2,…..9,a,b,c,d,e,f), the binary
number system has only two (0,1)

The number of digits in a system is called radix or base. Thus the decimal system may be
called as radix-10 system, the binary system as radix – 2, system.

The number system are basically two types

(i) Non – positioning number system

(ii) Positioning number system.

(i) Non –positional number system
Using this system, the symbols i.e, I for 1, II for 2, III for 3, IIII for 4, iiiii for 5 etc, are used

Introduction to Computers 1.11

In non-positioning number system each symbol represents the same values regardless of its
position in the number. The symbols are simply added to find out the value of a particular number.

(ii) Positional number system
The positional number user only few symbol called digits

Example:

The decimal number 3977.39(10)

 3×103 + 9×102 + 7×101 + 7×100 + 3×10-1 * 9×10-2

1000th
position

100th

 position
10th

position
Unit

position
1/10th

position
1/100th
position

The following four positional number system are commonly used.

(1) Decimal number system

(2) Binary number system

(3) Octal number system

(4) Hexadecimal system

(1) Decimal number system
In this number system the base or radix is 10 and there are altogethes ten number i.e,

0,1,2,3,4,5,6,7,8,9.

A number in a radix system would be written as (an an-1 an-2 ……… a0 a-1 a-2 ……… a-m)

In this representation an is called the ‘Most-Significant Digit’ (MSD) of the number and a-m
is called the ‘Least Significant Digit’ (LSD).

Example:

In decimal number system 3967(10) or 3967 Consists the digits
7 in the unit position (7×100)
6 in the unit position (6×101)
9 in the unit position (9×102)
3 in the unit position (3×103)

It values can be written as
 3×103+9×102+6×101+7×100

 3×1000+9×100+6×10+7×1
3000+900+60+7
3967

3967(10) = 3967

1.12 Fundamentals of Computing an Programming

(2) Binary number system
The binary system user only two digits i.e, 0’s and 1’s the base or radis of binary number

system is 2 because it contains only two numbers.

User

 • The circuits in computer have to handled by two binary digits or bits rather than decimal
number

 • The computer only identifies signals in the form of digital pulses, which represent either
high or low voltage.

 • Everything that can be alone with decimal numbers can also be done using binary
numbers.

Example:

Convert the binary number 100111(2) to decimal numbers.

Solution: 100111(2) =? (10)

6th 5th 4th 3rd 2nd 1st Position

1 0 0 1 1 1 Given Binary Number

×25 ×24 ×23 ×22 ×21 ×20 Weights

1×32 +0×16 + 0×8 + 1×4 + 1×2 + 1×1

32 + 0 + 0 + 4 + 2 + 1 = 39(10)

 100111(2) = 39(10)

Decimal number Binary equivalent

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

(3) Octal number system
The number system with base or radix digit (8) is known as octal number system. There are

only eight digits is i.e. 0,1,2,3,4,5,6,7

Introduction to Computers 1.13

Each position in this number system represents a power of the base(8)

The decimal equivalent of the octal number 3077(8) is

3077(8) = 3×83 +0×82+7×81+7×80

 = 3×512 +0×64 +7×8+7×1

 =1536+0+56+7 =1599(10)

 3077(8) =1599(10)

Decimal Octal Binary Equivalent
0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111

(4) Hexadecimal number system
The base 16 suggests choices of 16 single character digits or symbol

The first 10 digits are digits of decimal system (0 to 9) and the remaining 6 digits are
denoted by (A to F) representing decimal value (10 to 15) where a = 10, B = 11, C = 12, D = 13,
E=14 and F = 16. The largest single digit is F or 15 (one less that the base).

Since number (0 to 9) and alphabets (A to F) are used to represent the digit in hexadecimal
numbers system, it is also called the alphanumeric number systems.

Decimal Hexadecimal Binary Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010

1.14 Fundamentals of Computing an Programming

11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Example:

Convert the hexadecimal number 39a (16) To decimal number

Solution

39A(16) = ?(10)

 = 3×162+9×161+A×160

 = 3×256 +9×16 +A×1

 = 3×256 +9×16 +10×1

 =768+144+10

 =922(10)

 39A(16)= 922(10)

1.1.8 CONVERSION OF NUMBER SYSTEM
 • Conversion of Decimal Number System

 • Conversion of Binary

 • Conversion of Octal

 • Conversion of Hexadecimal

1.1.8.1 Conversion of Decimal Number System
⇒ Decimal to binary system

⇒ Decimal to octal

⇒ Decimal to hexadecimal

(1) Conversion of Decimal to Binary System
Example:

Convert the 37.8125(10) decimal number to its binary equivalent

2 37
2 18 – 1
2 9 – 0

Introduction to Computers 1.15

2 4 – 1
2 2 – 0

1 – 0

Therefore, 37(10) = 100101(2)

Fraction Radix Result

0.8125 *2 =1.625 =0.625 with carry as 1

0.625 *2 =1.25 =0.25 with carry as 1

0.25 *2 =0.5 =0.50 with carry as 0

0.5 *2 =1.0 =0.00 with carry as 1

0.8125(10) = 0.1101

Therefore 37.8125(10) = 100101.1101(2)

Exercise:

Convert (68)10 to binary

Answer = (1000100)2

(2) Conversion of Decimal to-Octal System

Example:

Convert the 35.45(10) decimal number to its octal equivalent

8 35
4 – 3

Therefore, 35(10)=43(8)

Fraction Radix Result

0.45 *8 =3.6 = 0.6 with carry as 3

0.6 *8 =4.8 = 0.8 with carry as 4

0.8 *8 =6.4 = 0.4 with carry as 6

0.4 *8 =3.2 = 0.2 with carry as 3

0.2 *8 =1.6 = 0.6 with carry as 1

0.45(10) = 0.34631(8)

Therefore, 35.45(10) = 43.34631(8)

1.16 Fundamentals of Computing an Programming

Exercise:

Convert decimal number 214 to its octal equivalent

Answer = 326

(3) Conversion of Decimal to Hexadecimal System
Example:

Convert the 22.64(10) decimal number to its hexadecimal equivalent.

16 22
1 – 6

Therefore, 22(10) = 16(16)

Fraction Radix Result

0.64 *16 =10.24 =10.24 with carry as 10

0.24 *16 =3.84 =0.84 with carry as 3

0.84 *16 =13.44 =0.44 with carry as 13

0.44 *16 =7.04 =0.04 with carry as 7

0.64(10) = 0.A3D7(16)

Therefore, 22.64(10) =16.A3D7(16)

Exercise:

Convert decimal number 3509 to its hexadecimal equivalent

Answer = 13115

 =DB5(16)

1.1.8.2 Conversion of Binary System
⇒ Binary to decimal conversion

⇒ Binary to octal

⇒ Binary to hexadecimal

(1) Binary to Decimal Conversion
Example:

Convert 1101.101(2) to its decimal equivalent

 = 1×2³+1×2²+0×2¹+1×2+1+1×2-1×0×2-2+1×2-3

 = 8+4+0+1+0.5+0+0.125

 = 13.625(10)

Introduction to Computers 1.17

Exercise:

Convert (1000100)2 to its decimal equivalent

Answer = (68)10

(2) Binary to Octal Conversion
Example:

Convert the 111101100(2) to its octal equivalent.

⇒ Group the number by 3

 111 101 100

⇒ Specify the octal equivalent

 111 101 100

 7 5 4

Therefore, the octal number is 754(8)

Exercise:

Convert 111 01 111 0 (2) to its equivalent octal number

Answer = 735(8)

(3) Binary to Hexadecimal Conversion
Example:

Convert the 1101100010011011(2) to its hexadecimal equivalent.

⇒ Group the number by 4

 1101 1000 1001 1011

⇒ Specify the hexadecimal equivalent

 1101 1000 1001 1011

 D 8 9 B

Therefore, the octal number is D89B(16)

Exercise:

Convert 11111101 . 0001 0011(2) to its equivalent hexadecimal number.

Answer = FD13(16)

1.1.8.3 Conversion of Octal Number System
⇒ Octal to Decimal Conversion

⇒ Octal to Binary Conversion

⇒ Octal to Hexadecimal

1.18 Fundamentals of Computing an Programming

(1) Octal to Decimal Conversion
Example:

Convert the 51.63(8) to its decimal equivalent.

 =5×81+1×80+0.6×8-1×0.3×8-2

 =40+1+(0.075+0.0046875)

 =41.0796875(10)

Therefore, 51.63(8) = 41.0796875(10)

Exercise:

516(8) = 324

(2) Octal to Binary Conversion
Example:

Convert the 51.63(8) to its binary equivalent.

 5
↓

 1
↓

• 6
↓

3
↓

101 001 110 011

101001.110011(2)

51.63(8)=101001.110011(2)

Therefore, the binary number is 101001.110011(2)

Exercise:

convert 5613 to its binary equivalent

Answer = 1010011110011(2)

(3) Octal to Hexadecimal Conversion
Example:

Convert the 345.30(8) to its hexadecimal equivalent.

 Octal ↔ Binary ↔ Hexadecimal
⇒ 3 4 5 • 3 0
⇒ 011 100

↓
101
↓

• 011
↓

0 0 0

⇒ 0000 1110 0101 • 0110 0000
⇒ 0 E 5 • 6 0

Therefore, the hexadecimal number is E5.60(16)

Introduction to Computers 1.19

Exercise

34530(8)

Answer = E560(16)

011
↓

1 00
↓

101 011
↓

0000
↓

E 5 6 0

1.1.8.4 Conversion of Hexadecimal Number System
⇒ Hexadecimal to Decimal Conversion

⇒ Hexadecimal to Binary

⇒ Hexadecimal to Octal

⇒ Hexadecimal to Decimal Conversion

(1) Hexadecimal to Decimal Conversion
Example:

Convert the 5B.2E(10) to its decimal equivalent.

=5×161+B×160+2×16-1×E×16-2

=80+11+(0.125+0.0546875)

=91.1796875(10)

5B.2E(16)=91.1796875(10)

Exercise

5B2(16)

Answer = 1458

(2) Hexadecimal to Binary Conversion
Convert the 8B2F.9A(16) to its binary equivalent.

 8 B 2 F • 9 A

 ↓ ↓ ↓ ↓ • ↓ ↓

1000 1011 0011 1111 • 1001 1010

8B2F.9A(16)=1000101100111111.10011010(2)

Therefore, the binary number is 1000101100111111.10011010(2)

Exercise

8B2F

Answer = 1000101100101111(2)

1.20 Fundamentals of Computing an Programming

(3) Hexadecimal to Octal Conversion
Example:

Convert the BDAF.AC9(16) to its octal equivalent.

⇒ B D A F • A C 9

 ↓ ↓ ↓ ↓ • ↓ ↓ ↓

 1011 1101 1010 1111 • 1010 1100 1001

⇒ 1 011 110 110 101 111 • 101 011 001 001

 ↓ ↓ ↓ ↓ ↓ ↓ • ↓ ↓ ↓ ↓

 1 3 6 6 5 7 • 5 3 1 1

Therefore, the hexadecimal number is 136657.5311(8)

Introduction to Computers 1.21

UNIT - 1.2

COMPUTER SOFTWARE

1.2. COMPUTER SOFTWARE
Definition

Software is a genetic term for organised collection of computer data and instructions. It is
responsible for controlling intergraring and managing the hardware components of a computer and
to accomplish specific tasks.

For example:

Software instructs the hardware what to display on the user’s screen, what kinds of input to
take from the user and what kinds of output to generate.

1.2.1 Types of software
Software can be categorised as system software and application software.

Fig 1.1 Types of software

1.2.2 SYSTEM SOFTWARE
System software as an interface system software consists of several program which one

directly responsible for controlling, integrating and managing the individual hardware components
of a computer system.

1.22 Fundamentals of Computing an Programming

Fig 1.2: System software as an interface
This software provider a programming environment in which programmers can create

applications to accommodate their needs system software acts as an interface between the hardware
of the computer and the software applications

System software makes the computer functional they provide basic functionality like file
management visual display and keyboard input and are used by application software to accomplish
these functions.

Some example of system software are operating systems, device drivers language translators
and system utilities.

Operating system

Fig 1.3: Operating system
Operating system is the first layer of software loaded into computer memory when it starts

up.

As the first software layer, all other software that gets loaded after it depends on it for
various common care services.

These common core services include disk access,memory management task scheduling and
user interfacing

The operating system organises and controls the hardware.

Examples of operating systems are windows XP, UNIX and LINUX.

Introduction to Computers 1.23

Device Drivers
Device drivers are system programs, which are responsible for proper functioning of devices

every device, whether it is a printer, monitor, mouse or keyboard, has a driver associated with it per
its proper functioning

In modern operating systems, most hardware drivers, such as the keyboard drivers, come
with the operating system.

Language Translators
Computer only understand a language consisting of os and ls called machine language.

Depending on the programming language used language translators are divided into three
major categories. Computer interpreser and assembles

Language Translators Description

Compiler The programs written in any high-level programming language
(C or Pascal) are converted into machine language using a
compiler.

Interpreter An interpreter analyses and executes the source code in line-by-
line Manner, without looking at the entire program.

Assembler Compared to all the types of programming languages, assembly
Language is closest to the machine code. An assembler converts
the assembly codes into machine codes, making the assembly
program ready for execution.

System Utility
System utility programs perform day to day tasks related to the maintenance of the computer

system they are used to support enhance, and secure existing programs and data in the computer
system.

1.2.3 APPLICATION SOFTWARE
Application software may consist of a single program, such as Microsoft notepad it may

also consist of a collection of programs often called a software package which work together to
accompush a task, such as database management software.

Application software ranges from games, calculators and word processors document creating
programs to programs that “paint” images on screen (image editors) some of the most commonly
used application software are discussed below.

Word processors
A word processor is a software used to compose, format, edit and print electronic documents.

It involves not only typing, but also checking the spelling and grammar of the text and arranging it
correctly on a page.

1.24 Fundamentals of Computing an Programming

Fig 1.4: Microsoft word
It is possible to include pictures, graphs, charts and fonts and colour. Nowadays, virtually all

personal computer are equipped with a word or other document and printing

Example of some well known word processors are Microsoft word and word perfect.

Spread sheets

Fig 1.5: Microsoft excel

Introduction to Computers 1.25

One of the first commercial uses of computers was in processing payroll and other financial
records. A spreadsheet application is a rectangular grid, which allows text, number and complex
functions to be entered into a matrix of thousand of individual cells.

The spreadsheet provides sheets containing calls each of which may contain text and/ or
number

Cells may also contain equations that calculate results from data placed in other cells or
series of cells.

Microsoft excel and lotus 1-2-3 are examples of spreadsheet applications

Image Editors

Fig 1.6: Adobe Photoshop

Image editor programs are designed specifically for capturing, creating, editing and
manipulating images

These graphics programs provide a variety of special features per creating and altering
images.

In addition to offering a host of filters and image transformation algarithms, some editors
also enable the user to credit and superimpose layers.

With image editing software, one can darken or lighten an image, rotate it, adjust its contrast,
crop out extraneous detail and much more.

Examples of these programs are adobe photoshop, adobe illustrator and corel draw.

1.26 Fundamentals of Computing an Programming

Database management systems

Fig 1.7: Microsoft access
Database management software is a collection of computer programs that allow storage

modification and extraction of information form a database in an efficient manner.

It provides tools for data input, verification storage, retrieval, query and manipulation.

New categories of data can be added to the database without disrupting the existing system.

Forpro and oracle are database management systems.

Presentation applications

Fig 1.8: Microsoft PowerPoint
A presentation is a means of assessment which requires presentation providers to present

their work orally in the presence of an qudience

Introduction to Computers 1.27

It combines both visual and verbal elementns presentation software allows the user to create
presentations by producing slides or handows per presentation of projects.

Microsoft powerpoint is one of the most famous presentation application.

Desktop publishing software:

Fig 1.9: Adobe PageMaker
The term desktop publishing is usually used to describe the creation of printed documents

using a desktop computer.

It is a technique of using a personal computer to design images and pages, and assemble
type and grahpics, then using a laser printer or image setter to output the assembled pages onto
paper, film or printing plate.

Quark Express and adobe page maker are desktop publishing software.

1.2.4 SOFTWARE DEVELOPMENT STEPS
Software development is the set of activities that results in software produces. Software

development may include research, new development, modification, reuse, re-engineering,
maintenance or any other activities that result in software product

Software development life cycle (SDLC)
The various phases of software development involves the performance of many people.

(a) User

The user is a person who will use the software.

1.28 Fundamentals of Computing an Programming

(b) System Analyst

A system analyst is the person who meets the users and gathers the information

(c) System Designer

System designes is the specialist who designs the system or software.

(d) Programmes

A programmes is a person who writes the code that implements the user requirements.

(e) Project manager

Project manager is a person who manager the entire team

(f) Testing team

Testing the software is done by this testing team. Bugs are identified and reported.

The following are the flow of software development life cycle.

Requirement – Analysis
The objective of the requirement analysis is to identify and document he user requirements

for the proposed system.

The main objective of the requirements analysis is to produce a document that property
specifies all requirements of the customers. That is called the Software Requirement Specifications
(SRS) document is the primary output of this place.

This process involves analysis who meet with interview and observe knowledge, users
to understand what the requirements are, in addition existing system, processes, documents and
procedures are also reviewed.

Introduction to Computers 1.29

Design Process
It defines specifically now the software is to be written including an object model with

properties and methods for each objects, analysis and design are very cructal in the whole
development cycle.

Development or Coding
The design must be translated into machine - readable form. The coding or development

step performs this task.

Different high level languages like C, C++, JAVA, COBOL etc. are used for coding, with
respect to the type of application, the right programming language is choosen.

Testing
Testing is the process of executing the proposed software with sample or test data and put

it into regular use.

Once the code id generated, the program testing begins.

Different testing tools and methodologies are already own testing tools that are tailor made
per their own development operations.

Implementation and Maintenance
It involves installation and initial training and may involve training and may involve

hardware and network upgrades.

Software will definitely undergo changes once it is delivered to the customer.

In addition, the changes in the system could directly affect the software operations.

The software should be developed to accommodate changes that could happen during the
post implementation period.

The maintenance phase of the project is the last component and it continues as long as a
warranty, extended warranty or support contract is in place.

UNIT - 2

PROBLEM SOLVING AND
OFFICE APPLICATION SOFTWARE

2.1 PLANNING THE COMPUTER PROGRAM
2.1.1 Program Definition

A program is a set of instruction written to carryout a particular task, so that computer can
follow them

To solve the problem using the computers we must follow the steps below.

(a) Problem must be analysed thoraghly,

(b) Solution method is broken down into a sequence of small tasks.

(c) Based on this analysis an algoritham must be prepared to solve the problem

(d) The algorithm must be expressed in precise notation

(e) In viewing algorithm, design a computer program in any high level language.

(f) The computer program is fed into the computer.

(g) The instruction in the program, executes one after another and outputs the expert result.

Calculate the sum of two numbers, A and B and store the sum in c, here a and b are the input
addition is the process and c is the output of the program

2.2 PROBLEM SLOVING TECHNIQUES
2.2.1 Algorithms

An algorithm is defined as a finite sequence of explicit instructions that, when provided with
a set of input values, produces an output and then terminates.

In algorithm, after a finite number of steps, solution of the problem is achieved.

Algorithms can have steps that repeat (iterate) or require decision (logic and comparison)
until the task is completed.

2.2 Fundamentals of Computing an Programming

For example, to determine the largest number out of three numbers A,B and C the following
algorithm may be used.Step 1: start

Step 1: Start

Step 2: Read three numbers say A, B, C

Step 3: Read the larger number between A and B and store it in MAX_AB.

Step 4: Find the larger number between MAX_AB, C and store it in MAX.

Step 5: Display MAX.

Step 6: Stop.

2.2.2 Algorithm properties
(1) There must be no ambiguity in any instruction

(2) There should not be any uncertainty about which instruction is to be executed next.

(3) The algorithm should conclude after a finite number of steps an algorithm cannot be
open ended

(4) Then algorithm must be general enough to deal with any contingency.

2.3 FLOWCHART
A flowchart is a pictorial representation of an algorithm in which the step are drawn in the

form of different shapes of boxes and the logical flow is indicated by interconnecting arrow

The boxes represent operations and the arrows represent the sequence in which the operation
are implemented.

The primary purpose of the flowchart is to help the programmes in understanding the logic
of the program.

Standard flowchart symbols prescribed by American nations standard institute (ANSI)

2.3.1 Flowchart symbols

Symbol Symbol name Description
Flow lines Flow lines are used to connect symbols. These

lines indicate the sequence of steps and the
direction of flow of control.

Terminal This symbol is used to represent the beginning
(star), the termination (end) or halt (pause) in
the program logic.

Problem Solving and Office Automation 2.3

Input / Output It represents information entering or leaving
the system, such as customer order(input) and
servicing(output)

Processing Process symbol is used for representing
arithmetic and data movement instructions.

Decision Decision symbol denotes a decision (or
branch). The program should continue along
one the two routes (IF/ELSE). This symbol has
one entry and two exit paths. The path chosen
depends on whether answer to a question is
yes or no.

Connector Connector symbol is used to join different
flow lines.

Off-page connector This symbol is used to indicate that the
flowchart continues on the next page.

Document Document is used to represent a paper
document produced during the flowchart
process.

Annotation It is used to provide additional information
about another flowchart symbol. the content
may be in the form of descriptive comments
remarks or explanatory notes.

Manual Input Manual input sysmbol representes input to be
given by a developer programmer

Manual Input It represents input to be given by a developer/
programmer

Online storage This symbol represents the online data storage
such as hard disk, magnetic drums, or other
storage.

Offline storage This symbol represents the offline data storage
such as sales on OCR and data on punched
cards

Communication
Link

Communication link symbol is used to
represent data received or to be transmitted
from an external system.

2.4 Fundamentals of Computing an Programming

Magnetic Disk This symbol is used to represent data input or
output from and to a magnetic disk.

2.3.2 Guidelines for preparing flowcharts
 • The flowchart should be clear, neat and easy to follow

 • The flowchart must have a logical start and finish

 • In drawing a proper flowchart, all necessary requirements should be listed in logical
order.

 • Only one flow line should come out form a process symbol

(or)

 • Only one flow line should enter a decision symbol. However, two or three flow lines
may leave the decision symbol

 • Only one flow line is used with a terminal symbol

(or)

 • Within standard symbol write briefly if necessary use the annotation symbol to describe
data or process more clearty

 • In case of complex flowchart, connector symbols are used to reduce the number of flow
lines

Problem Solving and Office Automation 2.5

 • Intersection of flow lines should be avoided to make it a more effective and better way
of representing communication

 • It is useful to test the validity of the flowchart with normal/ unusual test data.

2.3.3 Benefit of Flowchart
Makes Logic Clear

The main advantage of using a flowchart to plan a task is that it provided a plctonal
representation of the basic which makes the logic easier to follow

Communication
Being a graphical representation of a problem – solving logic, flowcharts are better way of

communicating the logic of a system to all conserved.

Effective Analysis
With the help of a flowchart, the problem, can be analysed in an effective way.

Useful in Coding
The flowcharts act as a guide or blueprint during the analysic and program development

phase.

Proper Testing and Debugging
By nature, a flowchart helps in detecting the errors in a program, as the developers know

exactly what the logic should do.

Appropriate Documentation
Flow charts serve as a good program documentation tool.

2.3.4 Limitations of Flowcharts
Complex

The major disadvantage in using flowcharts is that when a program is very large, the
flowcharts may continue per many pages, making them hard to follow.

Costly
Drawing flowcharts are viable only if the problem solving logic is straight forward and not

very lengthy.

Difficult to Modify
Due to its symbolic nature, any changes or modification to a flowchart usually requires

redrawing the entire logic again, and redrawing a complex flowchart is not a simple basic.

No Update
Usually programs are updated regularly

2.6 Fundamentals of Computing an Programming

2.4 PSEUDOCODE
Pseudocode is made up of two words pseudo and code. Pseudo means limitation and code

refers to instructions, written in a programming language.

Pseudocode used plain English statements rather than symbols to represent the processes of
a computer program. It is also known as PDL (Program Design Language)

For example, the pseudocode given below calculated the area of a rectangle.

PROMT the user to enter the height of the rectangle

PROMT the user to the enter the width of the rectangle

COMPUTE the area by multiplying the height with width

DISPLAY the area STOP

Pseudocode uses some keywords to denote programming processes. Some of them are:

 • Input : READ, OBTAIN, GET and PROMPT

 • Output: PRINT, DISPLAY AND SHOW

 • Compute : XOMPUTE, CALCULATE AND DETERMINE

 • Inittalise: SET AND INITIALISE

 • Add One: INCREMENT

2.4.1 Pseudocode Guideline
 • Statements should be written in simple English and should be programming language

independent.

 • Steps must be understandable and when the steps ……. Are followed the must produce
a solution to the specified problem

 • Pseudocodes should be concise.

 • Each instruction should be written in a separate line an each statement in pseudocode
should express just one action per the computer.

 • Capitalise keywords such as READ, PRINT and so on.

 • Each set of instructions is written from top to bottom, with only one entry and one exit.

 • It should allow for easy transition from design to coding in programming language

2.4.2 Benefits of Pseudocode
 • Since it is language independent, it can be used by most programmes, it allows the

developer to express the design in plain natural language.

 • It is easier to develop a program from a pseudocode than with a flowchart

 • Often, it is easy to translate pseudocode into a programming language a step which can
be accomplished by less experienced programmes.

Problem Solving and Office Automation 2.7

 • The use of words and phrases in pseudocode, which are in line with basic computer
operations, simplifier the translation from the pseudocode algorithm to a specific
programming language.

 • Its simple structure and readability makes it easier to modify.

2.4.3 Limitations of Pseudocode

 • The main disadvantage of using pseudocode is that it does not provide visual
representation of the program’s logic

 • Pseudocode can not be complied nor executed and more are not real formatting or
syntax rules

Problem Solving through Algorthims, Flowcharts and Pseudocode

1. Write a program to convert the celcius into fahrenneit.

Algorithm:

Step 1: Start

Step 2: Read the Celsius value

Step 3: Calculate the fahrenhiet value by using the formula

 Fahrenhelt (1.8* Celsius) + 32

Step 4: Print the falrenheit value

Step 5: Stop

Flowchart:

2.8 Fundamentals of Computing an Programming

Pseudocode:

Set initial celsiue

READ the value of Celsius

Calculate faren = (1.8*Celsius) +32

Write the output Fahrenheit

Stop

2. Write a program to find area of the manage
Flowchart

Algorithm:

Step 1: Start

Step 2: Read the value of a,b,c

Step3: To calculate three sides of the triangle using formula

S ← (a+b+c)/2

Step 4: To Find area of a triangle apply formula

Area sqrt (s*(s – a)*(s–b)*(s–c))

Step 5 : Print the area

Step 6: Stop

Problem Solving and Office Automation 2.9

Pseudocode:

Set initial a,b,c

Read the value of a,b,c

To calculate three sides of triangle using formula

s = (a+b+c)/2

To find area of a triangle using formula

Area sqrt (s*(s – a)*(s–b)*(s–c))

WRITE the output area

Stop

3. Write a program to find the larget of three numbers.
Flowchart:

Algorithm:

Step1 : Start

Step2 : READ a, b, c

Step3 : IF (a>b) and (a>c) Then print ‘A is Big’.

2.10 Fundamentals of Computing an Programming

Step 4 : Else, IF (b>c) Then print ‘B is Big’.

Step 5 : Else print ‘C is Big’

Step 6 : Stop.

Pseudo code:

Set initial a, b, c

READ the value for a, b, c

IF (a>b) and (a>c) THEN

 WRITE ‘A is Big’

 Else, IF (b>c) THEN

 WRITE ‘B is Big’

 ELSE

 WRITE ‘C is Big’

 END IF

Stop.

4. Write a program to find the given year is a leap year or not.
Flowchart

Problem Solving and Office Automation 2.11

Algorithm:

Step 1 : Start.

Step 2 : Read the value of year.

Step 3 : if ((year mod 4) = 0) then print “It is a Leap Year”.

 ELSE print “it is not Leap Year”

Step 4 : Stop.

Pseudo code:

Set initial value of year.

READ the value of year.

IF (year % 4 == 0) Then

 WRITE the year is leap year

ELSE

 WRITE the year is not leap year.

ENDIF

STOP

5. Write a program to find the roots of the quadratic equation.
Algorithm:

Step 1 : Start.

Step 2 : Read the value of A, B, C.

Step 3 : Find the value of ‘D’ of using the formula D=B*B-4*A*C

Step 4 : If D is greater than or equal to zero then find two roots are

 Root1 (-B+ sqrt (D)) / (2*a)

 Root2 (-B- sqrt (D)) / (2*a)

Step 5 : Print two roots Root1, Root2

Step 6 : If ‘D’ is not greater than or equal to zero, then print the roots are Imaginary

Step7 : Stop.

Pseudo code:

Set initial zero to D, Root1 and Root2.

READ the value of A, B, C.

Find Discriminate

 D=B*B-4*A*C

 IF D>=0 THEN

2.12 Fundamentals of Computing an Programming

 Calculate Root1 (-B+ sqrt (D)) / (2*a)

 Root2 (-B- sqrt (D)) / (2*a)

 ELSE

Roots are imaginary

 ENDIF

 WRITE Root1, Root2.

 STOP

Flowchart:
 Start

Read A, B, C

D = B*B-4*A*C

Print Root1,
Root2

Root1=|-B + sqrt (D))| / (2*A)

Root2=|-B - sqrt (D))| / (2*A)

IF
D>0

NO

YES

Stop

3.5 INTRODUCTION TO OFFICE PACKAGES
3.5.1 Word Processing

Word processing in the computer is the process of creating, editing, retrieving, storing and
printing test material.

Problem Solving and Office Automation 2.13

Features of word processes.

(a) fast

(b) editing features

(c) permanent storage

(d) formatting features

(e) graphics

(f) OLE object linicing and embedding

(g) Spell check

(h) Tables

(i) Mail merge

Introduction to MS –word
MS - word is a word processing program that lets us to create documents such as letter,

reports, manuals and newletters etc.

The option provided by ms-word are explained below

Working with document

(i) Entering Text

Type the text in the document press enter key, when we want to start new paragraph.
Word underlines misspelled words in red and grammar mistakes in green, the red and green
underlines will not appear in printing the document.

Word automatically corrects common typing mistakes that we type such as and (adn)
and new (new)

(ii) Saving a document

Fig 2.1. Saving a document

2.14 Fundamentals of Computing an Programming

(1) Click the Save button on the Standard Toolbar the save as Dialog Box appears as
shown fig

(2) Type the name of the file in the filename text box

(3) Select the appropriate disk drive and folder in the save in list box

(4) Click the save button.

(iii) Opening a document:

Fig 2.2. Opening a document

(1) Click on the open button on the standard toolbar. The open dialog box appear as shown
fig

(2) Select the appropriate disk drive and folder where your file exists in the Look in : list
box

(3) Type the name of the file or click on the file name from the list which we want to open
in the file name text box.

(4) Click the open button now the specified file is opened.

(iv) Copying test

(1) Select the text, which we want to copy

(2) Click on copy button on the formatting tool bar or choose copy option form the Edit
menu or press CTRL+C

(3) Now the selected text disappears and it immediately places in the clip board

(4) Place the cursor at desired location i.e, Where we want to insert the text.

(5) Click on the paste butto in the formatting tool bar or click on the paste option from the
Edit menu or press CTRL+V

(6) Now, the text will appears at the cursor position

Problem Solving and Office Automation 2.15

2.5.2 Finding and Replacing Text
(i) Finding text

Suppose we want to search the word “sales”. Choose the Find and Replace option from the
Edit menu or press CTRL+F.

The find and replace dialog box appears.

(1) Type the word sales in the find what text box.

(2) Click the find whole words only check box

(3) Click find next button

(4) Repeart the process until contirmation dialog box opens informing we that word has
finished searching the document

(5) Click ok

(ii) Replacing text
Suppose we want to replace the word "Invoice" with the word "sales" in the document do

the following

(1) Click Replace tab in the Find and Replace dialog box.

(2) Type the word Invoice in the Find what text box

(3) Type the word Sales in the Replace with text box

(4) Click Replace push button it replaces all the occurances of "Invoice" with "Sales"

2.5.3 Formatting Documents
(1) Changing font types and font size

Using the font dialog box we can change font style, font size, underlying blod italic styles
and color of selected text

Font Tab: Click the font tab to view the different fonts. We can also select a font by clicking
the list arrow in the font type box on the following toolbar.

(2) Applying superscript and subseript format
The superscript format places text slightly above a line of normal printed text. The subscript

format places text slightly below a line of normal printed text.

Eg. Suppose if we want to type A2+B2

(1) Type the formulae as A2+B2

(2) Select the first 2 in A2+B2 then choose font option from the format menu then choose
superscript check box

2.16 Fundamentals of Computing an Programming

(3) Now we can get A2+B2 like A2 + B2

(4) This is superscript and this is subscript

(3) Bullets and numbering

Fig 2.3. Bullets and numbering

To add numbering to a selected text, do the following

(1) Select the text from beginning line to ending line.

(2) Choose Bullets and Numbering option from the format menu, now the Bullets and
Numbering dialog box appears as shown in figure below.

(3) Choose the required format for Numbering, then click OK.

To add Bullets, do the following

(1) Select the paragraph.

(2) Click the Bullets button on the formatting tool bar, choose required bullets and then
press OK button. Bullets are now inserted in the paragraph.

(4) Inserting Symbols.

(1) Select symbol option from the insert menu.

(2) The symbols menu appears as shown figure.

(3) There are so many symbols available to from the different types of fonts to view all the
symbols click on the font list box.

(4) Then choose phone symbol.

(5) Then click on insert button and then click cancel button.

Problem Solving and Office Automation 2.17

Fig 2.4. Inserting symbols

2.5.4 Working with tables
A table is simply information arranged in rows and column

 • Insert table button

 • Insert table dialog box (Table → Insert → Table menu selecting)

 • Tables and border button

 • Table → Convert Text to Table menu selection

(1) Using the Insert Table Button
To use the insert table button, drag the desired number of rows and columns and release the

button.

UNIT - 3

INTRODUCTION TO C

3.1 INTRODUCTION
C is a popular general purpose programming language. C language has been designed and

developed by Dennis Ritchie at bell laboratories in 1972.

The source code for the linix operating system is coded in C. C runs under a number of
operating systems including MS – DOS

C language is a middle - level computer language. It reduces the gap between high level
language and low – level language it is known as middle level language.

C is a structured language. It is similay in many ways to otha structural languages such as
pascal and fortran. A structured language allows variety of programs in small modules.

C provides loop constructs like while, do-while and for.

3.1.1 Structure of a C program

Include header file section

Global declaration section

/ * comments */

Main() /* Function name */

{

/ * comments * /

Declaration part

Executable part

}

User-defined functions

{

Statements

}

3.2 Fundamentals of Computing an Programming

(a) Include header file section

C program depends upon some header files for function definition that are used in program.
Each header file by default is extended with .h the header file should be included using # include
directive as given here.

For example # include < stdio.h> or

 # include “stdio.h”

In this example < stdio.h> file is included, that is, all the definitions and prototypes of
function defined in this file are available in the current program.

(b) Global declaration

This section declares some variables that are used in more than one function. Those variables
are known as global variable.

(c) Function main

Every program written in c language must contain main c function. Empty parathensis after
main are necessary. The function mains is a starting point of every c program. The execution of the
program always begins with are function mains.

Except the main c) function, other sections may not be necessary. The program execution
starts form the opening ({) and ends with the closing brace (}) between these two braces the program
should declare the declaration and executable part.

(d) Declaration part

The declaration part declares the entire variables that are used in executable part initialisation
means providing initial value to the variable.

(e) Executable part

This part contains the statements following the declaration of the variable this part contains
a set of statements or a single statement. These statements are enclosed between the braces.

(f) User – defined function

The functions defined by the user are called user defined functions these functions are
generally defined after the main () function. They can also be defined before main() function this
portion is not compulsory.

(g) Comments

Comments are not necessary in the program comments are to be inserted by the programmer.

Comments are nothing but same kind of statement which are placed between the delimiters
logo. The compilet does not execute comments.

Introduction to C 3.3

For example:

/* this is single comment */

3.1.2 Programming Rules
(1) All statements should be written in lower case letter. Upper case letter are only used for

symbolic constants.

(2) Bank spaces may be inserted between the words.

(3) The user can also write one or more statement in one line separating them with a semi-
colon (;)

 a=b + c;

 d=b * c;

 or

 a=b + c; d=b*c;

3.1.3 Executing the program
(a) Creation of program

Programs should be written in editor.

(b) Compilation and linking of a program.

The source program statements should be translated into object programs which is suitable
for execution by the computer. The translation is done. After correcting each statement it there is
no error, compliation proceeds and translated program are stored in another file, with the same. File
name with extension”. Obj”

If any errors. Are there the programmer should correct them. Linking is also an essential
process. It puts all other program files and function together that are required by the program.

(c) Executing the program:

After the compliation the executable object code will be loaded in the computer’s main
memory and the program is executed.

3.2 THE C CHARACTER SET
The character used to form words, numbers and expressions depend upon the computer an

which the program runs.

(1) Letter

(2) Digits

(3) White spaces

(4) Special characters

3.4 Fundamentals of Computing an Programming

Character set

Letters Digits White space

Capital A to Z
All decimal digits 0
to 9

Blank Space

Horizontal Tab
Small a to z Vertical Tab

New Line
Form Feed

List of Special Characters

Special
Character

Character
Name

Special
Character

Character
Name

, Comma + Plus
. Period or dot < Less than
; Semicolon > Greater than
: Colon () Parenthesis left/right
` Apostrophe [] Bracket left/right
“ Quotation mark {} Braces left/right
! Exclamation mark ~ Tilde
| Vertical bar _ Under score
/ Slash $ Dollar
\ Back slash ? Question mark
& Ampersand % Percent
^ Caret # Number sign or hash
* Asterisk = Equal to
- Minus @ At the rate

Delimiters

Delimiters Use
: (Colon) Useful for label
; (Semicolon) Terminates statement
() (parenthesis) Used in expression and function
[] (Square Bracket) Used for array declaration
{} (Curly brace) Scope of statement
(Hash) Preprocessor directive
, (Comma) Variable separator

Introduction to C 3.5

The C keyboards
The c keyboards are reserved words by the compiler. All the c keywords have been assigned

a fixed meaning.

C keywords.

Auto Double int struct
break Else long switch
Case Enum register typedef
Char Sxtern return Union
Const Float short unsigned
Continue For signed Void
Default Goto sizeof volatile
Do If static While

Additional keywords for Borland c are as follows

Asm Cdecl Far Huge interrupt Near pascal

Identifiers
Identifiers are names of variables, function and arrays. They are user-defined names

consisting sequence of letters and digits, with the letter as the first character. The (-) underscore
symbol can be sued as an identifier.

For example:

(a) # define n 10 here ‘n’ and ‘a’ are

(b) # define a15 user – defined identifiers

3.3 CONSTANTS
The constants I care applicable to the values which do not charge during the execution of a

program.

Fig 3.1. C constants

3.6 Fundamentals of Computing an Programming

3.3.1 Numerical Constants

(a) Integer constants

These are the sequence of numbers from 0to 9 without decimal points or fractional part or
any other symbols. It requires minimum two bytes and maximum four bytes integer constants could
either be positive or negative or may be zero.

For example: 10, 20, +30,-15, etc.

(b) Real constants

Real constants are often known as floating point constants. For example, length, height,
prize, distance and so on are measured in real numbers.

For example: 2.5, 5.321, 3.14 etc.

3.3.2 Character Constant

(a) Single character constants:

A character constant is a single character. Characters are also represented with a single digit
or a single special symbol or white space enclosed within a pair of single quote marks.

For example: ‘a’, ‘8’, ‘ ” ‘, etc.

(b) String constants

String constants are sequence of characters enclosed within double quote marks. The string
may be a combination of all kinds of symbols

For example: “Hello”, “India”, “444”, “a”.

(c) Variables

Variables can be different data types the data types are integer real or chalack, constants.
In c, a variable is a data name used for storing a data value its value may be changed during the
program execution.

A variable name may be declared based on the meaning of the operation same meaningful
variable names are as follows.

For example: height, average, sum etc.

3.4 DATA TYPES
Data is represented using numbers or characters. The numbers may be integers or real. C

complete supports different data types.

Introduction to C 3.7

3.4.1. Integers data types
(1) Integer, short and long

All C compliers offer either short or long integer data types.

 • Difference between short and long integers.

Short Integer Long Integer
Occupies 2 bytes in memory Occupies 4 bytes in memory
Range: -32,768 to 32,767 Range : -2147483648 to 2147483647
Program runs faster Program runs slower
Format specifies is %d or %i Format specifies is %ld
Example :
 int a=2;
 Short int b=2;

Example:
 long b;
 Long int c;

(2) Integers, signed and unsigned integers

 • Difference between signed and unsigned integers

Signed Integer Unsigned Integer
Occupies 2 bytes in memory Occupies 2 bytes in memory
Range: -32,768 to 32,767 Range : -0 to 65535
Format specifies is %d or %i Format specifies is %u
Example :
 int a=2;
 long int b=2;

Example:
 unsigned long b;
 Unsigned short int c;

(3) Character, signed and unsigned

Signed Integer Unsigned Integer
Occupies 1 bytes in memory Occupies 1 bytes in memory
Range: -128 to 127 Range : 0 to 255
Format specifies is %c Format specifies is %c
Example :
 Char ch=’b’;

Example:
 Unsigned char=’b’;

(4) Floats and Doubles

Float Double float
Occupies 4 bytes in memory Occupies 8 bytes in memory
Range: -32,768 to 32,767 Range : 1.7e-308 to 1.7e+308
Format specifies is %f Format specifies is %lf

3.8 Fundamentals of Computing an Programming

Example :
 Float a

Example:
 Double y;
 Long double k;

(5) Enter Data types in C

Data Types Size
(Bytes)

Range Format
specifiers

Char 1 -128 to 127 %c
Unsigned char 1 0 to 255 %c

Short or int 2 -32,768 to 32,767 %i or %d
Unsigned int 2 0 to 655355 %u

Long 4 -2147483648 to 2147483647 %ld
Unsigned long 4 0 to 4294967295 %u

Float 4 3.4e-38 to +3.4e+38 %f or %g
Double 8 1.7e-308 to 1.7e+308 %lf

Long double 10 3.4e-4932 to 1.1e+4932 %lf

3.4.2 Declaring variables
Declaration provides two things, (1) compiles obtains the variable name, (2) it tells the

compiles the data type of the variable being declared and helps in allocating the memory.

Syntax:

Data type variable – name

For example:

int age;

char m;

float s;

double k;

int a,b,c;

The int, char, float and double are keywords to represent data types.

Data Types Keywords
Character char
Signed character signed char
Unsigned character unsigned char
Integer int
Signed integer signed int
Unsigned integer unsigned int

Introduction to C 3.9

Unsigned short integer unsigned short int
Signed long integer signed long int
Unsigned long integer unsigned long int
Floating point float
Double floating point double
Extended double floating point long double

3.4.3 Initializing variable
Variable declared can be assigned or initialized using an assignment operator

Syntax:

Variable – name – constant

Or

Data-type variable – name – constant

For example

X = 2, where x is an integer variable

Int y = 2;

Int x,y,z

3.4.4 Constant and volatile variables
(a) Constant variable

The keyword const is then added before the declaration it tells the compiler that the variable
is a constant

For Example:

Const int m=10;

Where, const is keyword, m is a variable name and 10 is a constant value. Where, const
is keyword, m is a variable name and 10 is a constant value.

(b) Volatile variable:

The volatile variables are those variables

That are changed at any time by other external program or the same program.

Syntax:

Volatile int d:

It the value of a variable in the current program is to be maintained constant and desired
not to be changed by any other external operation, than the declaration of variable will be
as follows

Volatile const d = 10

3.10 Fundamentals of Computing an Programming

3.5 OPERATORS AND EXPRESSION
Priority of operators and their clubbing

Operators Operation Clubbing Priority
()
[]
.

Function call
Square bracket

Structure operator
Structure operator

Left to Right 1st

+
−

++
--
!
*
&

sizeof
<type>

Unary plus
Unary minus

Increment
Decrement

Not operator
One’s complement
Address operator
Size of an object

Type cast

Right to Left

2nd

*
/

%

Multiplication
Division

Modular division
Left to Right 3rd

+
−

Addition
Subtraction

Left to Right 4th

<<
>>

Left shift
Right shift

Left to Right 5th

<
<=
>

>=

Less than
Less than or equal to

Greater than
Greater than or equal

to

Left to Right 6th

==
!=

Equality
Inequality

Left to right 7th

& Bitwise and Left to right 8th
^ Bitwise xor Left to right 9th
| Bitwise or Left to right 10th

&& Logical And Left to right 11th
|| Logical or Left to right 12th

Introduction to C 3.11

?: Conditional operator Right to left 13th

=,*=,−, =,+=,
^=,\=,<<=,>>=

Assignment operator Right to left 14th

, Comma operator Left to right 15th

(1) When two operators of the same priority are found in the expression, precedence is given to the
extreme left operator.

For example:

X= 5* 4 + 8 / 2

Here 5*4 is solved first. Though * and , have same priorittes. The operator * occurs before

(2) If there are more sets of parethesis in the expression, the innermost parenthesis will be solved
first, followed by the second and soon

For example:

X = (8 / (2 * (2 * 2)));

Here,

(a) Inner most bracket is evaluated first, i.e. 2 * 2 = 4

(b) Second inner most brackets are evaluated. 2 are multiplied with result of inner most
brackets. The answer of 2 * 4 = 8.

(c) Then the outer most is evaluated 8 is divided by 8 and gives result 1.

3.5.1 Operators
An operator is a symbol that specifies an operation to be performed an the opelands

 • Two opelands called binary operators

 • One opeland called unary operator.

For example:

A + B, where ‘+’ is a operator and ‘A’, ‘B’ are the operand

3.12 Fundamentals of Computing an Programming

Types of Operators
(a) Arithmetic operators

(b) Relational operators

(c) Logical operators

(d) Assignment operators

(e) Increment and decrement operator

(f) Conditional operators

(g) Bitwise operators

(h) Special operator

3.5.1.1 Arithmetic Operator

Operator Meaning Example
+ Addition 2+9=11
- Subtraction 9-2=7
* Multiplication 2*9=18
/ Division 9/3=3
% Modulo division 9%2=1

All the above operator are called binary operator as they acts upon two operands at a time

The following table shows how the division operator operates an various data types

Operation Result Example
int/int Int 2/5=0
real/int Real 5.0/2=2.5
int/real Real 5/2.0=2.5
real/real Real 5.0/2.0=2.5

Arithmetic operator can be classified as

 • Unary arithmetic operator

 • Binary arithmetic operator

 • Integer arithmetic operator

(a) Unary Operator:

It requires only one operand.

Example: +x, -y

(b) Binary Arithmetic:

It requires two operands.

Example: a+b, a-b, a*b, a/b, a%b.

Introduction to C 3.13

(c) Integer arithmetic:

It require both operands are integer values for arithmetic operation

Example: A=5, B=4

(d) Floating point arithmetic:

It requires both operands are float type for arithmetic operation

Example: A=6.5, B=3.5

Example

Program to illustrate the usage of arithmetic operator.

#include<stdio.h>

#include<conio.h>

Void main ()

{

 int i,j, k ;

 i=10;

j=20

k=i+j;

printf (“value of k is %d\n”,k);

getch();

 }

Output: value of k is 30.

3.5.1.2 Relational Operators
Syntax: AE, relational operator AE2

Description: AE, &AE2 are constants or an expression variables.

Example: a>2 yields true, which is equal to 1.

3.14 Fundamentals of Computing an Programming

Operators Meaning Example Return value
< is less than 2<9 1

<= is less than or equal to 2<=2 1
> is greater than 2>9 0

>= is greater than or equal to 3>=2 1
== is equal to 2==3 0
!= is not equal to 2!=2 0

Expression Interpretation Value
a<b True 1

(a+b)>=c True 1
(b+c)>(a+5) False 0

c!=3 False 0
b==2 True 1

The value of relational expression is either one or zero.

Example:

Program to use various relational operators and display their return value.

/*Program to use various relational operators*/

#include<stdio.h>

#include<conio.h>

Void main ()

{

/*Statements*/

 clrscr();

printf(“\n condition : Return value \n”);

printf(“\n 5!=5 : %5d”, 5!=5);

printf(“\n 5==5 : %5d”, 5==5);

printf(“\n 5>=5 : %5d”, 5>=5);

printf(“\n 5<=50 : %5d”, 5<=50);

printf(“\n 5!=3 : %5d”, 5!=3);

getch();

 }

Introduction to C 3.15

Output:
Condition : Return value
 5! =5. : 0
 5==5 : 1
 5>=5 : 1
 5<=50 : 1
 5! =3 : 1

3.5.1.3 Logical Operators

Operator Meaning Example Return value
&& Logical AND (9>2)&&(17>2) 1
|| Logical OR 2<=2 1
! Logical NOT 2>9 0

Logical operators are used to combine the results of two or more conditions.

Program on demonstrate logical operator.
#include<stdio.h>
#include<conio.h>
void main()
{
int c1,c2,c3;
clrscr();
printf(“Enter the values of c1, c2 and c3:”);
scanf(“%d%d%d”, &c1,&c2,&c3);
if((c1<c2)&&(c1<c3))
printf(“\n c1 is less than c2 and c3”);
if(!(c1<c2))
printf(“\n c1 is greater than c2”);
if((c1<c2)||(c1<c3))
printf(“\n c1 is less than c2 or c3 or both”);
getch();
}

Output:

 Enter values of c1, c2 and c3: 45 32 98
 c1 is greater than c2
 c1 is less than c2 or c3 or both

3.16 Fundamentals of Computing an Programming

3.5.1.4 Assignment operator
Assignment operator are used to assign a value or an expression or a value of a variable to

another variable.

Syntax : variable=expression (or) value.

Example : x=10;

 x=a+b;

 x=y;

Program to demonstrate assignment operator.
#include<stdio.h>

#include<conio.h>

void main()

{

int i,j,k;

clrscr();

k=(i=4,j=5);

printf(“\n k is %d”,k);

getch();

}

Output:

K=5

3.5.1.5 Increment and Decrement Operator

Operators Meaning
++x Pre increment
--x Pre decrement
x++ Post increment
x-- Post decrement

‘++’ adds one to the variables.

‘—‘subtract one from the variables.

Program using increment and decrement.
#include<stdio.h>

#include<conio.h>

void main()

Introduction to C 3.17

{

int i,j,k;

clrscr();

i=3;

j=4;

k=i++ + --j;

printf(“\n i=%d, j=%d, k=%d”,i,j,k);

getch();

}

Output:

i=4, j=3, k=6

3.5.1.6 Conditional operator (or) ternary operator syntax:

Syntax : Condition? exp1:exp2;

Description : The ‘?:’ operator act as a ternary operator, it first evaluate the condition, it it
is true then the ‘exp1’ is evaluated, if the condition is false then the ‘exp2’ is evaluated.It checks the
condition logo if it is true, then the value of ‘a’ is stored in ‘big’ otherwise the value of ‘b’ is stored
in ‘big’

Program using conditional operator.

#include<stdio.h>

#include<conio.h>

void main()

{

int a=5, b=3, big;

big=a.b?a:b;

printf(“big is….%d”, big);

}

Output:

big is…5

It check the condition ‘a>b’ if it is true, then the value of ‘a’ is stored in ‘big’ otherwise the
value of ‘b’ is stored in ‘big’

3.18 Fundamentals of Computing an Programming

3.5.1.7 Bitwise operator

Operators Meaning
& Bitwise AND
| Bitwise OR
^ Bitwise XOR

<< Shift left
>> Shift right
~ One’s complement

 • Truth Table for ‘&’ Bitwise AND

& 0 1
0 0 0
1 0 1

Example:

 X=7 = 0000 0111

 Y=8 = 0000 1000

 X&Y = 0000 0000

 • Truth Table for ‘|’ Bitwise OR

| 0 1
0 0 1
1 1 1

Example:

 X=7 = 0000 0111

 Y=8 = 0000 1000

 X|Y = 0000 1111

 • Truth Table for ‘^’ Bitwise XOR

^ 0 1
0 0 1
1 1 0

Example:

 X=13 =0000 1101

 Y=8 =0000 1000

 X&Y =0000 0101

Introduction to C 3.19

If either of the operand bit is high (1) then it gives high (1) result. If both operand bits are
same then it gives low (0) result

A B a|b a&b a^b ~a
0 0 0 0 0 1
0 1 1 0 1 1
1 0 1 0 1 0
1 1 1 1 0 0

3.5.1.8 Special operator

Operators Meaning
, Comma operator
Sizeof Sizeof operator
& and * Pointer operator
. and → Member selection operator

(a) Comm operator (,):

Example: val= (a=3, b=9, c=77, a+c);

Where, first assign the value 3 to a.

Then assign the value 9 to b.

Then assign the value 77 to c.

Finally assign 80 to the val.

The comma operator is used to separate the statement elements such as variables, constants
and expression.

(b) The size of () operator:

Syntax : sizeof(var)

Description : var is the variable for which to find the size.

Example: #include<stdio.h>

#include<conio.h>

void main()

{

 int a;

 printf(“size of variable a is .%d”, sizeof(a));

 }

Output : size of variable a is ….. 2

 The sizeof() operator is a compile time operator.

3.20 Fundamentals of Computing an Programming

(c) Pointer operator:

& : the address of the variable

* : the value of the variable

(d) Member selection operators:

And : these symbols used to access the elements from a structure.

3.5.2 Expressions

An expression represents data item such as variables, constants and are interconnected with
operators as per the syntax of the language an expression is evaluated using assignment operator.

Syntax : variable=expression

Description : Any ‘c’ valid variable and expression.

Example : x=a*b-c

In the above statement the expression evaluated first from left to right. After the evaluation
of the expression the final value is assigned to the variable form right to left

Example of algebraic expression and C expression

Algebraic Expression C Expression

a+b×c a+b*c

ax2+bx+c a*x*x+b*x+c

(4*a*c)/(2*a)

((2*x*x)/b)-c

(-b+sqrt(b*b-4*a*c))/(2*a) (or)
(-b-sqrt(b*b-4*a*c))/(2*a)

3.14*r*r

3.6 MANAGING INPUT AND OUTPUT OPERATORS.
Input output statements:

(a) Unformatted I/O statements

(b) Formatted I/O statements.

Introduction to C 3.21

3.6.1 Unformatted I/O statements

Fig 3.2. Unformatted I/O statement

The following are the unformatted I/O statements available in 'C'.

Input Output
getchar()

get()
gets()

Putchar()
putc()
puts()

Single Character Output – Putchar() Function
Syntax : putchar (character variable)

Description: character variable is the valid ‘c’ variable of the type of char data type

Example : char x; x=getchar();

It reads a single character from a standard input device.

Example:
Program to print the character standard input device.

#include<stdio.h>

#include<conio.h>

void main()

{

char ch;

printf(“Enter any character/digits….”);

ch=getchar();

if(isalpha(ch)>0)

printf(“it is a alphabet”);

else if(isdigit(ch)>0)

3.22 Fundamentals of Computing an Programming

printf(“it is a digit”);

else

printf(“it is alphanumeric”);

}

Output:

1. Enter any character/digits…………..a

 It is a alphabet

2. Enter any character/digit…………...9

 It is a digit

3. Enter any character/digit………….. #

 It is a alphanumeric

Single character Output-putchar () function:
Syntax : Putchar(character variable);

Description: Character variable is a valid ‘c’ variable of the type of char data type.

Example : char x; putchar(x);

The Putchar () function is used to display one character at a time on the standard output
device.

The get () function:
This is used to accept a single character from the standard input to a character variable.

Syntax: character variable = get ()

Description : character variable is the valid ‘c’ variable of the type of char data type

Example : char c; c=getc();

The put() function:
This is used to display a single character in a character variable to standard output device.

Syntax : put (character variable)

Description: character variable is the valid ‘c’ variable of the type of char data type.

Example : char c; putc(c);

The gets() and put () function;
The gets() function is used to read the string from the standard input device (keyboard)

Syntax: gets(char type of array variable)

Description: valid ‘c’ variable declared as one dimension char type.

Introduction to C 3.23

Example : gets(s)

The put-s() function is used to display / write the string to the standard output device
(monitor).

Syntax: puts (char type of array variable);

Description: valid ‘c’ variable declared as one dimension char type

Example:
Print the output from standard device.

#include<stdio.h>

#include<conio.h>

void main()

{

char scientist[40];

puts(“Enter Name”);

gets(scientist);

puts(“print the name”);

gets(scientist);

}

Output:

Enter name : abdul kalam

Print the name : abdul kalam

3.6.2 Formatted I/O Statement

Input Output
scanf() printf()
fscanf() fprintf()

The scanf() function
(a) Syntax:

scanf(“control string”, &var1, &var2, …., &varn);

(b) Description:

The control string consists of character groups. Each character group must begin with a
percentage sign ‘%’ followed by conversion character as specified. Var1 var2 varn – are the
arguments or variable in which the data is going to be accepted.

3.24 Fundamentals of Computing an Programming

(c) Example:

int n;

scanf(“%d”,&n);

The printf () function
(a) Syntax:

print f(control string “, var1, var2, varn);

(b) Description:

Control string is any of the following

(a) Format code character

(b) Execution character set

(c) Character/string than will be displayed

Var1, var2, varn are the arguments or variable from which the data is going to output

(c) Example:

printf(“the result is …..%d”,n);

printf(“%f”,&f);

printf(“%s”,s);

Example:
program to print the sum of two number

#include<stdio.h>

#include<conio.h>

void main()

{

int a, b, c;

a=6;

b=8;

c=a+b;

printf(“sum of two number is %d\n”,c);

getch();

}

Output:

Sum of two numbers is 14.

Introduction to C 3.25

3.7 DECISION MAKING
Control statement

‘C’ language provides the following conditional (decision making) statements
 • If statement
 • If …. Else statement
 • Nested if ….else statement
 • If…else ladder

The if statement

Syntax

if(condition is true)

{

 True statements;

}

Description:

If the condition is true, then the true statement are executed. The true statement may be a
single statement or group of statement. If the condition is false then the true statements are
not executed instead. The program skip past it.

The condition is given by the relational operator like ==, ! =, <=, >=, etcExample:

Example:
The following Program illustrate the useof IF with multiple statement.

#include<stdio.h>
void main()
{
int i;
printf(“enter the number less than 10…”);
scanf(“%d”,&i);
if(i<=10)
{
printf(“%d”, i);
printf(“\n the entered number %d is less than 10”,i);

3.26 Fundamentals of Computing an Programming

}
}

Output:

Enter the number less than 10….5

The entered number 5 is less than 10.

The if ….else statement

Syntax

if(condition)

{

 True statements;

}

else

{

false statement;

Description:

It is used to execute some statement when the condition is true and execute some other
statement when the condition is false.

Example
Program to find biggest among two number

#include<stdio.h>

#include<conio.h>

void main()

{

int i,j,big;

printf(“enter two values:”);

scanf(“%d%d”,&I,&j);

big=i;

if(big<j)

{

big=j;

}

printf(“biggest of two numbers is %d\n”,big);

Introduction to C 3.27

if(i<j)

{

big=j;
}
else
{
big=i;
}
printf(“biggest of two numbers (using else) is %d\n”,big);
getch();
}

Output:

Enter two values:45 78

biggest of two numbers is 78

biggest of two numbers(using else) is 78

Nested if …. Else statement

Syntax:

if(condition 1)

{

 if(condition 2)

 {

 True statement 2;

 }

 else

 {

 False statement 2;

 }

}

else

{

False statement 1;

}

3.28 Fundamentals of Computing an Programming

Description:

when a series of if …else statement are occurred in a program, we can write an entire if
… else statements in another if …else statement called nesting, and the statement is called
nested if.

The if ….else ladder

Syntax:

if(condition 1)
{
statement 1;
}
elseif(condition 2)
{
statement 2;
}
elseif(condition 3)
{
statement 3;
}
else
{
Default-statement;
}

Description:

Nested if statement can become quite complex. If there are more than three alternatives and
indentation is not consistent, it may be different for you to determine the logical structure of
the if statement. In situation you can use the nested if as the else if ladder.

Example:
Program to find biggest among two number.

#include<stdio.h>

#include<conio.h>

void main()

{

char ch;

clrscr();

Introduction to C 3.29

printf(“Enter a single character:”);

scanf(“%c”,&chr);

if((chr>=’a’ && chr<=’z’ || (chr>=’A’ && chr<=’Z’))

printf(“Entered character is an alphabetic.\n);

else

if(chr>=’0’ && chr<=’9’)

printf(“Entered character is an digit.\n);

else

printf(“Entered character is an special character.\n);

getch();

}

Output:

Enter a single character: M

Entered character is an alphabetic

Enter a single character: 5

Entered character is a digit

Enter a single character: &

Entered character is a special character\o/p:

3.8 BRANCHING AND LOOPING
The following loop structures available in ‘c’

 • While

 • Do…while

 • For….

The while loop

3.30 Fundamentals of Computing an Programming

Syntax:

While (condition)

{

………..

Body of the loop;

………..

}

Description:

It is a repetitive control structure, used to execute the statements within the body until the
condition becomes false.

The while loop is an entry controlled loop statement, means the condition is evaluated is
executed after executing the body of the loop the condition is once again evaluated and if
it is true, the body is executed once again, the process of repeated execution of the body of
the loop continuous until the condition finally becomes false and the control is transferred
out of the loop.

Example:
Program to find simple interest using while loop structure.

#include<stdio.h>
#include<conio.h>
void main()
{
int p, n, count=1;
float r,si;
clrscr();
while(count<=3)
{
printf(“Enter the value of P, N and R :”);
scanf(“%d%d%f”, &p, &n, &r);
si=(p*n*r)/100;
printf(“simple interest=%f\n”,si);
count++;
}
getch();

}

Introduction to C 3.31

Output:

Enter the value of P, N and R: 2000 3 5

 Simple interest = 300.00000

Enter the value of P, N and R: 3500 6 1.5

 Simple interest = 315.00000

Enter the value of P, N and R: 6000 2 3.5

 Simple interest = 420.00000

The do….while loop
Syntax:

do
{
………..
Body of the loop;
………..
}
While(condition);

Description:

The while loop makes a test of condition before the loop is executed. Therefore, the body of
the loop may not be executed at all, if the condition is not satisfied at first attempt. In some
situations it may be necessary to execute the body of the loop before the test condition is
performed, such as a situation the do…while loop is useful

Example:
Program to print n consecutive integers with infinite limit using do….while loop.

#include<stdio.h>
#include<conio.h>
void main()
{
int i, n;
clrscr();
printf(“Enter the number:”);
scanf(“%d”,&n);
i=0;
do

3.32 Fundamentals of Computing an Programming

{
printf(“the numbers are %d\n”,i);
i=i+1;
}
while(i<n);
getch();
}

Output:
Enter the number: 6
The numbers are 0
The numbers are 1
The numbers are 2
The numbers are 3
The numbers are 4
The numbers are 5

The for loop

Syntax:

For(initialize counter; test condition; increment/ decrement counter)

{

……………….

Body of the loop;

………………..

}

Introduction to C 3.33

Description:

The for loop is another repetitive control structure, and is used to execute set of instructions
repeatedly until the condition becomes false.

The assignment, incrementation or decrementation and condition checking is done in for
statement only, where as other control structures are not offered all these features in one
statements.

For loop has three parts.

(a) Initialise counter is used to initialize counter variable.

(b) Test condition is used to test the condition

(c) Increment/decrement counter is used to increment or decrement counter variable.

Example:

Program to print n numbers using for…..loop structure.

#include<stdio.h>

#include<conio.h>

void main()

{

int i, n;

clrscr();

printf(“Enter the number:”);

scanf(“%d”,&n);

for(i=0;i<n;i++)

{

printf(“the numbers are %d\n”,i);

}

getch();

}

Output:

Enter the number: 3

The numbers are 0

The numbers are 1

The numbers are 2

3.34 Fundamentals of Computing an Programming

The switch() Statement

Syntax:

switch(expression_s)

{

 case constant 1:

 black1;

 break;

 case statement 2:

 block2;

 break;

 default:

 default block;

 break;

 }

The switch (expression)
In the block the variable or expression can be a character or an integer. The integer may

be any value 1,2,3,etc. in case of character constant, the values may be with alphabets such as
‘x’,’y’,’z’ etc.

The switch() organisation
 The switch () expression should neither be terminated with (;) semicolon nor with any other

symbol. The entire case structure following switch () should be enclosed with curly braces.

Introduction to C 3.35

The keyword case is followed by a constant. Every constant terminates with a colon (;) here,
the keyboard case & break performs respectively the job of opening and closing curly braces.

The switch() execution
When one of the cases satisfies, the statements following it are executed. In case there is no

match, the default case is executed.

The break statement used in switch() passes control outside the switch() block. By mistake
if no break statements are given all the cases following it are executed. Program, to use the computer
as calculation the user input a code3 +,-,*,/ and values that are to be computed.

Example:
Program to use the computer as calculator. The user input a code +, -, *, / and values that

are to be computed.

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,c=0;

char op;

clrscr();

printf(“\n + ADD \n – SUB \n * MUL\n / Div \n”);

printf(“Enter code……”);

scanf(“%c”,&op);

printf(“Enter values……”);

scanf(“%d%d”,&a,,&b);

switch(op)

{

Case ‘+’:

c=a+b;

break;

Case ‘-‘:

c=a-b;

break;

Case ‘*’:

3.36 Fundamentals of Computing an Programming

c=a*b;

break;

Case ‘/’:

c=a/b;

break;

}

printf(“Result is %d\n”,c);

getch();

}

Output:

Calculation code

+ ADD

- SUB

* MUL

/ DIV

Enter code………+

Enter values…….. 20 10

Result is…………30

The Break statement
The keyword break allows the programmers to terminate the loop. The break skips from the

loop or block in which it is defined.

The control then automatically goes to the first statement after the loop or block the break
can be associated with all conditional statement.

The Continue statement
The continue statement is exactly opposite to break. The continue statement is used for

continuing next …….. of loop statements it is useful when we want to continue the program without
executing any part of the program.

The goto statement
This statement passes control anywhere in the program, that is, control is transferred to

another part of the program without testing any condition.

Goto label;

UNIT - 4

ARRAYS AND STRUCTURES

4.1 ARRAY

4.1.1 Introduction
Consider the following example:

main()

{

int a=2;

a=4;

printf(“%d”, a);

}

Output: 4

Declaration of an array is done as follows

int a[5];

It tells the compiles that a is an integer type of array and can store 5 integers.

4.1.2 Array Initialization
int a[5] ={ 1,2,3,4,5};

Here, 5 elements are stored in an array a. calling array elements.

a[0] refer to 1st element i.e. 1

a[1] refer to 2nd element i.e. 2

a[2] refer to 3rd element i.e. 3

a[3] refer to 4th element i.e. 4

a[4] refer to 5th element i.e. 5

4.1.3 Definition of array
An array is a collection of similar data types in which each element is located in separate

memory locations.

4.2 Fundamentals of Computing an Programming

(a) One-Dimensional Array
The collection of data items can be stored under a one variable name using only one

subscript, such a variable is called the one-dimensional array.

The element of an integer array a[5] are stored in continuous memory locations it is assumed
that the starting memory location is 2000 each integer element requires 2 bytes.

Integer data types and their memory locations.

Element A[0] A[1] A[2] A[3] A[4]
Address 2000 2002 2004 2006 2008

Data type and their required bytes.

Data type Memory Requirement
Character 1 byte
Integer 2 bytes
Floating Point 4 bytes
Long Integer 4 bytes
Double Float 8 bytes

Example:
Program to display character array with their address.

#include<stdio.h>

#include<conio.h>

void main()

{

char name[10]={‘A’, ‘R’, ‘R’, ‘A’, ‘Y’};

inti=0;

clrscr();

printf(“\n character memory location \n”);

while(name[i]!=’\0’)

{

printf(“\n [%c] \t\t [%u]”, name[i], &name[i]);

i++;

}

getch();

}

Arrays and Structures 4.3

Output:

Character Memory location
[A] 4054
[R] 4055
[R] 4056
[A] 4057
[Y] 4058

The elements of an array are stored in continuous memory location. The elements of one-
dimensional array A, R, R, A, Y are stored from location 4054 to 4058.

The element of an array are stored in continuous memory location. The element of one-
dimensional array A,R,R,A,Y, are stored from location 4054 to 4058

(b) Two Dimensional Array
A two dimensional array can be thought of as a rectangular display of element with rows and

columns. For example, elements of int x[3][3]

Array elements in matrix form

Col 1 Col2 Col3
Row 1 X[0][0] X[0][1] X[0][2]

Row 2 X[1][0] X[1][1] X[1][2]

Row 3 X[2][0] X[2][1] X[2][2]

A two-dimensional array is a collection of a number of one-dimensional arrays, which are
placed one after another. For example, in the above table each row of a two-dimensional array can
be thought of as a single- dimensional array.

Example
Write a program to display the elements of a two-dimensional array.

#include<stdio.h>
#include<conio.h>
void main()
{
inti,j;
int a[3][3]={{1,2,3”},{4,5,6},{7,8,9}};
clrscr();
printf(“\n Elements of an array \n\n”);
for(i=0;i<3;i++)
{

4.4 Fundamentals of Computing an Programming

 for(j=0;j<3;j++)
 printf(“%5d”, a[i][j]);
 printf(“\n”);
}
getch();
}

Output:
Elements of an array
 1 2 3
 4 5 6
 8 9

(c) Three or Multi Dimensional Arrays
The C program allows array of two or multi dimensions.

Syntax:

 Array name [s1] [s2] [s3]…[sn]

 For examples are, int mat[3][3]

Three dimensional array can initialized as follows.

int mat[3][3][3]={ {
{1,2,3}
{4,5,6}
{7,8,9}
};
{
{1,4,7}
{2,5,8}
{3,6,9}
};
{
{1,4,4}
{2,4,7}
{6,6,3}
};
}

Arrays and Structures 4.5

Example
Write a program to explain the working of a three- dimensional array.

#include<stdio.h>

#include<conio.h>

void main()

{

int array_3d [3][3][3];

inta, b, c;

clrscr();

for(a=0;a<3;a++)

for(b=0;b<3;b++)

for(c=0;c<3;c++)

array_3d[a][b][c]=a+b+c;

for(a=0;a<3;a++)

{

printf(“\n”);

for(b=0;b<3;b++)

{

 for(c=0;c<3;c++)

 printf(“%3d”, array_3d[a][b][c]);

 }

getch();

}

Output:

0 1 2

1 2 3

2 3 4

1 2 3

2 3 4

3 4 5

2 3 4

3 4 5

4 5 6

4.6 Fundamentals of Computing an Programming

4.2 HANDLING OF CHARACTER STRINGS
4.2.1 String manipulation

 In ‘C’ language the group of character, digits and symbols enclosed within quotation marks
are called as string otherwise string strings are array of characters.

Null character ('\0')is used to mark the end of the string

Example:

Char name []={‘A’,’B’,’I’,’\0’};

Each character is stored in one bytes of memory and successive character of the string are
stored in successive byte.

4.2.2 Initialization of string

The string can be initialized as follows

Char name[] = "ABI";

The characters of the string are enclosed within a pair of double quotes

Reading and writing string

The "%s" control string can be used in scanfc, statement to read a string from the terminal
and the same may be used to write string to the terminal in printf() statement

Example:

char name[10];

scanf(“%s”,name);

scanf(“%s”,name);

There is no address (&) operator used in scanf() statement.

The commonly used string manipulation functions are follows:

(1) The strlen() function:

This function is used to count and return the number of character present in a string

Arrays and Structures 4.7

Syntax Description
Var=strlen(string); Var:Is the integer variable, which

accepts the length of the
string
String: Is the string constant or
stringvariable, for which the
length is going to be found.

Example:

Write a program using strlen() function.

#include<stdio.h>

#include<conio.h>

void main()

{

int len1,len2;

char name[]=”ABI”;

clrscr();

len1=strlen(name);

len2=strlen(“SHEK”);

printf(“\n String length of %s is %d”,name,len1);

printf(“\n String length of %s is %d”,”SHEK”,len2);

}

Output:

String length of ABI is 3

String length of SHEK is 4

(2) The strcpy() function

This function is used to copy the contents of one string to another and it almost works like
string assignment operate

Syntax Description
strcpy(string1,string2); String 1 is the destination string.

String 2 is the source string.

i.e., The contents of string 2 are assigned to the contents of string 1. Where string 2 may be
character array variable or string constant.

4.8 Fundamentals of Computing an Programming

Example:

char str1[]=”ABI”;

char str2[]=”SHE”;

strcpy(str1, str2);

Where the contents of str2 are copied into the str1 and the contents of str1 is replaced with
new one.

Example:
Write a program using strlcpy() function.

#include<stdio.h>

#include<conio.h>

void main()

{

char target[10];

char source=”ABI”;

clrscr();

strcpy(target,source);

printf(“\n Source string is %s”,source);

printf(“\n Target string is %s”,target);

}

Output:

Source string is ABI

Target string is ABI3.

(3) The strcat() function:
The strcat() function is used to concatenate or combine, two strings together and forms a

new concatenated string

Syntax Description
strcat(string1,string2); String 1 and String 2 are character

type arrays or string constants.

when the above logo function is executed string 2 is combined with stirng

Example
strcat(“ABI”, “SHEK”);

yields ABISHEK.

char str1=”ABI”

Arrays and Structures 4.9

char str2=”SHEK”

strcat(str1,str2)

yields ABISHEK

(4) The strcmp() function:
This is a function which compares two strings a comparison of two strings can be made up

to certain specified length

Strcmp(source, target, argument);

where, argument is number of characters up to which the comparison is to be made write a
program to compare two string up to specified length.

Example:
Write a program to compare two strings upto specified length.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

charsr[10],tar[10];

intn,diff;

clrscr();

printf(“Enter string(1):”);

gets(sr);

printf(“Enter string(2):”);

gets(tar);

printf(“\n Enter length up to which comparison is to be made”);

scanf(“%d”,&n);

diff=strcmp(sr,tar,n);

printf(“The two strings are identified up to %d characters :”,n);

else

puts(“The two strings are different”);

getch();

}

4.10 Fundamentals of Computing an Programming

Output:

Enter string (1): HELLO

Enter string (2): HE MAN

Enter length up to which comparison is to be made: 2

The two strings are identified up to2 characters

(5) The strrev() function:
The strrev() function is used to reverse a string

Syntax Description
strrev(string); String are character type arrays or

string constants.

Example
Write a program to reverse a string

#include<stdio.h>
main ()
{
char y[30];
printf(“Enter the string:”);
gets(y);
printf(“the string reversed is:%s”,strrev(y));
}

Output:
Enter the string: book
The string reversed is:koob

4.3 POINTERS
4.3.1 Definition of pointer

A pointer is a memory variable that stores a memory address. It can have any name than is
legal for another variable and it is declared in the same fashion like other variable but it is always
denoted by ‘*’ operator.

Pointer Declaration
For example:

int *x;

float *f;

char *y;

Arrays and Structures 4.11

(1) In the first statement x is an integer pointer and it tells the compiler that it holds the
address of any integer variables. In the same way f is a float pointer, which stores the
address of any float variable and y is a character pointer that stores the address of any
character variable.

(2) The indirection operator (*) is also called the dereference operator.

(3) The indirection operator (*) is used in two distinct ways with pointer, declaration and
dereference.

(4) When a pointer is declared, the star indicates that is a pointer, not a normal variable.

(5) When a pointer is dereferencing, the indirection operator indicates that the value stored
in the pointer at that memory location is to be accessed rather than address itself.

(6) The‘&’ is the address operator and it represents the address of the variable.When
a pointer is dereferenced, the indirection operator indicated that the value stored in
accessed rather than the address itself

Example:

Write a program to add two numbers through variables and their pointers.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

inta,b,c,d,*ap,*bp;

clrscr();

printf(“Enter Two Numbers:”);

scanf(“%d%d”, &a,&b);

ap=&a;

bp=&b;

c=a+b;

d=*ap+*bp;

printf(“\n sum of A & B using variables:%d”, c);

printf(“\n sum of A & B using pointer:%d”, d);

getch();

}

4.12 Fundamentals of Computing an Programming

Output:

Enter two numbers: 8 4

sum of A & B using variables: 12

sum of A & B using pointer: 12

4.3.2 Arithmetic Operations with Pointer
Increase decrease prefix and postfix operations can be performed with the help of the pointer.

Pointer and arithmetic operation

Data Type Initial
address

operation Address after
operation

Required
bytes

int i=2 4046 ++ − − 4048 4044 2
Char c=’x’ 4053 ++ − − 4054 4052 1
Float f=2.2 4058 ++ − − 4062 4054 4
Long l=2 4060 ++ − − 4064 4056 4

Example:
Write a program to perform different arithmetic operations using pointers.

#include<stdio.h>

#include<conio.h>

void main()

{

int a=25,b=10,*p,*j;

p=&a;

j=&b;

clrscr();

printf(“\n Addition a+b=%d”,*p+b);

printf(“\n Subtraction a-b=%d”,*p-b);

printf(“\n Product a*b=%d”,*p**j);

printf(“\n Division a/b=%d”,*p/*j);

printf(“\n a mod b=%d”,*p%*j);

getch();

}

Arrays and Structures 4.13

Output:

Addition a+b=35

Subtraction a-b=15

Product a*b=250

Division a/b=2

A mod b=5

4.4 STRUCTURE AND UNION
Structure
Declaration and Initialization of Structures:

structures can be declared as given below

struct struct_type

{

type variable1;

type variable2;

};

Structure declaration always starts with struct keyword. Here, struct- type is known as tag.
The struct declaration is enclosed within a pair of curly braces.

Using struct and tag, the user can declare structure variables like variable, variable 2 and so
on. Those are the members of the structure.

After defining structure we can create variable as given below

struct struct_type v1,v2,v3

Here, v1, v2 and v3 are variables of structure struct type

int v1, v2, v3

Here, v1, v2 and v3 are variable of integer data type

Example:
struct book;

{

char book[30];

int pages;

float price;

};

struct book1 bk1;

4.14 Fundamentals of Computing an Programming

A structure of type book is created. It consists of three members, book [30] of char data type,
pages of …… type and price of float data type.

Fig 5.2. Declaration and initialization of structure

struct book1 bk1;

The above line creates variable bk of type book and it reserves a total of 36 bytes (30 bytes
for book (30), 2 bytes for integer and 4 bytes for float.

Through bk1, all the three members of structure can be accessed.

In order to initialize structure elements with certain values, the following statement is used.

struct book1 bk1={“abishek”,500,385.00};

All the member of structure is related to variable bk1.

structure_variable.member or bk1.Book

The period (.) sign is used to access the structure members. We can directly assign values to
members as given below.

bk1.book=”abishek”;

bk1.pages=500;

bk1.price=385.00;

Example:
Write a program to display size of structure elements. Use sizeof() operator.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

Arrays and Structures 4.15

{

struct book1

{

char book[30];

int pages;

float price;

};

struct book1 bk1;

clrscr();

printf(“\n size of structure elements:”);

printf(“\n Book:%d”, sizeof(bk1.book));

printf(“\n pages:%d”,sizeof(bk1.pages));

printf(“\n price:%d”,sizeof(bk1.price));

printf(“\n total bytes:%d”,sizeof(bk1));

getch();

}

Output:

Size of structure elements

Book: 30

Pages: 2

Price: 4

Total bytes: 36

4.4.1 UNION
Syntax:

Union union_name
{
 union member1;
 union member2;’
 ……………
 ……………
union member3;
};
union union_variable

4.16 Fundamentals of Computing an Programming

Union is a variable, which is similar to the structure. It contains a number of members like
structure but it holds only one object at a time union also contains members of types int, float, long,
arrays, pointers and so on.

Example:
Write a program to find size of union and number of bytes reserved for it.

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

union result()

{

int marks;

char grade;

};

struct res

{

char name;

int age;

union result perf;

}data;

clrscr();

printf(“Size of union :%d\n”,sizeof(data.perf));

printf(“\n Size of structure :%d\n”, sizeof(data));

getch();

}

Output:

Size of union : 2

Size of structure : 19

4.4.1.1 Union of structures
One structure can be nested within another structure. A union can be nested within another

union. We can also create structure in a union or vice versa

Arrays and Structures 4.17

Example:
Write a program to use structure within union. Display the contents of structure element.

#include<stdio.h>

#include<conio.h>

void main()

{

struct x

{

float f;

char p[2];

};

union z

{

struct x set;

};

union=st;

st.set.f=5.5;

st.set.p[0]=65;

st.set.p[1]=66;

clrscr();

printf(“\n %f”,st.set.f);

printf(“\n %c”,st.set.p[0]);

printf(“\n %c”,st.set.p[1]);

getch();

}

Output:
 5.5

 A

 B

4.5 USER DEFINED FUNCTIONS
Definition of function

A function is a self – contained block or a sub-program of one or more statement that
performs a special task when called

4.18 Fundamentals of Computing an Programming

4.5.4 Declaration of Function and Function Prototypes
(a) Declaration of functions

Function is declared as per format give below

function_name(argument/permanent list)

argument declaration;

{

local variable declaration;

statement1;

statement2;

return(value);

}

Working of functions:

main()

{

………..

………..

abc(x, y, z); Function call

………... Actual Argument

…………

}

abc(l, k, j) Function definition

{ Return Value

……….

……….

return1;

}

Actual Arguments

The arguments of calling functions are actual arguments variable x,y,z are actual arguments

Formal arguments

The arguments of called function are formal arguments. Variable l,k and j are formal
arguments

Arrays and Structures 4.19

Function name

sum (int a, int b)

where, sum () is a user – defined function and a and b are integer variable arguments the
function name must be ended by a semi colent(;)

Argument / Parameter list

The argument list means variable names enclosed within the parenthesis. They must be
separated by a comma(,)

Function call

A complier executes the function when a semicolon (;) is followed by function name a
function can be called simply using its name like other (statement, terminated by semicolon

Example:

Write a program to show how user_defined function is called.

#include<stdio.h>

#include<conio.h>

void main()

{

int x=1,y=2,z;

z=add(x,y);

printf(“z=%d”,z);

}

/* function definition */

add(a,b)

{

return(a+b);

}

Output:

z=3.

Local and global variable

There are two kinds of variables

1) local and 2) global

4.20 Fundamentals of Computing an Programming

4.6 TYPES OF FUNCTION
 • Depending upon the arguments present return value sends the result back to the calling

function

 • Based on this the function are divided into four types

4.6.1 Without arguments and return values

Calling function Analysis Called function
main()
{
………..
………..
abc();
……….
……….
}

No arguments are
passed

No values are send
back

abc()
{
…………
…………
…………
}

(1) Neither the data is passed through the ……. Function nor the data is sent back from the
called function, that is , there is no data transfer between calling and the called functions

(2) The function is only executed and nothing is obtained
(3) If such functions are used to perform any operation they act independently they read

data values and print result in the same block
(4) Such functions may be useful to print some messages, draw a line or split the live etc.

Example:
Write a program to display message using user-defined functions.

#include<stdio.h>
#include<conio.h>
void main()
{
void message();
message();
}
void message()
{
puts(“Have a nice day”);
}

Output:
Have a nice day2 with arguments but without return values

Arrays and Structures 4.21

4.6.2 With arguments and without return value:

Calling function Analysis Called function
main()
{
………..
………..
abc(x);
……….
……….
}

Arguments are passed

No values are send
back

abc(y)
{
…………
…………
…………
}

(1) In the above functions, arguments are passed through the calling function. The called
function operates on the values. But no result is sent back

(2) 2. such functions are partly dependent on the calling function the result obtained is uti-
lised by the called function and there is no gain to the main()

Example:
Write a program to send value to user-defined function and display result.

#include<stdio.h>
#include<conio.h>
void main()
{
int dat(int, int, int)
int d,m,y;
return();
printf(“Enter Date dd/mm/yyyy”);
scanf(“%d%d%d”,&d,&m,&y);
dat(d,m,y);
return 0;
}
dat(int x, int y, int z)
{
printf(“Date=%d%d%d”,x,y,z);
}

Output:
Enter Date dd/mm/yyyy 12 12 2001
 Date : 12/12/2001.

4.22 Fundamentals of Computing an Programming

4.6.3 With arguments and return value:

Calling function Analysis Called function
main()
{
int z;
………..
z=abc(x);
……….
……….
}

Arguments are passed

Values are send back

abc(y)
{
…………
y++;
…………
…………
return(y);
}

(1) In the above example the copy of actual argument is passed to the formal argument, that
is value of is assigned to y

(2) The return statement returns the increased value of y. the returned value is collected by z

(3) Here data is transferred between calling and the called functions, that is, communications,
between functions is made

Example:
Write a program to pass value to user-defined function collect and display the values returned

by the called function.

#include<stdio.h>

#include<conio.h>

void main()

{

int dat(int, int, int)

int d,m,y,t;

return();

printf(“Enter Date dd/mm/yyyy”);

scanf(“%d%d%d%t”,dat(d,m,y));

tdat(d,m,y);

printf(“\n Tomorrow=%d%d%d”,t,m,y);

return 0;

}

dat(int x, int y, int z)

{

printf(“Today=%d%d%d”,x,y,z);

Arrays and Structures 4.23

return(++x);

}

Output:

Enter Date dd/mm/yyyy 12 12 2001

 Today : 12/12/2001

 Tomorrow : 13/12/2001

4.6.4 Without arguments and with return values

Calling function Analysis Called function
main()
{
int z;
………..
z=abc();
……….
……….
}

No arguments are passed

values are send back

abc()
{
int y=5;
…………
…………
…………
return(y);
}

(1) In the above type of function no argument(s) are passed through the main() function.
But the called function returns the values

(2) The called function is independent. It reads values from the keyboard or generated from
initialization and returns the values.

(3) Here both the calling and the called functions are partly communicated with each other.

Example:
Write a program to receive value to user-defined function without passing any value through

main().

#include<stdio.h>

#include<conio.h>

sum(char z, int x,int y);

void main()

{

int sum(),a,s;

clrscr();

printf(“sum=%d”,s);

return 0;

}

4.24 Fundamentals of Computing an Programming

sum()

{

char x;

int y,z;

printf(“Enter three values:”);

scanf(“%d%d%d”,&x,&y,&z);

return(x+y+z);

}

Output:

Enter three values: 3 5 4

Sum = 13

4.7 CALL BY VALUE AND REFERENCE
There are two ways in which we can pass argument to the function (a) call by value(b) call

by reference.

4.7.1 Call By Value
In this type, value of actual argument are passed to the formal argument and the operation

is done on the formal arguments

Any change made in the formal argument does not effect the actual arguments because
formal arguments are photo copies of actual argument

Hence, when function is called by the call or by value method, it does not affect the actual
contents of the actual arguments

Changes made in the formal arguments are local to the block of the called function once
control returns back to the calling function the changes made vanish.

Example:
Write a program to send two integer values using “call by value”.

#include<stdio.h>

#include<conio.h>

change(int, int);

void main()

{

int x,y;

clrscr();

Arrays and Structures 4.25

printf(“Enter values of x & y:”);

change(x,y);

printf(“ In main() x=%d y=%d”,x,y);

return 0;

}

change(int a, int b)

{

int k;

k=a;

a=b;

b=k;

printf(“\n In change() x=%d”,a,b);

}

Output:

Enter values of x & y: 5 4

In change() x=4 y=5

In main() x=5 y=4

4.7.2 Call By Reference
In this type, instead of passing values, addresses (reference) are passed function operate an

addresses rather than values

Here the formal arguments are pointer to the actual arguments. In this type formal arguments
point to the actual argument

Hence changes made in the arguments are permanent

Example:
Write a program to send a value by reference to the user-defined functions.

#include<stdio.h>

#include<conio.h>

void main()

{

int x,y,change(int *,int *);

clrcsr();

4.26 Fundamentals of Computing an Programming

printf(“\n Enter values of x &y:”);

scanf(“%d%d”,&x,&y);

change(&x,&y);

printf(“\n in main() x=%d y=%d”,x,y);

return 0;

}

void change(int *a, int *b)

{

int *k;

*k=*a;

*a=*b;

*b=*k;

printf(“\n change() x=%d y=%d”, *a,*b);

}

Output:

Enter values of x&y : 5 4

In change() x=4 y=5

In main() x=4 y=5.

4.8 RECURSION
The C language supports recursive feature, that is a function is called repetitively by itself

recursion can be used directly or indirectly

Direct recursion function calls itself till the condition is true

In indirect recursion, a function calls another function, then the called function calls the
calling function

Example
write a program to (a) main() function recursiverly and perform sum of 1 to 5 numbers

#include<stdio.h>

#include<process.h>

int x. s;

main(x)

{

s=s+x;

Arrays and Structures 4.27

print("\n x=%d s=%d", x,s);

if (x==5)

exit(0);

main(++x);

}

Output

x= 1 s = 1

x = 2 s = 3

x= 3 s = 6

x = 4 s =10

x = 5 s = 15

Steps of Recursive Function

Function call Value of x Value of s (sum)

main (1)
main (2)
main (3)
main (4)
main (5)

x=1
x=2
x=3
x=4
x=5

s=1 (0+1) =1
s=3(2+1+0) =3
s=6(3+2+1+0) =6
s=10(4+3+2+1+0) =10
s=15(5+4+3+2+1+0) =15

UNIT - 5

INTRODUCTION TO C++

5.1 OVERVIEW OF C++
 • C++ is an object – oriented programming language

 • C++ was developed by bjarne stroustrup at AT & T bell laboratories in murray hill, new
jersey, usa

 • The idea of C++ comes from the c increment operator ++, thereby suggesting that C++
is an incremented version of C

 • Most of what we already know about capplies to C++ also

 • Therefore, almost all c programs are also C++ program

 • The three most important facilities that C++ adds on o c are classes, function overloading
and operator overloading

5.2 APPLICATIONS OF C++
C++ is a versatile language for handling very large programs. It is suitable for virtually any

programming taks including development of editors, compilers, databases, communication systems
and any complex real – life application system

Since C++ allows us to create hierarchy related objects, we can build special object- oriented
libraries which can be used later by many programmers

While C++ is able to map the real world problem property, the c part of C++ gives the
language the ability to get close to the machine – level details

When a new features need to be implemented, it is very easy to add to the existing structure
of an object.

A simple C++ program
 Example: Printing a string

#include<iostream.h> // include header file

main()

{

count<<"C++ is better C"; // C++ statement

}

5.2 Fundamentals of Computing an Programming

Program Features
 • The C++ program is a collection of functions. The example contains only are function,

main()

 • Every C++ program must have a main()

Comments
 • C++ introduces a new comment symbol // (double slash)

 • A comment may start anywhere in the line

C Comment Symbols C++ Comment

/* CProgram */ //C++ Program

Output Operator
Example: cout <<"C++ is better C.";

 • This statement introduces two new C++ features, cout and <<

 • The identifier cout is a predefined object that represent the standard output steam in c++

 • Here, the standard output stream represents the screen

 • The operator << is called the insertion or put to operator.

 • The object cout has a simple interface if string represents a string variable

Cout<<String;

 • << → bitwise left shift operator this concept is known as operator over loading

C C++
printf Count<<

The iostream.h file
include < iostream .h>

 • Some old versions of C++ use a header file called stream.h

 • The header file iostream.h should be included at the beginning of all program that use
input/output statements

Introduction to C++ 5.3

Return Statement

 • Every main() in c++ should end with a return (0) statement;

 • Otherwise a warning or an error might occur

 • Turbo c++ gives a warning and then compiles and executes the program

Average of two numbers
#include<iostream.h>

main()

{

float number1, number2,sum, average;

Cout<<"Enter two number:";

Cin>>number1;

Cin>> number2;

Sum = number 1+ number2;

average = sum/2;

Cout<<"sum="<<sum<<"\n";

Cout<<"Average = "<<average<<"\n";

}

Output

Enter two number : 6.5 7.5

Sum = 14

Average = 7

Input Operator

 • The statement

Cin>>number1;

 • The identifier Cin is a predefined object in c++ that corresponds to the standard input
stream

 • Here, this stream represents the keyboard

 • The operator >> is known as extraction or get from operator

5.4 Fundamentals of Computing an Programming

5.3 OOPS CONCEPTS
Object oriented remains a term which is interpreted differently by different people.

The following general concepts

(a) Objects (b) Classes (c) Data abstraction

(d) Data encapsulation (e) Inheritance (f) Polymorpihism

(g) Dynamic binding (h) Message passing

Objects
Objects are the basic run – time entities in an object – oriented system they may represent

a person, a place, a bank account, a table of data or any item that the program must handle, when a
program is executed, the objects interact by sending messages to one another.

For example, if “customers” and “account” are two objects in a program, then the customer
object may send a message to account object requisting for the bank balance.

Each object contains data and code to manipulate the data

Introduction to C++ 5.5

Classes
Object contain data and code to manipulate that data

The entire set of data and code of an object can be made a user – defined data type with the
help of a class.

Once a class has been define, we can create any number of objects belonging to that class.

Example: fruit mango;

Will create an object mango belonging to the class fruit.

Data Abstraction and Encapsulation
The wrapping up of data and functions into a single unit (called class) is known as

encapsulation

These functions provide the interface between the objects data and the program
this insulation of the data from direct access by the program is called data hiding.
classes use the concept of abstraction and are define as a list of abstract attributes such as size,
weight and lost and functions to operate on these attributes

Since the classes use the concept of data abstraction, they are known as abstract data types
(ADT)

Inheritance
Inheritance is the process by which objects of one class acquire the properties of objects of

another class it supports the concept of hierarchical classification.

For example,

The bird robin is a part of class flying bird which is again part of the class bird.

5.6 Fundamentals of Computing an Programming

Polymorphism
Polymorphism means the ability to take more than one form

For example, consider the operation of addition for two numbers, the operation will generate
a sum

If the operands are strings, then the operation would produce a third string by concatenation

A single function name can be used to handle different number and different types of
arguments

Dynamic Binding
It is associated with polymorphism and inheritance

Message Communication
An object – oriented program consists of a set of object that communicate with each other

(1) Creating classes that define objects and their behaviour

(2) Creating objects from the class definitions

(3) Establishing communication among objects

Example

Message passing involves specifying the name of the object, the name of the function
(message) and the information to be sent.

Introduction to C++ 5.7

5.4 CLASSES
A class is a way to bind the data and its associated functions together

Class specification has two parts

(1) Class declaration

(2) Class function definitions

The class declaration describes the type and scope of its members

The class function definitions describe how the class functions are implemented

General form of a class declaration is

Class class-name

{ private:

Variable declaration;

Function declarations;

Public:

Variable declarations;

Function declarations;

}

The class declaration is similar to a struct declaration. The keyword class specified that
what follows is an abstract data of type

5.4.1 Class – name
 • The body of a class is enclosed within braces. The class body contains the declaration

of variable and functions.

 • These functions and variable are collectively called members

 • They are usually grouped under two sections, names, private and public

 • The keywords private and public are known as visibility labels. Keywords are followed
by a colon

 • The members that have been declared as private can be accessed only from within the
class

 • Public members can be accessed from outside the class also

Example:

Class item

{

int number; //variable declaration

5.8 Fundamentals of Computing an Programming

float cost; //private by default

public:

void getdata (int a, float b); //functions declaration

void putdata (void); //using prototype

};

The class item contains two data member and two function members

The data members are private by default while both the functions are public by declaration

The function getdata () can be used to assign values to the member variables number and
cost

And putdata () for displaying their values

5.4.2 Creating Objects
Remember that the delaration of item as shown above does not define any objects of item.

Once a class has been declared, we can create variables of that type by using the class – name

For example:

item x ; // memory for x is created creates a variable x of type item in c++, the class variable
are known as objects

Therefore, x is called an object of type item

we may also declare more than one object in one statement

Example:

item x,y,z

Objects can also be created when a class is defined by placing their names immediately after

Introduction to C++ 5.9

the closing brace, as we do in the case of structures.

Class item

{

..............

..............

..............

} x,y,z;

would create the objects x,y and z of type item.

Example: Class Implementation

#include <iostream.h>

Class item //class declaration

{

int number; //private by default

float cost; //private by default

public:

void getdata (int a, float b); //function defined here

{

cout<<"number:",,number,,"\n";

cout<<"cost:"<<cost<<"\n";

}

}

//.......Member Function Definition...........

Void item :: getdata (int a, float b)

 ↓ Scope resolution argument declaration

Class name

{

number = a;

cost =b;

}

//.......... Main Program..........

main ()

{

5.10 Fundamentals of Computing an Programming

item x; //create object x

cout<<"\n object x" <<"\n";

x.getdata (100,299.95); //Call member function

x.putdata(0; //Call member function

item y;

cout<<"\n object y"<<"\n";

y.getdata (200,175.50);

y.putdata ();

}

Output

Object x

Number : 100

Cost: 299.950012

Object y

Number: 200

Cost : 175.5

5.5 FRIEND FUNCTIONS
C++ allows the common function to be made friendly

To make an outside function “friendly” to a class, we have to simply declare this function as
a friend of the class as shown below

class ABC

{

............

............

public:

...........

...........

friend void xyz (void); // declaration

};

The function declaration should be preceded by the keyword friend

The function that are declared with the keyword friend are known as friend functions.

Introduction to C++ 5.11

A function can be declared as a friend in any number of classes.

A friend function, although not a member function, has full access rights to the private
members of the class.

Frined function

#include<iostream.h.

class sample

{ int a;

int b;

public:

 void setvalue() [a=25; b=40;]

friend float mean (sample s); // frined declared

};

float mean (sample s)

{

return float (s.a+s.b)/2.0;

}

main()

{

sample x; // object x

x.setvalue ();

cout<<"Mean value = ",,mean (x) << "\n";

}

Output

Mean value : 32.5

5.6 FRIEND CLASS
All the member functions of one class as the friend functions of another class

The class is called a friend class

Class z

{….

Friend class x;

};

5.12 Fundamentals of Computing an Programming

Friend class

#include<iostream.h.

class ABC; // Forward declaration

class xyz

{

int x;

public:

void setvalue(inti) {x=i;}

friend vois max (XYZ, ABC);

};

class ABC

{

int a;

public:

void setvalue(int i) {a=i;}

friend void max (XYZ, ABC);

};

void max (XYZm, ABC n) //Definition of Friend

{ if(m.x>=n.a)

cout<<m.x;

else cout<<n.a;

}

main()

{

ABC abc;

abc.setvalue (10);

XYZ xyz;

xyz.setvalue (20);

max(xyz, abc);

}

Output: 20

Introduction to C++ 5.13

5.7 CONSTRUCTIONS
A constructor is a special member function whose tasic is to initialize the objects of its class.

The constructor is invoked whenever an object of its associated class is create.

A constructor is declared and defined as follows:

// class with a constructer

Class integer

{

int m,n;

public:

integer (void); // contructor declared

...........

...........

};

integer :: integer (void) //contructor defined

{

m=0; n=0;

}

Class with Constructor
#include<iostream.h>

class integer

{

int m,n;

public:

integer(Int, int); //constructor declared

void display(void)

{

cout<<"m="<<m<<"\n";

cout<<"n="<<n<<"\n";

}

};

integer :: integer (int x, int y) //constructer defined

5.14 Fundamentals of Computing an Programming

{

m=x; n=y;

}

main()

{

integer Int1 (0,100);

integer Int2 (25, 75);

cout<<"\n object1 '<<"\n";

Int1.display ();

cout<<"\n object 2'<<"\n";

Int2.display();

}

Output

Object 1 Object 2

m=0 m=25

n=100 n=75

5.8 DESTRUCTORS
A destructor, as the name implies, is used to destroy the objects that have been created by a

constructor

Like a constructor, the destructor is a member function whose name is the some as the class
name but is preceded by a tilde. For example, the destructer for the class integer can be defined as
shown below

~integer () {}

Example

#include<iostream.h>

int count =0;

class alpha

{

public:

alpha()

{

count++

Introduction to C++ 5.15

cout<<"\n No. of object created"<<count;

}

~aplha()

{

cout<<"\n No. of object destroyed"<<count;

count – –;

}

};

main()

{

cout<<"\n\n Enter main \n";

aplha A1, A2, A3, A4;

{

cout<<"\n\n Enter Block1 \n";

alpha A5;

}

{

cout<<"\n\n Enter Block 2 \n";

alpha A6;

}

cout<<"\n\n Re-enter main\n";

}

Output

Enter main

No. of object created1

No. of object created 2

No. of object created 3

No. of object created 4

Enter block1

No of object created 5

No . of object destroyed 5

Enter block2

5.16 Fundamentals of Computing an Programming

No.of object created 5

No. of object destroyed 5

Re-enter main

No.of object destroyed 4

No. of object destroyed 3

No. of object destroyed 2

No. of object destroyed 1

As he objects are created and destroyed, they increase and decrease the count. After the first
group of objects is created, a5 is created, and the destroyed, a6 is created and then destroyed.

Note that the objects are destroyed in the reverse order of creation.

