Enzyme
Definition of enzyme

• Enzymes are biological catalysts.

• A Catalyst is defined as "a substance that increases the rate of a chemical reaction without being itself changed in the process."
Enzymes as Biological Catalysts

- **Enzymes** are proteins that increase the rate of reaction by lowering the energy of activation.

- They catalyze nearly all the chemical reactions taking place in the cells of the body.

- Enzymes have unique three-dimensional shapes that fit the shapes of reactants (substrates).

Timurhns, *General, Organic, and Biological Chemistry*. Copyright © Pearson Education Inc., publishing as Benjamin Cummings.
2. Properties of enzymes (important!)

• Catalytic efficiency – high efficiency, 10^3 to 10^{17} faster than the corresponding uncatalyzed reactions

• Specificity - high specificity, interacting with one or a few specific substrates and catalyzing only one type of chemical reaction.

• Mild reaction conditions- 37°C, physiological pH, ambient atmospheric pressure
3. Chemical composition of enzymes

(1) Simple protein

(2) Conjugated protein

Holoenzyme = Apoenzyme + Cofactor

Cofactor

Coenzyme: loosely bound to enzyme (non-covalently bound).

Prosthetic group: very tightly or even covalently bound to enzyme (covalently bound).
Roles of Cofactors in Enzyme Function

Cofactor changes conformation of active site.

Cofactor participates in temporary bonding between active site and substrates.
4. Classification of enzymes

(1). By their composition

1). Monomeric enzyme
2). Oligomeric enzyme
3). Multienzyme complex: such as Fatty acid synthase
(2) Nomenclature

• **Recommended name**
 Enzymes are usually named according to the reaction they carry out.
 *To generate the name of an enzyme, the suffix *-ase* is added to the name of its substrate (e.g., lactase is the enzyme that cleaves lactose) or the type of reaction (e.g., DNA polymerase forms DNA polymers).*

• **Systematic name (International classification)**
 By the reactions they catalyze (Six classes)
5. How enzymes work (important!)

1) Enzymes lower a reaction’s activation energy

– All chemical reactions have an energy barrier, called the activation energy, separating the reactants and the products.

– activation energy: amount of energy needed to disrupt stable molecule so that reaction can take place.
Enzymes Lower a Reaction’s Activation Energy

(a) Without enzyme
- lactose
- glucose + galactose

activation energy without enzyme
net energy released from splitting of lactose

(b) With enzyme
- lactase
- lactose
- glucose + galactose

activation energy with enzyme
net energy released
What is the difference between an enzyme and a protein?

- All enzymes are proteins except some RNAs.
- Not all proteins are enzymes.
2) The active site of the enzyme

- Enzymes bind substrates to their active site and stabilize the transition state of the reaction.
- The active site of the enzyme is the place where the substrate binds and at which catalysis occurs.
- The active site binds the substrate, forming an enzyme-substrate(ES) complex.
Enzymatic reaction steps

1. Substrate approaches active site
2. Enzyme-substrate complex forms
3. Substrate transformed into products
4. Products released
5. Enzyme recycled
6. Enzyme activity

- Enzymes are never expressed in terms of their concentration (as mg or μg etc.), but are expressed only as activities.
- Enzyme activity = moles of substrate converted to product per unit time.
 - The rate of appearance of product or the rate of disappearance of substrate
 - Test the absorbance: spectrophotometer
7. Factors affecting enzyme activity

- Concentration of substrate
- Concentration of enzyme
- Temperature
- pH
- Activators
- Inhibitors
Enzymes in clinical diagnosis

- An enzyme test is a **blood** test or **urine** test that measures levels of certain enzymes to **assess how well the body’s systems are functioning** and **whether there has been any tissue damage**. (why?)
• Common enzymes used for clinical diagnosis include:
 – alanine aminotransferase (ALT, also called glutamate pyruvate transaminase, GPT)
 – alkaline phosphatase
 – amylase
 – amylase
 – aspartate aminotransferase
 – creatine kinase
 – lactate dehydrogenase