Gross Anatomy
Liver

• The largest single organ in the human body.
• In an adult, it weighs about three pounds and is roughly the size of a football.
• Located in the upper right-hand part of the abdomen, behind the lower ribs.
Gross Anatomy

- The liver is divided into four lobes: the **right** (the largest lobe), **left**, **quadrate** and **caudate** lobes.
- Supplied with blood via the portal vein and hepatic artery.
- Blood carried away by the hepatic vein.
- It is connected to the diaphragm and abdominaal walls by five ligaments.
- Gall Bladder
 - Muscular bag for the storage, concentration, acidification and delivery of bile to small intestine
- The liver is the only human organ that has the remarkable property of self-regeneration. If a part of the liver is removed, the remaining parts can grow back to its original size and shape.
Microscopic Anatomy

• Hepatocyte—functional unit of the liver
 – Cuboidal cells
 – Arranged in plates→lobules
 – Nutrient storage and release
 – Bile production and secretion
 – Plasma protein synthesis
 – Cholesterol Synthesis
Microscopic Anatomy

- Kupffer cells
 - Phagocytic cells
- Fat Storing Cells
- Sinusoids
 - Fenestrated vessel
 - Wider than capillaries
 - Lined with endothelial cells
 - Blood flow
- Branches of the hepatic artery
- Branches of the Hepatic portal vein, central vein
- Bile canaliculi
Microscopic Anatomy

- Sinusoidal Endothelial Cell
- Sinusoid
- Kupffer Cell
- Stellate Cell
- Hepatocyte
- Liver
- Central vein
- Hepatic lobule
Blood and Bile Flow in Opposite Directions

Blood Flow

- Deoxygenated blood from stomach or small intestine → Hepatic Portal Vein → venules → sinusoids → central vein → hepatic vein → vena cava

Bile Flow

- Bile produced in hepatocytes → secreted into canaliculi → bile ductules → common duct → gall bladder → bile duct → small intestine
Functions

• The liver has more than 200 functions, including:
 – Storage of Nutrients
 – Breakdown of erythrocytes
 – Bile Secretion
 – Synthesis of plasma Proteins
 – Synthesis of cholesterol
Storage of Nutrients

- Hepatocytes absorb and store excess nutrients in the blood
 - Glucose (glycogen)
 - Iron
 - Retinol (Vitamin A)
 - Calciferol (Vitamin D)

- Nutrients released when levels are too low
Breakdown of Erythrocytes

- RBC’s have a life span of 120 days.
- RBC’s weaken and rupture, releasing hemoglobin into the blood plasma.
- Hemoglobin is absorbed by phagocytosis by Kupffer cells in the liver.
- Hemoglobin is split into
 - Heme groups
 - Iron is removed from heme leaving a substance called bilirubin (bile pigment).
 - Iron is carried to bone marrow where it is used to new hemoglobin for RBC’s
 - Bilirubin becomes a component of bile
 - Globins
 - Hydrolysed to amino acids and returned to the blood

- An electron micrograph of a Kupffer cell from the liver. The Golgi apparatus (marked with arrows and *) is well developed. The dark granules associated with the Golgi saccules are lysosomes. At the cell surface, identify the filopodial processes.
Bile Secretion

• Bile Contents
 – HCO_3^- (Bicarbonate)
 – Bile salts
 – Bile pigment
 – Cholesterol

• Stored in gall bladder
 – Concentrated
 – acidified

• Discharged into small intestine via bile duct
Synthesis of Plasma Proteins

• Produced by RER of Hepatocytes
• 3 main types
 – Albumin
 – Globulin
 – Fibrinogen
Synthesis of Cholesterol

- Produced by hepatocytes
- Some used for bile production
- Some transported for use in the rest of the body
 - Synthesis and repair of cell membranes or stored in the liver.
 - Precursor by testis, ovaries or the adrenal gland to make steroid hormones.
 - progestins
 - glucocorticoids
 - androgens
 - estrogens
 - mineralocorticoids
 - It is also a precursor to vitamin D.