BIOSTATISTICS
- **STATISTICS**: is the science of compiling, classifying and tabulating numerical data & expressing the results in a mathematical or graphical form.

- **BIOSTATISTICS**: is that branch of statistics concerned with mathematical facts & data related to biological events.
MEASURES OF CENTRAL TENDENCY

- A single estimate of a series of data that summarizes the data -
 the measure of central tendency.

- **Objective:**
 - To condense the entire mass of data.
 - To facilitate comparison.
PROPERTIES

- Should be easy to understand and compute.
- Should be based on each and every item in the series.
- Should not be affected by extreme observations.
- Should be capable of further statistical computations.
- Should have sampling stability.
The most common measures of central tendency that are used in dental sciences are:

- **Arithmetic mean** – mathematical estimate.
- **Median** – positional estimate.
- **Mode** – based on frequency.
Arithmetic mean

- Simplest measure of central tendency.

- **Ungrouped data:**

 $\text{Mean} = \frac{\text{Sum of all the observations in the data}}{\text{Number of observations in the data}}$

- **Grouped data:**

 $\text{Mean} = \frac{\text{Sum of all the variables multiplied by the corresponding frequency in the data}}{\text{Total frequency}}$
MEDIAN:

- *Middle value in a distribution such that one half of the units in the distribution have a value smaller than or equal to the median and one half have a value greater than or equal to the median.*
- All the observations are arranged in the order of the magnitude.
- Middle value is selected as the median.
- Odd number of observations: \((n+1)/2\).
- Even number of observations: mean of the middle two values is taken as the mean.
The mode or the modal value is that value in a series of observations that occurs with the greatest frequency.

When mode is ill defined, it can be calculated using the relation

\[\text{Mode} = 3 \times \text{median} - 2 \times \text{mean} \]
- Most commonly used: arithmetic mean.
- Extreme values in the series: median.
- To know the value that has high influence in the series: mode.
Measures of dispersion

- Dispersion is the **degree of spread** or **variation of the variable** about a central value.

- **Measures of dispersion used:**
 - To determine the reliability of an average.
 - To serve as basis for control of variability.
 - To compare two or more series in relation to their variability.
 - Facilitate further statistical analysis.
It is the simplest method, Defined as the difference between the value of the smallest item and the value of the largest item.

This measure gives no information about the values that lie between the extremes values.

Subject to fluctuations from sample to sample.
It is the average of the deviations from the arithmetic mean.

\[M.D = \Sigma X - \bar{X}_i \]

where \(\Sigma \) (sigma) is the sum of, \(X \) is the arithmetic mean, \(X_i \) is the value of each observation in the data, \(n \) is the number of observation in the data.
STANDARD DEVIATION (SD)

- Most important and widely used.
- Also known as root mean square deviation, because it is the square root of the mean of the squared deviations from the arithmetic mean.
- Greater the standard deviation, greater will be the magnitude of dispersion from the mean.
- A small SD means a higher degree of uniformity of the observations.
For ungrouped data:

- Calculate the mean (X) of the series.
- Take the deviations (d) of the items from the mean by: $d = X_i - X$, where X_i is the value of each observation.
- Square the deviations (d^2) and obtain the total ($\sum d^2$)
- Divide the $\sum d^2$ by the total number of observations i.e., $(n-1)$ and obtain the square root. This gives the standard deviation.
- Symbolically, standard deviation is given by:

$$SD = \sqrt{\frac{\sum d^2}{(n-1)}}$$
For grouped data with single units for class intervals:

\[S = \sqrt{\frac{\sum (X_i - \bar{X}) \times f_i}{(N - 1)}} \]

Where,

- \(X_i \) is the individual observation in the class interval
- \(f_i \) is the corresponding frequency
- \(\bar{X} \) is the mean
- \(N \) is the total of all frequencies
• For grouped data with a range for the class interval:

\[S = \sqrt{\frac{\sum (X_i - X) \times f_i}{N - 1}} \]

Where,

- \(X_i \) is the midpoint of the class interval
- \(f_i \) is the corresponding frequency
- \(X \) is the mean
- \(N \) is the total of all frequencies
COEFFICIENT OF VARIATION (C.V.)

- A relative measure of dispersion.
- To compare two or more series of data with either different units of measurement or marked difference in mean.
- \[\text{C.V.} = \frac{(S \times 100)}{X} \]
- Where, C.V. is the coefficient of variation
 - S is the standard deviation
 - X is the mean
- Higher the C.V. greater is the variation in the series of data
NORMAL DISTRIBUTION CURVE

- Gaussian curve
- Half of the observations lie above and half below the mean
 - Normal or Gaussian distribution
Properties

- Bell shaped.
- Symmetrical about the midpoint.
- Total area of the curve is 1. Its mean zero & standard deviation 1.
- Height of curve is maximum at the mean and all three measures of central tendency coincide.
- Maximum number of observations is at the value of the variable corresponding to the mean, numbers of observations gradually decreases on either side with few observations at extreme points.
• Area under the curve between any two points can be found out in terms of a relationship between the mean and the standard deviation as follows:

✓ Mean ± 1 SD covers 68.3% of the observations
✓ Mean ± 2 SD covers 95.4% of the observations
✓ Mean ± 3 SD covers 99.7% of the observations

• These limits on either side of mean are called confidence limits.
• Forms the basis for various tests of significance.