Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEC007– DIGITAL IMAGE PROCESSING

Sixth Semester, 2016-17 (even Semester)

Course (catalog) description

Credit & contact hours

The course considers Digital image processing and techniques. In this course, we will introduce some of the basic mathematical concepts that will allow us to think in the two "domains" of Image Processing, the time domain and the frequency domain. The course covers the basic types of digital images from both a mathematical description and from a block-diagram system approach.

Compulsory/Elective course: Elective for ECE students

: 3 & 45

Course Coordinator	: Dr.B.Karthik, Professor
Instructor(s)	:

Name of the instructor	Class handling	Office location	Office phone	Email (domain: @bharathuniv.ac.in)	Consultation
Dr.B.Karthik,	IV	SA 006		Karthik.ece	12.30-1.30 PM

Relationship to other courses

Pre-requisites	:	Digital Signal Processing
Assumed knowledge	:	The students will have a physics and mathematics background obtained at a high school (or equivalent) level. In particular, working knowledge of basic mathematics Including differentiation, integration and probability theories are assumed.
Following courses	:	Nil

Syllabus Contents

UNIT I DIGITAL IMAGE FUNDAMENTAL

Elements of digital image processing systems, Elements of Visual perception, Image sampling and quantization, Matrix and Singular Value representation of discrete images.

UNIT II IMAGE TRANSFORMS

1D DFT, 2D DFT, Cosine, Sine Hadamard, Hear, Slant, KL, SVD transform and their properties.

UNIT III IMAGE ENHANCEMENT

Histogram – Modification and specification techniques Image smoothing, Image sharpening, generation of spatial masks from frequency domain specification, Nonlinear filters, Homomorphism filtering, false color, Pseudo color and color image processing.

9

9

9

Page 2 of 6

UNIT IV IMAGE RESTORATION AND RECOGNITION

Image DEGRADATION models, Unconstrained and Constrained restoration, inverse filtering, Least mean square filter, Pattern Classes, optimal statistical classifiers, Neural networks and associated training methods and use of neural networks in image processing.

UNIT V IMAGE COMPRESSION

Run length, Huffman coding, Shift codes, arithmetic coding, bit plane coding, transform coding, JPEG Standard, wavelet transform, predictive techniques, Block truncation coding schemes, Facet modeling.

Total : 45 Periods

TEXT BOOK:

1.Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Third Edition, Pearson Education, 2010

REFERENCES:

1.Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Third Edition Tata Mc Graw Hill Pvt. Ltd., 2011.

2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., 2011.

3. Willliam K Pratt, "Digital Image Processing", John Willey, 2002.

4. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", First Edition, PHI Learning Pvt. Ltd., 2

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Signal Processing | Communication | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 27	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

9

9

Mapping of Instructional Objectives with Program Outcome

The scope of this course is to provide the complete analysis of Digital Image		Correlates to program		
Processing. This knowledge helps them to acquire better application of these	outcome			
principles in Digital Image Processing. The overall objective is to introduce the				
student to the basics of signal theory. This course emphasizes:	н	М	L	
1. Review the fundamental concepts of a digital image processing system	a,h	f	-	
2. Analyze images in the frequency domain using various transforms	c,g	a,b	i	
3. Evaluate the techniques for image enhancement and image restoration	b,k	a,c,g,h,i	-	
4. Categorize various compression techniques.	b,j	a,e,i,k	-	
5. Interpret Image compression standards	-	b,e,f,g,k	i	
6. Interpret image segmentation and representation techniques.	f	d,e,g		

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

S.NO	No.of	Topics/ Sub-Topics	Problem	Reference
	Periods		Solving	(Book/Journal)
			(Yes/No)	Page No
UNIT I	DIGITAL IN	/IAGE FUNDAMENTAL		
1.	1	Elements of digital image processing systems	No	
2.	1	Vidicon and Digital Camera working principles	No	
3.	1	Elements of visual perception	No	
4.	1	Brightness, contrast, hue	No	
5.	1	saturation, mach band effect	No	T1, R1
6.	1	Color image fundamentals - RGB, HSI models	No	
7.	1	Image sampling and quantization	No	
8.	1	Two-dimensional mathematical preliminaries	No	
9.	1	Singular Value Decomposition and its properties	No	
UNIT I	I IMAGE TR	RANSFORMS		
10.	1	Introduction to Fourier Transform	No	
11.	1	1D DFT and its properties	No	
12.	1	2D DFT and its properties	No	
13.	1	Discrete Cosine Transform and its properties	No	
14.	1	Sine, Hadamard Transform and its properties	No	T1, R1
15.	1	Hear Transform and its properties	No	
16.	1	Slant Transform and its properties	No	
17.	1	Karhunen – Loeve transforms and its properties	No	
18.	1	SVD transform and their properties.	No	
UNIT I	II IMAGE E	NHANCEMENT	1	
19.	1	Spatial Domain methods: Basic grey level transformation	No	
20.	1	Histogram equalization Histogram specification techniques	No	
21.	1	Noise Distributions	No	
22.	1	Image subtraction and Image averaging	No	T1, R1
23.	1	Smoothing, sharpening filters	No	
24.	2	Nonlinear filters , Homomorphic filtering	No	
25.	2	False color, Pseudo color and Color image enhancement techniques	No	
UNIT I	V IMAGE R	ESTORATION AND RECOGNITION		

26.	2	Model of Image Degradation/restoration process	No	
27.	1	Noise models	No	
28.	2	Unconstrained and Constrained restoration	No	
29.	1	Inverse filtering	No	T1 D1
30.	1	Least mean square filtering	No	11, 11
31.	1	Pattern Classes, optimal statistical classifiers	No	
32.	1	Neural networks and associated training methods and use of neural	No	
		networks in image processing		
UNIT	V IMAGE C	OMPRESSION		
33.	1	Need for data compression, Different types of compression	No	
34.	1	Run length coding-Huffman Coding	Yes	
35.	1	Shift codes, Arithmetic coding	Yes	
36.	1	bit plane coding	Yes	
37.	1	transform coding	Yes	T1, R1
38.	1	Basics of Image compression standards: JPEG Standard	No	
39.	1	Wavelet transform, Predictive techniques	No	
40.	1	Block truncation coding schemes	No	
41.	1	Facet modeling	No	

Total No. of Periods: 60

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Image: Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /Seminar/online test/quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by :Dr.B.Karthik, Professor.

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

a. An ability to apply knowledge of mathematics, science, and engineering

- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints
- such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

i. A recognition of the need for, and an ability to engage in life-long learning

j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

Course Teacher	Signature
Dr.B.Karthik	

Course Coordinator

HOD/ECE